Date of Award
2014
Embargo Period
1-1-2014
Document Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Cell Biology and Regenerative Medicine
College
College of Graduate Studies
First Advisor
Robin C. Muise-Helmericks
Second Advisor
Amy Bradshaw
Third Advisor
Michael Kern
Fourth Advisor
Rick Visconti
Fifth Advisor
John Vournakis
Abstract
Treatment of cutaneous wounds with poly-N-acetyl-glucosamine nanofibers (pGlcNAc), a novel polysaccharide material derived from a marine diatom, results in increases in wound closure, antibacterial activities and innate immune responses. Treatment with nanofibers results in increased defensin, small antimicrobial peptides, expression both in vitro and in vivo. Induction of defensing expression results in bacterial clearance in a cutaneous wound model. We have also shown that Akt1 plays a central role in the regulation of these activities. We show that pGlcNAc treatment of cutaneous wounds in mice results in decreased scar sizes. Additionally, treatment of cutaneous wounds with pGlcNAc results in increased elasticity and a rescue of tensile strength. Masson Trichrome staining suggests that pGlcNAc treated wounds exhibit decreased collagen content as well as increased collagen alignment with collagen fibers oriented similarly to unwounded tissue. Utilizing a fibrin gel assay to analyze the effect of pGlcNAc nanofiber treatment on fibroblast alignment in vitro, pGlcNAc stimulation of embedded fibroblasts results in fibroblasts alignment as compared to untreated controls, by a process that is Akt1 dependent. Our data shows that in Akt1 null animals pGlcNAc treatment does not increase tensile strength or elasticity. Taken together, our findings suggest that pGlcNAc nanofibers stimulate an Akt1 dependent pathway that results in wound closure, the proper alignment of fibroblasts, decreased scarring, and increased tensile strength during cutaneous wound healing.
Recommended Citation
Buff-Lindner, Amanda Haley, "The Role of Poly N Acetyl Glucosamine Nanofibers in Cutaneous Wound Healing" (2014). MUSC Theses and Dissertations. 501.
https://medica-musc.researchcommons.org/theses/501
Rights
All rights reserved. Copyright is held by the author.