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ABSTRACT 

 

ANDREW TAYLOR DELACOURT. Utilizing Mass Spectrometry Imaging to Correlate N-

Glycosylation of Hepatocellular Carcinoma with Tumor Subtypes for Biomarker 

Discovery. (Under the direction of ANAND MEHTA) 

 

Hepatocellular carcinoma (HCC) is a leading cause of cancer deaths globally and 

is a growing clinical problem with poor survival outcomes beyond early-stage disease. 

Surveillance for HCC has primarily relied on ultrasound and serum α-fetoprotein (AFP), 

but combined they only have a sensitivity of 63% for early-stage HCC tumors, suggesting 

a need for improved diagnostic strategies. Alterations to N-glycan expression are 

relevant to the progression of cancer, and there a multitude of N-glycan-based cancer 

biomarkers that have been identified with sensitivity for various cancer types including 

HCC. Spatial HCC tissue profiling of N-linked glycosylation by matrix-assisted laser 

desorption ionization imaging mass spectrometry (MALDI-IMS) serves as a new method 

to evaluate tumor-correlated N-glycosylation and thereby identify potential HCC 

biomarkers. Previous work has identified significant changes in the N-linked 

glycosylation of HCC tumors, but has not accounted for the heterogeneous genetic and 

molecular nature of HCC, which has led to inadequate sensitivity of N-glycan 

biomarkers. Therefore, we hypothesized that the incorporation of genetic/molecular 

information into N-glycan-based biomarker development would result in improved 

sensitivity for HCC. To determine the correlation between HCC-specific N-glycosylation 
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and genetic/molecular tumor features, we profiled HCC tissue samples with MALDI-IMS 

and correlated the spatial N-glycosylation with a widely used HCC molecular 

classification that utilizes histological, genetic, and clinical tumor features (Hoshida 

subtypes). MALDI-IMS data displayed trends that could approximately distinguish 

between subtypes, with Subtype 1 demonstrating significantly dysregulated N-

glycosylation compared to Subtypes 2 and 3, particularly in regard to fucosylation. In 

order to further the clinical relevance of subtype-dependent N-glycosylation, we 

analyzed patient-matching HCC tumor tissue, background liver tissue and serum 

samples through MALDI-IMS. Results showed a N-glycan based model capable of 

differentiating tumor tissue from background liver tissue with an AUC of 0.9842. When 

analyzing the associated serum, 24.7% of detected N-glycans were significantly 

positively correlated between tumor tissue and serum, suggesting that N-glycosylation 

trends translate from tissue to serum. Additionally, a serum N-glycan-based model was 

capable of distinguishing Subtype 1/Subtype 2 tumors from Subtype 3 tumors with an 

AUC of 0.881. Through the utilization of MALDI-IMS, subtype-dependent N-glycosylation 

trends were identified in both tissue and serum, which can significantly further the 

development of HCC biomarkers for clinical application. 
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1.1 Introduction to Hepatocellular Carcinoma 

1.1.1 Disease Etiology, Development, and Progression 

 Liver cancer is the fifth most common cancer in men, the ninth most common in 

women, and the third leading cause of cancer deaths globally.1–3 The most common 

form of liver cancer is Hepatocellular carcinoma (HCC), and over the past several 

decades HCC has been the fastest rising cause of cancer deaths in the United States due 

to a rising incidence and mortality rate.4 The five-year survival rate of HCC is only 18%, 

which in large part is due to the 60-70% of tumors that are diagnosed at late stages and 

are ineligible for curative surgical treatments.5 HCC primarily develops in the 

background of liver cirrhosis, which is an inflammatory response to chronic liver injury 

characterized by regenerative nodules and fibrosis.6,7 Risk factors include viral 

infections, alcohol consumption, obesity, metabolic disorders, and smoking.8,9 Viral 

infections most associated with HCC include Hepatitis B and C (HBV/HCV), which cause 

significant liver damage and are historically are the largest risk factors for HCC.10–12 

Based on these risk factors, there is a clearly defined population for screening of 

cirrhosis and cancer, which has shown demonstrated benefit to early stage detection 

and overall survival.13 Screening is exceedingly important to early detection as HCC does 

not present with symptoms until late-stage disease when survival outcomes are 

exceedingly poor.14,15  

 The connection between HBV/HCV and HCC development has been extremely 

well validated, although the two viruses have varying disease populations. HBV is 

endemic in many eastern Asian and African countries, where vertical transmission is 
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frequent.9  There has been a demonstrated increase in HCC incidence with HBV cases 

with chronic cirrhosis when compared to HBV cases without cirrhosis or inactive carriers 

of HBV.16 HBV viral load has been demonstrated to correlate with HCC risk, even when 

adjusting for potential confounding factors such as alcohol use and smoking.17 HBV is 

divided into 8 genotypes, A-H, which differ based on the presence of mutations in the 

promotor and pre-core regions, which affect viral activity and thereby HCC risk.18 The 

most common HBV genotypes in eastern Asia, are genotypes B and C. HBV genotype C 

has been shown to be the most correlated with HCC development, and has also been 

shown to be more prevalent with increased age.19,20 Meanwhile, genotype B has been 

observed to have a higher prevalence in younger age groups and exhibited decreased 

cirrhosis.21 In addition to the promotion of cirrhosis development, HBV is thought to 

induce cancer-promoting mutations through viral replication, which is supported by 

evidence that inactive HBV still increases HCC risk through viral integration.22 Beyond 

liver injury generally, the specific molecular events that cause HBV infections to 

promote HCC are still not fully understood, and efforts are more concentrated on 

treating and preventing HBV itself through vaccination, which is an effective way to 

decrease HCC incidence indirectly. 

 HCV infections are geographically spread very differently than HBV, with 

concentrated areas in Europe, the United States, and Japan, where it has spread 

primarily through drug use. An increase in HCV infections in the United States has 

played a role in the increase in HCC incidence in recent years, but HCV infections are 

expected to level off in coming years and only partially explain the rising incidence rate 
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of HCC. There is significant evidence that HCV infections can cause HCC tumors, with 

data suggesting that a 15-20 fold increase in incidence occurs in HCV-positive subjects 

compared to HCV-negative subjects.9,23 Unlike HBV, there has not been an established 

associated between HCV viral load and progression to cirrhosis or HCC.24 Although less 

established than the link between HBV genotypes and HCC, reports have suggested that 

HCV genotype 1b has increased HCC risk compared to other HCV genotypes.25 For both 

HBV and HCV, men have significantly higher HCC risk than women, which has been 

linked to hormonal differences acting as tumor promotors/suppressors.26,27  

 There is substantial evidence that excessive alcohol use leads to HCC, although 

there is little to no evidence that low or moderate levels of alcohol usage has any effect 

on HCC incidence.28 Even still, the number of individuals at risk for HCC due to alcohol 

abuse is substantial, particularly when that lifestyle is combined with additional risk 

factors. Alcohol usage has been demonstrated to have an additive effect with many 

conditions towards the development of HCC, particularly HBV and HCV.28 The 

mechanism by which alcohol may act as a cancer promoting agent, outside of the 

obvious promotion of cirrhosis through liver injury, is not fully known. Alcohol is 

metabolized by cytochrome P450 in the liver, and it is possible that metabolites have 

cancer promoting activity and at the least are responsible for liver damage that fosters 

cirrhosis development over time. In particular, acetaldehyde and reactive oxygen 

species from the liver’s breakdown of ingested alcohol may cause DNA damage directly 

to hepatocytes in order to promote HCC initiation.29 While many of the specific 

molecular events are still not fully understood, it is clear that alcohol, similarly to HBV 
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and HCV, promotes liver injury both directly and indirectly, which can lead to HCC 

development in the long term. 

Risk factors related to metabolic syndrome, including obesity and diabetes, are 

becoming very widespread, and even though affected patients develop HCC at lower 

rates, the large number of affected individuals make these risk factors the primary cause 

for increasing HCC incidence. In areas with low levels of viral hepatitis, HCC related 

mortality and incidence is increasing, which is expected to be explained by increasing 

rates of metabolic syndrome and related conditions.30 Nonalcoholic fatty liver disease 

(NAFLD) is the leading cause of liver disease in the United States, and can lead to 

nonalcoholic steatohepatitis (NASH) and ultimately HCC. Around 20% of NAFLD cases 

eventually present as NASH, which features inflammation, liver injury, and a risk of 

progressing to cirrhosis and to HCC.31 There is also increasing evidence that NAFLD cases 

allow for the development of HCC in the absence of cirrhosis at a high rate, with one 

study suggesting that only 46% of NAFLD-related HCC cases had evidence of cirrhosis.32 

NAFLD prevalence has been shown to be rapidly increasing in the United States in 

recent years, particularly among younger people.33 In addition to NAFLD, diabetes has 

been shown to lead to increased HCC risk independent of obesity, and rates of obesity 

have been shown to be correlated with fatty liver disease and high HCC mortality 

rates.34,35 The prevalence of obesity and other metabolic risk factors leads to a frequent 

overlap with additional risk factors, such as alcohol usage and hepatitis infections, which 

accelerates HCC development.  
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1.1.2 Genetics and Molecular Pathways 

There are not universal molecular events or oncogenes/tumor suppressor genes 

that lead to HCC initiation, which follows from the variety of risk factors and liver 

conditions that can lead to HCC development. As previously stated, cirrhosis precedes 

HCC in the majority of cases, particularly those developed from viral hepatitis and 

alcohol abuse. Cirrhosis is a condition in which hepatocytes are killed and an 

overabundance of connective tissue and inflammatory cells appears, which often leads 

to the development and proliferation of dysplastic hepatocytes.36 Simplistically, this 

provides an environment filled with cell injury and inflammation, which necessitates 

proliferation of hepatocytes to maintain liver function and thus provides an opportunity 

for tumor-promoting mutations to occur. Tumor initiation of HCC has been 

demonstratively shown to be a very heterogenous event, with a significantly large 

number of genes and pathways with activity affected in some way. Some of these 

affected pathways and molecular events are impacted directly instead of indirectly 

through cirrhosis, and this is particularly true in the case of obesity-related HCC. 

Metabolic disorders put strain on the liver for a variety of molecular reasons, including 

insulin resistance, adipose-driven inflammation, and lipotoxicity, which can be expected 

to promote oncogenic pathways both in the presence and absence of cirrhosis.31 All of 

these pathways are known to promote obesity-related liver disease, and are capable of 

promoting liver damage and HCC growth even in the absence of cirrhosis. 

Analyses of genomic sequencing of HCC cases have shown that there are several 

common mutations that may act as cancer drivers in HCC, including mutations to the 
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telomeres reverse transcriptase (TERT) promotor region, the common tumor suppressor 

gene TP53, and the oncogene in the WNT signaling pathway CTNNB1.37,38 Some of these 

mutations seem to depend on the origin of the HCC tumor, including that CTNNB1 

mutations are frequent in cases of alcohol abuse and TP53 mutations in cases of HBV 

infected livers. Mutations to the activity of TERT have been shown to be the most 

common in HCC tumors, with around 70% of HCC cases displaying dysfunctional TERT 

activation, although TERT dysfunction can be derived from numerous sources including 

genomic amplifications, viral activity and promotor mutations.39 A whole-exome 

genome sequencing study showed that there are 26 significantly mutated genes (SMGs) 

in HCC cases, with TP53 and CTNNB1 being the most common.40 TP53 in particular is of 

interest, considering that it is commonly seen mutated in a variety of tumor types and 

could play an important role in tumor initiation for HCC. Even for HCC cases without a 

p53 mutation, there was frequently an observed decrease in p53 activity due to 

alterations in activity of proteins that control p53 expression, such as MDM4. Other 

highly mutated genes included tumor suppressor genes AXIN1 and RB1 and several 

chromatin remodeling genes including ARID1A, ARID2, and BAP1. However, outside of 

the TERT promotor, TP53 and CTNNB1, none of the analyzed genes were mutated in 

higher than 15% of the 363 HCC cases in this particular study. Of the 26 SMGs, the 

majority were found in either the WNT pathway, the PI3K pathway, chromatin 

remodeling, p53 signaling, or telomerase activity.40 Among these mutated genes, it is 

unclear whether any particular gene is a driver of tumor development or a passenger of 

accompanying mutations. However, the lack of highly common mutations reinforces the 
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concept that HCC is a particularly heterogenous disease, which makes it difficult to treat 

with targeted therapies.  

 Due to the diversity in overall molecular signature of HCC, there has historically 

been great difficulty in developing and implementing molecular classifications for HCC 

tumors. This sort of classification, for which breast cancer is a good example, provides 

tremendous value in order to both offer prognoses for individual patients and to 

develop a treatment plan based on characteristics of a subtyped tumor 41. The most 

significant effort to develop molecular subtypes is the Hoshida classification system, 

which placed HCC tumors into three distinct groupings based on multiple array-based 

data sets.42 These subtypes (S1, S2 and S3) displayed statistically significant 

differentiation and separated tumors into clinically relevant groups, which are 

summarized in Figure 1. S1 and S2 tumors displayed poorer histological differentiation, 

worse overall survival, and were larger in size when compared to S3 tumors. S1 tumors 

exhibit more vascular invasion and satellite lesions, which led to increased early 

recurrence after resection. Serum AFP was higher in S2 patients, which is incredibly 

important from a biomarker perspective. As far as molecular pathways, there are 

several aberrant pathways that can be considered specific to different subtypes. S1 

tumors show activation of the TGF-β and WNT pathways, along with activation of E2F1 

and inactivation of p53. S2 tumors display increased MYC and AKT activity, along with 

overexpression of IGF2. S3 tumors are mostly characterized by the maintenances of 

relatively normal liver function and better patient outcomes, and the most notable 

affected pathway is increased β-catenin expression through a CTNNB1 mutation. Based 
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on differences in differentiation, invasiveness and affected pathways, it is plausible that 

S3 tumors arise from a different mechanism than S1 and S2 tumors. Overall, these 

groupings should not be considered absolute, but have shown consistency in additional 

studies, and match well with subclasses created using other sequencing studies.40 The 

application of subtype knowledge to treatment would allow for much more specific 

treatment of late stage HCC patients and could be useful in making surgery decisions 

based on the probability of recurrence. In addition, the application of genetically based 

tumor information through subtyping could prove instrumental in the development of 

more sensitive cancer biomarkers.  
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Figure 1. Hoshida HCC Subtyping System. The differentiating molecular pathways, 
histological phenotypes, DNA mutations, clinical outcomes, and additional markers 
between established HCC subtypes are outlined for the Hoshida classification system. 
This classification system allows for the subtyping of HCC tumors based on genetic and 
molecular features.42 
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1.1.3 Treatment Options and Outcomes 

With the current state of HCC treatment options, the range of outcomes for an 

HCC diagnosis depends heavily upon how early the cancer is detected, as there are no 

effective treatment options that lead to long term survival for advanced or even 

intermediate stage tumors. Therefore, the clinical aim is to effectively diagnose and 

treat small HCC lesions before they progress and metastasize. However, early stage HCC 

is notoriously difficult to detect with standard imaging techniques, specifically 

ultrasound, and therefore nodules less than 1 cm are rarely diagnosed as HCC.43 The 

BCLC staging system, which classifies HCC cases into five stages, is the most extensively 

methodology of staging HCC tumors, and treatment options depend significantly on the 

BCLC stage of the tumor.8 This staging system and associated outcomes of each stage 

are shown in Figure 2. Patients with BCLC 0 and BCLC A have very early and early stage 

tumors with preserved liver functioning. These are the patients for which resection, 

transplantation, and ablation are viable options. At BCLC B, HCC lesions are larger 

(greater than 3 cm) and there are multiple nodules. Although there is typically not a 

deterioration in liver function or a spread beyond the liver, surgical treatments are not 

considered an option at this stage due to the difficulty in preventing early recurrence. 

Instead, chemoembolization is done to cause tumor necrosis in a relatively specific 

manner.  At BCLC C, the tumor is at an advanced stage, meaning that there is now 

spread beyond the liver or cancer symptoms related to liver functioning. Treatment 

options at this point consist entirely of systemic therapies, which are primarily multi-

kinase inhibitors. BCLC D is terminal stage HCC, and at this point patients can only 
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receive supportive care, with no real ability to effectively treat the cancer. These five 

stage guidelines inform important treatment decisions, and biomarker development 

efforts must aim to increase sensitivity and specificity for BCLC 0 and BCLC A tumors in 

order to effectively improve HCC outcomes barring the development of new treatment 

options for late-stage HCC.  
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Figure 2. Hepatocellular Carcinoma Staging and Outcomes. This chart describes the 
Barcelona Clinic Liver Cancer staging system, with associated staging criteria, 
treatments, and survival outcomes.44 
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Surgical treatment options for HCC have demonstrated the greatest survival 

benefit, but HCC must be diagnosed at stage BCLC A or BCLC 0 in order for surgery to be 

a common procedure. If a patient is diagnosed at an early or very early stage and is 

eligible for surgical options, there are a number of factors to consider when choosing 

between resection, ablation, and transplantation, particularly considering that HCC is a 

cancer typically accompanied with underlying liver conditions such as cirrhosis and 

hepatitis. Resection is often done in patients with particularly small HCC lesions, and is 

preferable in patients with minimal cirrhosis and with only a single HCC lesion. If the 

cirrhosis does not significantly affect liver function (Child-Pugh class A) resection can still 

be done, but it should not be done in patients with decompensated cirrhosis and 

substantially decreased liver functioning due to surgical risks. Evaluation of portal 

pressure and bilirubin is used to determine liver function and thereby eligibility for 

resection.45 With normal bilirubin and no clinically significant portal hypertension 

(CSPH), patients achieve a five-year survival rate of upwards of 70% after resection. 

Meanwhile, patients with cirrhotic livers have five-year survivals of only 60% after 

resection and increased odds of both early and late recurrence.46 Additionally, resection 

allows for pathologists to analyze recurrence markers, and thereby a decision for 

transplantation based on expected recurrence can be made before recurrence is able to 

advance significantly post-resection.  

While resection has shown tremendous value in the correct patients, 

transplantation should be considered the most effective possible option, as it removes 

the tumor and underlying cirrhotic tissue that frequently causes late recurrence through 
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the de novo development of additional HCC. However, transplantation is the most 

invasive procedure and requires an available liver for transplant, and therefore post-

surgery survival must be considered, which can eliminate some patients from eligibility. 

The supply of replacement livers is extremely limited, which must affect treatment 

decision making, particularly when considering recurrence odds.  Using the Milan 

criteria (a single nodule ≤5 cm or up to three nodules ≤3 cm) for determining 

transplantation eligibility has demonstrated four-year survival of greater than 75% with 

recurrence rates below 15%, which is the most commonly accepted standard for 

transplantation.47 Transplantation on livers with larger lesions or more than three 

lesions runs the increased risk of recurrence due to the possibility of extrahepatic 

spread prior to surgery, which is considered highly problematic due to the short supply 

of livers for transplantation.  

Ablation is the third surgical option, in which tumor necrosis is caused by either 

temperature effects, typically through radiofrequency, or by injection of ethanal 

percutaneously. In patients with Child-Pugh A liver functioning, radiofrequency results in 

similar long term survival to hepatic resection in cases with less than three small lesions, 

and ablation has much greater cost-effectiveness.48,49 However, ablation cannot be 

performed in close proximity to surrounding organs such as the stomach and 

gallbladder, and ablation techniques do not allow for pathological examination for 

chances of recurrence. In situations in which transplantation is not viable and the liver is 

cirrhotic, ablation is becoming favored due to its similar survival rates and decrease in 

surgical invasiveness when compared to hepatic resection.  
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 Unfortunately, the majority of HCC cases are diagnosed at either intermediate or 

advanced stages, which mostly eliminates surgical options due to the growth and 

extrahepatic spread of the cancer. TACE is the standard of care for BCLC B HCC cases, in 

which the aim is to take advantage of tumor-associated vascularization by delivering 

chemotherapy agents and blocking arterial blood supply. TACE has been shown to have 

survival benefits in unresectable HCC cases, and is the only form of chemoembolization 

for which this is true.50 Optimal candidates for this treatment are patients that have 

progressed beyond surgical options, but have not yet experienced decreased liver 

functioning or extrahepatic spread. Among patients that adequately qualify for TACE 

treatment, median survival has been shown to be 48.6 months, which is the best overall 

survival for any treatment of HCC cases that are beyond early stage.51 TACE therapy is 

measured by the induction of tumor necrosis, and oftentimes needs to be repeated due 

to an increase in vascularization around the tumor that develops in response to 

treatment. Studies have shown that optimization of the delivery of the chemotherapy 

agent can increase survival, and one option is the use of drug eluting beads, which have 

been demonstrated to be highly effective in localized treatment of HCC and other 

cancer types.51 The use of this sort of drug delivery system minimizes off-target toxicity 

while standardizing treatment across patients. TACE is the only treatment shown to 

have survival benefits for intermediate stage HCC, and additionally there is some 

evidence that TACE is effective in combination with external beam radiotherapy for 

patients with advanced stage HCC.52 The BCLC C cases that have seen benefit to this 

combination are specifically ones with vascular invasion that do not yet have 
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extrahepatic spread of HCC, as this is still a therapy targeting tumor tissue locally. 

Multiple studies have examined a combination of TACE therapy with systemic therapies, 

including sorafenib and brivanib, and there has been no survival benefit shown when 

compared to TACE alone for BCLC B HCC cases.53,54  

 For BCLC C HCC cases criteria include portal invasion, impacted liver function 

and/or extrahepatic spread of HCC in addition to the increased tumor size seen in BCLC 

B cases. The only effective treatment option for cancers at this stage is found through 

systemic therapies, as localized treatment options such as chemoembolization have not 

shown to increase survival.8 Two orally available multikinase inhibitors, sorafenib and 

regorafenib, have both been shown to improve survival when compared to placebo 

treatment, with a median survival increase from 7.7 to 10.7 months for sorafenib and 

7.8 months to 10.6 months for regorafenib.55,56 It was not until 2007 that sorafenib 

became the first systemic therapy approved by the FDA for treatment of HCC, and it is 

still the standard of care for advanced stage patients. Sorafenib is known to block cell 

proliferation and angiogenesis through interference in the RAS/RAF signaling pathway 

with inhibitory activity of RAF kinase and vascular endothelial growth factor receptor 

(VEGFR).57 Regorafenib is structurally similar to sorafenib, and has inhibitory activity in 

the same kinase signaling pathways, particularly of VEGFR.58 Several new systemic 

therapies have made it to clinical trials, including brivanib and sunitinib, and none have 

shown survival benefits over treatment with sorafenib alone.59,60 Regorafenib has 

shown added value as a secondary systemic treatment, as it has been shown to increase 
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overall survival from 7.8 months to 10.6 months in cases with Child-Pugh stage A liver 

function following previous sorafenib treatment and subsequent desensitization.56 

Based on the molecular heterogeneity of HCC, it would be expected that 

systemic therapies may perform differently depending on the tumor’s makeup, but 

specific application of molecular knowledge is not currently in use in this manner in the 

clinical setting. There are also no systemic therapies currently in use in adjuvant 

settings, even though there may be value there in order to prevent recurrence, 

particularly following surgical treatment. There are several new drug options currently 

at various stages of development, including immune checkpoint inhibitors and 

combination therapies of antiangiogenic and immunotherapies, although none seem 

ready to overtake sorafenib as the first-line treatment of advanced stage HCC.5 

 In a full examination of survival outcomes for HCC, it becomes clear that the 

BCLC stage at the time of treatment is critical, as the systemic therapies currently 

available as treatments for late-stage cancers are not capable of significantly or reliably 

extending overall survival. With surgical treatments, there are five-year survival rates 

upwards of 75%, with low risk of recurrence, whereas with TACE or sorafenib five-year 

survival rates are much lower, with median survival under three years for TACE and 

under one year for sorafenib. While this clearly demonstrates the need for more 

effective treatments to be developed for HCC beyond surgical options, it also 

underscores the need to improve upon diagnostic techniques. The majority of HCC cases 

are diagnosed at a point at which the criteria for resection or transplantation are not 

met, and this fact is largely responsible for the high mortality rate of HCC. 
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1.1.4 Surveillance and Biomarkers 

The number of high-risk patients for HCC, through any of the known risk factors, 

combined with the survival benefit of early detection necessitates a robust screening 

program for HCC in order to improve overall survival. There have been survival benefits 

demonstrated for HCC surveillance of patients with cirrhosis, primarily through 

ultrasound, yet regular screening remains inadequately utilized prior to HCC 

diagnosis.13,61 Current guidelines for screening suggest that adults with cirrhosis 

undergo ultrasound every six months, with or without an α-fetoprotein (AFP) serum 

test.3 Ultrasound alone is capable of achieving very high specificities with later stage 

HCC, but in order to improve overall HCC survival, more early-stage HCC cases need to 

be detected and treated. Ultrasound sensitivity is only 47% for early stage HCC, whereas 

sensitivity for early stage HCC with ultrasound and AFP in combination is 63%, which 

suggests that there is a benefit to using the combination.62 Sensitivity using ultrasound, 

or any imaging test, is very likely not as standardized as a serum test, and outcomes can 

range depending on the operator. Patient features, such as obesity or cirrhosis, can also 

distort ultrasound sensitivity and make diagnosis more difficult through imaging 

modalities.63 Regardless, adherence to surveillance by ultrasound every six months is 

poor due to the intensive nature of requiring imaging to be done twice yearly over an 

extended period of time.  Patients with cirrhosis need to be continually monitored, 

oftentimes for many years, due to an increased risk of HCC development, but this is not 

being done in many cases. Even among patients with diagnosed cirrhosis, over 20% are 

not fully adherent with surveillance by ultrasound.64 This does not even include other 
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aspects of the at-risk population, such as those with metabolic disease or viral hepatitis 

infections. These problems with ultrasound surveillance for HCC suggest that there 

could be extraordinary benefit to the implementation of a serum-based biomarker with 

at least equal sensitivity.   

There are many biomarkers that have been shown to have diagnostic ability with 

HCC cases, although the validation work is lacking in many cases due to difficulty in 

identifying early-stage HCC patients for validation studies. Serum biomarkers are a very 

attractive alternative to imaging surveillance due to the decreased cost and invasiveness 

of the procedure. AFP is the most extensively studied HCC biomarker and is the only one 

regularly in clinical use. However, monitoring by AFP alone has been shown to be 

inadequate for early and very early stage HCC monitoring, with sensitivity of 50-60% and 

specificity around 80% with a cutoff range around 10-20 ng/mL.65,66 It has been 

demonstrated that a significant percentage of HCC cases do not exhibit elevated AFP, 

and some cases with chronic liver diseases exhibit elevated AFP in the absence of HCC.67 

This means that AFP alone cannot be an effective biomarker in all HCC cases, although 

there could be utility in a subset of HCC cases if it was demonstrated that a subset of 

clearly defined cases did routinely have elevated AFP. In routine surveillance situations, 

it has been shown that analyzing AFP changes over time has more value than singular 

AFP measurements for HCC diagnosis, but this still does not fully eliminate the problems 

with false positives and HCC cases without elevated AFP.68 AFP levels clearly have value 

when diagnosing HCC, particularly in combination with ultrasound, but AFP alone does 
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not have the sensitivity nor the specificity to diagnose early-stage HCC at an acceptable 

rate, and therefore AFP alone is not part of the HCC screening guidelines. 

Beyond AFP, there are two other biomarkers with validation data beyond Phase 

II: AFP-L3 and des-gamma carboxyprothrombin (DCP). AFP-L3 is a specific glycoform of 

fucosylated AFP that has demonstrated value in detection of early stage HCC.69 One of 

the main benefits of AFP-L3 is that it allows for measurements of lower serum 

concentrations based on a more specific assay. The primary problem with use of AFP-L3 

is that AFP itself has low sensitivity, and a specific isoform of the protein would not be 

expected to improve on that sensitivity when used alone. This expectation holds true, as 

the sensitivity of AFP-L3 is decreased to around 50%, although the specificity is 

increased to greater than 95%.70 This increase in specificity is particularly valuable and 

logically follows from AFP-L3 being a specific isoform of AFP. Combinations of AFP and 

AFP-L3 have shown promise, as in a recent study among early and very early HCC cases 

the combination of these two demonstrated sensitivity at 79% and specificity of 87% at 

the time of diagnosis.71 AFP-L3 showed an improved AUROC among BCLC 0 stage HCC 

cases in this study, which suggests that it may have value despite its low sensitivity on 

its own. An assay of AFP-L3 has also demonstrated value in predicting recurrence 

following curative treatments, which offers additional prognostic value beyond its 

inherent diagnostic value.72 Phase III validation work on AFP-L3 is still be done, but there 

appears to be promise of some clinical value, although it is unlikely to be as a 

standalone biomarker. DCP is an abnormal prothrombin that is produced due to vitamin 

K uptake deficiencies in transformed hepatocytes, and it is the only other HCC 
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biomarker that has completed Phase II validation studies.73 Sensitivity of DCP for early 

stage HCC is expected to range between 34-62% with specificity between 81-98%, which 

insinuates that it does not outperform AFP on its own.67 DCP when combined with AFP 

did not improve upon AFP sensitivity and caused a decrease to AFP specificity, 

suggesting that a combination of these two markers would be ineffective.71 These 

results are in accordance with a previous study, which published that DCP is less 

effective than AFP with small HCC tumors and more effective than AFP with large HCC 

tumors.74 Due to the pressing need to diagnose and treat early stage HCC cancers, this 

quality detracts from DCP’s clinical value and makes it likely that DCP would only 

provide diagnostic value in combination with another biomarker, although it has already 

been shown not to enhance specificity or sensitivity of AFP.  

 There are a number of biomarkers that have shown at least somewhat promising 

results in early clinical validation for diagnosis of early-stage HCC but have not yet 

progressed into Phase III longitudinal studies. Osteopontin (OPN) is an integrin-binding 

phosphoprotein that has been shown to be expressed in a multitude of cancer types 

including pancreatic, colon, and HCC. OPN has shown promise as a biomarker for several 

of these cancers, with multiple studies comparing its diagnostic value to AFP.75 In a 

meta-analysis of early-stage HCC serum, OPN showed a pooled sensitivity of 49% and 

pooled specificity of 71%. Combining with AFP led to an increase to 73% in sensitivity 

with similar specificity of 68%.76 OPN has similar diagnostic value to AFP in both early-

stage and all HCC cases, and there may be some value to a combination of OPN and AFP. 

Midkine (MDK) is a heparin binding growth factor that has shown diagnostic potential 
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for early-stage HCC cases. MDK has been shown to have significant diagnostic value 

among BCLC 0/A cases, with a sensitivity as high as 87%, and among HCC cases with 

normal AFP levels.77 This would suggest that MDK combined with AFP would have 

significant diagnostic value, which has been shown to be true, although more 

longitudinal studies are needed to confirm the sensitivity across HCC cases.78 GP-73 is a 

golgi-specific transmembrane glycoprotein that has been shown to be elevated and 

have altered glycosylation patterns in HCC cases.79 The sensitivity of GP-73 for BCLC 0/A 

HCC cases has been shown to be 62%, with a specificity of 88%, which makes it 

competitive with AFP.80 However, it has proven difficult to develop a GP-73 ELISA-based 

assay, which has limited its application to clinical use or further validation. There are a 

variety of other biomarkers associated with HCC, including dikkopf-1 (DKK1), glypican-3 

(GPC-3), alpha-1 fucosidase, and squamous cell carcinoma antigen, but all of these have 

problems related to performance against early stage HCC, low specificity, a lack of value 

in a combination with AFP, and/or outperformance by AFP alone.67,81–84 

In addition to the diagnostic value demonstrated in the discussed biomarkers, 

including the complementary use of two or more of them, there have been a multitude 

of algorithms developed with clinical value. The use of an algorithm, particularly in the 

case of a disease with many molecular pathways that are potentially dysfunctional, 

allows for enhanced specificity through the analysis of a greater portion of the 

dysregulated tumor biology. Algorithms are able to include multiple biomarkers in 

addition to clinical and etiological factors, which in theory enables significantly more 

precision. Potentially the most validated diagnostic panel for HCC is the GALAD score, 
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which includes gender, age, AFP, AFP-L3, and DCP.85 This model has been developed 

from large data sets of patients in the UK, Germany and Japan, and it has shown ability 

to distinguish between HCC and other chronic liver diseases. For early stage HCC cases, 

GALAD has demonstrated sensitivity ranging from 80-83% and specificity from 82-89%, 

which outperforms any of the serological biomarkers on their own.86 Another 

potentially useful algorithm that has undergone validation work for HCC diagnosis is the 

Doylestown algorithm, which attempts to diagnose HCC based on log AFP, gender, age, 

alkaline phosphatase, and alanine aminotransferase.87 In the initial discovery of the 

algorithm, at a fixed specificity of 95%, detection of HCC was improved by 2-20% when 

compared to AFP alone. The Doylestown algorithm has shown sensitivity greater than 

50% up to a full year before clinical HCC diagnosis, which outperforms AFP alone and 

thereby demonstrates potential clinical value for early stage HCC.88 Furthermore, the 

addition of fucosylated kininogen to the algorithm demonstrated a sensitivity of 89% for 

early stage HCC with normal AFP levels.89 This algorithm also needs further validation 

from longitudinal studies with early stage HCC, but it demonstrates potential diagnostic 

value for early stage HCC regardless of etiology. 
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1.2 N-linked Glycosylation 

1.2.1 Broad Overview of Glycosylation 

Glycosylation refers to the addition of monosaccharide or oligosaccharide chains, 

commonly referred to as glycans, to protein or lipid molecules in order to modulate 

both size and function. There are nine common monosaccharides that form glycan 

structures in vertebrates, and these can be grouped by their molecular weight. Hexose 

(Hex) monosaccharides consist of glucose (Glu), galactose (Gal), and mannose (Man) 

residues, which have an m/z= 162.0528. N-acetylhexosamine (HexNAc) residues include 

an acetyl addition to a hexose, and include N-acetylglucosamine (GlcNAc) and N-

acetylgalactosamine (GalNAc) monosaccharides with an m/z = 203.0794. Additional 

monosaccharides include fucose (dHex, m/z = 146.0579), N-acetylneuraminic acid 

(NeuAc, sialic acid, m/z =291.0954), xylose (xyl, m/z =132.0423), and glucuronic acid 

(GlcA, m/z =176.0321). Figure 3 displays the representing depictions that will be used in 

place of monosaccharide chemical structures for simplicity throughout this work. Some 

of these monosaccharides are only expressed in certain species or glycoforms. For 

example, xylose residues can be expressed in complex glycans in plants, but are only 

found on proteoglycans in humans.90 Although the number of monosaccharides are 

limited, there is still significant glycan structural complexity due to a lack of a rigid 

template to encode glycan synthesis. Substrate availability, enzyme localization, pH, and 

availability of cellular nutrients all can alter the expressed glycoforms, which allows for 

dynamic glycosylation with changing biological conditions.91  
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Figure 3. Monosaccharide Structural Representations. Depicted are the representative 
images of each monosaccharide that will be used in place of chemical structures for 
simplicity.  
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As a post-translational modification, glycosylation adds valuable complexity to 

the expression of protein and lipid structures, allow for allowing for increased control 

over activity dynamically. Although common structural motifs exist, there are numerous 

potential glycan structures that can be variably added to glycan attachment sites. Glycan 

branching, particularly on N-glycans, presents even more complexity as differing 

structures can be assembled with the same monosaccharide additions. It has been 

estimated that more than 3000 N-glycan structures are possible within the human N-

glycan serum proteome.92 While biosynthetic pathways force glycans to be assembled 

into easily definable structures, there is still enormous variability based on potential 

size, linkage differences, branching, fucosylation, and sialylation, along with additional 

modifications such as sulfation. Without this structural complexity, it would be 

impossible for glycans to be the multi-faceted participants in cellular functioning that 

they need to be for healthy cell growth and signaling.  

In humans, the primary types of glycosylation include N-linked glycosylation, O-

linked glycosylation, glycosphingolipids, and proteoglycans.93 N-glycosylation refers to 

the attachment of an N-acetylglucosamine (GlcNAc) to an asparagine residue of a 

glycoprotein at an amino acid sequence of Asn-X-Ser/Thr where X is an amino acid but 

proline.94 N-glycans have a GlcNAc2Man3 core structure, with a variety of possible 

monosaccharide additions to modulate structure and function. O-glycosylation involves 

the similar addition of GlcNAc (or GalNAc) to glycoproteins, but attached to serine or 

threonine residues instead. O-glycosylation is highly diverse structurally and can be 

classified based on the initial sugar attachment, such as mucin-type O-glycans for 
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GalNAc attachments.95 Glycosphingolipids are formed from the addition of a glycan to 

the ceramide of a sphingolipid, and they have important structural roles in the 

formation of lipid rafts.96 Proteoglycans are extracellular glycoproteins that have 

elongated sugar repeats termed glycosaminoglycans attached via O-linked glycan 

motifs.97 While complex N-linked and O-linked glycans typically contain 5-12 sugar 

monosaccharides, glycosaminoglycans can contain up to 80 sugars, making them much 

larger structures.93 These large structures are essential for the formation of the 

glycocalyx, which is essential for extracellular functioning. 

Glycans have a wide range of necessary cellular functions that are critical for 

signaling, growth, and survival. Each structural classification of glycans has distinct 

cellular functioning, although there are many roles that require coordination across 

glycan subclasses. The functions of glycans can be approximately classified into four 

groupings: structural roles, intrinsic recognition, extrinsic recognition, and host 

mimicry.98 Structural roles of glycans are numerous and include functions such as the 

creation of a physical barrier, glycoprotein folding, protection from protease 

degradation, and the modulation of receptor signaling at the membrane.99–103 Intrinsic 

recognition describes intraspecies recognition of glycans within an organism. Examples 

of intrinsic roles of glycans include glycoprotein trafficking, intercellular signaling, and 

intercellular adhesion.104–106 Meanwhile, extrinsic recognition describes interspecies 

glycan recognition between hosts and pathogens/symbionts. Examples of extrinsic roles 

of glycans include bacterial adhesins, bacterial toxins, and pathogen 
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recognition.101,107,108  Host mimicry describes the appropriation of host glycans for the 

functioning of microorganisms.109,110 

1.2.2 Synthesis and Structure of N-Glycans 

 N-glycosylation specifically refers to the attachment of a GlcNAc to the nitrogen 

of an asparagine residue found within the amino acid sequence Asn-X-Ser/Thr where X 

denotes any amino acid excluding proline. Following the covalent bond attachment of a 

GlcNAc, various monosaccharides including galactose, mannose, fucose, sialic acids, and 

additional GlcNAcs can be added/removed to form N-glycan structures. After 

biosynthesis, the final structure forms either a complex, hybrid, or high mannose N-

glycan, examples of which are illustrated in Figure 4. There are many possible structures 

within these categories, particularly for complex structures, depending on the 

galactosylation, number of antennae, decoration with fucose/sialic acid, and additional 

modifications such as sulfation. N-glycans are necessary for both intracellular and 

extracellular functions, with new mechanisms of action still being discovered 

regularly.111 
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Figure 4. N-Glycan Structural Classifications. Illustrated are the three categorical 
classifications of N-glycan structures. High mannose N-glycans have only mannose 
monosaccharides beyond the GlcNAc2Man3 core structure. Complex N-glycans have two 
or more antennae with a GlcNAc attached to the GlcNAc2Man3 core structure. Hybrid N-
glycans have only mannose monosaccharides attached to half the GlcNAc2Man3 core 
structure, and one or more antennae with a GlcNAc attached to the other half of the 
GlcNAc2Man3 core structure. 
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N-glycan biosynthesis in eukaryotic cells occurs in two phases, located in the 

endoplasmic reticulum (ER) and in the Golgi, where oligosaccharides are transferred to 

Asn and processed by glycosidase and glycosyltransferase enzymes.93,94,112,113 In the 

endoplasmic reticulum, an N-glycan precursor is synthesized and attached to dolichol 

phosphate (Dol-P). Dolichol is a polyisoprenoid lipid necessary for oligosaccharide 

transfer to nascent glycoproteins. The mature precursor is Glc3Man9GlcNAc2-P-P-Dol, 

and once it is synthesized through the use of glycosyltransferases and UDP-GlcNAc, 

GDP-Man, and UDP-Glc substrates it can be transferred to Asn by 

oligosaccharyltransferase (OST). This transfer happens co-translationally as the protein 

is being translocated into the ER. Further processing in the ER includes the glucosidase 

catalyzed removal of glucose monosaccharides that serves as a control over correct 

glycoprotein folding, along with mannosidase catalyzed removal of a mannose.114  

The glycoprotein is then moved to the Golgi, where further processing results in 

complex and hybrid N-glycans.  In the cis-Golgi, the Man8GlcNAc2 oligosaccharide is 

trimmed by mannosidases to a Man5GlcNAc2 structure, which is the key intermediate 

for complex/hybrid type N-glycans. If a glycan is to retain high mannose structure, it will 

leave the Golgi at some point during mannosidase trimming. In the medial-Golgi, 

glycosyltransferases (referred to as MGAT enzymes) can add GlcNAc monosaccharides 

to form terminal antennae onto the base structure, which results in complex or hybrid 

N-glycans. MGAT1 and MGAT2 are responsible for GlcNAc additions to the α1-3 and α1-

6 mannose residues to form the base structure for complex biantennary N-glycans. 

Additional glycan branching can be initiated through MGAT3 (bisecting N-glycans) and 
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MGAT4/5 (triantennary/tetra-antennary N-glycans). Each antenna can then be extended 

through the action of galactoses along with potential sialic acid and/or fucose 

decoration. Fucose can also be added to the core GlcNac through a α1-6 linkage. The 

decoration of complex N-glycans depends on the availability of substrate, the expression 

of needed glycosyltransferases, and the biological demands of the cell.  

 

1.2.3 Dysregulated N-Glycosylation in Cancer 

The link between altered glycosylation and cancer initiation and progression has 

been long established, which includes the fact that many of the clinically utilized cancer 

biomarkers are glycoproteins. However, the mechanistic link between aberrant 

glycosylation and tumor progression is still not very well understood, and it appears as 

though molecular and genetic features of tumors play an important role in specifically 

how glycosylation is dysregulated.115 There have been a number of studies regarding 

dysregulated glycosylation in a variety of tumor types, with varied glycosylation 

alterations observed in both a protein-specific and cell-specific manner.116 Aberrant 

glycosylation in cancer can emerge based on a few driving factors, mainly related to 

either the expression/localization of glycosyltransferase enzymes and/or the availability 

of needed sugar nucleotide donors.117,118 Although there is some variance between 

differing cancer types, the most commonly occurring cancer-related glycan changes are 

related to sialylation, core fucosylation, O-glycan truncation, and O- and N-glycan 

branching.119–122 Aberrant cancer glycosylation signals that glycosylation is critical for 
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healthy cell functioning, and that it plays important roles in cell proliferation and cell 

growth. 

 There have been a number of glycan alterations identified in different cancer 

types, many of which are either already directly related to an established biomarker, 

such as the fucosylated glycoform of AFP AFP-L3, or showing promise in application to 

biomarker development.70 Glycan alterations have been identified in the majority of 

studied cancer types, emphasizing their relevance in cancer progression. One of the 

most commonly observed glycan alterations in cancer is related to sialylation, which are 

terminal sugars on glycoconjugates that play valuable roles in cell to cell signaling, cell 

adhesion, and cellular recognition.94,120 Sialylated Lewis epitopes are well-known to be 

related to cancer progression, and have been shown to be related to metastasis through 

cell adhesion effects, such as the increase in sLex in breast cancer metastases.123,124 This 

trend is present in additional tumor types, with sLex being correlated with poor 

prognosis in colon cancer and with metastasis of ovarian and liver cancers.120,125 Apart 

from Lewis antigens, an increase in overall sialylation has been linked directly to cancer, 

particularly α2-3 and α2-6 linkages.126 Sialylated glycans have been shown to be 

increased in a variety of tumor types, including increased expression on N-glycans of 

pancreatic cancer and increased expression of sialyltransferases for both N- and O-

linked glycans in breast cancer.127,128 α2-6 sialylation of β1 integrin has been directly 

linked to metastasis of ovarian cancer cells.129 Overall, it is clearly established that 

sialylated glycoconjugates play an important part in cancer metastasis in a number of 

cancer types, including breast, liver, ovarian, pancreatic and colon.  
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 In addition to sialylation, fucosylation is the other major glycan alteration 

relevant in cancer related to the expression of particular sugar subunits on 

glycoconjugates. Fucosylated glycans can be separated into core fucosylated and 

terminally fucosylated structures, with fucosyltransferases (FUT) responsible for the 

fucosylated glycan biosynthesis. There are 11 FUTs for N- and O-linked fucosylated 

glycan synthesis, although FUT8 is solely responsible for core fucosylation (α1-6 

linkages).119 Core fucosylation has been shown to be increased in tumor tissue in breast, 

melanoma, liver, ovarian, colon, pancreatic, and lung cancers.119,130–134 In breast cancer, 

core fucosylation of epidermal growth factor receptor has been correlated with tumor 

cell growth.135 Core fucosylation is associated with liver cancer development, and it is 

increased directly on a number of serum glycoproteins.136–138 Overexpression of FUT8 

has been directly observed in breast and liver cancers.139,140 Additionally, Lex antigens 

are differentially expressed in breast and colon cancers.120 Overall, fucosylation is 

important for tumor cell growth and invasion, and aberrant fucosylation is clearly a 

distinguishable hallmark of cancer when compared to non-cancerous tissue.  

 A primary driver of aberrant glycosylation in cancer is the expression and activity 

of glycosyltransferases responsible for biosynthesizing particular glycan structures, 

particularly sialylated, core fucosylated, and branched glycans.141 Core fucosylated 

glycans have been well established to be relevant in cancer progression, and the only 

enzyme responsible for their biosynthesis is FUT8. In liver cancer, it has been shown that 

there is an amplification of genes related to the de novo synthesis pathway of GDP-

fucose, which is a key substrate for FUT8 activity.137 Knockout of FUT8 in rodent models 
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has inhibited HCC tumorigenesis, although mice displayed growth retardation and lung 

emphysema.142 In lung cancer, it has been shown there is upregulation of FUT8 in non-

small cell lung cancer (NSCLC) which correlates with metastasis and disease 

recurrence.143 There are multiple sialyltransferases that add sialic acids to 

glycoconjugates in a linkage dependent manner, the expression and/or activity of which 

have shown to be dysregulated in many cancers. Both α-2,3-sialyltransferase 1 (ST3GaII) 

and α-2,6-sialyltransferase 1 (ST6Gall) have been shown to be upregulated in several 

cancers, including colon and breast.144,145 For these reasons, both sialyltransferases and 

fucosyltransferases have made for intriguing therapeutic targets, although there is still 

significant progress needed before such inhibitors have widespread clinical value.146 In 

addition to sialyl- and fucosyltransferases, glucosaminyltransferases that catalyze the 

biosynthesis of bisecting and branched N-glycans are commonly dysregulated in cancer. 

Rodent knockout models of golgi β1,6N-acetylglucosaminyltransferase V (MGAT5), 

which is responsible for tetra-antennary N-glycan biosynthesis, have shown that MGAT5 

suppression leads to decreased tumor growth and metastasis.147 Branched glycans 

biosynthesized by MGAT5 have been well-established to result in decreased cell-cell 

adhesion and increased tumoral invasion.148 The expression of these branched glycan 

structures has been directly related to cancer metastasis and survival, through a variety 

of mechanisms.149  

 In cancer cells, abnormal glycosylation plays a critical role in proliferation and 

survival through promoting metastasis/invasion, promoting angiogenesis, promoting 

tumor proliferation, and avoiding anti-tumor immune responses.150 It has been 
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thoroughly demonstrated that glycosylation is a primary regulator of growth and death 

factor receptor signaling, and core fucosylation of these receptors can promote cancer 

growth and proliferation.151 The mechanisms through which glycosylation affects the 

activity of these receptors includes through galectin binding, which can decrease their 

turnover on the plasma membrane and thereby promote growth factor receptor 

activity.152 The formation of galectin-binding lattices that promote receptor activity is 

often driven by MGAT5 biosynthesis of β1-6 branched N-glycans. In contrast, the 

addition of a bisecting GlcNAc to N-glycans increased the endocytosis of epidermal 

growth factor receptor (EGFR) and thereby decreased proliferative signaling.153 Another 

mechanism by which glycosylation affects cancer progression is through the 

overexpression of sialic acids and its effect on cell-cell and cell-matrix adhesion. Through 

the expression of these negatively charged sialic acids, cell-cell adhesion is decreased 

and tumor cell migration is increased in breast cancer cells.154,155 Glycosylation is also 

relevant in cancer cell metabolism, as increased glucose levels lead to increased 

availability of UDP-GlcNAc, which is a critical substrate for both O- and N-glycosylation. 

Knockdown of O-GlcNAc transferase in vitro has led to inhibited tumor growth and 

metastasis.156 Another important mechanism to consider in regard to tumor cell 

glycosylation is immune response and the escape of immune surveillance by cancer 

cells. There are various lectins that are able to bind glycans and thereby regulate 

immune processes, and the expression of abnormal complex glycans may allow cancer 

cells to evade such immune responses.157,158 Avoidance of immune effector cells is 

critical for tumor progression, and it has been clearly demonstrated that this avoidance 
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is modulated by aberrant glycosylation. Overall, these are just a few examples of the 

many ways in which aberrant glycosylation can mechanistically lead to increased tumor 

cell proliferation and metastasis, and more research is needed to further elucidate 

additional mechanisms.  

 

1.2.4 N-Glycosylation in Cancer Diagnostics 

 There have been many cancer biomarkers developed in an attempt to reduce 

cancer mortality through early diagnosis, and the majority of these markers are serum 

glycoproteins. Interestingly, many of these markers do not consider the glycan content 

on the protein, but nevertheless this development points to the importance of 

glycoproteins within cancer development and diagnosis. The incorporation of glycan-

based cancer biomarkers into cancer diagnostics is gaining in popularity in research 

settings, although clinical implementation has been slow. In order to clinically 

implement cancer biomarkers, diagnostic sensitivity must be demonstratively improved 

and clinical implementation must be minimally invasive. This is a major benefit for 

glycan-based biomarkers, as serum glycoprotein biomarkers are much simpler to 

clinically implement than any sort of biopsy-dependent biomarker.  

Perhaps the most widely implemented of the glycoprotein cancer biomarkers is 

prostate-specific antigen (PSA) for prostate cancer.159 It has long been established that 

the recommended methodology for surveillance for prostate cancer is a PSA blood test 

with or without a digital rectal exam (DRE), which then can lead to a prostate biopsy to 

confirm the cancer. However, questions have been raised regarding the efficacy of 
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serum PSA in distinguishing between prostate cancer and noncancer prostatic disease, 

which leads to many unnecessary prostate biopsies.160,161 This lack of specificity is in 

large part why serum PSA screening is typically done in conjunction with a DRE. 

However, recent studies have shown that differentially glycosylated PSA may be able to 

serve as a more specific marker to differentiate benign prostatic disease from prostate 

cancer.162,163 This is consistent with previous findings demonstrating increased core 

fucosylation and α2-3 sialylation in the whole serum N-glycome of prostate cancer 

compared to benign prostate hyperplasia.164 Thus far, core fucosylated PSA was 

successful in differentiating prostate cancer from benign prostate hyperplasia, but not in 

differentiating aggressive prostate cancer from non-aggressive prostate cancer 

(determined by Gleason score).165 PSA is a successful, clinically used biomarker for 

prostate cancer, although low specificity limits its overall effectiveness, which is a 

problem that may be addressed with further research by utilizing specific glycoforms of 

PSA. 

 Another cancer with a very commonly used glycoprotein serum biomarker is AFP 

for the diagnosis of HCC. Currently, as previously discussed, clinical guidelines rely on 

abdominal ultrasound with optional AFP testing which leads to many tumors being 

diagnosed at late stages.166 HCC has a very defined risk group, as the vast majority of 

tumors develop in patients with cirrhotic livers, which makes the group in need of 

cancer surveillance very clear. A combination of AFP and ultrasound has been shown to 

improve sensitivity for early stage HCC over ultrasound alone.62,167 Unfortunately, up to 

40-50% of HCC tumors do not have elevated AFP levels, making the sensitivity for early 
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stage HCC of AFP inadequate to improve clinical outcomes substantially on its own, even 

if there is an added benefit of combined ultrasound/AFP screening.66,67 However, AFP-

L3, a fucosylated glycoform of AFP, has been shown to potentially improve detection of 

early stage HCC.168 The major limitation is that an isoform of a low sensitivity biomarker 

is unlikely to dramatically improve sensitivity, although the increased specificity makes 

utilization of AFP-L3 appealing for algorithm-based diagnostic approaches. Both AFP and 

PSA have glycoforms that enhance its diagnostic performance, which highlights the 

capability of glycan-based biomarkers for the improved diagnosis of cancer, particularly 

at early stages.  

 AFP and PSA are the most frequently utilized cancer biomarkers clinically, 

although there are a number of other glycoprotein standalone biomarkers that have 

been identified in research and used to some degree clinically. CA125 has been 

established for use in both diagnosing and monitoring the progression of ovarian 

cancer.169 CA125 is not sensitive enough to reliably detect early stage ovarian cancer, as 

it is elevated in only 50% of stage 1 cancers, which are the ones that are most treatable 

with surgical cure.170 However, it has clinical value in predicting recurrent ovarian 

cancers, as CA125 levels rise at least 3 months before recurrence and two months 

before diagnosis through imaging.171 The sensitivity for recurrence is 62-94% and the 

specificity is 91-100%.170,172 While it may not have early stage diagnostic value, CA125 is 

clearly clinically useful for monitoring ovarian cancer. CA15-3 has been associated with a 

variety of different types of cancer cells, but it is most predominantly used in the post-

operative monitoring of breast cancer.173–175 CA 15-3 monitoring has shown clinical 
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utility in monitoring the potential for recurrent breast cancer and in the response to 

ongoing treatment.176 In recent years, MUC1 has gathered attention as an attractive 

potential target for developing immunotherapies for breast cancer.177 CA 19-9 is 

another well-known glycosylated tumor marker, which is primarily used for the 

monitoring of pancreatic cancer, although it has also been examined as a marker of 

colorectal, gastric, and liver cancers.178 CA19-9 is approved by the FDA for diagnosis of 

pancreatic cancer, although the utility in diagnosing early-stage pancreatic tumors is 

contested. It has been shown that CA19-9 can have relatively high sensitivity for 

pancreatic cancer, with one study showing a sensitivity of 68% a full year before 

diagnosis.179 However,, CA19-9 can frequently be increased in patients with non-

malignant conditions, requiring high cut-off values for adequate specificity and limiting 

its clinical utility.180 This need for high cut-ff values is a severe limitation for its clinical 

utility. CA19-9 can also be used to monitor potential recurrence following surgical 

treatment of pancreatic cancer.181 Interestingly, recent work has shown that related 

glycans to the CA19-9 antigen have sensitivity for distinct subsets of pancreatic cancers, 

showing the value of both utilizing glycomics within biomarker development and 

targeting genetically/molecularly similar subgroupings of tumors for biomarker 

development.182 

 In addition to these biomarkers with established clinical utility in either cancer 

diagnosis/surveillance or post-treatment cancer monitoring, there is a number of serum 

glycoproteins that have been examined in research settings to have cancer biomarker 

potential. α-1-Antitrypsin (A1AT) is a serum glycoprotein primarily produced by liver 
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hepatocytes that has been associated with multiple cancer types, including liver and 

lung. There has been evidence that differentially glycosylated glycoforms of A1AT in 

serum can be utilized to distinguish between non-small-cell lung cancer from benign 

pulmonary diseases and to distinguish lung adenocarcinomas from benign diseases.183 

Core fucosylation of A1AT has been directly linked to the progression of liver cirrhosis to 

hepatocellular carcinoma.136 Fucosylated kininogen is another serum glycoprotein that 

has been shown to have increased expression in hepatocellular carcinoma compared to 

cirrhosis, and increases diagnostic sensitivity particularly when used in combination with 

AFP.184 A fucosylated glycoform of haptoglobin has been shown to be increased in a 

number of cancer types, including pancreatic, breast, and liver.138 Additionally, 

increased fucosylated haptoglobin correlates with a poorer survival and increased 

metastasis in these cancer types.119 The cancer-associated increased fucosylation, 

particularly core fucosylation, of a number of serum glycoproteins, is validated by an 

observed amplification of genes involved in the de novo GDP-fucose synthesis pathway 

for liver cancer samples.137 

 Due to the inadequate sensitivity of a number of standalone cancer biomarkers, 

it is becoming much more common to develop cancer biomarker algorithms, which can 

incorporate multiple biomarkers along with relevant clinical and/or demographic 

information. These algorithms tend to provide increased sensitivity based on biomarkers 

that are complementary, although they can be more difficult to implement clinically due 

to the increased complexity and need for additional information. These sort of 

biomarker algorithms have been developed for a number of cancer types, including 
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liver, ovarian, and pancreatic. For liver cancer the most well-known biomarker algorithm 

is the GALAD score, which combines age, gender, AFP-L3, AFP, and DCP to improve upon 

diagnostic sensitivity and specificity of AFP alone.85 For early stage hepatocellular 

carcinoma, GALAD has been demonstrated to have sensitivity from 80-83% and 82-89%, 

which is an improvement on any of the known standalone serum biomarkers.86 The 

GALAD score shows great promise in improving clinical outcomes through improved 

detection, although more validating work is required before it can be widely 

implemented into the clinical setting. Similarly to the GALAD score, the Doylestown 

algorithm aims to distinguish HCC from chronic liver disease utilizing a number of 

biomarker/demographic factors, including AFP, gender, age, alkaline phosphatase (ALK), 

alanine aminotransferase (ALT), and recently added fucosylated kininogen.88 The 

Doylestown algorithm has shown comparable early-stage HCC detection to the GALAD, 

with true-positive rates (at 10% screening false positive level) of 63.2% and 57.9% 

respectively, both of which are improvements on the sensitivity of AFP alone for the 

same cohort.185 For ovarian cancer, the risk of ovarian malignancy algorithm (ROMA) 

has been developed to predict the risk of ovarian cancer in patients with benign ovarian 

masses.186 This algorithm utilizes CA125 and HE4, along with menopausal status, in 

order to stratify patients into high and low risk groups, and a sensitivity of 92.3% was 

demonstrated for a postmenopausal group.187 Compared to using CA125 alone, this 

algorithm doubled the number of tumors being accurately diagnosed in a large scale 

study in the United Kingdom.188 For pancreatic cancer, it is critical to correctly identify 

cancerous and noncancerous cysts in order to avoid overdiagnosis of cancer. Utilizing a 
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biomarker risk score that includes VEGF, glucose, and CEA, 91% of cysts were correctly 

identified preoperatively, which is a significant improvement over current clinical 

outcomes.189 Algorithms such as these show substantial promise to improve diagnostic 

sensitivity/specificity over standalone biomarkers or current clinical diagnostic 

techniques, and they should be seriously considered for biomarker development moving 

forwards.  

 

1.2.5 Glycomics Methods of N-Glycan Analysis 

1.2.5.1 Biosynthetic Inhibitors of N-Glycans 

 Historically, the most common methodology to analyze glycan function was 

through the utilization of glycan biosynthetic inhibitors, which are able to control the 

expression of glycans in cell culture. Tunicamycin, a complete N-glycosylation inhibitor, 

is the most well-known and is commonly used as a tool to analyze the effect of N-

glycans on cellular functioning.190,191 Tunicamycin functions through the inhibition of 

GlcNAc-1-phosphotransferase, which catalyzes the essential addition of a GlcNAc 

monosaccharide onto dolichol for the biosynthesis of N-glycans. Tunicamycin was vital 

in assessing the critical role that the N-glycan biosynthetic pathway plays in correct 

glycoprotein folding. Various other small molecule inhibitors that block glucosidases and 

mannosidases essential to N-glycan biosynthesis have also been discovered including 

castanospermine, kifunensine, and swainsonine.192–194 This group of inhibitors blocks 

the progression along the biosynthetic pathway to complex N-glycans, resulting in 

primarily high mannose type N-glycans. Additionally, there are inhibitors to block the 
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addition of capping monosaccharides, such as 2-deoxy-fluorofucose (2FF) to inhibit 

fucosylation and a number of CMP-sialic acid analogues to inhibit sialylation.146,195–197 In 

summary, there are small molecule inhibitors for nearly every critical step in N-glycan 

biosynthesis, which provides experimental control over N-glycan expression. While the 

cross-toxicity of these inhibitors has rendered their clinical value to be extremely 

limited, there is a tremendous amount of experimental value in utilizing these inhibitors 

to assess N-glycan functioning in various cellular states. It is difficult to gain a nuanced 

understanding through the use of complete inhibitors such as tunicamycin, but these 

inhibitors have nonetheless provided critical knowledge about N-glycan structure and 

functioning.  

 

1.2.5.2 Lectin-based Analysis of N-Glycans 

 The existence of glycan-recognizing probes (GRPs), including lectins, was first 

established in conjunction with the analysis of human blood group antigens.198 At this 

point in time, hundreds of GRPs have been identified, with various affinities for different 

glycan monosaccharides/structural motifs. Lectin affinity chromatography has long been 

established as an effective way to analyze complex glycopeptide mixtures, although 

they are highly dependent on the availability and specificity of GRPs.199 Lectins are 

commonly used as an enrichment strategy, using affinity chromatography to isolate 

glycopeptides of interest, then using peptide-N-glycosidase F (PNGase F, an enzyme that 

cleaves N-glycans from asparagine) to deglycosylate captured glycopeptides for glycan 

analysis.200 The majority of lectins are originally derived from plants, and offer affinity in 
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the low micromolar range for complex glycans. With such affinities, the utility of lectins 

is to identify broad glycan structural motifs within a sample set, and if more precise 

structural features are needed it is best to couple lectin enrichment with an orthogonal 

approach such as mass spectrometry.  

 There are a number of lectins commonly used in N-glycan analysis, all with 

varying affinities for various N-glycan structural elements.201 Depending on the needed 

application, there are a number of lectins to choose from with specific binding affinities 

to differing N-glycan structural features.202 Some lectins preferentially bind mannose, 

including Concanavalin-A (Con A), which binds terminal mannose and biantennary 

structures, and Arum maculatum (AMA), which binds N-acetyllactosamine and high 

mannose type glycans.203,204 Con A is perhaps the most widely used lectin, as it has 

broad specificity for glycoproteins containing N-glycans. There are also lectins that 

preferentially bind complex N-glycans, including Colchicum autumnale (CA) to bind 

biantennary structures, Phaseolus Vulgaris (PHA-E) to bind bisecting structures, and 

Phaseolus Vulgaris (PHA-L) to bind β1-6 branched structures.205,206 Lectins to bind 

capping monosaccharides are also commonly used, including Aleuria aurantia lectin 

(AAL) to bind fucose and Sambucus nigra Agglutinin (SNA-I) to bind α2-6 sialic acid.207,208 

Additionally, it is possible to engineer lectins with enhanced binding properties to 

specific structural features, such as recombinant AAL lectins for core fucosylated 

glycans.209,210 

 One of the most popular experimental utilizations of lectins is through a lectin 

microarray, in which immobilized lectins capture glycans for analysis in a high-
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throughput manner.211 Lectin microarrays have numerous advantages for glycomics 

analyses, including an ease of sample processing through fluorescent tagging, 

identification of glycan linkages through lectin specificity, and minimal need for sample 

volume. Due to the wide availability of diverse GRPs, the applicability of lectin 

microarrays is enormous in the field of glycoproteomics. Once again, this application is 

limited by the specificity of the GRP in use, and it can rarely isolate single glycan 

structures with precision. However, it is a valuable tool for researchers aiming to 

analyze glycan structural features of a glycoprotein sample set. Additionally, as GRPs 

with more specific binding affinities are engineered, the experimental value of lectin 

microarrays grows. There are now many commercially available lectin microarrays, 

although they are also commonly designed in-house depending on experimental needs 

and conditions.  

 

1.2.5.3 High Performance Liquid Chromatography of N-Glycans 

 In order to gain specific structural information on N-glycans, a common 

approach is to use liquid chromatography (LC) separation to isolate and identify specific 

N-glycan structures. In the early days of glycomics, utilizing LC for glycan identification 

was difficult, because glycan mixtures are often very complex with multiple glycans of 

similar sizes, shapes, and charges. However, this issue has been largely mitigated by 

technological advances, particularly in ultra-high performance liquid chromatography 

(UPLC), making LC a viable experimental route of glycan identification and analysis.211 To 

perform UPLC analysis, N-glycans are released from associated glycoproteins through 
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enzymatic cleavage, traditionally PNGase F. From this point, glycans are labeled with a 

fluorescent tag, such as 2-aminobenzamide (2-AB), for detection. Retention time can 

often vary based on column conditions and flow rate, although this can be overcome by 

standardizing to glucose units (GU) through the use of a glucose homopolymer ladder. 

Thereby each N-glycan of interest will elute at a specific GU based on the eluent and 

accurate glycan identification can be done. However, this is highly reliant on the 

development of accurate databases of GU values for glycans of interest.  

 Depending on the LC conditions and the complexity of the sample mixture, there 

is often not an adequate separation of N-glycans, leading to identification and 

quantification issues. In order to overcome this, glycosidases are commonly used in 

order to sequentially digest N-glycans, which alters their GU in a digestion-dependent 

manner.212 Common glycosidases used for this purpose include neuraminadases 

(otherwise termed sialidases), fucosidases, galactosidases, and mannosidases. Through 

such methodologies, UPLC analysis is viable in correctly separating and identifying many 

complex glycans, oftentimes including variable glycan linkages. It is feasible to separate 

β1-4 branching from β1-6 branching, as well as α1-6 from α1-3 galactosylation.213,214 

One limitation is an inability to differentiate isomeric high mannose type N-glycans.215  

However, providing linkage information is an advantage of UPLC analysis of mass 

spectrometry, which would require a separation technique, such as ion mobility, in 

order to provide such information. UPLC is a well-established glycomics tool, and in 

many instances it is the appropriate experimental technique for N-glycan identification 

and analysis.  
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1.2.5.4 Mass Spectrometry-based Analysis of N-Glycans 

 As an experimental technique, mass spectrometry (MS) is well-established in the 

field of glycomics, and a variety of mass spectrometry techniques are well-known and 

widely used.216 LC-MS is commonly done on collected fractions following LC separation 

of N-glycans, which can improve upon N-glycan identification from LC alone. Broadly, 

mass spectrometry is the most high throughput of glycomics methods, with the capacity 

to analyze complex mixtures much faster than LC alone. For N-glycan analysis, 

glycoproteins of interest are enriched and isolated from a sample, and then glycans can 

be either enzymatically released from associated glycoproteins or analyzed as 

glycopeptides.217 Oftentimes, glycans are derivatized prior to MS analysis, with 

permethylation being the most common derivatization to serve to increase 

hydrophobicity and MS characteristics.218 Glycans must be ionized for mass to charge 

detection, and typical ionization sources for glycomics mass spectrometry include 

electrospray ionization (ESI) and matrix-assisted laser-desorption ionization (MALDI). 

MALDI has the added benefit of retaining spatial information, which can be immensely 

valuable on tissue samples.219 Additionally, MS/MS experiments can fragment N-glycans 

based on monosaccharide linkages, which allows for confident structural identification. 

However, without LC separation mass spectrometry alone is inadequate to distinguish 

between isomers. Mass spectrometry will be covered in much more detail in the 

following section, although it is important to note it as one of the premier glycomics 

experimental techniques.  
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1.3 Overview of Mass Spectrometry 

1.3.1 Basic Principles of Mass Spectrometry 

 As a technology, mass spectrometry was developed in the early 20th century by 

J.J. Thomson primarily as a way to measure mass-to-charge ratios in the study of 

electrons.220 Since that time, the utilization and capabilities of mass spectrometry have 

expanded rapidly, with mass spectrometers found everywhere from the labs of 

physicists to the hospital clinical settings. Fundamentally, mass spectrometry offers the 

quantitative capability to measure the mass-to charge ratio (m/z) of an analyte and to 

record its’ fragmentation pattern upon disassociation. In order to do this, mass 

spectrometers must include an ion source, a mass analyzer, and a detector, and all three 

of these elements have variability depending on the mass spectrometer. Ion sources are 

needed to create charged ions, as a mass spectrometer relies on ion generation in order 

to record m/z. Mass analyzers are used to separate these charged ions prior to reaching 

the detector, where mass spectra are generated. There are many additional elements 

depending on the type and function of a particular mass spectrometer, but these 

elements are recognized as critical to the basic functioning of any mass spectrometer. A 

detailed analysis of the nuanced operation and theory behind mass spectrometry is well 

outside the purview of this dissertation, which focuses on the application of the 

technology, but a brief synopsis of critical knowledge to the use of mass spectrometry 

within biomedical science is provided here. 

 For biological applications the two ion sources most commonly utilized are 

electrospray ionization (ESI) and matrix-assisted laser-desorption ionization (MALDI). 
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Both of these are soft ionization techniques, meaning that they induce minimal 

fragmentation of analytes. Malcom Dole introduced the concept of ESI in the 1960s, and 

it was first applied to large biological analytes by John Fenn in the 1980s.221,222 The 

concept of ESI is to inject an analyte solution into a charged capillary, which results in a 

fine mist at the end of the capillary of analyte-containing droplets.223 As the 

organic/aqueous solvent then evaporates, often assisted by heating, droplets shrink in 

size until gaseous analyte ions are generated, which can then pass on to the mass 

analyzer.224 ESI relies on converting analytes solubilized in a liquid solvent into gaseous 

ions, and can thereby be limited by analyte solubility. However, it is the preeminent ion 

source for analyzing liquid state biological analytes. MALDI relies on the co-

crystallization of a matrix with the analyte of interest, which then absorbs UV energy of 

a laser to vaporize and ionize the analytes.225 The matrix is able to serve as a proton 

donor/receptor, allowing for both positive and negative ion mode. This ionization 

strategy primarily results in singly charged ions, which substantially reduces the 

complexity of m/z spectra. MALDI was first developed to analyze dried droplets of 

analytes, and the technology was then applied to mass spectrometry imaging based on 

the capability to generate a mass spectrum from a specific location. Through the use of 

a laser to ablate solid-phase analytes/matrix, MALDI allows for the retention of spatial 

information fundamental to mass spectrometry imaging. While they are fundamentally 

different in practice, the important similarity is that both ESI and MALDI ion sources 

result in ion generation and funnel ions towards the mass analyzer of the mass 

spectrometer.  
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 The mass analyzer is responsible for the separation of ions based on their m/z so 

that they can be accurately measured at the detector. Mass analyzers are critical as they 

are responsible for mass accuracy, sensitivity, and overall resolution. There are multiple 

types of mass analyzers, and some of the most common include Quadrupole (Q), Time 

of Flight (TOF), Ion Trap, Fourier Transform (FT) analyzers.226 Quadrupole mass analyzers 

select ions of a particular m/z through the use of four parallel metal rods and the 

application of an electric field.227 Quadrupoles have become popular due to low cost, 

reliability, and an ability to pair with additional mass analyzers such as a Q-TOF. TOF 

mass analyzers rely on the acceleration of ions through a field-free flight tube, which will 

result in varying speeds and arrival at the detector based on mass, with smaller ions 

traveling through the flight tube faster.228 Newer TOF analyzers also utilize a reflectron 

to reflect the ions back towards the ion source before detection, which improves mass 

accuracy.229 TOF analyzers have become extremely popular with MALDI ion sources, and 

they are also popular for the capability to analyze wide m/z ranges. Ion trap analyzers 

are a modification to quadrupole analyzers in which a potential field is applied to trap 

ions within the quadrupole, which are then selectively ejected to the detector based on 

m/z.230 Ion traps have improved sensitivity over quadrupoles, but they have poor 

resolving power which has reduced their popularity over time. Fourier Transform 

analyzers, specifically FT-Ion Cyclotron Resonance (FT-ICR), determine m/z through the 

cyclotron frequency of ions in a fixed magnetic field.231 FT-ICR analyzers have incredibly 

high resolving power and mass accuracy, which makes them a popular, albeit expensive, 

option.  
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 Once ions have been separated by m/z, they must generate a signal to be 

recorded at the detector, which will result in mass spectra being generated. There are a 

multitude of available detectors for mass spectrometry, each with advantages and 

regular applications. An electron multiplier is among the most common of detectors, 

and it works through a series of dynodes, with ions striking the first dynode to generate 

an electron cascade to amplify and record the signal.232 Electron multipliers are 

considered among the most sensitive of mass spectrometry detectors. In FT-ICR 

instruments, detection differs as it depends on the ICR frequency of the ion within the 

magnetic field.  

 

1.3.2 Mass Spectrometry Imaging 

 Mass spectrometry imaging (MSI) is a well-developed application of mass 

spectrometry, and it has led to exciting new technological and biological developments. 

MSI allows for the retention of spatial information of a sample through the utilization of 

an ion source capable of generating analyte ions from a mixture of matrix and sample 

analytes, such as MALDI. Functionally, MSI relies on the generation of mass spectra at 

pre-determined pixel locations, commonly through the use of a laser, and these mass 

spectra can then be combined for the generation of heat map m/z images. Thereby, MSI 

allows for the untargeted analysis of many different classes of analytes, including 

peptides, lipids, metabolites, and glycans, without a need for sample homogenization. 

For biological samples, this means that the originating location of an analyte can be 

directly correlated to histopathological features through the overlay of histological 
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images and m/z images. The first mass spectrometry imaging of biological samples was 

done on proteins and peptides by the Caprioli laboratory in 1997, and the technology 

has rapidly improved and diversified since that time.233 

Sample preparation is a critical component of successful MSI experiments, and 

there are basic tenets that apply regardless of the instrumentation being utilized.  

MSI relies on the fact that sample preparation does not disrupt the distribution of 

analytes in in vivo conditions. For biological samples, sample degradation must be 

halted post-dissection by either flash freezing or by formalin fixing, although formalin 

cross-linking is unsuitable for many analytes, with glycans being a notable exception.234 

Samples then must be sectioned into thin layers (6-20 μm) and mounted onto the 

appropriate surface, normally a microscope slide. From this point sample preparation 

varies depending upon the sample, the analytes of interest, and the mass spectrometer. 

For N-glycan imaging, endoglycosidase(s) must be applied and incubated on the tissue 

surface to enzymatically free analytes of interest from associated glycoproteins.235 For 

MALDI mass spectrometry, a co-crystallizing matrix must be applied to allow for proper 

ionization within the mass spectrometer. Regardless of the analyte or the mass 

spectrometry application, it is critical that spatial distribution of analytes remains 

unaffected by sample preparation, as highly advanced MSI today can spatially resolve 

samples even approaching 1 μm resolution.236,237 

 There are numerous technical applications of mass spectrometry imaging, 

although MALDI-IMS is the most widely utilized. MALDI requires a matrix for ionization, 

but there are many different choices of matrix depending on the sample/analyte, and 
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matrix choice and application often needs optimization for specific experiment 

parameters. Other MSI techniques exist including desorption electrospray ionization 

(DESI), and secondary ion mass spectrometry (SIMS). Both DESI and SIMS are interesting 

because they do not require a matrix, although they are more limited in the ionizable 

analytes.238  There have been numerous instrumental developments related to MSI in 

recent years, particularly laser-based advancements to improve spatial resolution. A 

lateral spatial resolution of 1.4 μm has been reported for MALDI-IMS, which is a 

significant improvement over spatial resolution from even 5-10 years ago, and the 

boundary of spatial resolution is being pushed forwards each year.239 In addition, there 

have been significant advances in developing separation techniques to pair with MSI, 

particularly through ion mobility.240 Another area of technical advancement has been in 

quantification, with new internal standard methodologies capable of much more robust 

quantification.241 Taken together, the state of MSI is now in a place where it is the 

preeminent technology to analyze the spatial distribution of many different analytes 

simultaneously within a biological sample. 

 

1.3.3 Mass Spectrometers in this Dissertation 

 The work in this dissertation utilized three separate mass spectrometers, all of 

which are MALDI-IMS instruments produced by Bruker Daltonics. The first of these mass 

spectrometers Bruker SolariX 7 Tesla FT-ICR MS equipped with a SmartBeam II 

ultraviolet laser operating at 2000 Hz with a laser spot size of 25 μm. This instrument 

possesses both an ESI and a MALDI source, and data collection for this dissertation 
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relied on the MALDI ion source. Following laser-based ionization, ions are guided into an 

ion beam by DC and RF voltages, and then the quadrupole selects for a specific m/z 

range to pass through to the hexapole. Ions are then guided into the ICR cell under high 

vacuum, where magnetic fields excite ions into cyclotron resonance that can be 

detected and transformed into mass spectra. In addition, this instrument possesses a 

collision cell for MS/MS validation of analyte identification through fragmentation. This 

mass spectrometer was the only FT-ICR instrument utilized, and thereby possessed the 

highest sensitivity and highest resolving power. However, the resolving power of this 

instrument was greater than what was required for analysis of N-glycan analytes in this 

work.  

 The TOF mass spectrometers utilized in this work included a Bruker MALDI 

rapifleX TissueTyper MS and a Bruker timsTOF fleX MS, with the bulk of the later work 

being done on the timsTOF flex. The rapifleX and timsTOF fleX both possess a 

SmartBeam 3D laser operating at 10,000 Hz. The timsTOF flex contains a collision cell for 

MS/MS analysis along with the capability for ion mobility separation, although this 

feature was not utilized in this dissertation. As a time-of-flight mass spectrometer, ions 

are accelerated by a static electric field into a field-free flight tube so that they are 

separated based on how smaller mass ions will achieve a higher velocity and thus reach 

the detector sooner. Due to this mode of ion separation and detection, acquisition 

speeds are much faster on both of these instruments than on the solariX FT-ICR, at the 

cost of decreased mass resolution. This increased acquisition speed was critical for this 

dissertation for the large sample sets of large liver tissue sections involved. 
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1.4 Broad Overview 

 There is a clear clinical need for improved detection of HCC, as current survival 

outcomes for late-stage disease are poor and unlikely to improve significantly. HCC is a 

serious clinical concern, particularly as incidence and mortality rates have risen in the 

last few decades as NAFLD incidence rises and hepatitis B/C continue to be serious 

threats. The largest survival benefit for HCC patients is found through early detection 

while the tumor is small enough to treat surgically, yet imaging modalities such as 

ultrasound are largely inefficient at early-stage detection. Serum biomarkers such as 

AFP, DCP, and AFP-L3 are all in various stages of development/clinical use, yet none 

have been demonstrated to be adequate replacements of ultrasound surveillance, 

particularly not as standalone biomarkers.   

 The majority of identified serum-based cancer biomarkers are glycoproteins, 

with some relying entirely on differential glycosylation for cancer detection. These 

include AFP, PSA, and CA 19-9, although there is a demonstrated need for improved 

performance from these markers in each of the cancer types they target. N-

glycosylation has been thoroughly demonstrated to be aberrant in cancerous 

tissue/serum when compared to non-cancerous tissue/serum. This aberrant 

glycosylation depends on the cancer type but oftentimes is expressed as increased 

fucosylation, increased glycan branching, and differential sialylation. Mechanisms 

through which abnormal glycosylation drive cancer progression/metastasis are 

somewhat unclear, although there are well-known examples such as increased core 
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fucosylation driving growth factor signaling and increased branching promoting galectin 

binding at the cell surface.  

 Through literature review and previous work, it is clear that there is unlikely to 

be a single N-glycan structure discovered in serum with adequate sensitivity/specificity 

to replace current clinical HCC diagnostic tools. We hypothesized this to be due to the 

overall genetic/molecular heterogeneity of HCC, and thereby we aimed to analyze N-

glycosylation of HCC through the lens of a genetics and clinical-based cancer subtyping 

system in an effort to reduce disease and glycan heterogeneity. The Hoshida HCC 

subtyping system classifies HCC tumors into three subgroups depending on a variety of 

genetic, molecular, clinical, and histological features. Utilizing this sort of information 

into glycan-based cancer biomarker development is novel and provides new and 

interesting perspective on glycan-based biomarkers, which is already one of the most 

exciting fields within cancer diagnostics research.  

 Leveraging mass spectrometry imaging into glycan-based biomarker studies is a 

relatively new concept and provides exciting insights into the association between 

glycosylation and cancer. Such an experimental technique relies on glycosidase enzymes 

to enzymatically cleave N-glycans without disturbing their spatial distribution. If this can 

be accomplished, mass spectrometry imaging allows for glycomics studies of 

pathologist-annotated regions of interest, as opposed to the need to homogenize 

tissues to do glycan analysis. Mass spectrometry also allows for the simultaneous 

analysis of hundreds of analytes within a given m/z window, which is ideal for N-glycan 

analysis. While there are shortcomings such as isomer differentiation, the experimental 
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technique allows for more focused cancer glycomics studies than have ever before been 

possible.   
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2.1 Rationale 

Early detection strategies for cancer remain at the forefront of research efforts, 

as many curative treatments are only possible when the cancer is diagnosed at an early 

stage. This is particularly true for hepatocellular carcinoma (HCC), which remains 

difficult to detect at early stages and has a five-year survival rate of only 18%.5 In 

response to this need, there has been a focus on biomarker development, with the 

emergence of many glycoprotein targets that show promise to improve early-stage 

diagnostic sensitivity.8,62,67 The field of glycobiology has rapidly attracted attention for 

cancer biomarker development due to the important roles that the overall glycome 

plays in numerous biological pathways, which leads to dysregulated glycosylation in 

cancer progression.93,98,242,243 Glycosylation is a common post-translational modification 

of proteins, with chains of glycan subunits covalently attached to asparagine residues 

for N-linked glycosylation and serine/threonine residues for O-linked glycosylation. In 

cancer, aberrant N-glycosylation includes increased fucosylation, which has been 

observed in HCC along with upregulations of core fucosylation-related gene 

expression.137,244 The use of N-glycomics information in HCC provides an unique 

opportunity to enhance diagnostic specificity and add to the overall molecular 

understanding of HCC.72,245 

HCC is a molecularly heterogenous disease with several disease etiologies, which 

makes both effective diagnosis and treatment of the disease difficult.16,246 In the past 

decade, there have been multiple efforts to classify HCC cases into genetically-based 

subtypes.40,42 These subtypes offer insight into the diversity of HCC cases, and they can 
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be used as a tool to advance development of clinically useful biomarkers and novel 

targeted therapies. Additionally, utilization of subtyped tumors in biomarker 

development allows for the development of markers more specific to subgroups of 

tumors, allowing for increased sensitivity.  

Here, we propose to utilize mass spectrometry techniques to combine genetic 

and clinical information in a novel way with N-glycomic information in an effort to 

discover biomarkers for subtypes of HCC. We hypothesize that N-glycan expression of 

HCC tissues/serum will correlate with the molecular and clinical differences between 

subtypes and thereby provide insight into the heterogenous N-glycosylation present in 

non-subtyped HCC tissue.  

 

2.2 Significance 

 Liver cancer is the second leading cause of cancer deaths globally, and it is a 

growing clinical problem due to its high mortality rate and growing incidence rate.1,3 

This growing incidence rate is largely due to the increase in risk factors such as fatty liver 

disease and NASH, which is a rapidly growing problem that does not have a solution in 

the foreseeable future.247 HCC is the most common form of liver cancer, and it is the 

fastest rising source of cancer deaths in the United States.4 While the five-year survival 

overall is very low, the five-year survival is much higher among patients diagnosed at a 

eligible stage for surgical treatments, with transplantation leading to five-year survivals 

approaching 70%.8,46 This highlights the clinical need to diagnose tumors at the earliest 

possible stage. However, current surveillance guidelines are inadequate for the 
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identification and diagnosis of many early-stage tumors, particularly due to the 

inadequacy of ultrasound to diagnose small tumors. If a serum-based biomarker with 

adequate sensitivity to improve the rate of early-stage diagnoses could be identified, 

the survival benefit for HCC patients would be enormous. Based on a review of currently 

identified cancer biomarkers, N-glycomics-based analyses are most likely to yield novel 

HCC biomarkers to improve the detection of early-stage tumors.  

 

2.3 Innovation 

 Even though the liver is the organ primarily responsible for the secretion of 

glycoproteins, and there is overwhelming evidence that N-linked glycosylation can be 

utilized for cancer biomarkers, there is still a need within the field of HCC biomarker 

development for more sensitive/specific markers for HCC. Disease heterogeneity has led 

to variable expression of many of the markers currently in use or in development for 

HCC, including AFP and fucosylated AFP.248 Therefore, it is imperative to find a way to 

account for this heterogeneity while identifying biomarkers that may have a synergistic 

effect for the purpose of improved diagnostic sensitivity. Subtyping HCC tumors into 

multiple classifications accounts for molecular/clinical heterogeneity of tumors, and it 

may account for N-glycan heterogeneity enough to improve sensitivity of markers for 

different HCC subtypes. This work offers a novel N-glycomics approach by 

incorporating genetic/clinical data for each HCC sample analyzed in an effort to 

decrease overall heterogeneity of HCC N-glycosylation. Each HCC tissue will be 

subtyped according to the Hoshida classification system, which incorporates both 
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genetic information and clinical information, and then comprehensive on-tissue and 

serum N-linked glycan data will be gathered. Integrating this sort of genetic information 

with N-glycan expression data yields a much more specific way to analyze N-

glycosylation of both tissue and serum in cancer and has not previously been done. 

Attempting to match molecular subtypes to N-glycomic trends is also novel and will be 

used in an attempt to classify the heterogeneity previously seen in glycan expression on 

HCC tissues. If this work results in specific structures that correlate to specific subtypes, 

there would have significant potential for use as a biomarker for HCC. Through well-

established MALDI-IMS capabilities for spatial analysis of N-glycosylation, N-glycan 

structures specific for tumorous regions of HCC liver tissue can be identified.219,234 By 

combining spatial N-glycan analysis of HCC with the genetic/clinical information used 

to separate tumors into Hoshida subtypes, a more robust way of identifying N-glycan 

structures specific to subtypes of HCC tumors is developed with the goal of increasing 

diagnostic sensitivity overall. 

 

2.4 Specific Aim 1 

Compare N-linked glycosylation patterns of Hoshida-subtyped hepatocellular 

carcinoma tissue using MALDI Imaging Mass Spectrometry 

 

The goal of this aim is to link previously established molecular subtypes of HCC 

to tissue-based N-glycosylation, with the purpose of furthering the understanding of 

cancer-linked N-glycosylation. Hoshida HCC subtypes, developed by Dr. Yujin Hoshida, 
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classify HCC cases into three subtypes with unique clinical, molecular, and genetic 

features. Analysis of HCC, in both serum and directly on tissue, has shown overall N-

glycan expression trends that are prevalent in cancer, specifically including increases in 

both highly branched and core fucosylated structures. However, there has been 

heterogeneity within HCC samples regarding these structural trends, which detracts 

from the potential biomarker value. We plan to utilize matrix assisted laser 

desorption/ionization imagine mass spectrometry (MALDI-IMS), with enzymatic release 

of N-linked glycans, on subtyped HCC samples in order to analyze whether this 

heterogeneity can be explained by known molecular differences in HCC tumors. Key 

breakthroughs in this aim would be 1) matching of specific N-glycan trends or individual 

structures directly to Hoshida subtypes of HCC 2) confirmation that HCC tumors exhibit 

varied N-glycosylation in a manner dependent on genetic/molecular features that can 

be categorized into subtypes and 3) validation of previously seen N-glycosylation 

patterns within HCC tissues when compared to cirrhotic or normal liver tissue. 

 

2.5 Specific Aim 2 

 Correlate N-linked glycosylation of Hoshida-subtyped hepatocellular carcinoma 

tissues to the N-glycosylation of patient-matching serum for the development of serum-

based biomarkers 

 

 The overall goal of this aim is to analyze the translation of on-tissue N-

glycosylation features of HCC tumors to serum samples, which is a necessary step within 
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biomarker development in order to develop clinical utility. The novel aspect of this aim 

rests in the utilization of patient-matching serum/tissue samples, which allows for a 

better understanding of the progression from tumor to serum N-glycan expression while 

controlling for some of the demographic/lifestyle factors that may impact N-

glycosylation as a whole. Additionally, the subtype-specific HCC correlation of individual 

serum glycoproteins will be analyzed through the utilization of a MALDI-IMS based 

antibody array, allowing for identification of differential N-glycosylation on particular 

glycoproteins of interest. Key findings in this aim would be 1) analysis of the correlation 

of tumor-specific N-glycosylation to serum N-glycosylation 2) furthering tissue-based N-

glycan analysis with a larger sample set and 3) identification of glycoproteins of interest 

to distinguish cancer from non-cancer and cancer subtypes from each other.   
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Chapter 3: Tissue N-Glycosylation Correlates with 

Hepatocellular Carcinoma Subtypes 
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3.1 Introduction 

 N-linked glycans (N-glycans), which are responsible for a wide range of 

physiological and cellular functions, have been demonstrated to be dysregulated in a 

variety of cancer types.93,98,101,116,151,249–253 Aberrant glycosylation has been 

demonstrated to contribute to tumor progression and metastasis, which has enabled 

research into the usage of glycan expression and glycoprotein expression as clinical 

biomarkers of cancer.254 Glycoproteins that serve as cancer biomarkers clinically include 

carbohydrate antigen 19-9 (CA 19-9) for pancreatic cancer and α-fetoprotein (AFP) for 

hepatocellular carcinoma (HCC).4,255 While AFP is the major tumor marker for HCC, its 

clinical impact in HCC screening programs is mitigated due to tumor heterogeneity, with 

many tumors not producing AFP. AFP alone is not recommended for surveillance given 

insufficient sensitivity, and the combination of abdominal ultrasound and AFP still 

misses over one-third of HCC cases at an early stage.62 Indeed, studies have identified 

substantial histological and molecular heterogeneity across and within HCC tumors as 

distinct subtypes/variants, which includes heterogeneity in AFP expression.256,257 In 

addition, a recent clinical trial showed that a subset of HCC tumors characterized by high 

AFP are more sensitive to a VEGFR2 antibody, ramucirumab, compared to the rest of the 

tumors, suggesting that biomarkers that specifically detect HCC subtypes can guide 

therapeutic decision making.258 Therefore, given its central importance to increasing 

curative treatment eligibility and reducing HCC-related mortality, there is a clear need 

for better or complimentary biomarkers to improve early HCC detection.259 
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 Our lab’s previous work has identified structural trends of N-glycans that are 

common to HCC tumors when compared to cirrhotic and healthy liver tissue.245 This 

work was done utilizing matrix-assisted laser desorption ionization imaging mass 

spectrometry (MALDI-IMS) to analyze N-glycan structures found on the cell surface 

directly on HCC tissues localized to tumor regions. Two major structural trends of 

glycans emerged that were correlated to HCC tumors: increased expression of 

fucosylated structures and increased expression of tri- and tetra-antennary branched 

structures. The fucosylation trends in particular support what has previously been 

observed in HCC serum towards biomarker discovery.147,244,260–262 Although it was clear 

that HCC tumors generally have aberrant N-linked glycosylation, there was significant 

inter-tumor heterogeneity of N-glycan expression, particularly in regards to the 

branched and fucosylated structures that were correlated to HCC regions.245 This 

heterogeneity is further supported by work that shows N-glycan heterogeneity between 

tumors with high AFP expression and low AFP expression.248 Therefore, we 

hypothesized that heterogeneity of N-glycosylation in HCC is correlated with specific 

histological, molecular, and clinical features of HCC tumors. HCC is well known to be a 

genetically and molecular heterogeneous disease, and recent work by a number of 

groups have classified HCC into specific subtypes to reduce this overall 

heterogeneity.40,42,263–265 These subtypes have been determined largely based on 

genome-based groupings, which have never before been linked with study of cancer N-

glycomics.  
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 In this study, we employed the latest spatial glycan profiling technology to 

analyze formalin-fixed paraffin-embedded (FFPE) HCC tissues from a cohort of HCC 

patients with the information of the Hoshida HCC molecular classification, which has 

been widely used as a reference system in various human HCC omics profiling 

consortiums, rodent models, and in vitro experimental systems.40,42,160,246,266–269 This 

classification is based on genomic features and associated with histological variants, 

biochemical features such as AFP, and clinical prognosis.256 Hoshida subtype 1 is 

characterized by fibrogenic molecular features such as TGFβ pathway activation and 

accompanied with immune cell infiltrates (S1; stromal subtype). Subtype 2 is 

characterized by classical HCC-like features, including AFP positivity, hyper vascularity, 

and stemness-related cell surface markers (S2; stemness-angiogenic subtype). Subtype 3 

is characterized by well differentiated histology, somatic DNA mutations in CTNNB1 

gene in half of the subtype, and less aggressive clinical tumor progression compared to 

S1 and S2 tumors (S3; differentiated subtype). Clinical detection of these subtypes will 

significantly improve prognostic prediction and enable tailored and rational treatment 

strategy, and diagnostic markers of these subtypes could be complementary to improve 

HCC diagnosis as a whole.  
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3.2 Materials and Methods 

3.2.1 Patient Tissues and Microarrays 

The tissue microarray (TMA) slide was purchased from US Biomax (Rockville, MD, 

Catalog Number: LV481) as unstained formalin fixed paraffin embedded (FFPE) tissue 

cores (5 µm thickness). The TMA contained 23 cases and 48 cores. This includes 12 HCC 

cases and 12 tumor-adjacent non-tumor hepatic tissue cases in duplicate. There was 

one matched pair between HCC cores and tumor-adjacent cores, the remainder of the 

HCC and tumor-adjacent samples were taken from unique patients.  

FFPE tissue sections (5 µm thick) were made from 28 HCC tissue blocks from 

surgical resection of HCC in the background of liver cirrhosis. Samples were provided 

from the Icahn School of Medicine at Mount Sinai under IRB HS 13-00456 and HS 15-

00888 to Dr. Yujin Hoshida and from the UT Southwestern Medical Center under IRB 

102010-051 to Dr. Amit Singal. The glycan imaging work at MUSC was performed under 

IRB Pro00079936. Patient characteristics of these samples including sex, age, AFP levels, 

and etiology can be found in Table 1. HCC tissues were subtyped according to the 

Hoshida classification system as done previously.42,256 All tissues were H&E stained 

following MALDI-IMS analysis and tumor regions were annotated by a liver pathologist. 
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Table 1. Patient Demographics. All tissues between the discovery and validation cohorts 
are included. Abbreviations: HCV, hepatitis C virus; HBV, hepatitis B virus; ALD, alcohol-
related liver disease; NASH, non-alcoholic steatohepatitis; AFP, alpha-fetoprotein; AJCC, 
American Joint Committee of Cancer. 
 

3.2.2 FFPE Tissue Preparation for MALDI-IMS 

HPLC grade methanol (Catalog No. A452SK-4), ethanol (Catalog No. 22-032-601), 

acetonitrile (Catalog No. A998-1), xylene (Catalog No. X3S-4), and water (Catalog No. 

W5-1) were obtained from Fisher Scientific (Pittsburgh, PA). Trifluoroacetic acid (Catalog 

No. W302031) and α-cyano-4- hydroxycinnamic acid (Catalog No. C89892) were 

obtained from Sigma-Aldrich (St. Louis, MO). Peptide-N-glycosidase F (PNGase F) Prime 

was cloned, expressed, and purified in-house as previously described. 219  

FFPE tissues and the TMA were prepared according to a previously published 

protocol.219,234,270 Tissue Tack microscope slides were purchased from Polysciences Inc 

(Warrington, PA, Catalog No. 24216), and indium tin oxide glass slides were purchased 

from Delta Technologies (Loveland, CO, Catalog No. CB-40IN-S111). Briefly, slides were 

Variables 
Discovery Cohort (n = 25) 

Validation Cohort (n = 
12) 

Age 68 (59-72) 58 (49-68) 

Male sex 18/7 (72%/28%) 7/5 (58%/42%) 

Etiology 
(HCV/HBV/ALD/NASH/Others) 

7/11/3/2/2 
(28%/44%/12%/8%/8%) 

4/6/1/0/1 
(33%/50%/8%/0%/8%) 

AFP, ng/mL 52 (7-830) 6 (4-155) 

Child-Pugh class (A/B/C) 21/2/1 (88%/8%/4%) 11/1/0 (92%/8%/0%) 

AJCC T stage (T1/T2/T3/T4) 8/12/2/1 
(35%/52%/9%/4%) 

4/6/2/0 
(33%/50%/17%/0%) 

Hoshida HCC subtype 
(S1/S2/S3.1/S3.2) 

6/4/4/11 
(24%/16%16%/44%) 

5/2/1/4 
(42%/17%/8%/33%) 

Categorical variables are shown as n (%). Continuous variables are shown as median 
(IQR). 
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heated to 60°C for 1 hour, washed with xylenes, and rehydrated with a series of ethanol 

and water washes. Slides were then processed by antigen retrieval, heating to 95° C for 

30 minutes in a Decloaking Chamber in a 10 mM citraconic anhydride buffer, pH 3. 

Slides were cooled to room temperature and buffer exchange was done to replace 

buffer with 100% water. PNGase F PrimeTM was applied using a M5 TM-Sprayer Tissue 

MALDI Sample Preparation System (HTX Technologies, LLC). After a two-hour incubation 

at 37°C, MALDI matrix α-cyano-4-hydroxycinnamic acid (0.042 g CHCA in 6 mL 50% 

acetonitrile/49.9% water/0.1% TFA) was sprayed by the M5 TM-Sprayer. The full 

workflow to prepare FFPE tissues for MALDI N-glycan imaging is shown in Figure 5.  
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Figure 5. MALDI-IMS Tissue Preparation Workflow. A flowchart depicting the workflow 
to prepare FFPE tissues from dewaxing through MALDI-IMS and data analysis. 
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3.2.3 MALDI-IMS of N-Glycans 

Slides were imaged on a MALDI FT-ICR (SolariX Legacy 7T, Bruker Daltonics) mass 

spectrometer in positive ion, broadband mode (m/z 500-5000) and a MALDI TOF 

(RapifleX TissueTyper, Bruker Daltonics) in positive ion mode (m/z 600-3500). Images 

were collected on the FT-ICR at a 150 µM raster with 200 laser shots per pixel. Images 

were collected on the MALDI-TOF at a 50 µM raster with 200 laser shots per pixel. Data 

was visualized and analyzed using FlexImaging 5.0 and SCiLS Lab 2019c (Bruker). Peaks 

were assigned to N-glycan structures based upon mass using a database of N-glycan 

structures built with consideration to biosynthetic pathways.271 Putative structures are 

shown based on previous databases through use of databases built with use of 

GlycoWorkBench (RRID:SCR_000782).127,219,234 Glycan structures, m/z values, and mass 

error can be found Table 2 for FT-ICR data and Table 5 for MALDI-TOF data. 

 

3.2.4 Statistical Analysis 

After MALDI-IMS analysis, statistical analyses were done in order to evaluate 

differences between HCC tissue and adjacent non-HCC tissue in both the TMA and 

whole tissue analyses. For the TMA, area under the peak (AUP) was determined using 

SCiLS for each m/z value in each tissue core, and the average AUP was determined for 

each m/z of both HCC cores and non-HCC cores. Unpaired student’s t tests were used to 

determine glycan structures that were significantly increased in either HCC or non-HCC 

cores, with a cutoff of p < 0.05. For the whole tissues, HCC and adjacent liver tissue 

regions were annotated by a pathologist. For the cohort analyzed via FT-ICR, AUP was 
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determined for each m/z value for both the tumor region and adjacent non-tumor 

(primarily cirrhotic) region. An AUP fold change of >3 signified a tumor-associated 

increase to glycan expression. Significant differences between groups were determined 

using a Wilcoxon Rank-Sum Test, with a cutoff of p < 0.05. For the cohort analyzed via 

MALDI TOF, SCiLS spatial co-localization feature was utilized, which identifies m/z peaks 

with resultant images that demonstrate a spatial correlation in signal intensity to the 

tumor region, with a threshold of a >0.4 Pearson coefficient to determine positive 

correlation. A top-hat baseline correction through SCiLS was utilized for the MALDI-TOF 

mass spectrometry imaging runs. 
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3.3 Results 

3.3.1 Inter-Tumor Heterogeneity of N-Glycan Expression in HCC Tissues 

 Previous work has suggested that there are distinguishable differences in N-

glycan expression in both HCC serum and HCC tissues when compared to both cirrhotic 

and healthy liver tissue.89,245,272 To validate these results, we analyzed the N-glycome of 

an independent HCC tissue microarray (TMA) through MALDI-IMS FT-ICR (Figure 6). The 

TMA was H&E stained to compare to MALDI images, which is shown in Figure 6A. Tissue 

preparation for N-glycan analysis through MALDI-IMS involves the usage of the enzyme 

PNGase F PrimeTM, which cleaves N-glycans from arginine residues of glycoproteins 

while retaining spatial localization of the glycan. In this analysis, 88 unique glycan 

structures were observed, with the area under the curve (AUP) of each m/z peak 

analyzed for each core (Table 2). Peaks were selected based on the known theoretical 

m/z values from a database of N-glycan structures. Twenty-three of these structures 

were significantly increased in the HCC cores, and seven of the structures were 

significantly increased in the tumor-adjacent non-tumor cores (Tables 3 and 4). Of the 

23 structures that were significantly increased in HCC samples, 19 were fucosylated and 

16 structures were complex glycans that were either bisecting, tri-antennary, and tetra-

antennary structures (Figure 6B and 6C). Additionally, none of the seven glycans that are 

increased in tumor-adjacent cores were fucosylated and instead are primarily high 

mannose or non-fucosylated biantennary structures. A representative image of one of 

these glycans increased in non-tumor cores is shown in Figure 6D. Fucosylated and/or 

branched glycans made up the majority of glycans that were increased in HCC cores, but 
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there were a few structures that did not fit this pattern. Some of the glycans increased 

in HCC cores were relatively simple structures that were non-fucosylated and/or simple 

structures with only two antennae, an example of which is seen in Figure 6E. 
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Figure 6. TMA Analysis of the N-glycosylation of HCC and Normal Liver. (A): H&E 
staining of the TMA. The organization of the TMA includes 2 cores each from 12 unique 
HCC tumors, and 2 cores each from 12 unique normal liver tissue adjacent to HCC cases. 
The columns indicated with a “+” include horizontally paired HCC cores, and the 
columns indicated with a “-” include horizontally paired normal adjacent cores. (B-F): 
MALDI-IMS images of representative glycan structures. (B-C): Structures that are 
significantly enriched in HCC cores. m/z= 2685.9551 (B); m/z= 2539.9045 (C); (D): A 
structure that is more abundant in normal adjacent cores than HCC cores. m/z= 
1743.5816 (E): A structure that is significantly enriched in HCC tumors but is observed at 
relatively low levels. m/z= 1704.6180 (F): A structure that is not significantly enriched in 
HCC cores as a whole, but clearly over-abundant in select tumors. m/z= 2393.8436 
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Observed m/z Theoretical m/z Error in PPM Glycan Structure 

771.2694 771.2822 16.6346 Hex2HexNAc2 

933.317 933.3170 0.0000 Hex3HexNAc2 

1079.3753 1079.3749 0.3706 Hex3dHex1HexNAc2 

1095.3690 1095.3698 0.7303 Hex4HexNAc2 

1136.3952 1136.3964 1.0560 Hex3HexNAc3 

1257.4225 1257.4226 0.0795 Hex5HexNAc2 

1282.4522 1282.4543 1.6375 Hex3dHex1HexNAc3 

1298.4487 1298.4492 0.3851 Hex4HexNAc3 

1339.4736 1339.4758 1.6424 Hex3HexNAc4 

1419.4753 1419.4754 0.0704 Hex6HexNAc2 

1444.5071 1444.5071 0.0000 Hex4dHex1HexNAc3 

1460.5029 1460.502 0.6162 Hex5HexNAc3 

1485.5326 1485.5337 0.7405 Hex3dHex1HexNAc4 

1501.5309 1501.5286 1.5318 Hex4HexNAc4 

1542.5564 1542.5551 0.8428 Hex3HexNAc5 

1581.5279 1581.5282 7.4882 Hex7HexNAc2 

1606.5714 1606.5599 0.1897 Hex5dHex1HexNAc3 

1611.6212 1611.5266 7.1582 Hex4HexNAc3NeuAc1+ 2Na 

1622.5582 1622.5548 4.4055 Hex6HexNAc3 

1647.5873 1647.5865 2.0955 Hex4dHex1HexNAc4 

1663.5835 1663.5814 0.4856 Hex5HexNAc4 

1688.6124 1688.613 0.3553 Hex3dHex1HexNAc5 

1704.6180 1704.6079 5.9251 Hex4HexNAc5 

1743.5816 1743.581 0.3441 Hex8HexNAc2 

1809.6404 1809.6393 0.6079 Hex5dHex1HexNAc4 

1825.6276 1825.6342 3.6152 Hex6HexNAc4 

1850.6643 1850.6659 0.8646 Hex4dHex1HexNAc5 

1866.6591 1866.6608 0.9107 Hex5HexNAc5 

1905.6347 1905.6338 0.4723 Hex9HexNAc2 

1911.5935 1911.5859 3.9758 Hex5dHex1HexNAc4 + 2Na + SO4 

1954.6746 1954.6768 1.1255 Hex5HexNAc4NeuAc1 

1955.6802 1955.6972 8.6926 Hex5dHex2HexNAc4 

1976.6593 1976.6666 3.6931 Hex5HexNAc4NeuAc1 + 2Na 

1992.6459 1992.6537 3.9144 Hex5HexNAc4NeuGc1 + 2Na 

2010.6535 2010.6224 15.4678 Hex7dHex1HexNAc3 + SO4 

2012.7208 2012.7187 1.0434 Hex5dHex1HexNAc5 

2028.7122 2028.7136 0.6901 Hex6HexNAc5 

2057.6575 2057.6439 6.6095 Hex5dHex2HexNAc4 + 2Na + SO4 

2067.6925 2067.6837 4.2560 Hex10HexNAc2 

2069.7194 2069.7402 10.0491 Hex5HexNAc6 

2100.7356 2100.7347 0.4284 Hex5dHex1HexNAc4NeuAc1 

2101.7371 2101.7551 8.5643 Hex5dHex3HexNAc4 

2122.7149 2116.7296 4.5225 Hex5dHex1HexNAc4NeuAc1 + 2Na 

2157.7729 2157.7562 7.7400 Hex5HexNAc5NeuAc1 

2158.7790 2158.7766 1.1117 Hex5dHex2HexNAc5 
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2163.7230 2163.7432 3.6511 Hex4dHex1HexNAc5NeuAc1 + 2Na 

2174.7784 2174.7715 3.1727 Hex6dHex1HexNAc5 

2179.7457 2179.7460 0.1230 Hex5HexNAc5NeuAc1 + 2Na 

2215.7670 2215.798 16.8793 Hex5dHex1HexNAc6 

2245.7753 2245.7722 1.3804 Hex5HexNAc4NeuAc2 

2246.7814 2246.7926 4.9844 Hex5dHex2HexNAc4NeuAc1 

2267.7479 2267.7620 6.2176 Hex5HexNAc4NeuAc2 + 2Na 

2268.7737 2268.7824 3.8206 Hex5dHex2HexNAc4NeuAc1 + 2Na 

2276.7054 2276.7180 5.5343 Hex6dHex1HexNAc5 + 1SO4 + 2Na 

2289.7335 2289.7326 0.3931 Hex5HexNAc4NeuAc2 + 3Na 

2303.8154 2303.8141 0.5643 Hex5dHex1HexNAc5NeuAc1 

2304.8300 2304.8345 1.9524 Hex5dHex3HexNAc5 

2319.8138 2319.8090 2.0691 Hex6HexNAc5NeuAc1 

2320.8276 2320.8294 0.7756 Hex6dHex2HexNAc5 

2325.7902 2333.6647 5.8904 Hex5dHex1HexNAc5NeuAc1 + 2Na 

2333.6991 2333.6647 14.7408 Hex5HexNAc5NeuGc1 + 2SO4 

2341.7926 2341.7988 2.6475 Hex6HexNAc5NeuAc1 + 2Na 

2377.8445 2377.8509 2.6915 Hex6dHex1HexNAc6 

2391.8300 2391.8301 0.0418 Hex5dHex1HexNAc4NeuAc2 

2393.8436 2393.8458 0.9190 Hex7HexNAc6 

2413.8292 2413.8199 3.8528 Hex5dHex1HexNAc4NeuAc2 + 2Na 

2421.8446 2421.7984 19.0767 Hex9HexNAc3NeuAc1 + 2Na 

2435.8095 2465.8669 0.0821 Hex5dHex1HexNAc4NeuAc2 + 3Na 

2465.8649 2465.8669 0.8111 Hex6dHex1HexNAc5NeuAc1 

2487.8475 2487.8567 3.6980 Hex6dHex1HexNAc5NeuAc1 + 2Na 

2539.9045 2539.9037 0.3150 Hex7dHex1HexNAc6 

2632.9040 2632.8942 3.7343 Hex6HexNAc5NeuAc2 + 2Na 

2633.9218 2633.9146 2.7336 Hex6dHex2HexNAc5NeuAc1 + 2Na 

2653.9568 2653.9718 5.6519 Hex5dHex4HexNAc6 

2684.9366 2684.9412 1.7133 Hex7HexNAc6NeuAc1 

2685.9551 2685.9616 2.4200 Hex7dHex2HexNAc6 

2706.9144 2706.9310 6.1324 Hex7HexNAc6NeuAc1 + 2Na 

2742.9912 2742.9831 2.9530 Hex7dHex1HexNAc7 

2758.9686 2758.978 3.4071 Hex8HexNAc7 

2779.9528 2779.9725 7.0864 Hex6dHex3HexNAc5NeuAc1 + 2Na 

2830.9227 2830.9991 26.9869 Hex7dHex1HexNAc6NeuAc1 

2832.0145 2832.0195 1.7655 Hex7dHex3HexNAc6 

2853.0016 2852.9889 4.4515 Hex7dHex1HexNAc6NeuAc1 + 2Na 

2905.0552 2905.0359 6.6436 Hex8dHex1HexNAc7 

3124.1081 3124.1102 0.6722 Hex9HexNAc8 

3218.1263 3218.1211 1.6258 Hex8dHex1HexNAc7NeuAc1 + 2Na 

3270.1746 3270.1681 1.9877 Hex9dHex1HexNAc8 

3635.3285 3635.3003 7.7573 Hex10dHex1HexNAc9 

 
Table 2: N-Glycans Analyzed on the MALDI FT-ICR. Included is the full m/z peak list of 
identified N-glycans on the MALDI FT-ICR mass spectrometer. 
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Observed 
m/z 

Proposed Glycan 
Structure 

Composition P value 

1704.5736 

 

Hex4HexNAc5 1.0874E-06 

2377.8183 

 

Hex6dHex1HexNAc6 4.3991E-06 

1850.6241 
 

Hex4dHex1HexNAc5 6.7922E-06 

2685.9074 

 

Hex7dHex2HexNAc6 8.4026E-05 

2012.6801 
 

Hex5dHex1HexNAc5 0.0001119 

1688.5748 

 

Hex3dHex1HexNAc5 0.0002022 

2831.9725 

 

Hex7dHex3HexNAc6 0.0002513 

2539.8637 

 

Hex7dHex1HexNAc6 0.0005301 

1647.5597 
 

Hex4dHex1HexNAc4 0.0005561 

2174.7385 
 

Hex6dHex1HexNAc5 0.001602 

2320.7831 
 

Hex6dHex2HexNAc5 0.002175 

2830.9227 

 

Hex7dHex1HexNAc6NeuAc1 0.002914 

 
Table 3. Significantly HCC-associated N-glycans within TMA. Included are the 12 N-
glycan structures that are most significantly associated with HCC cores of the TMA, out 
of 23 total that were significantly HCC-associated. 
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Table 4. Significantly Normal-Associated N-glycans within TMA. Included are the 7 N-
glycan structures that are most significantly associated with normal cores of the TMA. 

 

 

While many of the N-glycan expression trends that have been previously 

identified are validated here, inter-tumor and intra-tumor heterogeneity remains. This 

sort of heterogeneity is clear throughout all of the m/z images shown in Figure 6, where 

there are no glycans that are consistent in expression throughout all of the HCC cores or 

throughout all of the non-tumor tumor-adjacent cores. This sort of heterogeneity is 

highlighted in Figure 6F, which is a tetra-antennary glycan structure that has previously 

been shown to be often overexpressed in HCC tissues. This glycan was not significantly 

overexpressed in this TMA, with a p-value of 0.125, yet several of the HCC cases within 
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the TMA express this glycan at very high levels compared to the non-HCC cores. Even 

the glycans that are significantly increased in HCC cores of this TMA vary substantially 

from tumor to tumor in expression (Figure 6 B-C). N-glycosylation of HCC tissue is 

distinct from non-HCC tissue, but there are clearly additional factors beyond tumor 

presence that account for which structures are increased in expression in a tumor and 

to what degree they are increased in expression.  

 

3.3.2 Tumor-Specific N-Glycan Expression Associated with HCC Molecular Subtypes 

In order to analyze N-glycosylation of HCC samples while accounting for genetic, 

molecular, and clinical variation, we subsequently analyzed HCC tumors that were 

classified using the Hoshida classification system.42,263 A direct comparison was made 

between each HCC tumor itself and its surrounding adjacent tissue for each sample, 

which was evaluated as the fold change for each glycan between regions. The adjacent 

tissue that was utilized in the analysis consisted primarily of cirrhotic/non-tumor liver 

tissue, with necrotic and fibrotic regions excluded. In total, thirty-seven subtyped tissues 

were examined in two defined sets. The first set consisted of twenty-five samples (six 

S1, four S2, fifteen S3 tumors) and was examined on the FT-ICR mass spectrometer as a 

part of the “discovery cohort”. Subsequently, the remaining twelve samples were 

examined on the MALDI-TOF instrument as a “validating cohort”. The discovery cohort 

was analyzed on a high mass accuracy and high sensitivity mass spectrometer in order 

to find specific N-glycosylation structural features associated with molecular subtypes. 

The validating cohort was analyzed on a more clinically accessible MALDI-TOF 
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instrument at a higher spatial resolution to both evaluate the clinical applicability of the 

subtype-linked N-glycosylation and to further observe potential intra-tumor 

heterogeneity. These samples were utilized to represent the diversity of genetic 

characteristics of HCC tumors and not necessarily to mirror demographic characteristics 

found in the clinic such as etiology or gender, which have not been previously shown to 

be correlated to N-glycan expression. 

 As seen in Figure 7, the discovery cohort showed that all three subtypes 

demonstrate altered N-glycosylation of HCC tumors when compared to surrounding 

cirrhotic/non-tumor tissue, which further validates what previous work and the TMA 

analysis demonstrated broadly. For this work, an area under the peak fold change of 

three or higher from adjacent tissue to the tumor region was considered to be a tumor-

associated increased expression of a glycan structure. Glycan structures varied in the 

magnitude of the fold change/tumor-associated increase, but of particular interest is the 

number of unique glycan structures that are increased within tumors, which implies 

broad dysregulation over the expression of N-glycan structures. 
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Figure 7. N-Glycosylation of HCC Subtypes. (A): Analysis of the number of unique glycan 
structures with a 3+ fold area under the peak (AUP) increase in the tumor when 
compared to adjacent normal/cirrhotic tissue. n=5 (S1), n=4 (S2), n=15 (S3). Statistical 
test includes Wilcoxon Rank-Sum test (* = p < 0.05) (B): The structural features of 
glycans that are increased in the tumor for each subtype. Structural features are 
determined based upon proposed structures for m/z values. (C): Analysis into the 
increase of fucosylated structures in tumors of each subtype. (D): Analysis into the 
increase of sialylated structures for tumors of each subtype. (E): The average fold 
change of all fucosylated tetra-antennary glycans by subtype. Average fold change was 
calculated through the sum AUP of these glycans in each tumor and non-tumor region. 
Statistical test includes Wilcoxon Rank-Sum test (* = p < 0.05). (F): The average fold 
change of all non-fucosylated tetra-antennary glycans by subtype. Statistical test 
includes Wilcoxon Rank-Sum test (* = p < 0.05). 
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All three subtypes demonstrate differentiating glycans from the non-tumor 

tissue, which vary based on the tumor, but S1 tumors in this cohort had significantly 

more unique glycan structures that were increased in the tumor region than S2/S3 per 

tumor (Figure 7A). When accounting for structural features of these glycans, the glycans 

that are increased in the tumor are largely made up of bisecting and tetra-antennary 

glycans in all three subtypes, which aligns with previously held ideas that branching is 

generally increased in HCC tumors (Figure 7B). When comparing fucosylation patterns 

between the subtypes, S1 tumors overexpress fucosylated structures with higher 

frequency than S2 or S3 tumors (Figure 7C). Increased expression of fucosylated 

structures appears to be a feature in S3 tumors similarly to S1, but there are significantly 

fewer overexpressed structures overall in S3 tumors. However, overexpression of 

fucosylated structures does not appear to occur at the same level in S2 tumors 

compared to S1 tumors, which offers a potential distinguishing feature of the two 

clinically aggressive subtypes. It does not appear as though a major share of tumor-

associated glycans are sialylated in any of the three subtypes, which aligns with previous 

work that fucosylation is more relevant to HCC than sialylation (Figure 7D).  

Fucosylated tetra-antennary structures have been previously shown to be 

correlated with HCC in general, although lacking the necessary sensitivity to serve as a 

standalone biomarker. However, fucosylated tetra-antennary glycans are increased at 

significantly higher levels in S1 tumors than S2 tumors, while there is no difference 

between the three subtypes in the increased expression of non-fucosylated tetra-

antennary structures (Figure 7E/F). This suggests that tetra-antennary structures are 
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increased in expression in all subtypes of HCC, but fucosylated tetra-antennary 

structures vary in expression between subtypes of HCC, with higher expression in the 

clinically aggressive S1 tumors than the clinically aggressive S2 tumors.  

The primary observed feature of the N-glycosylation in S1 tumors is the 

increased expression of fucosylated and/or branched glycan structures. In Figure 8, 

representative images from three of the S1 tumors are shown, with the tumors outlined 

in blue on the H&E stains (Figure 8A-C). In each of these three tumors, there are many 

tumor-increased glycan structures which fit the themes of increased branching and 

increased fucosylation. The expression of both a tetra-antennary structure with a single 

fucose (Figure 8D-F) and a tri-antennary structure with a single fucose (Figure 8G-I) are 

increased in all three of these tumors. These individual glycan structures are not 

increased in all six of the S1 tumors in this cohort, but these branched and fucosylated 

glycans represent the type of structures that are often increased in S1 tumors. These 

m/z images also demonstrate that HCC tumors contain intra-tumor heterogeneity, 

which was expected but requires further analysis in order to evaluate. 
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Figure 8. Representative S1 Tumors. (A-C): H&E stains of three S1 tissues. Tumors are 
outlined in blue. Regions of the adjacent tissue with significant necrosis or fibrosis were 
not included in glycosylation analyses. (D-F): Expression of a tetra-antennary structure 
with a single fucose, m/z= 2539.9045 (G-I): Expression of a tri-antennary structure with a 
single fucose, m/z= 2174.7784 
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Fucosylation in S2 tumors is of particular interest, as there is a clear difference in 

fucosylation patterns between S1 and S2 tumors as demonstrated in Figure 9. As seen 

previously, fucosylated structures being increased within the tumor is not a feature in S2 

tumors. Additionally, a large share of the structures with a three-fold increase in the 

adjacent tissue compared to the tumor are fucosylated (Figure 9A). This would suggest 

that there is actually decreased expression of fucosylated structures in S2 tumors 

compared to adjacent non-HCC liver tissue, which directly opposes what is seen in S1 

tumors. Representative images demonstrating this fucosylation pattern are shown in 

Figure 9B, where a simple biantennary structure is tumor-correlated, while the 

fucosylated structures shown to be tumor-correlated in S1 tumors are expressed more 

in the adjacent non-tumor liver tissue than in this S2 tumor. An analysis of individual 

glycan structures reveals that fucosylated structures that are frequently tumor-

correlated in S1 tumors are expressed at significantly higher levels in S1 tumors than in 

S2 tumors regardless of the adjacent tissue. (Figure 9C). These four fucosylated 

structures are some of the most abundant tri-antennary, bisecting, and tetra-antennary 

fucosylated structures observed in these tissues, which suggests that fucosylation 

patterns are distinguishably different between these subtypes. Overall, fucosylation 

appears to be directly involved in tumor progression of many S1 tumors, while the 

expression of fucosylated structures is decreased in S2 tumors. 
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Figure 9. Fucosylation of Subtype 2 Tumors. (A): Number of fucosylated and non-
fucosylated glycans in HCC and non-HCC adjacent tissue with a 3+ fold change. (B): 
Representative images of an S2 tissue. Tumor outlined in blue, with normal adjacent 
liver tissue. m/z= 1339.4736 (top right), 2174.7784 (bottom left), m/z= 2539.9045 
(bottom right). (C): AUP of four glycans for all S1 tumors and S2 tumors, without 
inclusion of adjacent tissue. Four fucosylated glycans are significantly increased in S1 
tumors, m/z= 2174.7784, 2012.7208, 2377.8445, 2539.9045 (top left, top right, bottom 
left, bottom right). Statistical test includes Wilcoxon Rank-Sum test (* = p < 0.05). 
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3.3.3 Validation of Differentiation of Subtypes by N-Glycosylation through MALDI-TOF 

 To confirm subtype-based glycosylation trends observed in the initial cohort of 

HCC tissues, an additional cohort of 12 subtyped HCC tumors was analyzed using a 

MALDI-TOF instrument, with the list of detected glycans listed in Table 5. Specifically, 

the aim of this cohort is to validate the distinction of S1 tumors from S2 and S3 tumors 

based upon an increased expression of fucosylated N-glycans. TOF-based mass 

spectrometry involves currently more clinically applicable instrumentation, albeit with a 

decreased sensitivity, which is another reason to validate findings on a more accessible 

instrument. Data analysis was done by determining m/z peaks determined to be 

spatially correlated to the tumor regions by Pearson coefficient, which differed from 

analysis of the discovery cohort due to variations in signal intensity from run to run on 

this instrument. 
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Observed m/z Theoretical m/z Error in PPM Glycan Structure 

933.318 933.317 1.0714 Hex3HexNAc2 

1079.371 1079.375 3.7058 Hex3dHex1HexNAc2 

1095.370 1095.370 0.0000 Hex4HexNAc2 

1136.395 1136.396 0.8800 Hex3HexNAc3 

1257.423 1257.423 0.0000 Hex5HexNAc2 

1282.446 1282.454 6.2380 Hex3dHex1HexNAc3 

1298.446 1298.449 2.3104 Hex4HexNAc3 

1339.473 1339.476 2.2397 Hex3HexNAc4 

1419.475 1419.475 0.0000 Hex6HexNAc2 

1444.495 1444.507 8.3073 Hex4dHex1HexNAc3 

1460.513 1460.502 7.5317 Hex5HexNAc3 

1485.531 1485.534 2.0195 Hex3dHex1HexNAc4 

1501.528 1501.529 0.6660 Hex4HexNAc4 

1542.547 1542.555 5.1862 Hex3HexNAc5 

1581.526 1581.528 1.2646 Hex7HexNAc2 

1606.585 1606.560 15.5612 Hex5dHex1HexNAc3 

1622.543 1622.555 7.3957 Hex6HexNAc3 

1647.596 1647.587 5.4625 Hex4dHex1HexNAc4 

1663.582 1663.581 0.6011 Hex5HexNAc4 

1688.603 1688.613 5.9220 Hex3dHex1HexNAc5 

1704.597 1704.608 6.4531 Hex4HexNAc5 

1743.582 1743.581 0.5735 Hex8HexNAc2 

1792.627 1792.624 1.6735 Hex4HexNAc4NeuAc1 

1809.641 1809.639 1.1052 Hex5dHex1HexNAc4 

1825.626 1825.634 4.3820 Hex6HexNAc4 

1850.660 1850.666 3.2421 Hex4dHex1HexNAc5 

1866.669 1866.661 4.2857 Hex5HexNAc5 

1905.636 1905.634 1.0495 Hex9HexNAc2 

1911.567 1911.586 9.9394 Hex5dHex1HexNAc4 + 2Na + SO4 

1955.699 1955.697 1.0227 Hex5dHex2HexNAc4 

1976.671 1976.667 2.0236 Hex5HexNAc4NeuAc1 + 2Na 

2010.670 2010.622 23.8732 Hex7dHex1HexNAc3 + SO4 

2012.719 2012.719 0.0000 Hex5dHex1HexNAc5 

2028.712 2028.714 0.9858 Hex6HexNAc5 

2057.702 2057.644 28.1876 Hex5dHex2HexNAc4 + 2Na + SO4 

2067.680 2067.684 1.9345 Hex10HexNAc2 

2122.738 2122.725 6.1242 Hex5dHex1HexNAc4NeuAc1 + 2Na 

2174.767 2174.772 2.2991 Hex6dHex1HexNAc5 

2215.794 2215.730 28.8844 Hex5dHex1HexNAc6 

2320.835 2320.829 2.5853 Hex6dHex2HexNAc5 

2341.809 2341.799 4.2702 Hex6HexNAc5NeuAc1 + 2Na 

2377.842 2377.851 3.7849 Hex6dHex1HexNAc6 

2393.849 2393.846 1.2532 Hex7HexNAc6 

2421.770 2421.798 11.5617 Hex9HexNAc3NeuAc1 + 2Na 

2487.867 2487.857 4.0195 Hex6dHex1HexNAc5NeuAc1 + 2Na 
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2539.902 2539.904 0.7874 Hex7dHex1HexNAc6 

2685.955 2685.962 2.6061 Hex7dHex2HexNAc6 

2743.062 2742.983 28.8008 Hex7dHex1HexNAc7 

2759.059 2758.978 29.3587 Hex8HexNAc7 

2905.054 2905.036 6.1961 Hex8dHex1HexNAc7 

3124.155 3124.110 14.4041 Hex9HexNAc8 

 
Table 5: N-Glycans Analyzed on the MALDI TOF. Included is the full m/z peak list of 
identified N-glycans on the MALDI TOF mass spectrometer. 
 
 
 As can be seen in Figure 10, many of the trends observed earlier regarding 

increased overall dysregulation, specifically of fucosylation, in S1 tumors are also seen in 

analysis of this cohort. For this analysis, data from S2/S3 tumors were combined, which 

was done to further examine whether S1 tumors were distinguishable from all other 

HCC tumors. S1 tumors exhibit increased expression of a larger number of unique glycan 

structures than S2/S3 tumors (Figure 10A). Structural trends regarding the association of 

increased branching/bisecting and the tumors remain for both S1 and S2/S3 tumors 

(Figure 10B). Tetra-antennary glycans make up a greater percentage of tumor-

associated glycans in S2/S3 than S1, although some of higher mass fucosylated tetra-

antennary structures that were detected on the FT-ICR instrument were not detected 

on the TOF instrument. Based on the tissues analyzed in this cohort and previously, it 

does not appear as though the correlation between branching and tumor progression is 

subtype dependent. However, fucosylated structures are overexpressed with more 

abundance and variety in S1 tumors than S2/S3 tumors, which validates observations 

regarding fucosylation in the discovery cohort (Figure 10C). Once again, it should be 

emphasized that these trends regarding fucosylation and glycan dysregulation are not 

universal within each subtype. There are S1 tumors in both cohorts that do not exhibit 
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the increased fucosylation being linked to S1, and there is a spectrum of S2/S3 tumors 

regarding the degree to which their glycosylation differs from surrounding tissue. This 

uncertainty can likely be attributed to both the imprecise nature of classifying all HCC 

cases into only three subtypes and the wide range of potential mechanistic effects 

through which altered glycosylation can support and drive tumor progression. However, 

trends regarding increased expression of branched structures in all three subtypes (Fig 

10D) and increased expression of fucosylated structures in S1 (Fig 10E) do emerge and 

are worthy of further exploration for biomarker applications. 
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Figure 10. MALDI-TOF Validation Cohort. (A): Analysis of the number of unique glycan 
structures that are correlated (Pearson coefficient > 0.4) to the tumor region when 
compared to adjacent normal/cirrhotic region. n=5 (S1), n=2 (S2), n=5 (S3). Statistical 
test includes Wilcoxon Rank-Sum test (** = p < 0.01). (B): The structural features of 
glycans that are correlated to the tumor for S1 tumors and S2/S3 tumors (C): Analysis 
into the increase of fucosylated structures in S1 tumors and S2/S3 tumors. (D): 
Representative images of an S1 and S3 tumor to demonstrate that branched glycans 
without fucose are regularly overexpressed in tumors of all three subtypes, 
m/z=2393.849. The S3 tissue shown has a large region of fibrovascular tissue, which was 
not included in analysis but contains interesting glycosylation. (E): Representative 
images of an S1 tumor to demonstrate increased expression of fucosylated glycans, 
which extends to biantennary, bisecting, and branching structures. m/z= 1955.699 (top 
right), 1688.603 (bottom left), and 2320.835 (bottom right). 
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3.3.4 Discussion 

 Aberrant glycosylation has been considered a hallmark of cancer malignancy for 

many years.116,120,141,273,274 Mechanistically, glycosylation plays a critical role in cell 

signaling in non-cancerous tissue, and alterations to glycosylation motifs can drive 

abnormal signaling pathways in cancer, including increased growth factor signaling 

through increased core fucosylation as a prominent example.151,275 Additionally, 

expression of complex branched N-glycans has been linked to differentiation and 

metastasis along with the regulation of cytokine receptors.152,276,277 However, there is 

still a significant amount left unknown regarding both the nature of cancer-related 

glycosylation changes and the mechanism behind glycosylation’s impact on cancer 

progression. Further exploration into these fields has promise to reveal both promising 

cancer markers and a new class of potential cancer drug targets.  

This work focuses on the application of cancer-related N-glycosylation to the 

development of cancer markers, which is a rapidly developing field. Due to the 

ubiquitous nature of N-glycan expression on glycoproteins, the utilization of N-glycans 

as biomarkers for cancer could have profound implications on a wide range of cancer 

types. In many of these cases, molecular heterogeneity of cancer implies that the 

application of N-glycomics information to biomarker development is more likely to be 

successful as an algorithm of N-glycan expression as opposed to a single glycan 

structure, and there are already examples of this concept in development.88 However, 

there is still a significant need to understand the inter-tumor heterogeneity of N-

glycosylation in HCC in order to more specifically apply glycomics information, as current 
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glycomic biomarkers and algorithms have not been fully validated to be more sensitive 

for early stage HCC than AFP and/or ultrasound monitoring.67 

Previous work on HCC tissues has demonstrated that branching and fucosylation 

are increased on HCC tissue and serum, but there was significant glycan heterogeneity 

that made understanding how to apply this information difficult.40,139,245,278 

Incorporation of genetic and clinical information of each HCC tumor, which was novel to 

MALDI-IMS N-glycomic analysis, accounted for some of this heterogeneity. S1 tumors 

were demonstrated to have the most broadly dysregulated N-glycosylation in both 

cohorts analyzed, which allows this subtype to be distinguishable from other HCC 

tumors. Perhaps more significantly, fucosylated structures, which are conventionally 

considered to have increased expression overall in HCC, are increased with more 

frequency in S1 than in S2 or S3 tumors. This pattern of fucosylation in S1 tumors held 

up in both the cohort of samples analyzed through MALDI-FT-ICR and the cohort 

analyzed through the more clinically accessible MALDI-TOF. Interestingly, it appeared as 

though fucosylation may actually be decreased in S2 tumors, based upon both a lack of 

fucosylated structures with increased tumor expression and increased expression of 

fucosylated structures outside the tumor, which is in stark contrast to what is seen in S1 

tumors considering their similarity in clinical outcomes. This suggests that aggressive 

stromal tumors have increased fucosylation within the tumor, whereas aggressive 

stemness tumors have decreased fucosylation within the tumor.  

Drastic overexpression of a multitude of varied glycan structures, many including 

fucose(s), appears to be limited to S1 tumors, as only one S2/S3 tumor had more than 
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five glycans with a threefold increase in the tumor, and only one S2/S3 tumor had more 

than three glycans determined to be spatially correlated to the tumor region. However, 

aberrant glycan expression is not uniform in S1 tumors, which is demonstrated by two 

S1 tissues, one in each cohort, that exhibited an increase to primarily non-fucosylated 

glycans. Further analysis into the specific features of S1 tumors that correlate with 

increased expression of complex fucosylated structures will be necessary. However, this 

data suggests that S1 tumors encapsulate most, if not all, of the HCC tumors that 

demonstrate extremely different glycosylation from adjacent cirrhotic liver tissue, 

specifically including increased fucosylation. Further validating this finding could prove 

very useful towards applying glycosylation information clinically as a method of using 

fucosylation patterns to distinguish S1 tumors easily.  

Both S2 and S3 tumors demonstrate N-linked glycosylation that is more 

consistent with that of the adjacent, non-HCC tissue. There are typically still glycan 

structures in each tumor that exhibit increased expression, and these are often 

branched structures which have previously been shown to be directly linked to cancer 

progression in a variety of cancer types.147,152,276 S3 tumors having similar glycosylation 

to their surrounding tissue is unsurprising, as this subclass of tumors retains a 

hepatocyte phenotype, is well-differentiated, and includes the least aggressive HCC 

tumors. S3 tumors also have fewer hallmark aberrant signaling pathways, which altered 

glycosylation would play important roles in. However, these clinically favorable features 

of S3 tumors are not the case in S2 tumors, which are poorly differentiated and 

aggressive in nature. Along with poor clinical outcomes, S1 and S2 tumors share several 
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mutated signaling pathways, including through canonical WNT signaling and mutated 

p53 signaling. Based on this N-glycosylation data, S2 tumors progress into rapidly 

proliferating, metastatic tumors in a very different manner than S1 tumors, specifically 

in a manner that does not rely on the overexpression of many fucosylated N-glycan 

structures. Further work into mechanistic differences between these subtypes could be 

exceedingly valuable in gaining an understanding into the relation of N-glycosylation 

and HCC development, progression, and metastasis, and it could offer more specific 

targets for both biomarker and drug development. 

The validation of increased fucosylation in S1 tumors would have profound 

impacts for biomarker development. One of the features used to classify S2 tumors is 

significantly increased AFP levels from the other two subtypes, and AFP has already 

been demonstrated to have clinical biomarker utility.168 If AFP could be supplemented 

with a fucosylated marker that could increase detection of S1 tumors, which have lower 

AFP levels, this would have a notable impact on HCC screening effectiveness and HCC 

mortality reduction. Indeed, our work has identified fucosylated kininogen as a good 

partner for AFP in biomarker algorithms and the results presented here may explain why 

this is the case.89,184,185,244 S3 tumors having less dramatic glycosylation abnormalities 

was expected, as this subtype is well-differentiated and less aggressive. Therefore, these 

tumors may be more indolent in nature with slower tumor doubling times and 

potentially lower risk of HCC-related mortality.279 Combining glycomic differences of S1 

tumors and the high AFP levels of S2 tumors could lead to better detection of the most 

aggressive tumors, which would have profound effects on overall survival of HCC 
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patients. In order for this to become clinically valuable, the distinguishing N-

glycosylation features discussed here must be validated in serum. 

Overall, there is clear value in incorporating genetic and clinical information into 

analysis of N-glycosylation of HCC, and it would likely be worthwhile to expand this idea 

to other cancer types. Biomarker development for HCC as a whole has largely lagged 

behind that of other cancer types, and there is still heavy reliance on imaging 

techniques for surveillance and detection. In order to develop specific markers of HCC, 

there must be incorporation of more specific information on each tumor beyond simply 

survival data. HCC is incredibly diverse molecularly and genetically, which suggests that 

successful markers for HCC must be able to detect a diverse range of presentations of 

HCC. Discovering markers for specific subclasses of HCC makes it more likely that these 

markers will complement each other to increase sensitivity to early-stage HCC as a 

whole, which is the most promising avenue to reduce HCC-related mortality. 
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Chapter 4: Novel Enzymatic Approach to Analyze De-
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4.1 Introduction 

Glycosylation of glycoproteins, specifically N-linked glycosylation, has been well 

established to have important functional roles regarding cell growth and signaling, and 

aberrant glycosylation has been directly linked to the progression of a variety of disease 

states, including cancer. 44,120,139,153,242,261,280–283 Analysis of N-glycan expression has 

historically focused more on serum glycoproteins due to ease of sample collection and 

relative abundance for glycan structural analysis, but recently developed matrix-assisted 

laser desorption ionization imaging mass spectrometry (MALDI-IMS) techniques allow 

for glycomic analysis of tissue samples in addition to serum samples in a high-

throughput manner.234,235,270,278,284–286 This MALDI-IMS technique allows for 

comprehensive glycomic analysis of enzymatically released N-glycan structures on both 

tissue and serum samples.245,287,288 Particularly regarding the analysis of tissue samples, 

retaining spatial localization is critical to analyzing how glycan structures colocalize with 

distinct histological tissue regions and cellular features.115 This methodology was 

originally developed utilizing the enzyme peptide-N-glycosidase F PrimeTM (PNGase F) to 

cleave N-glycans indiscriminately from associated glycoproteins.219  Recently, the 

methodology has been adapted for alternative endoglycosidases in order to add 

structural glycomic information and to multiplex enzymes to analyze both glycosylation 

and extracellular matrix (ECM) content on the same tissue sample.289,290 Utilizing 

additional enzymes to PNGase F can be done with sequential enzymatic digestions, such 

as endoglycosidase F3 (Endo F3) PrimeTM to target core fucosylated N-glycans, or with 
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concurrent enzymatic digestions to improve sensitivity for specific structural features of 

N-glycan analytes via MALDI-IMS. 

Sialidases, also termed neuraminidases, are a family of exoglycosidases that 

cleave nonreducing sialic acid residues from their associated glycoconjugates, including 

N-glycans.291,292 Sialidases are expressed in mammalian, viral, and bacterial species, and 

varying sialidases have differing catalytic efficiency based on the glycoconjugate and the 

glycosidic linkage.293 Sialidases that target N-glycans cleave terminal sialic acid residues 

from their associated glycoconjugates while leaving the remainder of the glycan 

structure intact. Sialylation of glycoproteins is well-established to have important roles 

in cellular recognition, cell adhesion, and cell signaling, and aberrant sialylation has been 

observed in several tumor types.116,150 However, there are cancers in which the 

dominant N-glycan changes do not include sialylation, but instead fucosylation and/or 

branching of glycan structures.115,138,245 Fucosylation in particular has been 

demonstrated to be altered in both serum and tissue of a number of cancer types 

including breast, liver, ovarian, prostate, colorectal and lung, and these fucose-specific 

altered expression patterns are often independent of sialylation.119 

With the utilization of MALDI-IMS to analyze N-glycan structures, both sialylated 

and non-sialylated N-glycan species can be readily observed. While the stability of sialic 

acids can be an issue in certain sources, this is less of a problem in newer MALDI FT-ICR 

instruments with softer ionization conditions and a cooling gas.127,278,294,295 Detecting 

these N-glycans with enough sensitivity to analyze their spatial distribution is critical to 

the analysis of their role in disease presence/progression. However, there are some 
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lower abundant N-glycan structures that are oftentimes not observed with adequate 

sensitivity through MALDI-IMS to confidently analyze their spatial localization within a 

tissue, which is particularly true of higher molecular weight, complex glycans. The 

presence of sialic acid residues on these large, complex N-glycan structures substantially 

increases the molecular weight of the glycan, which in some cases pushes the glycan 

outside of the mass detection range of established MALDI-IMS techniques. 

Biosynthesized N-glycans generally range from 1000-5000 m/z, although the readily 

observed N-glycans through the established MALDI-IMS methodology on tissue and in 

serum are typically less than 3500 m/z.94,219,234,278 With this in mind, we adapted a 

MALDI-IMS N-glycan workflow to incubate concurrently with sialidase and PNGase F, 

with aims to increase sensitivity for non-sialylated N-glycan structures and identify key 

N-glycan structural scaffolds that are frequently sialylated. This simultaneous enzyme 

treatment will result in m/z peaks for sialylated N-glycan structures being shifted 

(through the loss of 291 Da plus a sodium adduct) to the m/z of a corresponding, non-

sialylated N-glycan. This alone will result in increased signal intensity for detected N-

glycans, and sensitivity can increase even further with improved enzyme efficiency of 

endoglycosidases on-tissue due to the removal of sialic acids from the tissue surface. 

This workflow will be especially applicable to studies targeting fucosylation or the 

increased expression of large, branched N-glycans. Therefore, the proposed workflow is 

expected to significantly increase MALDI-IMS sensitivity for non-sialylated N-glycans, 

and it is highly relevant for the analysis of N-glycosylation independent of sialylation 

status. 
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4.2 Materials and Methods 

4.2.1 Cloning, Expression, and Purification of a Recombinant Sialidase 

The cDNA fragment covering the first 1485bp (495 amino acids) of the coding 

sequence (which is 990 amino acids) of Arthrobacter ureafaciens sialidase (EC 3.2.1.18) 

was generated by PCR and 10xHis was added to its C terminal.296 Amplified DNA 

fragments were cloned into pQE-60 by NcoI/XbaI (Genscript, Piscataway, NJ). The 

constructed plasmid, pQE-60 SA-10xHis, was transformed into BL21 (DE3). The 

transformants were cultured in LB broth supplemented with 100 μg/ml Ampicillin. 

Cultures were grown at 37 °C until the cells reached an A600 nm of about 0.5, 0.5 mM 

IPTG were added to the culture to induce protein overproduction at 20 °C. After 

overnight incubation, the cells were harvested by centrifugation. The cell pellets were 

re-suspended using PBS plus Pierce protease inhibitor tablets (Thermo Fisher Scientific, 

Waltham, MA), stored at -20 °C. Omnicleave endonuclease (Lucigen Corporation, 

Middleton, WI) and MgCl2 were added to thawed cell suspension. The cell suspension 

was incubated at room temperature for at least one hour with rocking. The cells were 

lysed using French Press (GlenMills Inc., Clifton, NJ) per the manufacturer’s instructions. 

The cell lysate was applied to HisTrap FF (GE Healthcare, Pittsburgh, PA) and washed 

with 20 mM sodium phosphate, 0.5 M NaCl, 20 mM imidazole (pH 7.4). Bound His-

tagged protein was eluted with a gradient from 120 to 420 mM imidazole in 20 mM 

sodium phosphate, 0.5 M NaCl (pH 7.4). The purified sialidase was desalted and 

concentrated with 20 mM Tris-HCl, 50 mM NaCl (pH 7.5) using Spin-X UF Concentrator 

(10kDa; Corning). The protein purity was confirmed using SDS-PAGE to be >95%. 
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4.2.2 In-Solution Digestion by Recombinant Sialidase 

Bovine Fetuin (New England BioLabs) was incubated with recombinant sialidase, 

now Sialidase PrimeTM from N-Zyme Scientifics (Doylestown, PA), or α2-3,6,8 

Neuraminidase (New England BioLabs) at an enzyme-to-protein-ration of 1:5 (w/w) at 

pH 5.5, 37 °C for 1 hour. 

 

4.2.3 N-Glycan Sequencing 

Human Fetuin-A (Assaypro, St. Charles, MO) was run on SDS-PAGE gel 

(SimplyBlue SafeStain, from Invitrogen), stained, and cut out. 5 μL of normal human 

serum (Sigma) were absorbed into gel plugs. The fetuin-A gel pieces or serum gel plugs 

were alkylated in the dark for 30 min with iodoacetamide, fixed in a solution of 10% 

methanol 7% acetic acid for 1 hour, washed in acetonitrile, followed by subsequent 

steps of 20 mM ammonium bicarbonate (pH 7.0) and acetonitrile before being dried in a 

speed-vac. PNGase F or Endo F3 was diluted with corresponding buffer and allowed to 

absorb into and cover the gel pieces, incubate overnight at 37 °C. The glycans were 

eluted from the gel pieces by sonication in Milli-Q water, dried down and labeled with a 

2AB dye. The glycans were cleaned up using paper chromatography and filtered using 

PTFE syringe filter unit. Fluorescently labeled glycans were separated on normal phase 

Waters Alliance UPLC system as previously described.297 Samples were further digested 

with Sialidase Prime for calculation of glucose unit (GU) value and compared to 

GlycoStore database (www.glycostore.org). 

 

http://www.glycostore.org/
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4.2.4 Patient Tissues 

Formalin fixed paraffin embedded (FFPE) tissue cores (5 μM thickness) were 

made from 4 hepatocellular carcinoma (HCC) tissue blocks from surgical resection in the 

background of liver cirrhosis. Samples were provided from the UT Southwestern 

Medical Center under IRB 102010-051 to Dr. Amit Singal. The glycan imaging work at 

MUSC was performed under IRB Pro00079936. All tissues were H&E stained following 

MALDI-IMS analysis. 

 

4.2.5 FFPE Tissue Preparation for MALDI-IMS 

UPLC grade methanol (Catalog No. A452SK-4), ethanol (Catalog No. 22-032-601), 

acetonitrile (Catalog No. A998-1), xylene (Catalog No. X3S-4), and water (Catalog No. 

W5-1) were obtained from Fisher Scientific (Pittsburgh, PA). Trifluoroacetic acid (Catalog 

No. W302031) and α-cyano-4- hydroxycinnamic acid (Catalog No. C89892) were 

obtained from Sigma-Aldrich (St. Louis, MO). Peptide-N-glycosidase F (PNGase F) 

PrimeTM and Endoglycosidase F3 (Endo F3) PrimeTM were cloned, expressed, and purified 

from N-Zyme Scientifics (Doylestown, PA) as previously described.219  

FFPE tissues were prepared according to a previously published protocol, with 

added incubation of Sialidase Prime concurrently with PNGase F Prime 

incubation.219,234,270 Tissue Tack microscope slides were purchased from Polysciences Inc 

(Warrington, PA, Catalog No. 24216), and indium tin oxide glass slides were purchased 

from Delta Technologies (Loveland, CO, Catalog No. CB-40IN-S111). Briefly, slides were 

heated to 60°C for 1 hour, washed with xylenes, and rehydrated with a series of ethanol 
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and water washes. Slides were then processed by antigen retrieval, heating to 95° C for 

30 minutes in a Decloaking Chamber in a 10 mM citraconic anhydride buffer, pH 3. 

Slides were cooled to room temperature and buffer exchange was done to replace 

buffer with 100% water. Enzymes (PNGase F Prime, Endo F3 Prime, and Sialidase Prime) 

were applied at a concentration of 0.1 mg/mL each in HPLC grade water using a M5 TM-

Sprayer Tissue MALDI Sample Preparation System (HTX Technologies, LLC). After a two-

hour enzyme incubation at 37 °C, MALDI matrix α-cyano-4-hydroxycinnamic acid (0.042 

g CHCA in 6 mL 50% acetonitrile/49.9% water/0.1% TFA) was sprayed by the M5 TM-

Sprayer. 

 

4.2.6 N-Glycan Imaging via MALDI-IMS 

As previously described, N-glycans were analyzed using a MALDI FTICR mass 

spectrometer (SolariX Dual Source, 7T, Bruker Daltonics, m/z 500-5000).219 The data was 

then analyzed and visualized using FlexImaging 5.0 and SCiLS Lab 2022a (Bruker 

Daltonics). Putative N-glycan structures are shown based on previous databases built 

with use of GlycoWorkBench (RRID:SCR_000782).271 Glycan structures along with 

associated m/z values and mass error can be found in Tables 6 and 7.  

 

 

 

 

 



112 

 

Observed m/z Theoretical m/z Error in PPM Glycan Structure 

933.3145 933.317 2.6786 Hex3HexNAc2 

1079.3769 1079.3749 1.8529 Hex3dHex1HexNAc2 

1095.3604 1095.3698 8.5816 Hex4HexNAc2 

1136.3965 1136.3964 0.0880 Hex3HexNAc3 

1257.4237 1257.4226 0.8748 Hex5HexNAc2 

1282.4572 1282.4543 2.2613 Hex3dHex1HexNAc3 

1298.4492 1298.4492 0.0000 Hex4HexNAc3 

1339.4734 1339.4757 1.7171 Hex3HexNAc4 

1419.4743 1419.4755 0.8454 Hex6HexNAc2 

1444.5122 1444.5071 3.5306 Hex4dHex1HexNAc3 

1460.4982 1460.502 2.6018 Hex5HexNAc3 

1485.5325 1485.5337 0.8078 Hex3dHex1HexNAc4 

1501.5259 1501.5286 1.7982 Hex4HexNAc4 

1542.56 1542.5551 3.1765 Hex3HexNAc5 

1581.5245 1581.5282 2.3395 Hex7HexNAc2 

1606.5486 1606.5599 7.0337 Hex5dHex1HexNAc3 

1611.5159 1611.5266 6.6397 Hex4HexNAc3NeuAc1+ 2Na 

1622.5427 1622.5548 7.4574 Hex6HexNAc3 

1647.5832 1647.5865 2.0029 Hex4dHex1HexNAc4 

1663.5855 1663.5814 2.4646 Hex5HexNAc4 

1688.5998 1688.613 7.8171 Hex3dHex1HexNAc5 

1704.5994 1704.608 5.0451 Hex4HexNAc5 

1743.5798 1743.5810 0.6882 Hex8HexNAc2 

1809.6378 1809.6393 0.8289 Hex5dHex1HexNAc4 

1850.6595 1850.6659 3.4582 Hex4dHex1HexNAc5 

1866.6597 1866.6608 0.5893 Hex5HexNAc5 

1905.6406 1905.6338 3.5684 Hex9HexNAc2 

1954.6758 1954.6768 0.5116 Hex5HexNAc4NeuAc1 

1955.697 1955.6972 0.1023 Hex5dHex2HexNAc4 

1976.6662 1976.6666 0.2024 Hex5HexNAc4NeuAc1 + 2Na 

2012.7238 2012.7187 2.5339 Hex5dHex1HexNAc5 

2028.7139 2028.7136 0.1479 Hex6HexNAc5 

2069.7236 2069.7401 7.9720 Hex5HexNAc6 

2100.7302 2100.7347 2.1421 Hex5dHex1HexNAc4NeuAc1 

2101.7347 2101.7551 9.7062 Hex5dHex3HexNAc4 

2122.7303 2122.7245 2.7323 Hex5dHex1HexNAc4NeuAc1 + 2Na 

2157.7399 2157.7562 7.5541 Hex5HexNAc5NeuAc1 

2158.7941 2158.7766 8.1064 Hex5dHex2HexNAc5 

2174.7771 2174.7715 2.5750 Hex6dHex1HexNAc5 

2245.7677 2245.7722 2.0038 Hex5HexNAc4NeuAc2 

2246.7816 2246.7926 4.8959 Hex5dHex2HexNAc4NeuAc1 

2267.7743 2267.7542 8.8634 Hex5HexNAc4NeuAc2 + 2Na 

2268.787 2268.7746 5.4655 Hex5dHex2HexNAc4NeuAc1 + 2Na 

2289.7338 2289.7361 1.0045 Hex5HexNAc4NeuAc2 + 3Na 

2303.8054 2303.8141 3.7763 Hex5dHex1HexNAc5NeuAc1 
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2304.8153 2304.8345 8.3303 Hex5dHex3HexNAc5 

2319.7991 2319.809 4.2676 Hex6HexNAc5NeuAc1 

2320.8493 2320.8294 8.5745 Hex6dHex2HexNAc5 

2325.8052 2325.7961 3.9126 Hex5dHex1HexNAc5NeuAc1 + 2Na 

2341.7867 2341.7988 5.1670 Hex6HexNAc5NeuAc1 + 2Na 

2391.8158 2391.8301 5.9787 Hex5dHex1HexNAc4NeuAc2 

2393.841 2393.8458 2.0051 Hex7HexNAc6 

2413.799 2413.8121 5.4271 Hex5dHex1HexNAc4NeuAc2 + 2Na 

2421.7472 2421.7478 0.2478 Hex9HexNAc3NeuAc1 + 2Na 

2435.8005 2435.794 2.6685 Hex5dHex1HexNAc4NeuAc2 + 3Na 

2465.8524 2465.8669 5.8803 Hex6dHex1HexNAc5NeuAc1 

2487.8388 2487.8489 4.0597 Hex6dHex1HexNAc5NeuAc1 + 2Na 

2539.9092 2539.9037 2.1654 Hex7dHex1HexNAc6 

2611.937 2611.9248 4.6709 Hex6dHex2HexNAc5NeuAc1 

2632.8924 2632.8864 2.2789 Hex6HexNAc5NeuAc2 + 2Na 

2633.8954 2633.9068 4.3282 Hex6dHex2HexNAc5NeuAc1 + 2Na 

2684.9217 2684.9412 7.2627 Hex7HexNAc6NeuAc1 

2685.9385 2685.9616 8.6003 Hex7dHex2HexNAc6 

2852.9591 2852.9811 7.7112 Hex7dHex1HexNAc6NeuAc1 + 2Na 

2905.0249 2905.0359 3.7865 Hex8dHex1HexNAc7 

 
Table 6. N-Glycan Peak List with PNGase F. Full list of glycans analyzed on the FT-ICR 
mass spectrometer with PNGase F. All analytes are sodiated. 
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Observed m/z Theoretical m/z Error in PPM Glycan Structure 

933.3124 933.317 4.9287 Hex3dHex1HexNAc3 

1095.3636 1095.3698 5.6602 Hex4dHex1HexNAc3 

1136.3908 1136.3963 4.8399 Hex3dHex1HexNAc4 

1257.421 1257.4226 1.2724 Hex5dHex1HexNAc3 

1298.4512 1298.4492 1.5403 Hex4dHex1HexNAc4 

1339.4806 1339.4757 3.6581 Hex3dHex1HexNAc5 

1419.473 1419.4754 1.6908 Hex6dHex1HexNAc3 

1444.5058 1444.5071 0.9000 Hex4dHex2HexNAc4 

1460.5008 1460.502 0.8216 Hex5dHex1HexNAc4 

1501.5296 1501.5286 0.6660 Hex4dHex1HexNAc5 

1581.5235 1581.5283 3.0350 Hex7dHex1HexNAc3 

1589.5558 1589.5446 7.0460 Hex4dHex1HexNAc4NeuAc1 

1606.5613 1606.5599 0.8714 Hex5dHex2HexNAc4 

1611.5176 1611.5265 5.5227 Hex4dHex1HexNAc4NeuAc1 + 2Na 

1663.5871 1663.5814 3.4263 Hex5dHex1HexNAc5 

1743.5829 1743.5811 1.0324 Hex8dHex1HexNAc3 

1751.5905 1751.5974 3.9393 Hex5dHex1HexNAc4NeuAc1 

1773.5872 1773.5794 4.3979 Hex5dHex1HexNAc4NeuAc1 + 2Na 

1809.6533 1809.6393 7.7363 Hex5dHex2HexNAc5 

1825.6413 1825.6342 3.8891 Hex6dHex1HexNAc5 

1919.6309 1919.6373 3.3340 Hex5dHex2HexNAc4NeuAc1 + 2Na 

1971.707 1971.6921 7.5570 Hex6dHex2HexNAc5 

1976.6734 1976.6588 7.3862 Hex5dHex1HexNAc5NeuAc1 + 2Na 

2028.7319 2028.7136 9.0205 Hex6dHex1HexNAc6 

2064.6694 2064.6748 2.6154 Hex5dHex1HexNAc4NeuAc2 + 2Na 

2086.6578 2086.6567 0.5272 Hex5dHex1HexNAc4NeuAc2 + 3Na 

2138.7278 2138.7116 7.5747 Hex6dHex1HexNAc5NeuAc1 + 2Na 

2190.7756 2190.7664 4.1994 Hex7dHex1HexNAc6 

2284.7847 2284.7695 6.6527 Hex6dHex2HexNAc5NeuAc1 + 2Na 

2451.8066 2451.789 7.1784 Hex6dHex1HexNAc5NeuAc2 + 3Na 

2503.8645 2503.8438 8.2673 Hex7dHex1HexNAc6NeuAc1 + 2Na 

 
Table 7. N-Glycan Peak List with Endo F3. Full list of glycans analyzed on the FT-ICR 

mass spectrometer with Endo F3. All analytes are sodiated. 
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4.2.7 UPLC of Tissue Extracted N-Glycans 

After sialidase/PNGase F enzyme application on HCC liver tissues, slides were 

incubated for 2 hours at 37 °C to complete enzymatic digestion. Following incubation, 

100 μL of HPLC grade water was applied on top of the tissue and incubated for 20 

minutes to extract enzymatically released N-glycans. The water was removed from the 

tissue and concentrated under vacuum by centrifugation. Concentrated glycans were 

labeled with a 2AB dye. The glycans were cleaned up using paper chromatography and 

filtered using PTFE syringe filter unit. Fluorescently labeled glycans were separated on 

normal phase Waters Alliance UPLC system as previously described.297 GU units were 

calculated and compared to GlycoStore database (www.glycostore.org). 

  

http://www.glycostore.org/
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4.3 Results 

4.3.1 In-Solution Analysis of Sialidase PrimeTM Activity on N-Glycans 

The activity of purified recombinant sialidase (Sialidase PrimeTM), from the 

bacterium Arthrobacter ureafaciens, was initially validated through a comparison to the 

activity of a commercially available 2-3,6,8 Neuraminidase, from Clostridium 

perfringens, as shown in Figure 11. This validation was done by comparing enzymatic 

activity of both enzymes targeting bovine fetuin. Fetuin is a glycoprotein containing 

sialylated N-glycan and O-glycan structures that is commonly used as a positive control 

for glycosidase enzymes, and sialylation is well-established to be important to fetuin 

activity.298 As shown by SDS-PAGE, Sialidase Prime will cleave sialic acids from fetuin 

with similar activity as commercially available neuraminidase, which is known to 

efficiently cleave sialic acids from a variety of glycoproteins and glycosidic linkages. The 

lack of additional band shifts caused by Sialidase Prime compared to the commercially 

available neuraminidase supports the claim that Sialidase Prime does not have off target 

glycosidase activity beyond targeting sialic acids. As validated by SDS-PAGE, Sialidase 

Prime and the commercially available neuraminadase enzyme are differing molecular 

weights, with Sialidase Prime expected to be 54 kDa and the neuraminadase at 43 kDa, 

which is less than the full-length proteins.  
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Figure 11. Sialidase Prime Activity Validation. (A): A schematic representation of N-
glycan structures, with cleavage sites of the three enzymes utilized in this work. (B): 
SDS-PAGE of our recombinant sialidase and α2-3,6,8 neuraminadase on bovine fetuin. 
There are comparable band shifts between the two enzymes, demonstrating sialic acid 
removing activity of Sialidase Prime. 
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The enzymatic activity of Sialidase Prime was also investigated by normal-phase 

UPLC, as shown in Figure 12. N-glycans were enzymatically released using either PNGase 

F to target all N-glycans or Endo F3 to target core fucosylated N-glycans, and 

simultaneous incubation with Sialidase Prime led to the removal of terminal sialic acids 

from the released glycan structures. Peaks were identified utilizing a glucose 

homopolymer standard to calculate glucose units (GU), which were then compared to a 

published glycan database. It is important to note that for the same glycan 

identification, retention time/glucose units differ between Endo F3 cleaved glycans and 

PNGase F cleaved glycans due to differing cleavage sites. UPLC analysis of human fetuin 

A demonstrated the common glycan structure A2G2 and both A2G2S1 and A2G2S2 

when treated with only PNGase F or Endo F3 (Figure 12A). Additional treatment with 

sialidase led to the removal of A2G2S1 and A2G2S2 and a corresponding increase in 

intensity to A2G2. The same experiment utilizing normal, pooled human serum led to 

similar results, with sialidase treatment removing sialylated peaks that were present in 

the chromatogram with only PNGase F/Endo F3 treatment (Figure 12B). This 

demonstrates that Sialidase Prime can effectively cleave sialic acids from enzymatically 

released N-glycan structures originating from serum glycoproteins, which causes an 

increase in the measurement of non-sialylated N-glycan structures. Overall, this 

demonstrates that Sialidase Prime effectively removes sialic acids of N-glycan structures 

in combination with PNGase F/Endo F3 N-glycan cleaving activity. 
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Figure 12. Sialidase Prime Activity on Cleaved N-Glycans. (A): PNGase F and Endo F3 
activity with and without simultaneous sialidase incubation targeting human fetuin A. 
(B): PNGase F and Endo F3 activity with and without simultaneous sialidase incubation 
targeting pooled, normal human serum. 
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4.3.2 On-Tissue Analysis of Sialidase Activity using MALDI-IMS 

After validating the activity of Sialidase Prime in solution, we then utilized the 

enzyme within our previously developed MALDI-IMS N-glycan methodology.219,290 The 

workflow through which tissues slides were prepared for MALDI-IMS is identical to 

previously described MALDI-IMS N-glycan imaging (Figure 5, Chapter 3), with the 

addition of a concurrent Sialidase Prime incubation to the PNGase F incubation. H&E 

stains of serial sections of the tissues analyzed are included in Figure 13. The on-tissue 

MALDI-IMS methodology was first utilized on two unique HCC tissues (three serial 

sections each) to examine PNGase F Prime only treatment, Sialidase Prime only 

treatment, and combined enzymatic treatment (Figure 14). Sialidase only enzymatic 

treatment served as a negative control, as full N-glycan structures were not 

enzymatically released from their associated glycoproteins. The m/z peak of the most 

abundant sialylated N-glycans, as determined by PNGase F only treatment, was nearly 

completely eliminated with combined PNGase F/sialidase treatment (Figure 14A-C).  

This suggests that combined PNGase F/sialidase treatment is sufficient to remove sialic 

acids from observed N-glycans, and thereby eliminate m/z peaks of sialylated N-glycan 

structures. Meanwhile, the most abundant non-sialylated N-glycan of the tissue was 

substantially increased with combined PNGase F/sialidase treatment compared to 

PNGase F treatment alone (Figure 14D-F). It is important to note that these m/z images 

were normalized to total ion count (TIC) together, and the spatial distribution of tissues 

with lower signal intensity (PNGase F only treatment) can be better observed in m/z 

images that were normalized separately. Spectra demonstrating eliminated sialylated N-
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glycan expression with sialidase and increased N-glycan expression of abundant non-

sialylated N-glycans are shown in Figure 14G-H. When analyzing all detected N-glycans, 

both tissues analyzed in this experiment demonstrate increased area under the peak 

(AUP) of nearly all non-sialylated glycan structures for combined enzyme treatment, 

including N-glycans that would not be expected to be sialylated, and there was a nearly 

complete reduction in AUP of sialylated N-glycan structures down to the level of 

background signal observed in sialidase-only treated tissue (Table 8). In the majority of 

cases, the percent increase in AUP of non-sialylated structures was substantially more 

than the observed AUP of structurally associated sialylated N-glycans, suggesting that 

sialidase treatment leads to increased signal intensity overall as opposed to simply 

combining associated sialylated and non-sialylated m/z peaks.  
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Figure 13. Tissue H&E Stains. (A/B): Tissues included in Figure 14 sprayed with PNGase 
F/Sialidase. (C): Tissue included in Figure 15 sprayed with Endo F3/Sialidase and PNGase 
F. 
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Figure 14. MALDI-IMS with Simultaneous PNGase F and Sialidase Incubation. (A-C): 
m/z images from an HCC tissue of the most highly abundant sialylated N-glycan with 
enzyme treatments including sialidase only, PNGase F only, and a combination. (D-F): 
m/z images demonstrating the increase in signal intensity with combined enzyme 
treatment of the most highly abundant N-glycan on the tissue.  (G-H): Mass spectra with 
both PNGase F treatment and combined PNGase F/Sialidase treatment are shown to 
demonstrate the increased signal intensity of non-sialylated N-glycan peaks and the 
decreased signal intensity of sialylated N-glycan peaks. (I-K): m/z images of a multi-
fucosylated N-glycan structure, which would be interfered with by the +1 isotope of 
A2G2S1 without sialidase activity to remove the potential interfering peak, is shown on 
a second HCC tissue. 
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Table 8. Signal Intensity with PNGase F and with PNGase F/Sialidase. Included are 
selected N-glycans with notable signal intensity differences between PNGase F only 
treatment and PNGase F/sialidase combined enzymatic treatment. This includes 
sialylated N-glycans with decreased signal intensity and non-sialylated N-glycans with 
increased signal intensity for both tissues analyzed in Figure 14. 
 

In addition to increased detection of non-sialylated m/z peaks, combined 

PNGase F/sialidase treatment provides valuable structural information to identify and 

accurately analyze the spatial distribution of multi-fucosylated structures (Figure 14I-K). 

These fucoses are either attached to a GlcNAc on the outer arm of the glycan or at the 

core GlcNAc that attaches the glycan to the asparagine residue. N-glycans with two 

fucoses have a near identical theoretical mass to a +1 isotope of a structurally 

associated N-glycan with a single sialic acid. An example of this is found with the N-

glycan structures F2A2G2 (m/z = 1955.6972) and A2G2S1 (m/z = 1954.6768). By utilizing 
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sialidase, the sialylated glycan’s +1 isotope is eliminated, which allows for more accurate 

analysis of the multi-fucosylated N-glycan’s spatial distribution. Particularly in cases 

where the expression of the multi-fucosylated N-glycan is low, sialidase utilization is 

critical to accurately analyzing the spatial distribution of these fucosylated N-glycans.  

In addition to combined PNGase F/sialidase enzymatic treatment, other 

endoglycosidases can be included instead of PNGase F to provide additional structural 

information. Endo F3 preferentially targets core fucosylated N-glycans, with a different 

cleavage site as PNGase F. Therefore, we implemented combined Endo F3/sialidase 

treatment to target non-sialylated, core fucosylated structures specifically. This 

combined enzymatic digestion is expected to yield increased sensitivity compared to 

Endo F3 treatment alone. This methodology was implemented on two serial sections of 

an HCC tissue (Figure 15). The AUP of abundant non-sialylated core fucosylated 

structures was substantially increased with simultaneous sialidase treatment (Figure 

15A-F). Meanwhile, Endo F3/sialidase treatment nearly completely eliminated m/z 

peaks for sialylated core fucosylated N-glycans (Figure 15G-H). These results mirror 

what is seen through PNGase F/sialidase treatment, with significantly higher signal 

intensity for non-sialylated glycans when treated with sialidase. Sialic acid removal 

improves detection of non-sialylated N-glycans with utilization of both PNGase F and 

Endo F3 as endoglycosidases to cleave glycan analytes from associated glycoproteins.  
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Figure 15. MALDI-IMS with Simultaneous Endo F3 and Sialidase Incubation Endo F3 
and combined Endo F3/Sialidase Prime treatment is shown. Endo F3 cleaved m/z values 
represent the PNGase F cleaved structure with a different cleavage site, which results in 
a 349.1373 Da mass shift. (A-F): m/z images depicting increased signal intensity of 
abundant non-sialylated N-glycans with sialidase incorporation to Endo F3 N-glycan 
cleavage. (G-H): m/z images depicting the loss of signal intensity for a sialylated N-glycan 
with associated sialidase incubation. 
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4.3.3 UPLC Validation of On-Tissue Sialidase Activity 

 Based on MALDI-IMS data, combining PNGase F or Endo F3 with sialidase on-

tissue led to substantially increased detection of non-sialylated N-glycans. This increase 

was larger than simply combining sialylated and non-sialylated m/z peaks, and thereby 

we hypothesized that endoglycosidase activity on-tissue was increased by removing 

sialic acids on the tissue.  In order to demonstrate this, we prepared FFPE tissues under 

the same general workflow, but instead of applying MALDI matrix we collected 

enzymatically released N-glycans, labelled N-glycans with 2-AB, and analyzed via UPLC 

(Figure 16). N-glycans were collected from two serial sections of an HCC tissue, one 

sprayed with PNGase F/sialidase and one with only PNGase F. Results showed a 207.7% 

increase for A2G2, a 346.2% increase for FA2G2, and a 195.2% increase for A3G3. While 

some of the increase in peak intensity is attributable to desialylated glycans, summing 

the sialylated glycans detected on the tissue cannot account for such a large increase.  

This is supported both by the UPLC data and by a third serial section that was sprayed 

with only PNGase F and analyzed via MALDI-IMS (Figure 17). Figure 17 demonstrates a 

serial section of the tissue analyzed via UPLC, which was sprayed with only PNGase F. 

The sialylated glycoforms of the A2G2 base structure make up 145% of the AUP of A2G2 

(m/z = 1663.5814), yet the peak for A2G2 increased by 207% in the UPLC experiment, 

suggesting that something beyond the combination of m/z peaks (through de-

sialylation) is contributing to increased signal intensity. Overall, this result validates the 

increase to sensitivity that was observed through MALDI-IMS, which suggests that 

PNGase F/Endo F3 enzymatic efficiency is improved when incubated simultaneously 
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with sialidase. It is important to note that this improvement to enzyme efficiency occurs 

when the enzymes are applied directly onto a tissue through a sprayer, and it is not 

being discussed for in-solution enzyme digestions.  
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Figure 16. UPLC Analysis of On-Tissue Sialidase/PNGase F Activity. UPLC analysis of an 
on-tissue enzyme digestion of serial sections of an HCC tissue, one sprayed with PNGase 
F and one with PNGase F/Sialidase. There is a large increase to relative peak intensity for 
non-sialylated N-glycans when incubated simultaneously with sialidase. Peaks are 
labeled based on glucose units (GU), which are calculated based on retention time of a 
glucose homopolymer ladder. The peak at GU: 7.98 is labelled as a converging peak of 
A2G2S1 and M7. 
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Figure 17. Analysis of Sialylated Glycoforms via MALDI-IMS. Through MALDI-IMS, we 
see a total AUP of 3038451.4 for the non-sialylated glycan A2G2 and a total AUP of 
4410903.9 for all sialylated glycoforms of A2G2, which means that the combined 
sialylated glycoforms make up 145% of the non-sialylated glycoform’s abundance. 
Through UPLC on serial sections sprayed with PNGase F and PNGase F/sialidase, A2G2 
signal intensity increases by 207%, which suggests that increased enzymatic efficiency 
accounts for the difference between 145% and 207%. 
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4.4 Discussion 

Sialylation of N-glycans is a common structural element that has been well-

established to have significant biological function and to be relevant to the progression 

of some cancers.98,150,299,300 There are multiple methods of studying sialic acid 

expression, including through sialic acid binding lectins (siglecs), through UPLC/HPLC, 

and through MALDI-IMS.234,301 However, there are also biological cases in which N-

glycan structural features other than sialic acid expression are correlated to disease 

progression, such as fucosylation and increased branching.141 In these cases, the 

expression of both sialylated and non-sialylated N-glycans adds complexity to analyses 

and decreases sensitivity for low abundant structures through the diversification of 

expressed structures, which is particularly relevant for MALDI-IMS techniques.  

Therefore, in this work we proposed the utilization of Sialidase Prime within an 

established MALDI-IMS N-glycan technique in order to enzymatically remove sialic acids 

from tissue N-glycans. 

The most notable benefit of this work is found in increasing the signal intensity 

for non-sialylated glycan structures, which we found to be increased by more than 

expected due to offsetting detected signal of sialylated structures on serial sections. 

Both MALDI-IMS and UPLC analyses showed that signal intensity for non-sialylated N-

glycans was increased by more than expected compared to the sum of removing all 

sialylated N-glycans. There were even increases to signal intensity of high mannose N-

glycans, which would not be expected to be sialylated. This suggests that, when applied 

via a sprayer, PNGase F/Endo F3 enzyme efficiency is increased when simultaneously 
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incubated with sialidase.  We expect this to be due to the steric benefit of removing 

sialic acids from the tissue surface, which allows for the endoglycosidase to have more 

access to the cleavage site. This hypothesis is supported by previous studies which have 

shown increased efficiency after removing large steric groups through previous enzyme 

activity directly on-tissue.289  

In addition to increased signal intensity/endoglycosidase activity, sialidase 

utilization provides improved analysis of non-sialylated glycan structures that would 

otherwise overlap with sialylated N-glycan m/z peaks. Through the established MALDI-

IMS N-glycan methodology, glycans with one sialic acid have a +1 isotope peak that 

often overlaps with the m/z peak of a glycan with the same base structure and two 

fucoses instead of the sialic acid. While FT-ICR mass spectrometers can in some cases 

have adequate resolving power to distinguish between these m/z peaks, the necessary 

resolving power depends on the relative expression of the two m/z peaks, and this 

would still be an unavoidable problem when using MALDI-TOF instruments.278 The 

interference of the +1 isotype can greatly affect the spatial distribution of the m/z image 

for the multi-fucosylated glycan, and makes analysis difficult when both glycans are 

expressed on a given tissue. For both this reason and the improved sensitivity, removing 

sialic acids with sialidase is a valuable experimental strategy for studies focusing on 

fucosylation.  

 While this technique can effectively improve non-sialylated N-glycan signal 

intensity and overall endoglycosidase activity, there are still elements of the protocol 

that can be further optimized. The choice of what sialidase to use can affect which sialic 
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acid linkages are preferentially cleaved. The enzyme Sialidase Prime used in this study, 

from the bacterium Arthrobacter ureafaciens, had comparable activity to commercially 

available 2-3,6,8 neuraminadase and there was very little residual sialylated N-glycan 

signal detected via MALDI-IMS and UPLC. However, different sialidase enzymes could be 

used to alter which sialic acids are preferentially cleaved and more specific targeting of 

specific sialylated N-glycans could be done that way. Another optimization step would 

be to further multiplex enzymes for MALDI-IMS on the same tissue section, an example 

of which would be Endo F3/sialidase followed by PNGase F. This sialidase workflow 

could also be applied to what is already published regarding multiplexed N-glycan 

targeting with ECM targeting.289 However, sialidase utilization as shown here is an 

effective way to improve sensitivity of MALDI-IMS N-glycan analyses to specifically 

analyze N-glycan features unrelated to sialic acid expression.  
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Chapter 5: N-Glycomic Analysis of Patient-Matching Serum 

and Tissue 
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5.1 Introduction 

 N-glycosylation of glycoproteins is well known to be dysregulated in many cancer 

types, and it has shown to be aberrant on both tissue and within serum of HCC 

tumors.89,93,115,242,245,302 N-glycosylation directly on the tumor tissue surface has been 

demonstrated to directly impact both tumor proliferation and metastasis, including 

through the upregulation of growth factor receptor signaling.116,141,143,151 Previous work 

has shown an increase to branching and fucosylated N-glycans on HCC tissue when 

compared to cirrhotic or normal liver tissue.245 Additionally, aberrant N-glycosylation 

has been observed in HCC serum, which includes the differential N-glycosylation of 

several identified biomarkers of HCC such as AFP-L3.4,70 However, serum-based studies 

have largely relied on glycoproteins with known biomarker potential regardless of 

glycosylation, and studies to connect overall tissue N-glycosylation with serum N-

glycosylation are lacking. Aberrant N-glycosylation is often heterogeneous between 

tumors, which has limited understanding in how tumor-specific N-glycosylation 

translates to the glycosylation of serum glycoproteins, even though many of those 

glycoproteins originate from the liver. In order to address this problem, recent 

advancements have been made for the analysis of N-glycans via MALDI-IMS for both 

tissue and serum samples, including for the specific analysis of serum glycoproteins 

through antibody arrays.219,235,288 If a better understanding could be developed in regard 

to how cancer-related N-glycosylation of both serum and tissue is related, better glycan-

based serum biomarkers could be identified, which would significantly improve clinical 

outcomes overall.  
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 N-glycosylation has been shown to be a key area for HCC biomarker 

development, although identification of a clinically implementable biomarker has been 

difficult. We hypothesize that this is largely due to the genetic and molecular 

heterogeneities of HCC, which can be accounted for through the incorporation of HCC 

subtypes. The Hoshida HCC classification system separates HCC into distinct subtypes 

based on genetic, clinical, and histological features, and previously published work has 

demonstrated differential N-glycosylation of subtyped HCC tissue.41,115 By accounting for 

some of the heterogeneity of HCC N-glycosylation through HCC subtyping, it becomes 

possible to identify more sensitive biomarkers which could work in a complementary 

fashion to diagnose each tumor subtype. However, in order to have clinical value it 

needs to be demonstrated that tumor subtype-specific N-glycosylation is detectable on 

serum glycoproteins, which is the next key step of this work in HCC biomarker 

development.  

 In order to address the disconnect between HCC-correlated tissue N-

glycosylation and HCC-correlated serum N-glycosylation, we utilized a sample cohort of 

23 patient-matching HCC tissues consisting of tumor tissue, background liver tissue, and 

serum samples. Additionally, there were 35 more patient-matching tumor and 

background liver tissue samples, which were used to validate previously published 

findings regarding tumor tissue-specific N-glycosylation. These samples are to be 

analyzed through previously published MALDI-IMS workflows, utilizing PNGase F Prime 

and Sialidase Prime to deglycosylate and desiaylate N-glycans for mass spectrometry 

analysis.303 Glycomic analysis of patient-matching HCC tissue and serum samples is 
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novel, and provides important insight into the similarity between serum and tumor N-

glycosylation. Establishing subtype-specific differences in N-glycosylation is critical to 

furthering the idea that subtyped-based analyses are valuable to the identification of 

serum-based cancer biomarkers.  
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5.2 Materials and Methods 

5.2.1 Patient Tissues and Serum 

 FFPE tissue sections (5 µm thick) were made from 60 HCC tissue blocks 

and from 54 background liver tissue blocks that were obtained through surgical 

resection of HCC in the background of liver cirrhosis. Samples were provided from the 

UT Southwestern Medical Center under IRB 102010-051 to Dr. Amit Singal. Additionally, 

23 serum samples were obtained, that matched to patients of obtained tissue samples. 

Serum samples were also provided from the UT Southwestern Medical Center under IRB 

102010-051 to Dr. Amit Singal. All N-glycan imaging work at MUSC was performed under 

IRB Pro00079936. HCC tissues were subtyped according to the Hoshida classification 

system as done previously.42,256 All tissues were H&E stained following MALDI-IMS 

analysis and tumor regions were annotated by a liver pathologist. Patient characteristics 

of the 58 tumors able to be subtyped can be found in Table 10, and patient 

characteristics of the 23 cases with matching serum can be found in Table 11.  

 

5.2.2 FFPE Tissue Preparation 

HPLC grade methanol, ethanol, acetonitrile, xylene, and water were obtained 

from Fisher Scientific (Pittsburgh, PA). Trifluoroacetic acid and α-cyano-4- 

hydroxycinnamic acid were obtained from Sigma-Aldrich (St. Louis, MO). Peptide-N-

glycosidase F (PNGase F) Prime and Sialidase Prime was cloned, expressed, and purified 

in-house as previously described.219,303  
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FFPE tissues were prepared according to a previously published 

protocol.219,234,270 Tissue Tack microscope slides were purchased from Polysciences Inc 

(Warrington, PA, Catalog No. 24216). Slides were taken through dewaxing and wash 

steps, before being processed by antigen retrieval in a Decloaking Chamber in 10 mM 

citraconic anhydride buffer, pH 3. PNGase F Prime and Sialidase Prime were 

simultaneously applied using a M5 TM-Sprayer Tissue MALDI Sample Preparation 

System (HTX Technologies, LLC), and enzymes were incubated for 2 hours at 37°C. 

MALDI matrix α-cyano-4-hydroxycinnamic acid (0.042 g CHCA in 6 mL 50% 

acetonitrile/49.9% water/0.1% TFA) was sprayed by the M5 TM-Sprayer. 

 

5.2.3 N-Glycomic Total Serum Preparation 

 Serum samples were prepared for total serum N-glycan MALDI-IMS analysis 

through a previously published protocol.287 Hydrogel-coated slides (Nexterion Slide H) 

were obtained from Applied Microarrays (Tempe, AZ). Serum samples were spotted and 

immobilized on the slide surface, and then washed to remove salts and lipids from the 

sample. Each sample was spotted in triplicate. N-glycans were then enzymatically 

released through the same methodology of spraying/incubating PNGase F 

Prime/Sialidase Prime as tissue samples.  

 

5.2.4 Serum Glycoprotein Antibody Array Preparation 

 Serum samples were prepared for glycoprotein-specific N-glycan MALDI-IMS 

analysis through a previously published antibody array protocol.288,304 Antibodies were 
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spotted onto nitrocellulose-coated microscope slides (Grace-Bio Labs, Bend, OR). Well 

chambers were mounted to the slide to create separated regions for serum incubation. 

Each region had 8 unique antibodies spotted at specified positions, with 16 total unique 

antibodies for analysis. Serum samples were incubated in duplicate in each of two 

antibody arrays. N-glycans were enzymatically removed via the same protocol as tissues 

and total serum analysis.  

 

5.2.5 MALDI-IMS N-Glycan Imaging  

 Slides were imaged on a MALDI-TOF (timsTOF, Bruker Daltonics) mass 

spectrometer in positive ion mode (m/z 600-5000). For both tissue and serum, images 

were collected at a 150 µM raster with 200 laser shots per pixel. Data was visualized and 

analyzed using SCiLS Lab 2022 (Bruker). Peaks were assigned to N-glycan structures 

utilizing a previously developed database with consideration for biosynthetic pathways 

of N-glycans. Not all N-glycans observed in tissue were also seen in serum samples. 

Proposed N-glycan structures and corresponding m/z values can be found in Table 9.  
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Theoretical m/z Proposed N-Glycan Structure 

933.3173 Hex3HexNAc2 

1079.37 Hex3dHex1HexNAc2 

1095.3729 Hex4HexNAc2 

1136.3994 Hex3HexNAc3 

1257.4235 Hex5HexNAc2 

1282.4532 Hex3dHex1HexNAc3 

1298.4481 Hex4HexNAc3 

1339.4777 Hex3HexNAc4 

1419.4788 Hex6HexNAc2 

1444.507 Hex4dHex1HexNAc3 

1460.5013 Hex5HexNAc3 

1485.5347 Hex3dHex1HexNAc4 

1501.5302 Hex4HexNAc4 

1524.4973 Hex4dHex1HexNAc3 + SO4 

1540.4579 Hex5HexNAc3 + SO4 

1542.5544 Hex3HexNAc5 

1546.4697 Hex4dHex1HexNAc3 + SO4 + 2Na 

1562.5354 Hex5HexNAc3 + SO4 + 2Na 

1581.5332 Hex7HexNAc2 

1590.5657 Hex4dHex2HexNAc3 

1606.5599 Hex5dHex1HexNAc3 

1622.5548 Hex6HexNAc3 

1647.5865 Hex4dHex1HexNAc4 

1663.5814 Hex5HexNAc4 

1688.6168 Hex3dHex1HexNAc5 

1704.6112 Hex4HexNAc5 

1724.5044 Hex6HexNAc3 + SO4 + 2Na 

1727.5783 Hex4dHex1HexNAc4 + SO4 

1743.5874 Hex8HexNAc2 

1765.5264 Hex5HexNAc4 + SO4 + 2Na 

1768.618 Hex6dHex1HexNAc3 

1784.6096 Hex7HexNAc3 

1809.6393 Hex5dHex1HexNAc4 

1850.6699 Hex4dHex1HexNAc5 

1866.6608 Hex5HexNAc5 

1889.6274 Hex5dHex1HexNAc4 + SO4 

1905.6339 Hex9HexNAc2 

1911.5863 Hex5dHex1HexNAc4 + SO4 + 2Na 

1946.5468 Hex8HexNAc3 

1955.6994 Hex5dHex2HexNAc4 

1996.7205 Hex4dHex2HexNAc5 

2010.7038 Hex7dHex1HexNAc3 + SO4 

2012.7187 Hex5dHex1HexNAc5 
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2028.7132 Hex6HexNAc5 

2035.6896 Hex5dHex2HexNAc4 +SO4 

2067.6888 Hex10HexNAc2 

2092.5944 Hex5dHex1HexNAc5 + SO4 

2092.7048 Hex8dHex1HexNAc3 

2101.7536 Hex5dHex3HexNAc4 

2158.7721 Hex5dHex2HexNAc5 

2174.7737 Hex6dHex1HexNAc5 

2215.798 Hex5dHex1HexNAc6 

2231.793 Hex6HexNAc6 

2254.7511 Hex6dHex1HexNAc5 + SO4 

2276.7146 Hex6dHex1HexNAc5 + 1SO4 + 2Na 

2304.8322 Hex5dHex3HexNAc5 

2320.8294 Hex6dHex2HexNAc5 

2361.853 Hex5dHex2HexNAc6 

2377.8509 Hex6dHex1HexNAc6 

2393.8475 Hex7HexNAc6 

2434.8734 Hex6HexNAc7 

2466.8881 Hex6dHex3HexNAc5 

2523.9092 Hex6dHex2HexNAc6 

2539.907 Hex7dHex1HexNAc6 

2580.9316 Hex6dHex1HexNAc7 

2596.9272 Hex7HexNAc7 

2669.9708 Hex6dHex3HexNAc6 

2685.9638 Hex7dHex2HexNAc6 

2742.9847 Hex7dHex1HexNAc7 

2758.9826 Hex8HexNAc7 

2800.0079 Hex5dHex5HexNAc6 

2816.0246 Hex6dHex4HexNAc6 

2832.0254 Hex7dHex3HexNAc6 

2905.0399 Hex8dHex1HexNAc7 

2978.0824 Hex7dHex4HexNAc6 

3051.0938 Hex8dHex2HexNAc7 

3124.1178 Hex9HexNAc8 

3197.1611 Hex8dHex3HexNAc7 

3270.1737 Hex9dHex1HexNAc8 

3416.2318 Hex9dHex2HexNAc8 

3635.3078 Hex10dHex1HexNAc9 

 
Table 9. N-Glycan Peak List. Each m/z peak that was detected and associated with a N-
glycan is listed. Not all N-glycans were detected in a given tissue/serum sample. 
Analyses comparing tissue and serum utilized a consolidated peak list of only N-glycans 
detected in both sample types.  
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5.2.6 Statistical Data Analysis 

 After MALDI-IMS experiments, statistical analyses were done to analyze both 

tissue and serum, including for the differentiation of HCC subtypes. For tissue: tissue or 

serum: serum analyses, all N-glycans of the peak list were percentiled to yield a relative 

quantification, and these relative quantifications were normalized for tissue: serum 

analyses. General linear models were developed and optimized utilizing linear 

regression, which was used to identify individual glycans that could significantly 

differentiate tumor from non-tumor along with groupings of multiple N-glycans to form 

a classification model. Feature selection for classification models was based on 

classification ability of individual N-glycans. These classification models were internally 

validated using leave one out cross validation. Individual glycans that were significantly 

different between subtypes were identified using pairwise t-tests, p-value less than 0.05 

considered significant. Pearson correlations were performed to identify N-glycans that 

were significantly correlated between tumor and serum, p-values less than 0.05 

considered significant.  
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5.3 Results 

5.3.1 Demographic and Clinical Information of Sample Cohort 

 The set of samples being analyzed in this work is both unique and incredibly 

valuable for a variety of reasons. For N-glycomic analysis, there are 66 tumor FFPE tissue 

blocks, originating from 60 patient cases. Of these 60 cases, 54 of them include a 

patient-matching background liver FFPE tissue block, which is a tissue section that is 

non-tumorous but originating from a tumor-containing liver. These 60 cases were also 

subtyped according to the Hoshida classification system, with 2 patient samples unable 

to be subtyped due to tumor size. Overall, this grouping of tissue samples allows for a 

powerful analysis of the N-glycomic transformation that takes place from non-tumorous 

liver tissue to HCC tissue within the same patient, which allows for control over 

demographic/ethnicity-based differences in N-glycosylation. The main drawback is in 

application to a biomarker discovery study, where it would be better to be able to 

distinguish between liver tissue with no tumor present and HCC tissue, although 

evidence that N-glycosylation is altered in tumor-adjacent tissue compared to 

normal/cirrhotic tissue is limited. A summary of demographic and clinical information on  

these tissue samples is included in Table 10.  
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 Table 10. Demographic/Clinical Information of Tissue Sample Cohort. 

 

 

 
S1 Tumors 

(n = 16) 
S2 Tumors 

(n = 13) 
S3 Tumors 

(n = 29) 

Sex 11 Male/ 5 Female 11 Male/ 2 Female 20 Male/ 9 Female 

Age 56.6 (± 10.8) 61.2 (± 7.0) 59.2 (± 10.6) 

Race/Ethnicity 11 Black or African 
American/ 4 White 

Non-Hispanic/ 1 
White Hispanic 

9 Black or African 
American/ 3 White 

Non-Hispanic/ 2 
Asian 

13 Black or African 
American/ 9 White 

Non-Hispanic/ 7 
White-Hispanic 

Etiology 13 HCV/ 2 
Cardiogenic/ 1 

Alcohol-induced 

12 HCV/ 1 Alcohol-
induced 

19 HCV/ 4 Alcoholo-
induced/ 1 NASH/ 1 

HBV/ 4 Unknown 

Child-Pugh 13 A/ 3 B 12 A/ 1 B 27 A/ 2 B 

Number of 
Lesions 

16 with 1 Lesion 12 with 1 Lesion/ 1 
with 3 Lesions 

28 with 1 Lesion/ 1 
with 2 Lesions 

Tumor Burden 2.6 cm (± 0.9) 3.3 cm (± 1.0) 4.1 cm (± 3.5) 

BCLC Stage 1 Stage 0/ 15  
Stage A 

12 Stage A/ 1 Stage 
B 

2 Stage 0/ 26 Stage 
A/ 1 Stage B 

AFP Level 
(ng/mL) 

9 > 20 ng/mL 
(56.3%) 

7 > 20 ng/mL 
(53.8%) 

8 > 20 ng/mL 
(27.5%) 

Recurrence/ 
Outcome 

5 with 
Recurrence/2 

Unknown/ 9 No 
Recurrence 

3 with 
Recurrence/1 

Unknown/ 9 No 
Recurrence 

15 with Recurrence/ 
2 Unknown/ 12 with 

No Recurrence 
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Sex/age of the sample cohort is well representative of the incidence rates of 

HCC, which includes approximately a 2:1 higher incidence rate in men. This cohort is 

primarily made up of Black/African American patients, although samples sizes are too 

small to do statistically significant analyses based on race. Similarly, this cohort primarily 

is made up of tumors with an HCV etiology, although samples sizes are too small to do 

statistically significant analyses based on etiology. These samples were primarily early-

stage tumors with only one small lesion, which is due to the method of sample 

acquisition for these studies being resection. Interestingly, both S1 and S2 tumors 

appear to have similar rates of AFP positive tumors within this cohort, although the 

Hoshida classification system lists S2 tumors as AFP-positive. This reinforces the idea 

that these subtypes are utilizing a significant amount of classification data, and there is 

still substantial variation within each grouping. Although recurrence data is provided, 

due to small sample sizes and an inability to distinguish early and late recurrence there 

will not be statistical analyses on recurrence as a part of this study.  

In addition to the patient-matching tumor and background liver tissue samples, 

23 serum samples were included in this cohort, all of which match to corresponding 

tissue samples. This is an incredibly unique set of samples, and allows for analysis into 

how tumor-specific N-glycosylation translates into serum N-glycosylation. Considering 

that these are patient-matching samples, subtype-based analyses can also be performed 

based on serum N-glycosylation. However, this becomes a problem due to a low 

number of S2 serum samples, leading to analyses attempting to distinguish S3 serum 

samples from a combination of S1/S2 serum samples. Combining spatial N-glycomics of 
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tumor tissue samples with serum N-glycomics of patient-matching samples is novel and 

an exciting opportunity in the field of liver cancer biomarker research. A breakdown of 

clinical/demographic characteristics of the cases that include serum samples is included 

in Table 11.  

 

Table 11. Demographic/Clinical Information of Serum Sample Cohort. 

 

 
Tissue-matching serum samples 

(n = 23) 

Sex 14 Male/ 9 Female 

Age 61.3 (± 5.0) 

Race/Ethnicity 15 Black or African American/ 5 White Non-
Hispanic/ 3 White Hispanic 

Hoshida Subtype 6 S1/ 3 S2/ 14 S3 

Etiology 17 HCV/ 5 Alcohol-induced/ 1 NASH 

Child-Pugh 23 A 

Number of Lesions 22 with 1 Lesion/ 1 with 2 Lesions 

Tumor Burden 4.3 cm (± 3.7) 

BCLC Stage 1 Stage 0/ 21 Stage A/ 1 Stage B 

AFP Level (ng/mL) 7 > 20 ng/mL (56.3%) 

Recurrence/ 
Outcome 

12 with Recurrence/ 11 No Recurrence 
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5.3.2 N-Glycosylation of HCC Compared to Background Liver 

 The first analysis done with this sample cohort was a direct comparison between 

tumor N-glycosylation and background liver N-glycosylation, with the aim to validate 

that there are detectable differences in N-glycosylation between those two tissue types.  

Each patient case in this analysis contains a tissue block containing HCC tumor, and a 

background liver tissue block containing no tumor, which was distant from the tumor 

but still removed during resection. This is a different analysis than done in Chapter 3, 

which relied on directly adjacent cirrhotic/normal tissue. When doing MALDI-IMS N-

glycan imaging, tumor tissues contain distinct tumor and non-tumor regions, while 

background liver tissues are relatively uniform in N-glycosylation with fewer histological 

features of interest aside from fibrosis. This difference in images is displayed in Figure 

18. Tumor regions are still annotated by a pathologist, but the remainder of the tissue 

on the tumor tissue sections is not incorporated into the analysis. Background liver 

tissue sections were also annotated by a pathologist, with regions of significant fibrosis 

excluded from analysis. The relative expression of each N-glycan of the m/z list is 

analyzed and compared between the tumor and the corresponding background liver 

tissue. This allows for a direct comparison between different MALDI-IMS runs of the 

tumor and background liver.  
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Figure 18. Example m/z Images of Tumor and Background Liver Tissue. Displayed is an 
example of a tumor tissue section (left) and representative m/z image along with a 
patient-matched background liver tissue section (right) and representative m/z image.   
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Previous findings have demonstrated that, without taking tumor subtypes into 

consideration, N-glycosylation of HCC can be distinguished from non-HCC, but lacks the 

sensitivity to identify a singular N-glycan structure as a biomarker candidate. Within this 

sample set, that premise holds true, as it is possible to discriminate tumor from 

background liver tissue, but no single N-glycan structure is able to effectively do so 

alone. However, multivariate statistical approaches allow for the development of 

classification models combining multiple N-glycans, and this yields good results for the 

on-tissue discrimination of tumor and background liver. An optimized model is shown in 

Figure 19, with an AUC of 0.9842 and internal validation through leave one out cross 

validation (LOOCV). Interestingly, this model includes an incomplete biantennary glycan, 

a hybrid N-glycan (increased in non-HCC), and a tetra-antennary non-fucosylated N-

glycan. These are not the large, fucosylated N-glycans expected to be increased in HCC, 

but they still combine to form a very accurate HCC model in this sample set. Overall, this 

work validates what has previously been demonstrated both in this dissertation and in 

literature, which is that N-glycosylation on tissue is significantly different between HCC 

and non-HCC liver tissue. 
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Figure 19. Classification Model for Tumor and Background Liver Tissue. Displayed is the 
optimized classification model to distinguish tumor from background liver tissue in this 
sample set. (A): The ROC curve for the model is shown, with an AUC = 0.9842, SE = 
0.0084. (B): The ROC curve for the model following leave one out cross validation, with 
an AUC = 0.9698, SE = 0.0142. (C-E): On a normalized scale, the relative expression of 
each glycan of the model is shown, with patient-matched pairs between tumor and 
background liver tissue. (C): m/z = 1257.424, (D): m/z = 1784.610, (E): m/z = 2231.793. 
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5.3.3 Distinguishing HCC Subtypes in Tissue 

 With this larger sample cohort, it became possible to do analyses to validate 

what was previously seen in tissue regarding the differentiation of the N-glycosylation of 

subtyped HCC tumors. Within this sample set there are 16 S1 tumors, 13 S2 tumors, and 

29 S3 tumors, which allows for robust statistical analysis to attempt to differentiate the 

tumor subtypes based solely on N-glycosylation. As expected, none of the analyzed N-

glycans are capable of adequately discriminating the subtypes when acting as individual 

biomarkers, as glycan heterogeneity is still too substantial. Within a general linear 

model to predict all three subtypes, no individual glycan within the tumor region has an 

overall accuracy greater than 0.6. The individual N-glycans within the tumor region best 

suited to distinguish between all three of the subtypes are shown in Figure 20A. In 

addition, it is important to note that there are also no N-glycans in the matching 

background liver tissue regions capable of adequately predicting tumor subtypes. Within 

a general linear model to predict all three subtypes, no individual glycan within the 

background liver region has an overall accuracy greater than 0.55. The individual N-

glycans within the background liver region best suited to distinguish between all three 

of the subtypes are shown in Figure 20B. Taken together, this suggests that there is 

more subtype-predictive capabilities in the tumor than in the background liver tissue, 

although neither tissue type contains a single N-glycan capable of discriminating all 

three subtypes adequately.  
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Figure 20. Best Individual N-glycans for Subtype Discrimination in Tumor and 
Background Liver. The best performing individual N-glycans, ranked by average AUC for 
discriminating each of the three subtypes, are displayed for tumor N-glycans (A) and 
background liver N-glycans (B). The y-axis is relative intensity of N-glycan expression. For 
tumor N-glycans: m/z = 1955.699; AUC = 0.709 (top), m/z = 2215.798; AUC = 0.698 
(middle), m/z = 2377.851; AUC = 0.716 (bottom). For background liver N-glycans: m/z = 
1663.581; AUC = 0.605 (top), m/z = 1724.504; AUC = 0.598 (middle), m/z = 1765.526; 
AUC = 0.612 (bottom). 
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While utilizing a single N-glycan to discriminate between all three subtypes has 

shown to be inadequate for biomarker development, there are interesting results when 

attempting to use single N-glycans to distinguish between two of the subtypes. Previous 

results demonstrated that when compared to directly adjacent non-HCC tissue, S1 and 

S2 were the most dysregulated, particularly in regard to fucosylation. Interestingly, 

there was much less distinction between S1 and S2 tumors in this cohort, and there was 

significant distinction between S1/S2 and S3 tumors. Utilizing a pairwise t-test to 

compare each subtype’s expression of each N-glycan, there is only one N-glycan that 

displays significant statistical difference (p < 0.05) between S1 and S2 tumors, which is 

m/z = 1727.578; F1A2G1 + SO4. Meanwhile, there are 11 N-glycans that are significantly 

different between S1 and S3 tumors, and there are 18 N-glycans that are significantly 

different between S2 and S3 tumors. The one N-glycan that statistically significantly 

differentiates S1 and S2 tumors is a low abundant sulfated, fucosylated N-glycan. Of the 

11 N-glycans that differentiate S1 and S3 tumors, six of them are fucosylated, all of 

which are increased in S1 compared to S3 tumors. Of the 18 N-glycans that differentiate 

S2 and S3 tumors, 11 of them are fucosylated, all of which are increased in S2 compared 

to S3 tumors. The N-glycan that is significantly different between S1 and S2 is shown in 

Figure 21A, the three most significantly different N-glycans between S1 and S3 are 

shown in Figure 21B, and the three most significantly different N-glycans between S2 

and S3 are shown in Figure 21C. Taken together, these results suggest that the N-

glycosylation, and particularly fucosylation, of S3 tumors is much more distinct from S1 

and S2 tumors than each of those subtypes are from each other.   
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Figure 21. N-Glycans to Distinguish Each Subtype Pairwise. Utilizing pairwise statistical 
testing, the N-glycans that are significantly different between each subtype were 
determined. (A): The only N-glycan significantly different between S1 and S2. m/z = 
1727.578. (B): The three most statistically significant N-glycans (of 11 total) to 
distinguish S1 and S3. m/z = 1647.567, m/z = 1850.670, m/z = 2377.851. (C): The three 
most statistically significant N-glycans (of 18 total) to distinguish S2 and S3. m/z = 
2215.798, m/z = 2377.851, m/z = 2742.985. 
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 While there is no individual N-glycan that could be adequately used as a 

standalone biomarker for the categorization of HCC subtypes, it is possible to construct 

an algorithm made up of multiple N-glycans that is highly sensitive for the classification 

of HCC subtypes. Figure 22 displays the most optimized linear regression model out of 

this N-glycomics data set for the classification of tumors into each of the three HCC 

subtypes. In Figure 22A, the ROC curve of this model is shown, demonstrating quality 

biomarker characteristics for the identification of all three HCC subtypes. The structure 

of each of the N-glycans utilized within the model are shown in Figure 22B. The relative 

importance of each N-glycan to the model is as follows: m/z = 1606.560: 36.069; m/z = 

1727.578: 97.580; m/z = 1768.618: 104.075; m/z = 2028.713: 1.098; m/z = 2158.772: 

74.672; m/z =2377.851: 20.281; m/z = 2580.932: 140.373. Six out of the seven N-glycans 

are fucosylated, demonstrating once again the importance of fucosylation in the 

differentiation of HCC subtypes. Figure 22C displays a confusion matrix table for this 

classification model, demonstrating its overall accuracy to be 75.86%. The model 

correctly categorized 10/16 S1 tumors, 9/13 S2 tumors, and 25/29 S3 tumors, 

suggesting that it is particularly effective in correctly classifying S3 tumors. Lastly, Figure 

22D displays the sensitivity, specificity, positive predictive value, and negative predictive 

value for each subtype. The AUC for S1 is 0.896, the AUC for S2 is 0.923, the AUC for S3 

is 0.900, and the macro-AUC is 0.903. Overall, this is a highly effective model in utilizing 

N-glycosylation of tumor tissue samples within this sample set to categorize HCC 

subtypes, and external validation will be required to assess its potential clinical utility.  
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Figure 22. Optimized Model to Classify HCC Subtypes Utilizing N-Glycosylation. 
Displayed are the characteristics of the linear regression model most optimized to 
classify HCC subtypes from this data set. (A): The ROC curve displaying 
sensitivity/specificity for all three subtypes. (B): The seven N-glycans included within this 
model. (C): A confusion matrix table demonstrating the accuracy of the model. (D): 
Sensitivity, specificity, positive predictive value, and negative predictive value of the 
model for the subtype.  
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5.3.4 Comparison of Tissue and Serum N-Glycosylation 

 After a thorough analysis of tissue compared to background liver tissue and 

subtype-based analyses only within tissue samples, the next step is to analyze the 

translation of N-glycan findings to serum. This sample set includes 23 patient-matching 

serum samples to tissue samples included in the previous analyses. The first aim was to 

analyze the correlation between N-glycosylation of the pathologist-annotated tumor 

region and total serum N-glycosylation through MALDI-IMS. Serum N-glycosylation of all 

glycoproteins present in serum was analyzed, suggesting that correlation will likely 

increase with more specific analyses on liver-originating serum glycoproteins. Pearson 

correlations were determined for all N-glycans in the m/z peak list, which determined 

the correlation between total serum N-glycosylation and tumor-specific tissue N-

glycosylation. Results showed that 18/73 (24.7%) N-glycans are significantly correlated 

between tumor and total N-glycosylated serum. All of these were positively correlated, 

which suggests that HCC tumor and serum N-glycosylation are largely positively 

correlated, and thereby N-glycosylation trends on tumor tissue are likely to be 

represented in serum. Figure 23A shows the regression lines of all N-glycans that are 

significantly positively correlated, Figure 23B shows the remaining, non-significantly 

correlated N-glycans, and Figure 23C identifies the N-glycans that are significantly 

positively correlated between serum and tissue.  
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Figure 23. Pearson Correlations of Tumor and Serum N-Glycans. Displayed are the 
results from analyzing statistically significant correlations of the expression of each N-
glycan in matching serum/tissue. (A): The regression lines of the 18 N-glycans that are 
statistically significantly correlated are shown. (p < 0.05) (B): The regression lines of the 
remaining N-glycans, none of which are statistically significant, are shown. (C): The 18 N-
glycans significantly correlated between tumor and serum are shown.  
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5.3.5 Subtyped Serum Analysis 

 After determining that there is statistically significant correlation between tumor 

and serum N-glycosylation, it is important to analyze whether subtype-dependent 

tumor N-glycosylation is also evident in serum glycoproteins. Unfortunately, within the 

sample set of 23 patient-matching samples, there are only 3 S2 serum samples, which is 

insufficient to statistically analyze the distinction of all three subtypes from serum N-

glycosylation. However, S1/S2 can be combined to compare to S3 for the serum 

samples, which is an important analysis as S3 tumors have been shown to have clearly 

distinct N-glycosylation from S1/S2 on tissue samples. To begin, a general linear model 

was optimized to distinguish S1/S2 from S3 using total serum N-glycosylation, which is 

agnostic to the originating glycoprotein. Results demonstrated that the utilization of two 

N-glycans, m/z = 1419.479; M6 and m/z = 1647.587; FA2G1, leads to a model with 

adequate sensitivity in differentiating S1/S2 from S3 serum samples. The details of this 

classification model are shown in Figure 24. This model achieved an AUC of 0.818 with a 

SE of 0.0982, and underwent LOOCV with an AUC of 0.714. While not sensitive enough 

to be clinically applicable, this is a promising model as it relies upon total serum N-

glycosylation, and many of the included glycoproteins do not originate from the tumor 

or the liver. With a focus on more specific glycoproteins of interest, we’d expect to see 

improvement in subtype classification.  
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Figure 24. Total Serum N-Glycan Model to Differentiate Subtypes. (A): The ROC curve 
used to differentiate S1/S2 from S3 serum using total serum N-glycosylation. This model 
includes an AUC of 0.818. (B): The two N-glycans included within this model are m/z = 
1419.479 (left), and m/z = 1647.587 (right). 
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In order to specifically analyze individual glycoproteins, we utilized a previously 

published MALDI-IMS antibody array workflow.288 This allows for the specific capture, 

and subsequent N-glycan analysis, or glycoproteins of interest, which in this case 

includes liver-originating glycoproteins and serum glycoproteins previously linked to 

cancer diagnostics. Figure 25 outlines all of the serum glycoprotein-specific antibodies 

selected for use in the antibody array. Included are a mix of abundant serum 

glycoproteins, glycoproteins known to be liver-secreted, and glycoproteins previously 

linked to HCC. Each antibody included in the panel was validated for specificity to its 

target glycoprotein. Thereby, this antibody array will allow for the analysis of HCC in 

subtyped serum samples in a more sensitive manner than total serum analyses.  
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Figure 25. Antibody Array Experimental Set Up. Displayed is the experimental set up 
used for the glycoprotein antibody array. Each antibody was spotted in duplicate on 
separate slides, to capture glycoproteins from biological replicates of serum samples.  
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Utilizing a MALDI-IMS antibody array led to the identification of N-glycans of 

specific glycoproteins with the capability to distinguish HCC subtypes. As shown in 

Figure 26, a more sensitive model utilizing N-glycans of specific N-glycans can be 

identified. Once again, the aim of this model is to differentiate combined S1/S2 from S3 

tumors utilizing patient-matching serum. Results demonstrated that the utilization of 

two N-glycans, m/z = 1419.479; M6 from Alpha-1-B Glycoprotein and m/z = 1765.526; 

A2G2 + SO4 from transferrin, leads to a model with improved sensitivity in 

differentiating S1/S2 from S3 serum. This model achieved an AUC of 0.881 with a SE of 

0.097, and underwent LOOCV with an AUC of 0.802. While the sample size is too small 

to make sweeping statements regarding clinical utility, the performance of this model 

emphasizes the ability of differential N-glycosylation of serum glycoproteins to 

distinguish subtypes of HCC tumors.  
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Figure 26. Glycoprotein-Specific Model to Differentiate Subtypes. (A): The ROC curve 
used to differentiate S1/S2 from S3 serum using antibody array-based N-glycosylation. 
This model includes an AUC of 0.881. (B): The two N-glycans included within this model 
are and m/z = 1765.526 from transferrin (left), and m/z = 1419.479 from A1BG (right). 
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5.4 Discussion 

 In recent years, aberrant N-glycosylation has been a major focus of cancer 

biomarker development, which includes altered N-glycosylation of known biomarkers 

such as AFP and PSA.254,305 It has been clearly demonstrated that N-glycosylation of 

cancer is widely dysregulated from non-cancer, although much of this work, particularly 

that done through MALDI-IMS, has focused on tissue N-glycosylation.235,270 In order to 

extend this work to clinically relevant biomarker development, it must be demonstrated 

that cancer-caused dysregulation of N-glycosylation is apparent in serum as well as 

tumor tissue. To accomplish this, novel MALDI-IMS techniques have been developed 

aiming to analyze N-glycosylation of serum glycoproteins and connect with spatial 

analyses of tumor tissue N-glycosylation.287,288,304 In this work, we utilized these serum 

MALDI-IMS techniques to analyze patient-matching serum and tissue samples in an 

effort to connect tumor-related tissue N-glycosylation to tumor-related serum N-

glycosylation in a subtype-dependent fashion. Additionally, we utilized background liver 

tissue samples to validate the differentiation of N-glycosylation between HCC and non-

HCC tissue. Results demonstrated HCC subtype-related differences in both serum and 

tissue, although there was less distinction between S1 and S2 tumors than what was 

previously reported.  

 In comparing the N-glycosylation of HCC tissue that of background liver tissue, 

several interesting results emerged. Most importantly, it remained clearly evident that 

N-glycosylation is differentiable between HCC and non-HCC, with a linear regression 

model consisting of multiple N-glycans doing so very accurately with an AUC of 0.9842. 
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However, the three N-glycans utilized in this model were somewhat unexpected, with 

no fucosylated N-glycans and only one tetra-antennary N-glycan. It’s important to note 

that this sample set is roughly 50% S3 tumors, which have noticeably less cancer-related 

fucosylation. The sample set skewing towards S3 tumors makes sense, as these are less 

clinically aggressive tumors that are more likely to be diagnosed in time to resect. 

However, there are enough S1/S2 tumors included to confidently state that this N-

glycan model is capable of distinguishing tumors of all three subtypes from the matching 

background liver tissues. Although this N-glycan based model is highly accurate, it relies 

on tissue samples to distinguish cancer from non-cancer, which makes detracts from its 

clinical relevance, as there are simpler ways based on histology to identify HCC from 

tissue samples. Regardless, an accurate, N-glycan based model to distinguish HCC tissue 

from non-HCC tissue is highly valuable in providing additional validation that N-

glycosylation is significantly dysregulated within HCC. 

 Results from subtype-dependent N-glycosylation of tissue offered new insights 

into the varying N-glycosylation of each subtype, although it remained clear that each 

subtype has unique enough N-glycosylation to distinguish subtypes based on N-glycans 

alone. Previous results suggested that S1 had highly dysregulated N-glycosylation, S2 

had decreased fucosylation, and S3 was most similar to non-HCC tissue although still 

distinct based on tetra-antennary glycosylation.115 Results from this sample cohort 

clearly demonstrated that S1/S2 tumors were highly unique from S3 tumors, with there 

being 11 N-glycans with statistically significantly different expression between S1 and S3 

and 18 N-glycans with statistically significantly different expression between S2 and S3. 
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The focal point of the difference between both of S1/S2 and S3 tumors appears to be 

fucosylation, with a large number of fucosylated N-glycans increased in S1/S2 compared 

to S3 tumors. However, on the level of individual N-glycans, there was not nearly as 

large of a difference between S1 and S2 as previously indicated. In order to truly assess 

fucosylation in regard to the distinction between S1 and S2 tumors, a larger sample set 

may be required, as this sample cohort consisted of 50% S3 tumors. Regardless, it 

remained possible to identify a model capable of accurately distinguishing all three 

subtypes with an overall AUC of 0.903 and an accuracy of 0.7586.  

 In regard to serum N-glycosylation, there was a remarkable amount of 

correlation between total serum N-glycosylation and tumor-specific N-glycosylation, 

with 24.7% of individual N-glycans significantly positively correlated between the two. 

Considering that many of the glycoproteins within serum did not originate from the 

tumor, or even from the liver, that level of correlation suggests that there is significant 

HCC tumor biomarker potential contained within the serum N-glycome. This work also 

analyzed whether there are subtype-dependent differences in serum, which would 

significantly further the idea that utilizing tumor subtypes is a viable way to improve 

cancer biomarker development. Due to sample size issues (only 3 S2 serum samples), S1 

and S2 serum samples were combined, with an effort to distinguish S1/S2 from S3. With 

a total serum N-glycan analysis, it was possible to utilize two N-glycans to distinguish 

these two groupings with an AUC of 0.818. When focusing on specific glycoproteins 

utilizing an antibody array, the classification ability improved, with an AUC of 0.881. 

These results suggest that specific N-glycans of serum glycoproteins can be effectively 
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used to distinguish varying subtypes of HCC. This concept has clear prognostic 

capabilities, but it also suggests the potential benefit of identifying glycan-based 

biomarkers of varying tumor subtypes that could work synergistically to improve 

sensitivity overall. 
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Chapter 6: Conclusions, Limitations, and Future Studies 
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6.1 Overall Findings 

 As the capabilities of N-glycan profiling through MALDI-IMS for both tissue and 

serum progress, it becomes a valuable tool for the identification and development of 

much needed glycan-based biomarkers for cancer. The work presented in this 

dissertation addresses the application of MALDI-IMS N-glycomics to the identification 

and development of more sensitive HCC biomarkers, with the novel incorporation of 

genetic information through tumor subtypes. Throughout this work, we validated tumor 

subtype-dependent differences in N-glycosylation (Chapter 3), developed a novel 

MALDI-IMS methodology to target de-sialylated N-glycans (Chapter 4), and analyzed the 

N-glycosylation of patient-matching tissue and serum (Chapter 5). For all of these works, 

the conclusions, limitations, and areas in need of future studies are highlighted 

throughout this chapter.   

 

6.2 Analysis of the N-Glycosylation of HCC Tumor Subtypes 

6.2.1 Conclusions 

Previous work clearly demonstrated that the N-glycosylation of HCC is distinct 

from non-HCC liver tissue, which is something that could be visualized through MALDI-

IMS. However, this was in a heterogeneous manner that lacked the sensitivity needed 

for application to clinically relevant biomarker development. In order to address this 

heterogeneity, HCC tumor subtypes were analyzed in this study, and results showed 

that there are subtype-dependent differences in N-glycosylation which could be utilized 

to identify more sensitive glycan-based biomarkers. S1 tumors were shown to have 
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significantly dysregulated N-glycosylation overall, particularly focused on fucosylation, 

when compared to adjacent tissue. S2 tumors demonstrated significantly less 

fucosylation than S1 tumors in work done as part of Chapter 3, but this did not carry 

over to work done as part of Chapter 5. Further analyses with larger sample sizes are 

needed to further elucidate N-glycan based differences between S1 and S2 tumors. 

Between all tissue-based and serum-based analyses it was clear that S1 and S2 tumors 

are distinct from S3 tumors, which have N-glycosylation that is more similar to non-

cancer than either S1 or S2. This was expected, as S3 tumors are less clinically aggressive 

and more well differentiated. Overall, N-glycosylation of all three subtypes was able to 

be differentiated in tissue, and combined S1/S2 was able to be differentiated in serum. 

This work provides evidence through a novel methodology that N-glycosylation of 

tumors is reliant on genetic and molecular features of the tumor, and biomarker 

discovery should incorporate this information in order to identify more sensitive 

biomarkers.  

 

6.2.2 Limitations and Future Studies 

 A limitation of this study is the need to utilize the Hoshida classification system 

to subtype tumors prior to N-glycomic analyses. This can be time consuming, and it 

limits the sample size available for analyses. Additionally, tumor subtyping does not 

result in subtypes that are entirely distinct from each other, as tumors exist on a 

gradient in regard to genetic/molecular features. In order to further progress this 

research, N-glycosylation could be correlated with specific genetic or molecular pathway 



173 

 

features, such as through spatial RNA-seq analyses. This would allow for better 

elucidation of mechanisms, as N-glycan features could be specifically linked to 

genetic/molecular features of interest as opposed to broadly linked to tumor subtypes. 

Additionally, such an approach may allow for larger clinical sample sizes, as the need to 

subtype tumors through the Hoshida classification system would be eliminated. Another 

future study would be to develop N-glycan based tumor subtypes and to correlate these 

subtypes with clinical outcomes and treatment responses, along with use to further 

identify N-glycan-based diagnostic biomarkers. This would be another approach for the 

application of N-glycomics to cancer detection and treatment, which is the overall goal 

of this study.  

 

6.3 Matching Serum and Tissue N-Glycan Analysis for HCC Biomarker Development 

6.3.1 Conclusions 

 In order for the dysregulated N-glycosylation of HCC tissue to be relevant to 

clinical biomarker development, it must be demonstrated that differentiable tumor N-

glycosylation translates to the N-glycosylation of serum glycoproteins. Considering that 

a large percentage of serum glycoproteins originate from the liver, we hypothesized that 

this would be the case. Results showed a remarkable level of correlation between 

tumor-specific N-glycosylation and the total N-glycome of serum within a sample set of 

patient-matching samples. Additionally, it was demonstrated that N-glycan-based 

models can effectively discriminate between S1/S2 tumors and S3 tumors with both 

total serum N-glycomic data and glycoprotein-specific N-glycomic data. This validation 
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of subtype-dependent differences in serum is incredibly important in establishing that 

genetic differences between tumors lead to not only differences in tissue N-

glycosylation but also differences in serum N-glycosylation. Overall, this work provided 

evidence that tissue N-glycosylation of HCC is highly relevant to the N-glycosylation of 

serum glycoproteins, in a manner that is encouraging for future N-glycan based 

biomarker studies.  

 

6.3.2 Limitations and Future Studies 

 In order to perform this work, a sample cohort of patient-matching tumor tissue 

and serum was required, which allowed for control over demographic/ethnicity-based 

differences that could contribute to N-glycosylation differences. However, this resulted 

in a sample size of only 23 serum samples, which limited the power of statistical 

analyses that could be performed. In order to further validate the applicability of tissue-

based cancer N-glycosylation to glycan-based serum biomarker discovery, a larger 

sample cohort is needed of either patient-matching tissue and serum samples or 

samples that control for demographic, ethnicity, and etiology-based differences 

between the tissue and serum sample sets. Additionally, another study for the future is 

the comparison of HCC serum to cirrhotic serum samples to further validate cancer-

related differences. While this is work that has been previously done in literature, it has 

not been analyzed in a subtype-dependent manner.  
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6.4 Utilization of Sialidase for MALDI-IMS N-Glycan Imaging 

6.4.1 Conclusions 

 Chapter 4 focused on the adaptation of the exoglycosidase sialidase into the 

MALDI-IMS N-glycan imaging workflow. The purpose of this was to increase sensitivity 

for non-sialylated N-glycans as well as to remove the m/z peaks of sialylated N-glycans 

that may interfere with the m/z peaks of multi-fucosylated N-glycans. Results showed 

clear applicability of Sialidase Prime to the MALDI-IMS workflow, with simultaneous 

PNGase F Prime cleavage of N-glycans from their associated glycoproteins. This 

workflow was then utilized for both tissue and serum workflows in Chapter 5. Not only 

was it possible to remove m/z peaks of sialylated N-glycans, the efficiency of enzymatic 

cleavage of N-glycans was improved, which was observed through the increased signal 

intensity of both de-sialylated N-glycans and N-glycans that biologically cannot have a 

sialic acid. This resulted in the development of a novel methodology specifically able to 

analyze non-sialylated N-glycans with high sensitivity through MALDI-IMS.  

 

6.4.2 Limitations and Future Studies 

 The obvious limitation of this approach is the loss of sialic acid information, 

which is often biologically relevant. However, this approach is intended for 

circumstances in which the N-glycans of interest are either not sialylated or the 

sialylation is not important to the scientific question being addressed, and in these cases 

utilizing sialidase within MALDI-IMS N-glycan imaging is a clearly valuable methodology. 

Future studies in this area should focus on the application of additional 
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endoglycosidases and exoglycosidases, both individually and synergistically. Thus far, 

published work has primarily focused on PNGase F, endo F3, and sialidase, but 

additional enzymes such as mannosidases, galactosidases, sulfatases, and 

Endoglycosidase H may all provide value within the established MALDI-IMS workflow.  

 

6.5 Final Thoughts 

 The work in this dissertation has described the novel application of tumor 

subtype information into N-glycomics-based analyses of HCC tissues and serum for 

clinical biomarker development. The results of this work have indicated that 

incorporating genetically based subtypes of tumors within N-glycan analyses yields a 

better understanding of the N-glycosylation of HCC. While this work has not identified 

an individual N-glycan to act as a biomarker for a subtype of HCC, which would require 

much larger sample sizes, it has established that there is tumor subtype-dependent N-

glycosylation in both HCC tissue and serum. Additionally, the positive correlation of N-

glycan expression between tumor tissue and serum has furthered the idea that it is 

possible to identify N-glycan-based biomarkers for HCC within serum, which would 

revolutionize how HCC can be detected clinically. Overall, this dissertation represents 

yet another scientific area in which MALDI-IMS N-glycan imaging is an incredibly 

valuable resource.  
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