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Abstract

Genome-wide association studies (GWAS) have successfully identified over two hundred

thousand trait risk-associated genetic variants; however, several challenges remain. First,

a complex trait is associated with many single nucleotide polymorphisms (SNPs), each

with small or moderate effect sizes that are hard to detect with limited sample size due

to a phenomenon called polygenicity. Additionally, currently available statistical methods

are limited in explaining the functional mechanisms through which genetic variants are

associated with complex traits.

In the first dissertation aim, we address these challenges by proposing a statistical ap-

proach called GPA-Tree. GPA-Tree integrates GWAS summary statistics and functional an-

notation information for a single trait within a unified framework. Specifically, by combin-

ing a decision tree algorithm with a hierarchical modeling framework, GPA-Tree simulta-

neously implements association mapping and identifies key combinations of functional an-

notations related to the trait risk-associated SNPs. We evaluate the proposed GPA-Tree ap-

proach using simulation studies and demonstrate that, in most scenarios, GPA-Tree shows

greater area under the curve (AUC) and power relative to existing statistical approaches in

detecting risk-associated SNPs and greater accuracy in identifying the true combinations

of functional annotations. We applied GPA-Tree to a systemic lupus erythematosus (SLE)

GWAS and functional annotation data including GenoSkyline and GenoSkylinePlus. The

results from GPA-Tree highlight the dysregulation of blood immune cells, including but

not limited to primary B, memory helper T, regulatory T, neutrophils and CD8+ memory T

cells.

xv



The second dissertation aim exploits the phenomenon called pleiotropy, shared genetic

basis among multiple traits, to improve statistical power to detect SNPs associated with one

or more traits. We extend GPA-Tree to develop Multi-GPA-Tree so that GWAS summary

statistics for multiple traits and functional annotation information can be integrated within a

unified framework. Specifically, by combining a multivariate decision tree algorithm with a

hierarchical modeling framework, Multi-GPA-Tree simultaneously implements association

mapping and identifies key combinations of functional annotations related to the SNPs as-

sociated with one or more traits. We evaluate the proposed Multi-GPA-Tree approach using

simulation studies and demonstrate that, in most scenarios, Multi-GPA-Tree outperforms

existing statistical approaches in detecting SNPs associated with one or more traits and

identifying the true combinations of functional annotations with high accuracy. We utilize

Multi-GPA-Tree to integrate GWAS from two rheumatic diseases, SLE and Rheumatoid

Arthritis (RA), and GWAS from two inflammatory bowel diseases, Crohn’s trait (CD) and

ulcerative colitis (UC), with GenoSkyline and GenoSkylinePlus annotations. The results

from Multi-GPA-Tree highlight the dysregulation of blood immune cells for both joint

analysis, including dysregulation of primary B cells for SLE and RA, and dysregulation of

primary T regulatory cells for UC and CD.

In the third dissertation aim, we develop the R package GPATree and the R Shiny app

ShinyGPATree. The R package and Shiny app facilitate users’ convenience and make the

GPA-Tree and Multi-GPA-Tree approach easily accessible. The package includes an exam-

ple data and a vignette to facilitate seamless step-by-step implementation of the proposed

methods. In addition, the Shiny app allows interactive and dynamic investigation of asso-

ciation mapping results and functional annotation trees.
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1. Introduction

1.1 Overview

Single nucleotide polymorphism or SNP is an alteration in a single nucleotide at a specific

position in the genome. For example, if the adenine (A) base pair is commonly observed

at a specific position in most genomes, the base pair A maybe altered and replaced by

another base pair (e.g., guanine (G)) in some genome. This alteration in a single nucleotide

indicates the presence of a SNP at that position. When polymorphisms as described here

are associated with a trait, they are called trait risk-associated SNPs.

In the past decade, genome wide association studies (GWAS) have been implemented

to identify over two hundred thousand trait risk-associated SNPs [1]. However, there are

challenges associated with these findings. First, including all GWAS identified SNPs only

explains a small proportion of the variation in the heritability of a complex trait [2] (‘her-

itability’ is defined as the proportion of variation in a trait that is attributable to genetic

variation within a population). This phenomenon is called ‘missing heritability’. Miss-

ing heritability can be demonstrated using human height as an example. Human height,

a highly heritable trait, has an estimated heritability of approximately 80% [3]. Including

genome-wide significant and validated SNPs explain about 10% of the variation in human

height [4], while including all commonly genotyped SNPs explains about 45% of the vari-

ation in human height [5]. This shows that a large number of SNPs that can explain the

variation in human height still remain unidentified. Second, a trait can be associated with

multiple SNPs with small or moderate effect sizes that do not meet the genome-wide p-

value cutoff of 5×10−8 through a phenomenon called ‘polygenicity’ [6]. As a result, many

SNPs with small or moderate effect sizes remain unidentified. Increasing the sample size

1



in the GWAS can potentially improve statistical power to detect SNPs with small and mod-

erate effect sizes. However, recruiting a larger sample size often requires more resources

and may not always be feasible due to limited prevalence of trait in the population. There-

fore, it is desirable to find alternate ways to increase statistical power to detect SNPs with

small effect sizes. Third, SNPs identified by GWAS can be in the coding, non-coding and

intergenic regions of the DNA. Although it is easier to understand the functional poten-

tial of SNPs in the coding regions, over 85% of the GWAS identified SNPs are located in

the non-coding regions [7]. Therefore, their functional role in the trait etiology may not

straightforward to understand.

Functional annotations can provide valuable information regarding the different mech-

anisms through which SNPs may be associated with traits by incorporating information

related to tissue- and cell-type specific functions, transcription factor binding, histone mod-

ifications, enhancer activity through chromatin architecture, DNA methylation, alternative

splicing, and more. Utilizing functional information related to SNPs in the form of func-

tional annotations also evidently improves statistical power to detect SNPs with small or

moderate effect sizes while simultaneously elucidating the mechanisms by which SNPs are

associated with the traits [8–11]. The general hypothesis is that a set of functional roles that

are observed for SNPs may influence the distribution of the GWAS association p-values for

the SNPs that are associated with the trait. For example, in the case of auto-immune traits

like systemic lupus erythematosus (SLE) and multiple sclerosis (MS), SNPs related to the

immune-system might be more enriched while for psychiatric disorders like bipolar disor-

der (BPD) and schizophrenia (SCZ), SNPs related to the central nervous system might be

more enriched.

Another advantage of GWAS has been in recognizing a phenomenon called ‘pleiotropy’

which shows that distinct traits can share a common genetic basis, i.e., multiple traits can

be associated with the same set of SNPs [12]. For example, using graph-GPA (a graphi-
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cal model for prioritizing GWAS results and investigating pleiotropic architecture), Chung

and colleagues established a shared genetic architecture between several autoimmune and

psychiatric disorders [13]. graph-GPA also showed that utilizing multiple GWAS simul-

taneously to leverages pleiotropy increases statistical power to detect trait risk-associated

SNPs for one or more GWAS traits. In addition, there is evidence in literature that simulta-

neously integrating GWAS for multiple traits to leverage pleitropy alongside SNP related

functional annotation data can considerably increase statistical power to detect all relevant

SNPs that are shared between different traits as well as for individual traits [8–10, 14–17].

We note that although statistical methodologies to discover trait risk-associated SNPs

can be based on individual-level genotype data, it is often extremely difficult to procure

individual-level genotype data for a relatively large sample size. Therefore, in this disser-

tation work, we focus our methodologies on GWAS summary statistics or p-values.

1.2 Gaps in the Current Literature

Several statistical methodologies are available to integrate GWAS summary statistics and

functional annotation data to prioritize SNPs and identify relevant functional annotations

[8–11, 14–17]. Schork et al. [8] developed the stratified False Discovery Rate (sFDR)

method to integrate linkage disequlibrium-weighted genic annotation information and GWAS

summary statistic for each SNP, and showed improvement in true discovery rates for SNPs

by stratifying them based on their genic position while also uncovering patterns of poly-

genic effects in specific annotation categories across multiple traits. In the covariate modu-

lated False Discovery Date (cm-FDR) method, Zablocki et al. [14] utilized genic functional

annotations as covariates in a two-group mixture model to prioritize trait risk-associated

SNPs and to discover enriched categories of functional annotations. Similarly, Ming et

al. [9] developed a Latent Sparse Mixed Model (LSMM) method using a genelized linear
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mixed model framework where genic- and cell-type specific annotations are assumed to

have fixed and random effects, respectively. The GenoCanyon (GC) approach [15] utilizes

an unsupervised machine learning algorithm to measure the overall functional potential for

a SNP by assigning it a ‘GC functional score’ that is computed using 22 computational

and experimental annotations from the ENCODE project [18]. GC functional scores were

utilized in GenoWAP [16] to partition SNPs into functional and non-functional subgroups

with the final goal to prioritize trait risk-associated SNPs by computing a posterior func-

tional score for all SNPs using mixture model within an Expectation Maximization (EM)

algorithm. Although these methods successfully integrate a single GWAS trait and func-

tional annotation, they fail to leverage pleiotropic relationship between multiple GWAS

traits.

On the other hand are methods that integrate GWAS association p-values for multi-

ple traits by leveraging pleiotropy. For example, the pleiotropy-informed FDR method by

Andreassen et al. [19] uses a model-free approach to prioritize SNPs that are associated

with single as well as multiple GWAS traits. Likewise, graph-GPA by Chung et al. [13]

is a useful tool to construct clusters of genetically correlated traits by integrating multiple

GWAS. However, these methods do not integrate functional annotation information in their

analysis.

Overcoming the shortcomings of the groups of methods that integrate functional anno-

tations or leverage pleiotropy are methods that integrate functional annotations while also

leveraging pleiotropy between multiple traits. For instance, Liu et al. [17] combined SNP

level information to obtain gene-level information and then used a two-group model within

the empirical Bayes framework to integrate pleiotropy and tissue-specific functional an-

notation to prioritize risk-associated SNPs. Similarly, in the Latent Probit Model (LPM)

method [11] and the Genetic Analysis incorporating Functional Annotation and leverag-

ing Pleiotropy (GPA) method [10], pleiotropy was leveraged and functional annotation
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information was integrated with GWAS association p-values to characterize the genetic

architecture shared by complex traits and to identify enriched functional annotations.

Although the methods described above can efficiently integrate functional annotations,

or integrate functional annotation while leveraging pleiotropy to prioritize trat risk-associated

SNPs, and to identify individual functional annotations that are related to one or more

traits, there is scarcity of statistical methodologies that identify the combinations of func-

tional annotations that act in unison to influence traits. Complex traits are often caused by

an amalgamation of functional mechanisms that can be described by multiple functional

annotations rather than a single functional annotation. Therefore, identifying the combi-

nations of functional annotations that are associated with the traits can provide valuable

insight into trait etiology. Theoretically, some of the existing methods can be extended to

include interaction terms. However, scientific knowledge is often lacking to know which

interactions to include in the model, especially when large number of functional annota-

tions are considered. While it is possible to include all possible interaction terms, this can

quickly become computationally taxing with the existing methods, specially when large

number of functional annotations are considered. Therefore, a method that can perform

automatic interaction selection needs to be developed.

1.3 Overall Goal and Specific Aims

The goal of this dissertation is to develop statistical methodologies that prioritize trait-risk

associated SNPs while identifying the combinations of functional annotations related to the

mechanisms through which risk-associated SNPs influence complex traits. In addition, an

R package and an R Shiny App will be developed to implement the statistical methodolo-

gies. Specifically, the objectives of this dissertation are to:

• Aim 1: Develop a method called ‘GPA-Tree’ that utilizes a hierarchical architecture
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to integrate GWAS summary statistics and functional annotation information within

a unified framework for a complex trait by combining an iterative procedure (EM

algorithm) and a decision tree algorithm (CART). GPA-Tree will simultaneously pri-

oritize trait risk-associated SNPs and identify combinations of functional annotations

that can potentially explain the mechanisms through which risk-associated SNPs are

associated with the trait. The application of GPA-Tree will be shown using a SLE

GWAS, and GenoSkyline and GenoSkylinePlus annotations.

• Aim 2: Extend Aim 1 to develop a method called ‘Multi-GPA-Tree’ that utilizes a

hierarchical architecture to integrate GWAS summary statistics for multiple complex

traits to leverage pleiotropy, and to integrate functional annotation information within

a unified framework. Multi-GPA-Tree will combine an iterative procedure (EM al-

gorithm) and a multivariate decision tree algorithm to simultaneously prioritize one

or more trait risk-associated SNPs and identify the combinations of functional an-

notations that can potentially explain the mechanisms through which risk-associated

SNPs are associated with one or more traits. The application of Multi-GPA-Tree will

be shown using a SLE and rheumatoid arthritis (RA) GWAS, and ulcerative coli-

tis (CD) and Crohn’s disease (CD) GWAS, and GenoSkyline and GenoSkylinePlus

annotations.

• Aim 3: Develop an R package and R Shiny App to implement the statistical method-

ologies developed in Aims 1 and 2.
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2. Statistical Background

In this section, we will review statistical methodologies currently available for post-GWAS

analysis. Noting differences in methodologies in regard to the type of data that can be

integrated with each method, this section is divided into three subsections. In the first sub-

section, we will focus on statistical methodologies that integrate GWAS summary statistics

and functional annotation information for single complex traits (no pleiotropy). In the sec-

ond subsection, we will focus on statistical methodologies that integrate multiple GWAS

traits by leveraging pleiotropy, but not including functional annotations. In the final sub-

section, we will focus on statistical methodologies that integrate GWAS summary statistics

for multiple traits with functional annotation information (leveraging pleiotropy).

2.1 Statistical Methods Integrating GWAS Summary Statistics and Functional An-

notations for a Single Trait

Several statistical methodologies are available to integrate GWAS association p-values and

functional annotation data. LSMM [9] is a recently developed statistical methodology that

integrates functional annotation data and GWAS association p-values by assuming a two-

group model where SNPs either belong to a non-null (trait-associated) or null (not asso-

ciated with the trait) group, and the GWAS association p-values for SNPs in the non-null

and null groups come from a Beta-Uniform mixture. In LSMM, functional annotations are

integrated using a logistic mixed effects model where genic- and cell-type specific func-

tional annotations are assumed to have fixed and random effects, respectively. A sparse

structure is imposed on the random effects to adaptively select relevant cell-type specific

functional annotations. LSMM progresses in four stages. In the first stage, a two-group
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model that sets coefficients to 0 for both tissue-specific fixed effects and cell-type specific

random effects is employed within an EM framework to obtain initial parameter estimates

for the proportion of non-null SNPs (π) and GWAS signal parameter (α) along with the

posterior probabilities of association for each SNP. The estimates from the first stage are

used to initialize the second stage in which tissue-specific functional annotations are in-

corporated to obtain the fixed effects estimates and to further update the parameters and

the posterior probabilities of association for each SNP. In the third stage, a logistic sparse

mixed model within a variational EM framework is fitted where the posterior probabili-

ties of association from the second stage, and all tissue and cell-type specific functional

annotations are used as response and predictor variables, respectively. In the fourth and

final stage, the estimates from the third stage are utilized as initial values for all parameter

estimates to fit the final variational EM algorithm. Through application of LSMM, Ming

et al. discovered substantial enrichment of blood-related cell-type specific annotations for

SLE, RA, UC and CD, among others [9]. LSMM also identified several new schizophrenia

(SCZ) associated SNPs that were unidentified prior to utilizing functional annotation data,

indicating increased statistical power in prioritizing risk-associated SNPs with integration

of functional annotation information with GWAS summary statistics data.

Similar to LSMM, the covariate modulated false discovery rate (cmfdr) method by

Zablocki et al. is a parametric method that integrates GWAS summary statistics and func-

tional annotation information where functional annotation information provide ‘prior infor-

mation’ in a parametric two-group mixture model [14]. Also, the GWAS association test

statistic (z) for the null group are assumed to have a folded normal distribution with prob-

ability mass to the right of z = 0 such that f0(z) = 2φσ0(z)Iz≥0 where φ(z) is N(0, σ0)

and Iz≥0 is an indicator that z ≥ 0. The GWAS association p-values for the non-null group

are assumed to have a gamma distribution with a shape parameter (a), modulated by the

covariates/functional annotations (x) as a(x) = exp(xTα) and a scalar rate parameter (β)
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not dependent on functional annotations. The prior probability for the latent indicator de-

noting whether or not a SNP is non-null (δi = 1) is modeled using a logistic regression

framework, i.e., π1(xi) = Pr(δi = 1|xi) =
exp(xTi γ)

1+exp(xTi γ)
. Following this, cmfdr is defined as

the posterior probability that a SNP is null given its GWAS association p-value and func-

tional annotation (covariate) information i.e., cmfdr = π0(xi)f0(zi)
π0(xi)f0(zi)+π1(xi)f1(zi|xi) . The cmfdr

method assumes that compared to SNPs that are not functionally relevant, SNPs that are

functionally relevant have a lower false discovery rate, and are associated with the trait. The

cmfdr method was similar at controlling false discovery proportion, but superior in terms

of power compared to the local FDR method of Efron [20]. In its application to Crohn’s

trait, the number of significant loci increased by over five fold at the nominal fdr level of

0.05.

Theoretically, both LSMM and cmfdr can include interaction terms between different

functional annotations. In addition, LSMM can perform enrichment analysis to test the

importance of functional annotations or the interactions between the functional annotations.

However, knowing which interactions to include in these methods is a challenge since there

is limited guidance in the clinical literature regarding the constitution of interactions among

functional annotations for complex traits. Considering all possible interactions between

functional annotations to mitigate variable and interaction selection problem is also not

feasible because of high computational burden, especially when large number of functional

annotations are involved. Therefore, a more adaptable method that can integrate large

number of functional annotations and make inferences related to interactions between those

functional annotations will be beneficial.

The method of stratified False Discovery Rate (sFDR) by Sun et al. [21] can also be

used to combine GWAS summary statistics and functional annotations. The overarching

idea behind using sFDR is that we can calculate the false discovery rate (FDR) for each

strata by dividing the GWAS association test statistics into multiple stratas with varying
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probability that the null hypothesis is true. The estimates of FDR within each stratum

can then be combined to explore changes in sensitivity and specificity. By using stratified

analysis, sensitivity and specificity to detect true associations is expected to improve if there

truly is variability in the proportion of null tests across strata. Schork et al. applied sFDR

to integrate linkage disequilibrium (LD) weighted functional annotations for each SNP and

the GWAS association p-values to estimate the true discovery rate (TDR = 1-FDR) for

stratas composed of different genic categories [8]. To construct LD-weighted annotation

categories that are not mutually exclusive, Schork et al. exploited the presence of naturally

mutually exclusive stratification of GWAS SNPs based on its genomic position with respect

to the first gene transcript listed in the UCSC known genes database. Eight genic positional

categories were scored 0 or 1 based on a SNP’s positional presence in: 1) 10, 000 to 1, 001

base pairs (bp) upstream, 2) 1,000 to 1 bp upstream, 3) 5’ untranslated region (5’UTR),

4) exon, 5) intron, 6) 3’ untranslated region (3’UTR), 7) 1 to 1,000 bp downstream, and

8) 1,001 to 10,000 bp downstream, all with reference to protein coding genes only. To

obtain the LD-weighted annotation categories that are not mutually exclusive, for each tag

SNP, a pairwise correlation coefficient approximation to LD (r2) was calculated for all

SNPs within one million base pairs (1 Mb) of the tag SNP. The sum of r2 LD between

the tag SNP and all SNPs positioned in a particular category was used as the LD-Weighted

annotation scores. Tag SNPs were assigned to every LD-weighted annotation category

for which its annotation score was greater than or equal to 1. The resulting LD-weighted

annotation categories were not mutually exclusive since the same GWAS tag SNP could

be annotated for multiple categories. Using sFDR, Schork et al. observed patterns of

enrichment for SNPs in different genomic positions, increased true discovery rates for a

given p-value and improved power to detect associations in complex traits. However, when

multiple functional annotations are considered for post-GWAS analysis, we cannot easily

create stratas, so this method may not be applicable for post-GWAS analysis including
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large number of functional annotations.

Other avenues to explore the functional potential of a genomic position is to employ

methods like GenoCanyon [15] and GenoWAP [16]. GenoCanyon is a statistical frame-

work that predicts the functional role of each position in the human genome by integrating

functional annotations using an unsupervised statistical learning procedure. This method

is considered ‘unsupervised’ because GWAS association p-values are not integrated in its

application. GenoCanyon assumes that the joint probability distribution of the functional

annotations will vary based depending on the functional potential of a genomic position.

This method calculates the functional measure score for a genomic position as the posterior

probability that the genomic position is functional given its functional annotation informa-

tion. GenoWAP integrates the functional measure scores from GenoCanyon and GWAS

association p-values to prioritize trait risk-associated SNPs. In GenoWAP, the mean Geno-

Canyon functional score of the surrounding 10K base pairs is calculated for each SNP in a

GWAS dataset such that SNPs with a calculated mean GenoCanyon score higher than 0.1

are assumed to be functional. SNPs are prioritized by GenoWAP by assigning each SNP

a score that measures its importance. The importance score is calculated as the posterior

probability that a SNP is trait-specific functional given its GWAS association p-value using

an EM algorithm. By utilizing the GenoCanyon functional scores, GenoWAP demonstrated

its effectiveness in its application to CD and SCZ by identifying new trait risk-associated

loci. Although GenoCanyon is a convenient tool to obtain functional potential of genomic

positions, its predictive ability is still limited by the annotations that are included in its com-

putation and can be improved by a built-in variable selection procedure. Similarly, given

that GenoWAP is a region based tool that can identify regions that are more likely to be

functional within LD blocks, determining conclusive functionality for a SNP still requires

allele-specific analysis. Also, its performance capability has not been investigated when

cell- and tissue-specific epigenetic annotations are incorporated. Therefore, a method that
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can integrate different types of functional annotation and adaptively select the combinations

of functional annotations is needed.

2.2 Statistical Methods Integrating GWAS Summary Statistics for Multiple Traits

by Leveraging Pleiotropy

This section is focused on statistical methodologies that integrate multiple GWAS traits

by leveraging pleiotropy. The two methods that are discussed in detail are the pleiotropy-

informed conditional FDR by Andreassen et al. [19] and graph-GPA by Chung et al. [13].

The unifying goal of these methods is to show improved statistical power to prioritize one

or more trait risk-associated SNPs.

The pleiotropy-informed conditional FDR method was motivated by the sFDR method

by Sun et al. [21] described in the previous section and the weighted FDR method by

Roeder et al. [22]. The weighted FDR method adds weights to GWAS association p-values

using linkage scores from genome-wide linkage studies. In contrast to the sFDR method

that uses stratified empirical cdfs, the pleiotropy-informed FDR method uses empicial cdfs

for the first trait conditional on the fact that the nominal p-values for the second trait is

less than or equal to some predetermined threshold. Finally, pleiotropy-informed condi-

tional FDR is defined as the posterior probability that a given SNP is null for the first trait

given that the p-values for both traits are as small or smaller the observed p-values, i.e.,

FDR(p1|p2) = π0(p2)p1/F (p1|p2), where p1 and p2 are the p-values for the first and sec-

ond traits, F (p1|p2) is the conditional cdf of the p-values for the first trait given the p-values

for the second trait, π0(p2) is the conditional proportion of null SNPs for the first trait given

that the p-values for the second traits are p2 or smaller. For a conservative estimate of

FDR(p1|p2), π0(p2) is set to 0 and the conditional FDR for trait 1 given trait 2 and vice

versa is computed for all SNPs. SNPs with FDR(p1|p2) < 0.05 are deemed associated
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with the first trait given the second trait and SNPs with FDR(p2|p1) < 0.05 are deemed

associated with the second trait given the first trait. To identify SNPs associated with both

traits, a conjunction FDR value is computed for each SNP. Conjunction FDR is defined

as the posterior probability that a SNP is null for one or both traits when the p-values for

both traits are as small or smaller than the observed p-values. A conservative, model-free

estimate for conjunction FDR is computed as F (p1, p2) = max{FDRp1|p2 , FDRp2|p1}

,where SNPs with conjunction FDR value < 0.05 are assumed to be associated with both

traits. Utilizing this methodology, Andreassen et al. showed improved detection of risk-

associated SNPs for two psychiatric disorders, SCZ and bipolar disorder (BPD). Despite

easy implementation, the model-free approach used in this method imposes several limi-

tations. The lack of a model-based approach in estimating conditional FDR compromises

the power to detect non-null associations and also to infer the properties of the non-null

distribution. Also, this integration method is limited to a small number (mostly a pair) of

traits and cannot inform about functional relevance of risk-associated SNPs as functional

annotations cannot be integrated using this method.

In contrast to the the pleiotropy-informed FDR method, graph-GPA can integrate large

number of GWAS traits using a hidden Markov random field (MRF) approach. In graph-

GPA, GWAS association p-values (p) are initially transformed using a cumulative distri-

bution function (CDF) of a standard normal distribution as y = Φ−1(1 − p) and a latent

association indicator (ei) denoting the association of SNPs with the ith trait is introduced.

Also, the density of yi given the latent association status ei is assumed to come from normal

mixtures as p(yi|ei, µ, σ2) = eiLN(yi;µ, σ
2)+(1−ei)N(yi; 0, 1), where LN(y; µ, σ2)

is the log-normal density with mean eµ+σ2/2 and N(y; 0, 1) is the standard normal distri-

bution. To integrate multiple GWAS traits, a graphical model based on MRF and assuming

an auto-logistic spatial scheme is used. Utilizing this scheme, the conditional distribution
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of ei is written as p(ei|α,β, G) = C(e|α,β, G) exp(
n∑
i=1

αieit +
∑
i∼j

βij eitejt), where

t is the index for the tth SNP, C(α,β, G)−1 =
∑
e∗∈E

exp(
n∑
i=1

αie
∗
it +

∑
i∼j

βij e
∗
ite
∗
jt), E

is the set of all possible values of e∗ = (e∗1, ..., e
∗
n), βij is the MRF coefficient for the

pair of traits i where j , i ∼ j denotes two traits that are adjacent to one another in the

graphical representation. Conjugate prior distributions are used for µi ∼ N(θµ, τ
2
µ) and

σ2
i ∼ IG(aσ, bσ), where IG denotes a inverse-gamma distribution. Prior distributions are

also assumed for αi ∼ N(θα, τ
2
α) and βij ∼ E(i, j)Γ (βij; aβ, bβ) + {1 − E(i, j)}δ0(βij),

where Γ (a, b) denotes a gamma distribution with mean a/b, δ0 denotes the Direc delta func-

tion at 0, andE(i, j) represents if there exists an edge between traits i and j. In the prior for

βij, βij = 0 if there is no edge between traits i and j in the graphical representation. Given

the model, parameters are estimated using a Markov Chain Monte Carlo (MCMC) sampler.

Finally, a graph relating the different traits are plotted using the posterior probability that

two traits are genetically correlated as denoted by p(E(i, j)|Y), and the posterior summary

of βi,j., where traits i and j are deemed to be correlated (and have a edge between them)

if p(E(i, j)|Y) > 0.5 and βi,j. is significant. Using this approach graph-GPA provides

a parsimonious representation of genetic relationship among traits and shows improved

statistical power to identify risk-associated SNPs. Its usefulness is demonstrated by inte-

grating 12 traits (five psychiatric disorders, three autoimmune traits, two lipid-related traits

and two cardiovascular traits) where clinically related traits are observed to form closely

connected clusters. Despite some benefits, graph-GPA has certain significant limitations.

The graph-GPA method does not integrate functional annotation information in its imple-

mentation, therefore the impact of functional annotations on the different traits can not be

investigated. Also, the MCMC implementation can be time consuming as the number of

GWAS traits to be integrated increases.

While both pleiotropy-informed FDR and graph-GPA provide useful methodological
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improvements in utilizing multiple GWAS simultaneously, both methods do not integrate

functional annotation information in their application. A method that efficiently integrates

functional annotation while also leveraging pleiotropy between multiple traits can further

improve statistical power to detect risk-associated SNPs and be beneficial.

2.3 Statistical Methods Integrating GWAS Summary Statistics for Multiple Traits

by Leveraging Pleiotropy and Functional Annotations

In this section, we will focus on statistical methodologies that integrate GWAS association-

p-values for multiple traits by leveraging pleiotropy and functional annotation information.

The methods that are discussed here in detail include the genetic analysis incorporating

pleiotropy and annotation (GPA) method by Chung et al. [10], EPS or the empirical Bayes

approach by Liu et al. [17], the latent probit model (LPM) by Ming et al. [11] and the

risk variant inference using epigenomic reference annotation (RiVIERA) method by Li et

al. [23].

GPA employs a unified statistical framework to integrate genetically correlated GWAS

traits by leveraging pleiotropy and functional annotation data to perform joint analysis.

When two genetically correlated GWAS traits are considered by GPA, the binary latent

status of association for SNPs are represented as Z = {Z00, Z10, Z01, Z11} forming four

groups of SNPs (null for both traits, non-null for the first and null for the second trait, null

for the first and non-null for the second trait, and non-null for both traits, respectively). The

latent association status is assumed to follow a Multinomial(1, (π00, π10, π01, π11)) distri-

bution, where π00, π10, π01 and π11 are the proportion of SNPs in the four groups described

previously. The p-values for non-null and null SNPs given their latent status of associa-

tions are assumed to come from a Beta-Uniform mixture, where α1, and α2 (0 < αi <

0, i = 1, 2) are the parameters for the Beta(αi, 1) distribution for the SNPs associated with
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the ith trait. Also, given the latent association status of a SNP, its functional annotations

are assumed to come from a Bernoulli distribution where the parameters (q00, q10, q01, q11)

represent the proportion of functional SNPs in each of the four groups. GPA utilizies an

EM algorithm to estimate the model parameter estimates and their standard errors (SE).

Finally, SNPs can be prioritized using their estimated local FDR and by controlling the

global FDR using the direct posterior probability approach [24]. GPA can be efficiently

used to integrate a few GWAS traits by leveraging pleiotropy while also integrating func-

tional annotation information. However, the number of parameters that are included in the

model increases significantly as the number of GWAS traits and functional annotations in-

crease in a model, making implementation of the method statistically and computationally

challenging. Also, the functional annotation enrichment analysis that are performed with

GPA only evaluates enrichment of one annotation at a time. Thus, interactions that may

be present between functional annotations can not be evaluated, limiting the utility of the

method.

Similar to GPA, EPS integrates tissue specific functional annotations while leveraging

pleiotropy between multiple traits to prioritize risk genes shared by multiple traits [17].

In EPS, SNP level p-values are grouped together to obtain gene level p-values using VE-

GAS [25], a tool that corrects for LD while combining the effects of all SNPs in a gene

for a gene-based test-statistic or p-value. Then a two-group Beta-Uniform mixture model

is assumed for the distribution of G genic p-values (P1, ..., PG) where Zg = (Zg0, Zg1) are

the latent binary variables indicating whether the p-value for the gth gene is from the null

or non-null group such that Zg0, Zg1 ∈ 0, 1 and Zg0 + Zg1 = 1. Using the same princi-

ple as the two-group model described earlier for GPA, a four-group model represented by

L = {00, 01, 10, 11} can be formed for two GWAS traits (k = 1, 2) where the latent vari-

able Zg can be denoted as Zg = (Zg00, Zg10, Zg01, Zg11) indicating that the gth gene is not

associated with either trait, associated with only the first trait, associated with only the sec-
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ond trait and associated with both traits, respectively with probability πl = Pr(Zgl = 1).

To incorporate gene expression data (E) as functional annotations from T tissues where

E ∈ RG×T , this model assumes that conditional on the latent status, the expression data

is normally distributed such that Eg|Zgl = 1 ∼ N(µl, Σ), where Eg is the vector of gene

expression across multiple tissues for the gth gene, µl is a vector of length T where µlt is

the mean of gene expression for the tth tissue in the lth group, and Σ is a covariance matrix

for T tissues. The joint distribution can be written as Pr(P,E) =
∏G

g=1

(∑
l∈L

Pr(Zgl =

1)Pr(Pg,Eg|Zgl = 1)
)

=
∏G

g=1

(∑
l∈L

πlPr(Pg|Zgl = 1)Pr(Eg|Zgl = 1)
)

. The complete

log-likelihood is derived which is then maximized to estimate the parameters by imple-

menting an EM algorithm. After the parameters are estimated, genes are prioritized based

on their local FDRs using the direct posterior probability approach by Newton et al. [24].

Likelihood ratio tests (LRT) are used to test if risk genes are differentially expressed for the

tth tissue (H(t)
0 : µ00,t = µ10,t = µ01,t = µ11,t) and also to test for pleiotropy between traits

(H0 : π11 = (π10 + π11)(π01 + π11)).

The third method, LPM by Ming et. al, can also be utilized to integrate multiple

GWAS traits to leverage pleiotropy and functional annotation information. The three main

goals of LPM is to identify the pleiotropic relationship between multiple traits by esti-

mating the correlation between the traits, to identify the effect of functional annotations,

and to improve the power to identify risk-associated SNPs for single and also multiple

traits. This method also assumes a Beta-Uniform mixture for the distribution of GWAS

p-values (Pjk) for j SNPs in the k traits. A latent binary variable ηjk is used to indicate

the association group that SNP j belongs to for the kth trait. The LPM model is given

by Zj = βXj + εj, εj ∼ N(0,R), where Z ∈ RM×K is the matrix of latent variable

for M SNPs such that ηjk = 1 when Zjk > 0, or 0 otherwise, X ∈ RM×(D+1) is the de-

sign matrix of the intercept and D functional annotations, β ∈ RK×(D+1) is the matrix of
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coefficients, ε is the unmeasured error term and R ∈ RK×K is the correlation matrix for

the K traits. But, rather than integrating with K GWAS traits simultaneously, this method

analyzes the traits in a pair-wise manner based on a composite likelihood approach de-

noted as bivariate LPM or bLPM. If θ = {α,β,R} are the parameters for LPM, then

θ̃ = {α̃, β̃, R̃} are the parameters for bLPM. The scalability of this method is improved

by using a parameter expanded EM (PX-EM) algorithm for pairwise analysis of traits.

The parameters in bLPM can be expanded to Z̃j = γXj + ε̃j, ε̃j ∼ N(0, Σ), where

γ = Dβ̃, Σ = DR̃D =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 and D =

σ1 0

0 σ2

. Once all pair-wise

computations and the corresponding parameter estimates ˆ̃θ are obtained using PX-EM, the

estimates for α̂k and β̂k in LPM are obtained by averaging over the pairs that include the

kth GWAS. The R̂ matrix for correlation is also formed using the estimates of ρ̂ from

the pair-wise analysis. Finally, SNPs associated with k and k′ traits are inferred using

Pr(ηjk = 1, ηjk′ = 1|Pjk, Pjk′ ,X;θ) and SNPs associated with only the kth trait are in-

ferred using Pr(ηjk = 1|Pjk,X;θ), controlling the global FDR using the direct posterior

probability approach by Newton et al. [24]. Relationship between two traits in a pair is

evaluated using a likelihood ratio test as λ = 2 log( Pr(P̃|X;θ̃)

Pr(P̃|X;θ̃0)
), where θ̃ is estimated un-

der the alternate hypothesis (ρ 6= 0), θ̃0 is estimated under the null hypothesis (ρ = 0),

and λ ∼ χ2
1 asymptotically under the null. Finally, annotation enrichment on each trait

is evaluated using the Wald test statistic (W ) such that W ∼ χ2
1 asymptotically under the

null (βkd = 0). LPM was efficiently used to analyze 44 GWAS traits with 136 functional

annotations.

The risk variant inference using epigenomic reference annotation (RiVIERA) method

by Li et al. [23] is a Bayesian method that integrates functional annotations and performs

joint analyses of multiple GWAS traits. In this method, the empirical prior of a SNP being

18



associated with trait d is defined using a logistic function as πd = [1 + exp(−[
∑
k

w0d +

wkdevk)]
−1, where w0d denotes the linear bias and wkd is interpreted as the enrichment co-

efficient for the kth annotation in the dth trait. A non-negative value is enforced for this

parameter during estimation. The effects for annotations are assumed to follow a multi-

variate normal distribution, wkd ∼ N(0, Λ−1w ), where Λw captures the pairwise annotation

correlation among D traits. Also, w0d ∼ N(logit(π0), λ−10d ), where λw0d
∼ Γ (α0, β0) and

logit(π0) = log π0
1−π0 . Also the p-values (avd) are modeled using a re-parameterized Beta

distribution with mean µd and unknown precision φd as avd ∼ B(µd, φd). A joint poste-

rior distribution function is derived using the assumed model distributions. Gibbs sampling

is then used to sample parameter estimates from the joint posterior distribution. Causal

variants are inferred using avd and fold enrichment for all annotations are evaluated using

the full prior model over the alternative prior where the effect of annotation k for trait d is

removed.

All methods described in this section integrate GWAS summary statistics for multiple

traits by leveraging pleiotropy and functional annotation information. However, the num-

ber of parameters to be estimated increases significantly in all discussed methods as more

annotations and GWAS traits are integrated together which can make these methods statisti-

cally complex and computationally challenging. The complexity of the models can increase

even further when all possible interactions between annotations are included. Additionally,

while these methods can test individual effects of functional annotations on a trait etiology,

it can be computationally and biologically taxing to investigate the impact that possible

combinations or interactions of functional annotations have on a trait etiology. Therefore,

a method that can automatically select the combinations of functional annotations can be

beneficial in understanding the functional complexity of a trait.
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3. Specific Aim 1

For Aim 1, our goal is to develop statistical methodology to prioritize SNPs that are as-

sociated with a single trait and to identify combinations of functional annotations that can

explain the mechanisms through which risk-associated SNPs are associated with a single

trait.

3.1 Introduction

In this aim, we address the challenges posed by missing heritability, polygenicity and miss-

ing functional information about trait risk-associated SNPs that are discussed in Section 1.1

by integrating GWAS summary statistics and functional annotation data for a single trait.

Several Bayesian and mixed model methods have been employed to integrate GWAS sum-

mary statistics and functional annotation data as discussed in Section 2.1. Although these

methods are successful in prioritizing trait risk-associated SNPs and also in identifying

relevant functional annotations, they do not provide knowledge about interactions between

different functional annotations. Even in methods that can include interactions, interactions

need to be user-specified. However, this requires strong prior scientific knowledge, which

is often lacking, especially when a large number of functional annotations is considered in

the analysis.

Our goal in Aim 1 is to address the shortcomings described above by developing a

novel statistical approach called GPA-Tree that simultaneously prioritizes trait-associated

SNPs and identifies key combinations of functional annotations related to the mechanisms

through which trait-associated SNPs influence the trait, within a unified framework. Specif-

ically, GPA-Tree is based on a hierarchical modeling approach integrated with a decision



tree algorithm and facilitates easy interpretation of findings. GPA-Tree takes GWAS sum-

mary statistics as input, which allows wide applications and adaptations. Our compre-

hensive simulation studies and real data applications show that GPA-Tree consistently im-

proves statistical power to detect trait-associated SNPs and also effectively identifies bio-

logically important combinations of functional annotations.

The chapter is structured as follows. In Section 3.2, we present background information

about classification and regression tree (CART) and EM algorithm. In Section 3.3, we in-

troduce our method for prioritizing trait risk-associated SNPs and identifying combinations

of functional annotations that are associated with the risk SNPs. In Sections 3.4 and 3.5,

we describe our simulation settings and simulation results, respectively. In section 3.6, we

describe the results of the application of our method to real data. Finally, in Section 3.7 we

discuss the implications of using our method.

3.2 Background

In the implementation of our novel method, GPA-Tree, we use a unified framework com-

bining a decision tree algorithm and an EM algorithm. Although many decision tree pro-

cedures are available, we employ the classification and regression tree (CART) framework

by Breiman et al. [26] for specific Aim 1 because of its suitability for the type of response

considered, ease of use and intuitive interpretation of results that are presented in a tree

like structure. CART is a suitable choice in comparison to other decision tree methods like

ID3 (Iterative Dichotomiser 3) [27], CHAID (Chi-Squared Automatic Interaction Detec-

tion) [28] and QUEST (Quick, Unbiased, Efficient, Statistical Tree) [29] as these methods

do not allow continuous response variables. Also, GWAS association data for complex

traits do not usually provide good signal strength and therefore are not a good fit to be

analyzed using other decision tree methods like Random Forest [30] and Logic Regres-
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sions [31] as randomness is introduced in the implementation of these methods which can

potentially miss the limited signal strength present in GWAS for complex traits. CART

also offers several advantages to other commonly used methods like generalized linear

mixed models (GLMM). CART can perform automatic variable selection and identifica-

tion of interactions between the selected variables without a priori specification. In con-

trast, GLMM requires a priori specification of variables and interactions of interest. Also,

GLMM assumes linearity between the response and predictor variables through a link func-

tion. However, CART models do not require such assumptions. CART models can be easily

implemented using the rpart package in R [32].

CART models are flexible and can be used with binary, discrete or continuous response

and predictor variables. Trees obtained from a CART model with binary or discrete re-

sponse variable are called classification trees and trees obtained from a CART model with

continuous response variable are called regression trees. In the implementation of GPA-

Tree, we will employ the regression framework of CART as we utilize continuous response

and binary predictor variables. In both regression and classification trees, the location for

each predictor variable in the tree is called a node. Each node in the tree can have two or

zero sub-node. The two sub-nodes of a node are its children and the sub-nodes are each

other’s siblings. The node without a parent node in the tree is called a root node and nodes

without children are called leaves or terminal nodes.

The regression framework of CART uses a greedy approach to identify all predictor

variables to be included at the nodes of the regression tree. Greedy search is performed

by evaluating all predictor variables at all possible split points for binary space partitioning

of the data, and then selecting the predictor variable at the split point that minimizes the

cost function. As we utilize binary functional annotations as predictor variables in the

implementation of the GPA-Tree approach, there is only one possible split to be considered

for all predictor variables. That is, for each predictor variable, we can have two rectangular
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sub-space (0 vs 1) where observations can fall. We can calculate the predicted values for

the subset of data in the two rectangular sub-space and use it in the formula for the cost

function. The cost function for the regression framework is defined as the sum of squared

error for all observations i.e., cost =
M∑
i=1

(yi − ŷi)2, where yi is the observed response, and

ŷi is the predicted response for the rectangular sub-space in which the ith observation lies.

The first predictor variable that is identified by CART using greedy search is the root of

the regression tree. Other predictor variables are added to the regression tree by recursively

partitioning the rectangular sub-spaces even further, creating smaller subsets of data that

are used to calculate the cost function at sub-nodes, allowing only the predictor variables

that minimize the cost function at each sub-node. Data partitioning is continued and child

nodes are added to all nodes of the tree until some stopping criteria is satisfied by the subset

of data at each node. Some examples of stopping criteria that are used when building CART

models are: setting a threshold for the minimum number of observations required to create

a sub-node, setting a threshold for the minimum required improvement in the cost function,

and pre-specifying the maximum number of nodes allowed in a tree.

Based on the stopping rules used to build a CART model, we can have complex or

simple trees. Complex trees are large trees with many splits and may contain uninformative

splits that are not worthwhile. Likewise, simple trees are small trees with few or no splits.

We can alter the size of a tree by pruning or growing the tree using a complexity parameter

(cp). When pruning a regression tree, a child node is removed if the value of the cost

function at the child node is lower than cp. When growing a regression tree, a node can

grow children nodes if the cost function for a child node improves by at least cp. However,

determining the appropriate value of cp to be used for a given type of data can be a challenge

and needs some investigating.

We combine CART and EM algorithm to create a unified framework for the implemen-

tation of the proposed GPA-Tree approach. EM algorithm is appropriate to use when latent
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variable, observed data and unknown parameters that need to be estimated are involved.

Since the goal of the GPA-Tree approach is to integrate GWAS association p-values (ob-

served data) and functional annotation data to prioritize the SNPs that are associated with

a trait of interest (using a latent variable) and also to predict the parameter estimates (re-

lated to the distribution of the null and non-null groups of association), EM algorithm is an

appropriate choice.

EM algorithm is an iterative, two-step procedure that was first explained in 1977 by

Dempster et al. [33]. To implement the EM algorithm, we being by writing the com-

plete and incomplete data likelihoods. Given some observed data (Y), an unobserved

latent variable (Z) and a vector of unknown parameters (θ) related to the null and non-

null groups that generate the data, we can define the complete-data likelihood function as

LC(θ|Y,Z) = p(Y,Z|θ). Similarly, we can define the incomplete-data likelihood function

as LIC(θ|Y) =
∫
p(Y,Z|θ) dZ such that LIC is monotone increasing (a notable feature

of the EM algorithm). Next, in the E-step of the EM algorithm, we compute the expected

value of the complete-data log likelihood function of θ, log( p(Y,Z|θ)), with respect to

the conditional distribution of the latent variable Z given the observed data Y and the pa-

rameter estimates from the previous iteration θ(t) as defined by z
(t)
i = E(Zi|Y, θ(t)) =

EZ|Y, θ(t) [log (p(Y,Z|θ(t)))]. In the M-step, we find the parameter estimates that maximize

the z(t)i function from the E-step as θ(t+1) = arg max
θ(t)

E(Zi|Y, θ(t)). We repeat the iter-

ative process of computing E and M steps until the algorithm converges. However, given

the complexity of the data likelihoods and absence of closed form solutions to maximize

in the M-step, computations involved in the different steps of EM can be gruesome and

convergence of the algorithm can be slow.

Several variations of EM have been proposed and implemented over time to overcome

convergence and computational issues pertaining to the original EM algorithm [34–37].

A variant of the EM algorithm that was utilized in the implementation of the GPA-Tree
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approach is called generalized EM or GEM [33]. The E-step of GEM remains the same

as the E-step of a conventional EM. However, in the M-step, we find θ(t+1) that increases

LIC in the (t + 1)th iteration, i.e., we choose θ(t+1) such that L(t+1)
IC |θ(t+1) > L

(t)
IC |θ(t)

while also maximizing L(t+1)
C . This is in contrast to a conventional EM algorithm in which

we find θ(t+1) that maximizes E(Zi|Y, θ(t)) in the M-step. Utilizing GEM is useful in

maintaining the monotone increasing property of LIC that may not always be achieved

when a conventional EM algorithm is implemented with CART.

3.3 GPA-Tree Method

3.3.1 Model

Let YM×1 = (Y1, Y2, . . . , YM)′ be a vector of genotype-trait association p-values for i =

1, 2, · · · ,M SNPs such that yi denotes the p-value for the association of the ith SNP with

the trait. We also assume that we have K binary annotations (A).

A = (A.1, . . . ,A.K) =


a11 . . . a1K

... . . . ...

aM1 . . . aMK


M×K

, where

aik =


0, if ith SNP is not annotated in the kth annotation

1, if ith SNP is annotated in the kth annotation

For example, if A.k is the annotation for an open chromatin region in blood samples, the

ith SNP is said to be ‘annotated’ for the kth annotation if it belongs to the open chromatin

region and Aik = 1. If the ith SNP does not belong to the open chromatin region, it is

considered to be ‘not annotated’ and Aik = 0.
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Here our ultimate goal is association mapping, i.e., identifying SNPs associated with

the trait given both GWAS and functional annotation data. To accomplish this, we introduce

the latent variable Z, where zi indicates association of ith SNP with the trait.

zi =


0, ith SNP is not associated with the trait; null group

1, ith SNP is associated with the trait; non-null group

Then, the GWAS association p-values (yi) are assumed to come from a mixture of non-risk-

associated (zi = 0) and risk-associated groups (zi = 1). As previously proposed by Chung

and colleagues [10], if the ith SNP belongs to the non-risk-associated group (zi = 0), then

its p-value is assumed to come from the Uniform distribution on [0, 1]. This is based on the

rationale that U [0, 1] provides a p-value density corresponding to equal probability of all

values on the interval [0, 1] signifying ‘no signal’ in the data from the non-risk-associated

group [38]. If the ith SNP belongs to the risk-associated group (zi = 1), then its p-value

is assumed to come from the Beta distribution with parameters (α, 1), where 0 < α < 1.

We restrict α in the Beta distribution to be between 0 and 1 because the smaller α value

corresponds to the higher density at lower p-values and the lower density at higher p-values,

while the α value closer to one resembles a Unif [0, 1] distribution, making signal in the

data from Beta(α, 1) closer to those from the non-risk-associated group.

(yi|zi = 0) ∼ U [0, 1],

(yi|zi = 1) ∼ Beta(α, 1), 0 < α < 1

We further integrate functional annotation data with the GWAS data by modeling the

latent Z as a function of the functional annotation data A. Specifically, we define a function

f that is a combination of functional annotations A and relate it to the expectation of latent
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Z as given in Equation (3.1).

P (Zi = 1; ai1, ..., aiK) = f(ai1, ..., aiK) (3.1)

The flowchart in Fig 3.1 provides a complete graphical representation for these data.

Figure 3.1: Association framework that links the GWAS association p-values (Y), the
association status as given by the latent variable (Z) and annotation data (A).

Let θ = (α,π), where π = {π1, π2, ..., πM} is a function of A and represents the

prior probabilities that the SNPs belong to the risk-associated group, i.e., πi = P (Zi = 1).

Assuming that the SNPs are independent, we can write the joint distribution of the observed

data Pr(y,A) as:

Pr(y,A) =
M∏
i=1

[P (Zi = 1)P (yi|Zi = 1) + P (Zi = 0)P (yi|Zi = 0)]

=
M∏
i=1

[
πi α y

α−1
i + (1− πi)

]
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The ‘incomplete’ data log-likelihood is written as:

`IC =
M∑
i=1

log [P (Zi = 1)P (yi|Zi = 1) + P (Zi = 0)P (yi|Zi = 0)]

=
M∑
i=1

log
[
πi α y

α−1
i + (1− πi)

]
We can write the ‘complete’ data likelihood as:

LC =
M∏
i=1

[
πi α y

α−1
i

]Zi [(1− πi)]1−Zi

Similarly, the ‘complete’ data log-likelihood can be written as:

`C =
M∑
i=1

Zi (log πi + log α + (α− 1) log yi) + (1− Zi) log(1− πi)

3.3.2 Algorithm

Given the approach described in Section 3.3.1, we implemented parameter estimation using

an EM algorithm. The function f in Equation (3.1) is estimated by a decision tree algorithm

and it allows to identify combinations of functional annotations related to risk-associated

SNPs. To improve stability, we employed a two-stage approach for parameter estimation.

Specifically, in Stage 1, we first estimate the parameter αwithout identifying a combination

of functional annotations. Then, in Stage 2, we identify key combinations of functional

annotations (f(A)) while the parameter α is kept fixed as the value obtained in the first

step. We illustrate more detailed calculation steps below.

Stage 1:
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In Stage 1, we initialize α(0) = 0.1 and π(0)
i as given below.

π
(0)
i =


0.9, yi ≤ 10−4

0.1, yi > 10−4

For the ith SNP, the tth iteration of the E-step can be written as:

E− step : z
(t)
i = E[Zi; Y,A,θ

(t−1)]

= Pr(Zi = 1; Y,A,θ(t−1))

= P (Yi; Zi=1, θ(t−1))P (Zi=1;Ai., θ
(t−1))∑

d∈{1,0}
P (Yi; Zi=d, θ

(t−1))P (Zi=d;Ai., θ
(t−1))

=
α(t−1)yα

(t−1)−1
i π

(t−1)
i

1−πi(t−1)+α(t−1)yα
(t−1)−1

i π
(t−1)
i

In the tth iteration of the M-step, πi and α are updated as:

M− step : Fit a linear regression model as

z
(t)
i = β

(t)
0 + β

(t)
1 ai1 + · · ·+ β

(t)
K aiK + ε

(t)
i

Update π(t)
i as the predicted value from the linear

regression model.

Update α(t) = −
M∑
i=1

zi
(t)

M∑
i=1

zi(t)log(yi)

,

where β(t)
k , k = 0, · · · , K are the regression coefficients and ε(t)i is the error term. The E and

M steps are repeated until both the incomplete log-likelihood and the α estimate converge.

The α and π estimated in this stage are used to fix α and initialize π, respectively, in Stage

2.

Stage 2:

In this stage, we implement another EM algorithm employing a decision tree algorithm
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(CART [26]), which allows to identify union, intersection, and complement relationships

between functional annotations in estimating πi.

For the ith SNP, the tth iteration of the E-step can be written as:

E− step : z
(t)
i =

α̂yα̂−1
i π

(t−1)
i

1−πi(t−1)+α̂yα̂−1
i π

(t−1)
i

Note that here α is fixed as α̂, which is the final estimate of α obtained from Stage 1. In the

tth iteration of the M-step, πi is updated as:

M− step : Fit a CART model as

z
(t)
i = f (t)(ai1, · · · , aiK) + ε

(t)
i

Update π(t)
i as the predicted value from the CART model,

(3.2)

where εi is the error term. In the M-step, the complexity parameter (cp) is the key tuning

parameter and defined as the minimum improvement that is required at each node of the

tree. Specifically, in the CART model, the largest possible tree (i.e., a full-sized tree) is

first constructed and then pruned using cp. The pruned regression tree structure identi-

fied by the CART model upon convergence of the EM algorithm (Equation (3.2)) is used

as f in Equation (3.1). This approach allows for the construction of the accurate yet in-

terpretable regression tree that can explain relationships between functional annotations

and genotype-trait associations. The E and M steps are repeated until the incomplete log-

likelihood converges.

We note that unlike the standard EM algorithm, the incomplete log-likelihood in Stage

2 is not guaranteed to be monotonically increasing. Therefore, we implement Stage 2 as

a generalized EM algorithm by retaining only the iterations in which the incomplete log-

likelihood increases compared to the previous iteration.
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3.3.3 Prioritization of Risk-associated SNPs and Identification of Rel-

evant Combinations of Functional Annotations

Once the parameters are estimated as described in Section 3.3.2, we can now prioritize

risk-associated SNPs and identify combinations of functional annotations relevant to these

SNPs. First, SNPs are prioritized using the local false discovery rate, fdr, which is

defined as the posterior probability that the ith SNP belongs to the non-risk-associated

group given its GWAS p-value and functional annotation information, i.e., fdr(Yi,Ai.) =

P (Zi = 0; Yi,Ai.) = 1 − P (Zi = 1; Yi,Ai.). When using the fdr control, SNPs with

fdr(Yi;Ai.) ≤ τ, where τ is the predetermined fdr control level, are mapped to be associ-

ated with the trait. When using the global false discovery rate control, FDR, we utilize the

‘direct posterior probability’ approach [24]. FDR is defined as the expected ratio of the

number of SNPs that are incorrectly predicted to be risk-associated SNPs (false positives)

compared to the number of SNPs that are predicted to be risk-associated SNPs (positives).

In this approach, SNPs are first sorted by their fdr in an ascending order, denoted as hi.

The threshold for fdr, κ, is then increased from 0 to 1 until

FDR =

M∑
i=1

hi 1{hi ≤ κ}
M∑
i=1

1{hi ≤ κ}
≤ τ,

where τ is the predetermined level of FDR (e.g., τ ≤ 0.05). Finally, SNPs with hi ≤ κ are

considered to be risk-associated SNPs. Second, relevant combinations of annotations are

inferred based on the combination of functional annotations selected by the CART model

upon convergence of the EM algorithm in Stage 2.
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3.4 Simulation Study Design

We conducted a simulation study to evaluate the performance of the proposed GPA-Tree

approach. Parameters considered in the simulation study included the number of SNPs

(M ), the number of functional annotations (K), the relevant combination of annotations,

the percentage of SNPs annotated for each functional annotation (u), and the percentage

of the annotated SNPs shared between functional annotations (v). For all the simulation

data, the number of SNPs was set to M = 100, 000, the number of annotations was set to

K = 75, and risk-associated SNPs were assumed to be characterized with the combinations

of functional annotations defined by L = (A1∩A2)∪(A3∩A4); all the remaining functional

annotations (Ak, k = 5, .., 75) were considered to be noise annotations. The percentage

of annotated SNPs (u) for annotations A1 − A4 was set to 2%, 6%, 10%, 14% and 20%,

while the percentage of overlap between the true combinations of functional annotations

(v) was set to 12.5%, 25%, 50%, 75% and 87.5%. For example, when M = 100, 000,

K = 75, u = 20% and v = 50%, the simulated data include 20, 000 SNPs that are

annotated for functional annotation A1 − A4. Among these 20, 000 SNPs, 10, 000 SNPs

are annotated for both A1 and A2 (A1 ∩ A2) and another 10, 000 SNPs are annotated for

both A3 and A4 (A3 ∩ A4) resulting in 20, 000 SNPs that are annotated altogether for the

defined combination L. For noise annotations A5−A75, approximately 20% of SNPs were

annotated by first generating the proportion of annotated SNPs from Unif [0.1, 0.3] and

then randomly setting this proportion of SNPs to one. The SNPs that satisfy the functional

annotation combinationLwere assumed to be risk-associated SNPs and their p-values were

simulated from Beta(α, 1) with α = 0.7. The SNPs that do not satisfy L were assumed

to be non-risk SNPs and their p-values were simulated from U [0, 1]. Note that here the

signal-to-noise ratio is affected by u and v. Figure 3.2 provides a graphical depiction of the

simulation setting.
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Figure 3.2: Simulation setting with K = 75 functional annotations (A1 − A75). The func-
tional annotations A1 − A4 are assumed to be related to risk-associated SNPs. For each
of A1 − A4, u% SNPs are assumed to be annotated. In addition, v% of the annotated
SNPs are assumed to be shared between A1 and A2, and also between A3 and A4. The
remaining functional annotations (A5−A75) are assumed to be unrelated to risk-associated
SNPs and approximately 20% of the SNPs are annotated at random. SNPs that satisfy
L = (A1 ∩A2) ∪ (A3 ∩A4) (blue SNPs) are assumed to be risk-associated SNPs and their
p-values were simulated from Beta(α, 1) with α = 0.7. Remaining SNPs were assumed
to be non-risk SNPs and their p-values were simulated from U [0, 1].
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3.5 Simulation Study Results

For each combination of the simulation parameters described in Section 3.4, we simulated

100 datasets and compared the performance of GPA-Tree with LPM [11] and LSMM [9].

The metrics for comparing the methods include (1) area under the curve (AUC), where the

curve was created by plotting the true positive rate (sensitivity) against the false positive

rate (1-specificity) to detect risk-associated SNPs when global FDR was controlled at var-

ious levels; (2) statistical power to identify risk-associated SNPs when global FDR was

controlled at the nominal level of 0.05; and (3) estimation accuracy for α parameter in the

Beta(α, 1) distribution used to generate the p-values of risk-associated group. For GPA-

Tree, we also examined the accuracy of detecting the correct functional annotation tree,

based on the proportion of simulation data for which all relevant functional annotations in

L (A1−A4) were identified simultaneously, and the average proportion of noise functional

annotations (A5−A75) among the functional annotations identified by GPA-Tree. Here we

especially investigate how the percentage of SNPs annotated inA1−A4 (u) and the overlap

between SNPs annotated in A1−A2 and A3−A4 (v) impact GPA-Tree’s ability to separate

functional annotations relevant to the risk-associated SNPs from noise annotations.

AUC: Figure 3.3A shows the AUC comparison between GPA-Tree, LPM, and

LSMM. For all the combinations of u and v, GPA-Tree showed the consistently

higher AUC relative to LSMM while performing comparably or better than LPM.

The performance of LPM and LSMM improved as signal-to-noise ratio increases

(i.e., as u and v increase), demonstrating performance closer to GPA-Tree.

Statistical power: Figure 3.3B compares the power to detect true risk-associated

SNPs when global FDR is controlled at 0.05 for the three methods. GPA-Tree

showed higher statistical power to detect true risk-associated SNPs relative to LPM

and LSMM for almost all combinations of u and v. The estimated power for GPA-
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Figure 3.3: Comparison of (A) AUC, (B) statistical power to detect true risk-associated
SNPs when global FDR is controlled at the nominal level of 0.05, (C) estimated α param-
eter, and (D) proportion of times only true functional annotations A1 − A4 are simultane-
ously identified by GPA-Tree (red line) and the average proportion of noise annotations
(A5 − A75) among the functional annotations identified by GPA-Tree (blue line). The re-
sults are presented for different proportions of SNPs annotated in A1 − A4 (u; x-axis) and
proportions of the overlap between SNPs annotated in A1 − A2 and A3 − A4 (v; panel).
M = 100, 000, K = 75, and α = 0.7 in Beta(α, 1) and results are summarized from 100
replications.
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Tree was relatively more variable for u = 2% and v = 12.5% but it still outperformed

LPM and LSMM. The statistical power of LPM increased as a function of u for all

v, and the statistical power of LSMM increased as u increases for higher v. How-

ever, both LPM and LSMM showed greater variability in statistical power compared

to GPA-Tree and on average they showed lower statistical power compared to GPA-

Tree.

Estimation of parameterα: Figure 3.3C shows the α parameter estimates obtained

from the three methods. GPA-Tree showed less variability in the α estimates com-

pared to LPM and LSMM. LPM was on average more accurate than GPA-Tree in

estimating α, however it still often underestimated α. LSMM showed decreased

variability in estimation of α as u increases, and estimated α well for higher u and

v levels. GPA-Tree generally overestimated α and this was most notable when u

and v are small. As u and v increase, α estimates from GPA-Tree became closer to

the true value. When u and v are large (u ≥ 10% and v ≥ 75%), GPA-Tree esti-

mated α accurately. We note that overestimation of α by GPA-Tree did not impact

the method’s ability to identify the true combinations of functional annotations or the

risk-associated SNPs, which are the main objectives of GPA-Tree.

Selection of relevant and noise annotations: The red line in Figure 3.3D shows the

proportion of times only functional annotations in the true combination L (A1 −A4)

were simultaneously identified by GPA-Tree while the blue line shows the propor-

tion of noise annotations (A5 − A75) that were also selected. Excluding instances

when signal in the data is really weak (u ≤ 6% and v ≤ 25%), GPA-Tree success-

fully identified all functional annotations included in the true combination L more

than 75% of the time. Moreover, GPA-Tree could identify all functional annota-

tions included in the true combination approximately 100% of the time as u or v get
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larger (Figure 3.3D, red line). These results demonstrate the potential of GPA-Tree

to correctly identify true annotations as long as signal in the data is not too weak. In

instances where GPA-Tree did not identify all functional annotations included in L,

it either identified one or more noise annotations in addition to the true annotations

(false positives), or failed to identify one or more annotations in L (false negative)

(Figure 3.3D, blue line).

3.6 Real Data Application: Systemic Lupus Erythematosus

Systemic lupus erythematosus (SLE) is an autoimmune trait caused due to the immune

system attacking its own tissue. Various environmental, hormonal, and genetic factors are

attributed to SLE [39]. It is also known to disproportionately affect women of childbearing

age and individuals of non-white racial groups [40]. SLE can impact a patient’s joints,

blood cells, and internal organs like heart, lungs and kidneys. According to the Lupus

Foundation (www.lupus.org) the symptoms for SLE include but is not limited to inflam-

mation, fatigue, pain or swelling in the joints, headaches, and chest pain when breathing

deeply. SLE can be challenging because its symptoms can not be permanently cured, but

only be minimized through therapeutics and lifestyle changes.

To understand the complex genetic architecture of SLE, multiple whole genome GWAS

studies have been proposed and implemented [41, 42]. We applied the GPA-Tree approach

to the SLE GWAS data [42] sourced from the GWAS Catalog [1] . Summary statistics were

originally obtained using the genotyped and imputed Immunochip, profiled for 18, 264 in-

dividuals (6, 748 cases and 11, 516 controls) of European ancestry. Altogether 336, 745

SNPs with measure of the observed statistical information associated with the allele fre-

quency estimate between 0.9 and 1 (i.e., 0.9 ≤ info ≤ 1) and the average certainty of

best-guess genotypes equaling 1 (i.e., certainty = 1) passed quality control criteria. Af-
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ter excluding SNPs located in the MHC region, 293, 976 SNPs were included in the final

analysis and integrated with functional annotation data from GenoSkyline (GS) [43] and

GenoSkylinePlus (GSP) [44]. By providing tissue- and cell-type specific functionality, GS

and GSP annotations can potentially add useful insights to understanding the etiology of

SLE. The Manhattan plot and p-value histogram for SLE GWAS data are presented in

Figure 3.4.

Figure 3.4: Characteristics of the SLE GWAS data. (A) Manhattan plot. Genome-wide
significance level (5 × 10−8) is indicated by the dashed red line. (B) GWAS association
p-value histogram.

3.6.1 Tissue-level Investigation using GenoSkyline (GS) Annotations

GS utilizes an unsupervised machine learning framework to integrate epigenetic annota-

tions to predict tissue-specific regions that are functionally relevant by assigning each SNP

a tissue-specific GS score. GS score, a value between 0 and 1, represents the posterior

probability that a SNP is functional given the tissue-specific functional annotation data.

The epigenetic functional annotation data utilized in the GS framework were selected from

the Roadmap Epigenomics Consortium [45] based on anatomy type and mark availability

where relevant samples from at least one of H3k4me1, H3k4me3, H3k36me3, H3k27me3,

H3k9me3, H3k27ac, H3k9ac, and DNase I Hypersensitivity are selected to form seven
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tissue cluster (Brain, Gastrointestinal/GI, Lung, Heart, Blood, Muscle and Epithelium Tis-

sues) to represent tissue-specific functionality. Using a GS cutoff of 0.5, approximately

22 percent of human genome was predicted to be functional for at least one of the seven

tissue-specific region and 1.7 percent was functional for all seven tissue-specific region.

Figure 3.5: Characteristics of 293, 976 SNPs when integrated with seven GenoSkyline (GS)
annotations. (A) Number of GS tissues in which SNPs are annotated. (B) Proportion of
SNPs that are annotated for each GS tissue type. (C) Overlap of SNPs annotated by seven
GS tissue types, calculated using log odds ratio.

We initially investigated the functional potential of all SNPs using seven tissue-specific

GS annotations. With a GS score cutoff of 0.5, 35.90% of SNPs were annotated in at least

one of the seven tissue types (Figure 3.5A) and the percentage of annotated SNPs ranged

from 8.66% for lung tissue to 19.14% for blood tissue (Figure 3.5B). We also measured

the overlap in SNPs annotated in different tissue types using log odds ratio (Figure 3.5C).

While the highest proportion of SNPs is annotated for blood tissue, SNPs annotated for

blood tissue overlap less with other tissue types. On the contrary, SNPs annotated for heart,

lung and muscle tissues overlap more with other tissue types. This is consistent with the

literature indicating that blood shows the lowest levels of eQTL sharing with other tissue

types while muscle and lung tissues show higher levels of eQTL sharing [43, 46].

Next, we applied GPA-Tree to the SLE GWAS and GS annotation data for associa-
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tion mapping and characterization of relevant functional annotations. GPA-Tree identi-

fied 8, 962 SLE-associated SNPs at the nominal global FDR level of 0.05. Among SLE-

associated SNPs, 46.40% were annotated for at least one of the seven GS tissue type (Figure

3.6A), and the percentage of annotated SNPs ranged from 9.89% for lung tissue to 30.22%

for blood tissue (Figure 3.6B). We also measured relative enrichment (RE), the ratio of

the proportion of SLE-associated SNPs annotated for a specific tissue type, relative to the

proportion of non-SLE-associated SNPs annotated for the same tissue type. RE was again

highest for the blood tissue with the value of 1.61 (Figure 3.6C). These results are consistent

with the dysregulation of blood immune cells that characterizes SLE and other autoimmune

diseases like Crohn’s disease, ulcerative colitis and rheumatoid arthritis [43].

Figure 3.6: Characteristics of the 8, 962 GPA-Tree identified SLE-associated SNPs when
integrated with seven GenoSkyline (GS) annotations. (A) Number of GS tissues in which
SLE-associated SNPs are annotated. (B) Proportion of SLE-associated SNPs annotated in
each GS tissue type. (C) Relative enrichment (RE) of GS tissue types for SLE-associated
SNPs. RE is defined as the ratio of the proportion of SLE-associated SNPs that are an-
notated for a specific GS tissue type, relative to the the proportion of non-SLE-associated
SNPs that are annotated for the same GS tissue type.
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Figure 3.7: Functional annotation tree identified by GPA-Tree approach when seven tissue-
level GenoSkyline (GS) annotations are considered. The tree is generated by pruning the
GPA-Tree model fit using cp = 2.5× 10−4. Each leaf (terminal node) in the tree shows the
total number of SNPs in the leaf and the mean local FDR for the SNPs in the leaf.

The original GPA-Tree model fit contained blood tissue at the root node and included

28 leaves. For easier interpretation, we used ShinyGPATree app to prune the tree so that

it includes 7 leaf nodes (Figure 3.7). We note that although it is occasionally possible to

obtain a large functional annotation tree that can be cumbersome to visualize and interpret,

the ShinyGPATree app can be utilized to manage such cases as it allows users to investigate

different layers of functional annotation trees in an interactive and dynamic manner. For

example, the annotation combination for SNPs in leaf 7 can be written as Blood ∩ !Heart

∩ Epithelium, i.e., leaf 7 includes SNPs that are annotated for blood and epithelium tissues

but not for heart tissue. The number of SNPs that are located in each leaf node, and the

combination of functional annotations that describe SNPs in each leaf node are displayed in

Figure 3.7. Further investigation of the GPA-Tree model fitting results showed that, among

the 8, 962 SLE-associated SNPs, 578 are concurrently annotated for blood and epithelium

tissues while not being annotated for heart tissue as represented in leaf 7; 609 are con-

currently annotated for both blood and heart tissues as represented in leaf 4; and 230 are

concurrently annotated for epithelium and GI tissues while not being annotated for blood

tissue as represented in leaf 2. Blood, epithelium, GI and heart also have the largest RE
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(Figure 3.6C). In general, our results are consistent with the literature indicating relevance

of blood tissue in SLE, and further add genomic-level support to the relevance of other

tissues concurrently with blood [47–50].

3.6.2 Cell-type-level Investigation using GenoSkylinePlus (GSP) An-

notations

Utilizing the same statistical framework as GS, GSP functional annotations add another

layer of information to SNPs in the form of epigenomic and transcriptomic annotations by

providing GSP scores for 127 annotation tracks generated by integrating RNA sequenc-

ing and DNA methylation data [44]. Chromatin and DNA methylation data used in GSP

were obtained from the Roadmap Epigenomics Project’s consolidated reference epige-

nomic database. Using a GSP score cutoff of 0.5, 3 percent of the human genome, on

average, were predicted to be functional across all 127 annotation tracks. Similarly, 26

percent of exonic region, 11 percent of intronic or UTR region, and 6 percent of intergenic

regions were predicted to be functional in more than 10 GSP annotation tracks. GSP also

identified H3K4me3 and K3K9ac as the most influential predictor of genomic functionality.

Based on the observed relationship between GS annotation for blood tissue and SLE, in

the second phase of the real data analysis, we considered 10 blood-related GSP functional

annotations. With a GSP score cutoff of 0.5, 25.29% were annotated in at least one of

the 10 GSP blood annotations (Figure 3.8A) and the highest enrichment was observed for

primary regulatory T cells (12.13%) (Figure 3.8B). The highest overlaps were observed

between SNPs annotated with primary memory helper T, effector memory T and CD8+

memory T cells (Figure 3.8C).

Next, we applied GPA-Tree to the SLE GWAS and GSP blood annotations. At the

nominal global FDR level of 0.05, GPA-Tree identified 8, 993 SLE-associated SNPs, where
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Figure 3.8: Characteristics of the 293, 976 SNPs when integrated with 10 GenoSkyline-
Plus (GSP) blood-related annotations. (A) Number of blood-related GSP annotation type
in which SNPs are annotated. (B) Proportion of SNPs annotated for each blood-related
GSP annotation type. (C) Overlap of SNPs annotated by 10 blood-related GSP cell types,
calculated using log odds ratio.

8, 723 among those overlapped with the SNPs prioritized in the first phase using GS an-

notations. Among the SLE-associated SNPs prioritized in the second phase, 37.54% were

annotated for at least one of the 10 GSP blood annotations (Figure 3.9A). The largest pro-

portion of SLE-associated SNPs was annotated for primary B cells (19.47%), followed by

primary regulatory T cells (18.45%) (Figure 3.9B). Primary B cells also showed the highest

RE with the value of 2.12 (Figure 3.9C). Since SLE is characterized by the production of

autoantibodies, the involvement of B cells, which produce antibodies, is consistent with

disease pathology.

The original GPA-Tree model with GSP blood annotations identified primary B cells at

the root node and included 172 leaves. Again, to improve interpretability and visualization,

we used ShinyGPATree to prune the tree so that it includes 10 leaf nodes (Figure 3.10). In

addition to primary B cells, other blood-related GSP functional annotations identified as

important included primary memory helper T, regulatory T, neutrophils, natural killer, ef-

fector memory T, and CD8+ memory T cells. Among the 8, 993 SLE-associated SNPs, 613

are concurrently annotated for primary B and helper memory T cells as represented in leaf
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Figure 3.9: Characteristics of the 8, 993 GPA-Tree identified SLE-associated SNPs when
integrated with 10 blood-related GSP annotations. (A) Number of blood-related GSP an-
notations in which SLE-associated SNPs are annotated. (B) Proportion of SLE-associated
SNPs annotated in each of the blood-related GSP annotation type. (C) Relative enrichment
(RE) of blood-related GSP cell type for SLE-associated SNPs. RE is defined as the ratio of
the proportion of SLE-associated SNPs that are annotated for a specific blood-related GSP
cell type, relative to the the proportion of non-SLE-associated SNPs that are annotated for
the same blood-related GSP cell type.

8; 68 are concurrently annotated for primary B and CD8+ memory T cells while not being

annotated for memory helper T cells as represented in leaf 10; and 108 are concurrently an-

notated for primary regulatory T, neutrophils and effector memory T cells while not being

annotated for primary B cells as represented in leaf 4. Overall, these results are consistent

with previous literature indicating connections between SLE and B cells, regulatory T cells,

neutrophils and CD8+ memory T cells [51–55].
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Figure 3.10: Functional annotation tree identified by GPA-Tree approach when 10 blood
related cell-type-level GenoSkylinePlus (GSP) annotations are considered. The tree is gen-
erated by pruning the GPA-Tree model fit using cp = 2.5×10−4. Each leaf (terminal node)
in the tree shows the total number of SNPs in the leaf and the mean local FDR for the SNPs
in the leaf.

These results also provide several new insights for future investigations. For instance,

among the SLE-associated SNPs, 43 SNPs located in the CLEC16A gene and 41 SNPs

located in the IKZF 3 gene are in leaf 8 and concurrently regulate primary B and memory

helper T cells; however, an additional 16 SNPs in the CLEC16A gene are in leaf 4 and

concurrently regulate primary regulatory T, neutrophils and effector memory T cells while

not regulating B cells. These results provide further evidence that multiple independent

SNPs in the same gene locus can have different effects on the levels of different immune

cell subtypes [56], and can be utilized to investigate a variant’s functional role in previously

defined associations between SLE, CLEC16A and IKZF3 [57–62], among others.

3.7 Conclusions

Several statistical methodologies that efficiently integrate GWAS summary statistics and

functional annotation data already exists. However, these methods are not able to identify

the combinations of functional annotations that act in unison to influence phenotypic traits.

We propose a novel statistical methodology, GPA-Tree, to integrate GWAS summary statis-

45



tics and functional annotation data to identify trait risk-associated SNPs, and to identify the

combinations of functional annotations to potentially explain the mechanisms through with

risk-associated SNPs are associated with traits.

GPA-Tree is a hierarchical model, and is implemented by combining an iterative proce-

dure (EM algorithm) and a decision tree algorithm (CART). GPA-Tree assumes that given

the latent status (null vs non-null) of the SNPs, their GWAS association p-values come from

a Beta-Uniform mixture distribution. Additionally, SNPs are assumed to be conditionally

independent given their functional annotation information.

We evaluate the performance of GPA-Tree using simulated data and compare its per-

formance with existing statistical approaches. GPA-Tree showed the higher AUC and sta-

tistical power to detect risk-associated SNPs compared to existing approaches. GPA-Tree

also successfully identified the true combinations of functional annotations in most cases,

facilitating understanding of potential biological mechanisms linking risk-associated SNPs

with complex traits. Overall, the ability of GPA-Tree to improve SNP prioritization and

attribute functional characteristics to risk-associated SNPs or gene locus can be powerful

in facilitating our understanding of genetic susceptibility factors related to complex traits.
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4. Specific Aim 2

For Aim 2, our goal is to extend Aim 1 to jointly analyze GWAS summary statistics for

multiple complex traits by leveraging pleiotropy and integrating functional annotation in-

formation within a unified framework. We implement an iterative procedure (EM algo-

rithm) and a multivariate decision tree algorithm to prioritize SNPs associated with the risk

of one or more traits. We also simultaneously identify combinations of functional anno-

tations that can explain the mechanisms through which the risk-associated SNPs influence

one or more traits.

4.1 Introduction

Increasing interest in identifying genomic regions associated with different traits has re-

sulted in a substantial increase in the number of reported GWAS studies in the GWAS cat-

alog (https://www.ebi.ac.uk/gwas/). Utilizing the vast number of available GWAS studies

to integrate multiple traits has also been useful in demonstrating pleiotropy, a phenomenon

in which a SNP is associated with more than one trait. For instance, the human leuko-

cyte antigen (HLA) region is known to be associated with several autoimmune diseases

like SLE, multiple sclerosis (MS), Crohn’s disease (CD), rheumatoid arthritis (RA), Type-I

diabetes (T1D), etc, illustrating the pleiotropic relationship between different autoimmune

traits [63, 64]. A joint multivariate analysis of seven autoimmune traits (celiac trait (CEL),

inflammatory bowel trait (IBD), which included CD and ulcerative colitis (UC), MS, pri-

mary biliary cirrhosis (PBC), RA, SLE and T1D) also identified 67 pleiotropic genes of

which 40 were novel [65]. Similar pleiotropic effects are also observed when jointly ana-

lyzing different psychiatric disorders [66] as well as other complex traits [67].
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Incorporating functional annotation data while leveraging pleiotropy can also improve

estimation of heritability of a trait. SNPs that are functionally relevant are more likely to

be associated with traits, and can potentially explain larger proportion of variation in the

occurrence of a trait attributable to genetic variation. For example, SNPs in the HLA re-

gion are more likely to be associated with autoimmune traits [42, 63, 64]. Additionally,

SNPs that lie in the blood, brain and liver tissues are significantly associated with autoim-

mune traits, psychiatric disorders, and lipid-related traits, respectively [44]. Identifying

pleiotropic SNPs that are related to multiple traits via some functional process can improve

our understanding of the mechanisms of the pleiotropic relationship between traits. In addi-

tion to improving our understanding of the biological processes that are shared by multiple

traits and pleiotropic SNPs, integrating GWAS summary statistics and functional annota-

tions for multiple traits improves statistical power to detect SNPs with weak or moderate

effect sizes. This means that SNPs that are not detected when traits are analyzed separately

are potentially detectable when analyzed jointly. For instance, using GPA, Chung et al.

showed that joint analysis of BPD and SCZ identified substantially more risk-associated

SNPs with the two traits compared to when the traits were separately analyzed [10]. Sim-

ilar results were observed for low-density lipoprotein (LDL) and total cholesterol (TC) by

Ming et al. in LPM [11].

As described in Sections 2.2 and 2.3, several Bayesian and mixture models that inte-

grate GWAS association statistics for multiple traits and functional annotation data exist.

Most of these methods prioritize SNPs associated with individual and multiple traits while

providing some metric to identify relevant functional annotations. However, they do not

provide a method for identifying interactions between functional annotations, a limitation

we propose to address with Specific Aim 2. Our goal for Aim 2 is two-fold; we want to

(1) prioritize SNPs that are associated with one or more traits by leveraging pleiotropy,

and (2) identify the combinations of functional annotations that are related to one or more
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trait risk-associated SNPs. To achieve these goals, we propose to use a hierarchical model

to extend GPA-Tree. Our method allows for integration of GWAS summary statistics for

multiple traits and functional annotation data within a unified framework. This extension

of GPA-Tree combines an EM algorithm with a multivariate decision tree algorithm. Uti-

lizing the EM algorithm allows for iterative adjustment of the parameter estimates in the

hierarchical model while gradually leading us towards the most appropriate tree structure

to identify the combinations of functional annotations that are related to one or more trait

risk-associated SNPs.

This chapter is structured as follows. In Section 4.2, we present background informa-

tion related to different multivariate decision tree approaches. In Section 4.3, we introduce

the Multi-GPA-Tree method for prioritizing one or more trait risk-associated SNPs, and

identifying combinations of functional annotations that are associated with one or more

trait risk-associated SNPs. In Sections 4.4 and 4.5, we describe our simulation settings and

simulation results, respectively. In section 4.6, we describe the results of the application of

our method to real data. Finally, in Section 4.7 we discuss the implications of using our

method, including its limitations and some direction for extending the work.

4.2 Background

Integrating GWAS summary statistics for multiple traits can induce some correlation struc-

ture in the multivariate outcome. For instance, the GWAS association p-values for a SNP

with two or more traits may be correlated. Ignoring such correlation can lead to inaccurate

parameter estimation and loss of statistical power. We can mitigate such problems by uti-

lizing methodologies that account for the covariance between multiple response variables.

Several methodologies have been proposed for developing decision and classification

trees while accounting for covariance structure between multiple response variables. These
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methodologies focus on response variables that are all binary/multiclass [68, 69], ordi-

nal [69–71], continuous [70] or a combination of binary, multiclass, ordinal and contin-

uous [70, 72, 73]. The first multivariate decision tree methodology, developed by Segal

in 1992, was implemented by modifying a regression tree algorithm to allow the split

function to accommodate multiple ordinal or continuous longitudinal response variables

[70]. Segal considered two types of split functions: one focusing on the mean struc-

ture where covariance is treated as a nuisance parameter, and another focusing primar-

ily on the covariance structure. Given T responses, the split function for evaluating any

split s at a node g into gL (left daughter node) and gR (right daughter node) is given by

φm(s, g) = SS(g)−SS(gL)−SS(gR), where SS(g) =
∑
i∈g

(yi−µ(g))′V (θ, g)−1(yi−µ(g)),

y′i = (yi1, yi2, ..., yiT ) are the T responses for the ith individual, V (θ, g) is the model co-

variance matrix of the responses for node g depending on parameters θ, and µ(g) is the

T × 1 vector of response means for individuals within a given node g. To ensure that φm is

positive, the covariance estimates of the parent node g are used to determine the covariance

for each candidate split such that V (θ, g) = V (θL, gL) = V (θR, gR). Similar to comparing

within node measures of loss, a function that assesses how closely the sample covariance

matrix conforms to the hypothesized covariance matrix is considered by using a likelihood

ratio test type statistic. The value of the likelihood ratio test for equality of covariance ma-

trices, maximized over all candidate splits, is used to split the data into subgroups that are

most distinct in terms of covariance structure.

A tree-based method for analyzing multiple binary response variables proposed by

Zhang [68] selects splits in the tree to ensure that there is homogeneity in the distribution

of the response class (yk) between the sub-nodes. The parametric implementation involves

using exponential families of distributions where the joint distribution of y depends on the

linear terms of the individual components in y and the sum of the second-order product of

the components of y only, and the generalized node entropy or node homogeneity is defined
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as the maximum of the log-likelihood of the used distribution such that a split is selected

at the point that maximizes the weighted node homogeneity [68]. Zhang and Yu extend the

tree-based method to analyze multivariate ordinal response, where each ordinal response

with K classes are transformed into K − 1 binary indicator variables used to develop the

trees and the covariance matrix is computed at each node to determine the split [71]. As

the number of response variables increases considerably when using this method, its imple-

mentation can be computationally burdensome and the results can be difficult to interpret.

Another variation of the approach by Segal [70] was proposed by Larsen and Speck-

man [74]. They developed the multivariate regression tree (MRT) methodology to evaluate

the relationship between the different response variables and predictors. They proposed

using the sample covariance matrix for the full data as the covariance matrix V , and used

Mahalanobis distance to measure node impurity. In the MRT setting, multiple response

variables are explained or can be predicted by explanatory variables. A second method for

MRT was proposed by De’Ath in 2002 [75] that extends the univariate regression tree by

replacing the univariate response by a multivariate response, and redefines the impurity of a

node as the sum of squares around the multivariate means, i.e., impurity =
∑
i,j

(xij − x̄j)2,

where i represents the ith subject and j represents the jth response. Similar to univariate

regression trees, MRT can be grown and pruned based on the impurity of a node, the rule

for splitting nodes and the prediction error for a new observation [26], where the primary

objective is to minimize the total impurity for observations in any nodes. MRTs are deemed

useful when interactions between predictor variables and nonlinear relationships between

response and predictor variables are prevalent. The MRT methodology by De’Ath can be

easily implemented for continuous response variables using the mvpart package in R. Yu

and Lambert explored two other ways of implementing MRT to multiple response vari-

ables [76]. The first approach is based on the assumption that when response variables are

smooth, they can be treated as a curve and are approximated by using a linear combination
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of basis functions (e.g., B-splines or natural splines), where the derived coefficients of the

linear combinations for each individual can be used as responses for a multivariate tree.

When constructing the MRT, prediction error for each response in the node is measured

using the Mahalanobis distance and a split that minimizes this distance is retained. In the

second approach, rather than reducing the dimension of the response variables by treating

it as a curve, the dimension of the response variables is reduced by using principal compo-

nent analysis and the first several principal component scores are used as response variables

when fitting the MRT. While both these approaches are easy to implement and can remove

correlated response variables, the results are not easy to interpret. Loss of information can

also occur when coefficients of linear combinations for splines or principal components,

rather than original response variables, are used.

An alternative method that utilizes the idea of residual sign vector was proposed by

Loh and Zheng in 2013 [69]. This method also incorporates the unbiased variable selection

feature attributable to GUIDE, an algorithm for univariate regression tree construction [77].

At each node, the sample mean vector for the response variables are calculated. A sign

vector is then defined such that the observed responses that are less than or equal to the

corresponding mean response are given a negative sign while observed responses that are

greater than the corresponding mean response are given a positive sign. A chi-squared test

for the difference between the two groups is performed. Selecting the interval or split point

for a continuous predictor variable can be difficult as it has to be user-defined. Although

this method lacks a predetermined algorithm to find the split point for continuous predictor

variables, its performance accuracy seems to be on par with mvpart, the MRT method by

De’Ath [75].

Many of the multivariate tree-based methods presented here are not easy to use due to

lack of available statistical software. In the implementation of our novel method for Aim 2,

we will combine the MRT methodology proposed by De’Ath [75] and EM algorithm within
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a unified framework. This MRT method is easy to implement using the mvpart package

in R and circumvents the problem related to bias in variable selection towards predictor

variables with the maximum number of splitting option as all predictor variables used in

our data application are binary, making the issue of variable selection bias irrelevant. Ad-

ditionally, interpretation of the MRT is made easier as the R function mvpart can identify

the response variables that most strongly influence the splits of the multivariate tree. The

function provides tree biplots to represent response group means, and also identifies re-

sponse variables that best characterize the predicted groups. MRT is a powerful tool for

exploration, and can be useful in identifying the combination of functional annotations that

are related to multiple response variables.

4.3 Multi-GPA-Tree Method

4.3.1 Model

Let YM×D be a matrix of genotype-trait association p-values for i = 1, 2, · · · ,M SNPs

and d = 1, 2, · · · , D traits, where Yid denotes the p-value for the association of the ith SNP

with the dth trait:

Y = (Y.1, . . . ,Y.D) =


y11 . . . y1D
... . . . ...

yM1 . . . yMD


M×D

.

We also assume K binary annotations (A) for each SNP:

A = (A.1, . . . ,A.K) =


a11 . . . a1K

... . . . ...

aM1 . . . aMK


M×K

, where
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aik =


0, if ith SNP is not annotated in the kth annotation

1, if ith SNP is annotated in the kth annotation

To improve the power to identify risk-associated SNPs for one or more traits, we integrate

GWAS association p-values forD traits (Y) with functional annotations data (A). We char-

acterize the effect of functional annotations in modeling the relationship between GWAS

traits and SNPs by defining a matrix ZM×2D ∈ {0, 1} of latent binary variables where Zi is

a vector of length 2D and indicates whether the ith SNP is null or non-null for the D traits.

We present the model for the case of two GWAS traits (D = 2) to simplify notations.

Let Y ∈ RM×2 be the matrix of GWAS association p-values for two traits where Yi1 and

Yi2 are the p-values for the association of the ith SNP with traits 1 and 2, respectively. We

define the latent binary vector Zi = {Zi00, Zi10, Zi01, Zi11} for the ith SNP, where Zi00 = 1

indicates the ith SNP is null for both traits, Zi10 = 1 indicates the ith SNP is non-null for

trait 1 and null for trait 2, Zi01 = 1 indicates the ith SNP is null for trait 1 and non-null

for trait 2, and Zi11 = 1 indicates the ith SNP is non-null for both traits. We assume that

a SNP can only be in one of the four states such that
∑

l∈{00,10,01,11}
Zil = 1. The densities

for SNPs in the null and non-null groups for both traits are assumed to come from U [0, 1]

and Beta(αd, 1) distributions, where 0 < αd < 1 and d = 1, 2, as proposed by Chung

and colleagues [10]. The GWAS association p-value density distribution for SNPs in the

different groups are defined as shown below:

(Yi1|Zi00 = 1) ∼ U [0, 1] (Yi2|Zi00 = 1) ∼ U [0, 1]

(Yi1|Zi10 = 1) ∼ Beta(α1, 1) (Yi2|Zi10 = 1) ∼ U [0, 1]

(Yi1|Zi01 = 1) ∼ U [0, 1] (Yi2|Zi01 = 1) ∼ Beta(α2, 1)

(Yi1|Zi11 = 1) ∼ Beta(α1, 1) (Yi2|Zi11 = 1) ∼ Beta(α2, 1),
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where 0 < α1, α2 < 1. We integrate functional annotation data A with the GWAS summary

statistics data Y by defining a function f that is a combination of functional annotations A

and relating it to the multivariate expectation of latent Z as given in Equation (4.1).

P (Zil = 1; ai1, . . . , aiK) = f(ai1, . . . , aiK),where l ∈ {00, 10, 01, 11} (4.1)

For notational convenience we denote P (Zil = 1; ai1, . . . , aiK) as πil, l ∈ {00, 10, 01, 11},

where πi00 is the prior probability that the ith SNP is null for both traits, πi10 is the prior

probability that the ith SNP is non-null for trait 1 and null for trait 2, πi01 is the prior

probability that the ith SNP is null for trait 1 and non-null for trait 2, and πi11 is the prior

probability that the ith SNP is non-null for both traits. The flowchart in Fig 4.1 provides a

complete graphical representation for these data.

Figure 4.1: Association framework that links the GWAS association p-values for D traits
(Y), the association status for the D trait as given by the latent variable (Z) and annotation
data (A).

Let θ = (α1, α2). Assuming that the SNPs are independent, we can write the joint
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distribution of the observed data Pr(Y,A) as:

Pr(Y,A) =
M∏
i=1

[ ∑
l∈{00,10,01,11}

P (Zil = 1)P (Yi1, Yi2|Zil = 1)

]
=

M∏
i=1

[ ∑
l∈{00,10,01,11}

πil P (Yi1, Yi2|Zil = 1)

]

The ‘incomplete’ data log-likelihood is written as:

`IC =
M∑
i=1

log

[ ∑
l∈{00,10,01,11}

πil P (Yi1, Yi2|Zil = 1)

]

We can write the ‘complete’ data likelihood as:

LC =
M∏
i=1

∏
l∈{00,10,01,11}

[
πil P (Yi1, Yi2|Zil = 1)

]Zil

Similarly, the ‘complete’ data log-likelihood can be written as:

`C =
M∑
i=1

∑
l∈{00,10,01,11}

Zil log

[
πil P (Yi1, Yi2|Zil = 1)

]

4.3.2 Algorithm

Given the approach described in Section 4.3.1, we implemented parameter estimation using

an EM algorithm. The function f in Equation (4.1) is estimated by using the MRT method

by De’Ath. This method allows to identify combinations of functional annotations related

to one or more trait risk-associated SNPs. To improve stability, we employed a two-stage

approach for parameter estimation. Specifically, in Stage 1, we first estimate the parameters

α1 and α2 without identifying a combination of functional annotations. Then, in Stage 2,

we identify key combinations of functional annotations (f(A)) while the parameters α1 and

α2 are kept fixed as the value obtained in Stage 1. We illustrate more detailed calculation
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steps below.

Stage 1:

In Stage 1, we initialize α(0)
d = 0.1, d = 1, 2 and π(0)

il = 1
2D

, D = 2 (the number of traits).

In the tth iteration of the E-step, define Z(t)
il , l ∈ {00, 10, 01, 11} for the ith SNP as:

E− step : z
(t)
il = P (Zil = 1|Y,A; θ(t−1))

=
π
(t−1)
il P (Yi1,Yi2|Zil=1; θ(t−1))∑

l′∈{00,10,01,11}
π
(t−1)

il′ P (Yi1,Yi2|Zil′=1; θ(t−1))

(4.2)

In the tth iteration of the M-step, πi., α1 and α2 are updated as:

M− step : Fit a multivariate linear regression model as

Z
(t)
i. = β

(t)
0 + β

(t)
1 ai1 + · · ·+ β

(t)
K aiK + εi

(t)

Update πi.as the predicted value from the multivariate linear regression model.

Update α(t)
1 = −

M∑
i=1

(z
(t)
i10 + z

(t)
i11)

M∑
i=1

(z
(t)
i10 + z

(t)
i11)(logYi1)

and α(t)
2 = −

M∑
i=1

(z
(t)
i01 + z

(t)
i11)

M∑
i=1

(z
(t)
i01 + z

(t)
i11)(logYi2)

where β(t)
k , k = 0, · · · , K are the regression coefficients and ε(t)i is the error term. The E

and M steps are repeated until the incomplete log-likelihood, α1 and α2 estimates converge.

Then, α1, α2 and πi. estimated in this stage are used to fix α1, α2 and initialize πi., respec-

tively, in Stage 2.

Stage 2:

In this stage, we implement another EM algorithm employing the MRT algorithm by

De’Ath (mvpart [75]), which allows to identify union, intersection, and complement rela-

tionships between functional annotations in estimating πi..

In the tth iteration of the E-step, define Z(t)
il , l ∈ {00, 10, 01, 11} for the ith SNP as

shown in Equation 4.2, except α1 and α2 are fixed as α̂1 and α̂2, which are the final esti-

mates of α1 and α2 obtained from Stage 1.
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E− step : Define Z(t)
il , l ∈ {00, 10, 01, 11} as in Equation 4.2, except α1 and α2 are

fixed as α̂1 and α̂2, the final estimates of α1 and α2 from Stage 1.

In the tth iteration of the M-step, πi. is updated as:

M− step : Fit a MRT model as Zi.(t) = f (t)(ai1, · · · , aiK) + εi
(t)

Update πi.(t) as the predicted values from the MRT model,
(4.3)

where εi is the error term. In the M-step, the complexity parameter (cp) is the key tuning

parameter and defined as the minimum improvement that is required at each node of the

tree. Specifically, in the MRT model, the largest possible tree (i.e., a full-sized tree) is first

constructed and then pruned using cp. The pruned tree structure identified by the MRT

model upon convergence of the EM algorithm (Equation (4.3)) is used as f in Equation

(4.1). This approach allows for the construction of the accurate yet interpretable MRT

that can explain relationships between functional annotations, and risk-associated SNPs

for one or more traits. The E and M steps are repeated until the incomplete log-likelihood

converges.

We note that unlike the standard EM algorithm, the incomplete log-likelihood in Stage

2 is not guaranteed to be monotonically increasing. Therefore, we implement Stage 2 as

a generalized EM algorithm by retaining only the iterations in which the incomplete log-

likelihood increases compared to the previous iteration.
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4.3.3 Prioritization of Risk-associated SNPs for One or More Traits

and Identification of Relevant Combinations of Functional An-

notations

Once the parameters are estimated as described in Section 4.3.2, we can prioritize risk

SNPs that are associated with one or more traits using local false discovery rate or fdr.

For marginal associations with a specific trait, we can define fdrd, d = 1, 2 as the marginal

posterior probability that the ith SNP belongs to the null group for the specific trait given its

GWAS p-values for all traits and functional annotation information. For joint associations

between traits, we can define fdr1,2 as the joint posterior probability that the ith SNP

belongs to the null group for the traits given its GWAS p-values for all traits and functional

annotation information.

fdr1(Yi.,Ai.) = P (Zi00 + Zi01 = 1|Yi.,Ai., θ̂) = P (Yi1,Yi2,Zi00+Zi01=1; θ̂)

P (Yi1,Yi2; θ̂)
,

fdr2(Yi.,Ai.) = P (Zi00 + Zi10 = 1|Yi.,Ai., θ̂) = P (Yi1,Yi2,Zi00+Zi10=1; θ̂)

P (Yi1,Yi2; θ̂)
,

fdr1,2(Yi.,Ai.) = P (Zi00 + Zi10 + Zi01 = 1|Yi.,Ai.) = P (Yi1,Yi2,Zi00+Zi10+Zi01=1; θ̂)

P (Yi1,Yi2; θ̂)
,

where

P (Yi1, Yi2; θ̂) =
∑

l∈{00,10,01,11}
π̂il P (Yi1, Yi2|Zil,Ai.; θ̂),

P (Yi1, Yi2, Zi00 + Zi01 = 1; θ̂) =
∑

l∈{00,01}
π̂il P (Yi1, Yi2|Zil,Ai.; θ̂),

P (Yi1, Yi2, Zi00 + Zi10 = 1; θ̂) =
∑

l∈{00,10}
π̂il P (Yi1, Yi2|Zil,Ai.; θ̂),

P (Yi1, Yi2, Zi00 + Zi10 + Zi01 = 1; θ̂) =
∑

l∈{00,10,01}
π̂il P (Yi1, Yi2|Zil,Ai.; θ̂),

We can perform association mapping using fdr control. In this approach, SNPs with

fdr(Yi.,Ai.) ≤ τ, where τ is the predetermined fdr control level, are mapped to be asso-

ciated with the trait. Finally, relevant combinations of functional annotations are inferred
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based on the combination of functional annotations selected by the MRT model upon con-

vergence of the EM algorithm.

4.4 Simulation Study Design

We conducted a simulation study to evaluate the performance of the proposed Multi-GPA-

Tree approach as depicted in Figure 4.2. For all the simulation data, the number of SNPs

was set to M = 10, 000, the number of annotations was set to K = 15, SNPs that are

marginally associated with the first trait (P1) were assumed to be characterized with the

combinations of functional annotations defined by L1 = A1∩A2, SNPs that are marginally

associated with the second trait (P2) were assumed to be characterized with the combina-

tions of functional annotations defined by L2 = A3 ∩ A4, SNPs that are jointly associated

with traits P1 and P2 were assumed to be characterized with the combinations of func-

tional annotations defined by L3 = A5 ∩ A6, and all the remaining functional annotations

(Ak, k = 7, . . . , 15) were considered to be noise annotations. The percentage of annotated

SNPs (u) for annotations A1−A6 was set to 5%, 10%, 15% and 20%, and the percentage of

overlap between the true combinations of functional annotations (v) was set to 50% . For

noise annotationsA7−A15, approximately 20% of SNPs were annotated by first generating

the proportion of annotated SNPs from Unif [0.1, 0.3] and then randomly setting this pro-

portion of SNPs to one. The SNPs that satisfy the functional annotation combination L1 or

L3 were assumed to be risk-associated SNPs for trait P1 and their p-values were simulated

from Beta(α1, 1) with α1 = 0.4. Similarly, the SNPs that satisfy the functional annota-

tion combination L2 or L3 were assumed to be risk-associated SNPs for trait P2 and their

p-values were simulated from Beta(α2, 1) with α2 = 0.4. The SNPs that do not satisfy

the required condition for association with P1 or P2 were assumed to be non-risk SNPs

and their p-values were simulated from U [0, 1]. Note that here the signal-to-noise ratio is
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Figure 4.2: Simulation setting with K = 15 functional annotations (A1 − A15). Anno-
tations A1 − A2 are assumed to be related to SNPs marginally associated with trait P1,
annotations A3−A4 are assumed to be related to SNPs marginally associated with trait P2,
and annotations A5 − A6 are assumed to be related to SNPs jointly associated with both
traits P1 and P2. For each of A1−A6, u% SNPs are assumed to be annotated and v = 50%
of the annotated SNPs are assumed to be shared between A1 and A2, A3 and A4, and A5

and A6. The remaining functional annotations (A7 − A15) are assumed to be unrelated to
risk-associated SNPs and approximately 20% of the SNPs are annotated at random.

affected by u.

4.5 Simulation Study Results

For each combination of the simulation parameters defined above, we simulated 20 datasets

and compared the performance of Multi-GPA-Tree with LPM [11]. For marginal and joint

associations, the metrics for comparing the methods include (1) area under the curve (AUC)
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where the curve was created by plotting the true positive rate (sensitivity) against the false

positive rate (1-specificity) to detect one or more trait risk-associated SNPs when fdr is

controlled at various nominal levels, and (2) statistical power to identify marginal and joint

risk-associated SNPs when fdr is controlled at the nominal fdr level of 0.05. We also com-

pared the estimation accuracy for αd parameters in the Beta(αd, 1), d = 1, 2 distribution

for the p-values of risk-associated groups for traits P1 and P2. Lastly, for Multi-GPA-Tree,

we examined the accuracy of detecting the correct functional annotation tree based on (1)

the proportion of simulation data for which all relevant functional annotations in L1, L2

and L3, i.e, annotations A1 − A6, were identified simultaneously; (2) the average propor-

tion of true functional annotations (A1 − A6) among the functional annotations identified

by multi-GPA-Tree; and (3) the average proportion of noise annotations (A7−A15) among

all annotations identified by Multi-GPA-Tree. Here we especially investigate how the per-

centage of SNPs annotated in A1 − A6 (u) impact Multi-GPA-Tree’s ability to separate

relevant functional annotations from noise annotations for one or more trait risk-associated

SNPs when the overlap between SNPs annotated in A1 − A2, A3 − A4 and A5 − A6 (v) is

set at 50%.

4.5.1 Marginal Association Results

AUC: Figure 4.3 A and B show the AUC comparison between Multi-GPA-Tree and

LPM for traits P1 and P2, respectively. For all u, Multi-GPA-Tree showed consis-

tently higher AUC relative to LPM to detect SNPs that are marginally associated with

both traits P1 and P2. The performance of LPM improved as signal-to-noise ratio in-

creases (i.e., as u increases), demonstrating performance closer to Multi-GPA-Tree.

Statistical power: Figures 4.4 A and B compare the statistical power to detect

true risk-associated SNPs when fdr is controlled at the nominal level of 0.05 for
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Figure 4.3: Comparison of AUC between Multi-GPA-Tree and LPM for traits (A) P1, and
(B) P2, respectively. The results are presented for different proportions of SNPs annotated
in A1−A6 (u; x-axis) when the proportion of overlap between SNPs annotated in A1−A2,
A3 − A4 and A5 − A6 (v) equals 50%. M = 10, 000, K = 15, α1 = α2 = 0.4 in
Beta(αd, 1), d = 1, 2. Results are summarized from 100 replications. Outliers are not
displayed in the plots.
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Figure 4.4: Comparison of statistical power between Multi-GPA-Tree and LPM to detect
true risk-associated SNPs when fdr is controlled at the nominal level of 0.05 for traits (A)
P1, and (B) P2, respectively . The results are presented for different proportions of SNPs
annotated in A1 − A6 (u; x-axis) when the proportion of overlap between SNPs annotated
in A1 −A2, A3 −A4 and A5 −A6 (v) equals 50%. M = 10, 000, K = 15, α1 = α2 = 0.4
in Beta(αd, 1), d = 1, 2. Results are summarized from 100 replications. Outliers are not
displayed the plots.

traits P1 and P2, respectively, using Multi-GPA-Tree and LPM. Compared to LPM,

Multi-GPA-Tree showed relatively higher statistical power and lower variability in

its estimates for almost all u when v = 50%. The performance of LPM improved as

signal-to-noise ratio increased (i.e., as u increased), demonstrating statistical power

closer to Multi-GPA-Tree.

Predicted fdr control: Figure 4.5 A and B compare the predicted fdr when true

fdr is controlled at the nominal level of 0.05 for traits P1 and P2, respectively, using

Multi-GPA-Tree and LPM. For both Multi-GPA-Tree and LPM, the predicted fdr is
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Figure 4.5: Comparison of predicted fdr when fdr is controlled at the nominal level of
0.05 between Multi-GPA-Tree and LPM for traits (A) P1, and (B) P2, respectively. The
results are presented for different proportions of SNPs annotated in A1 − A6 (u; x-axis)
when the proportion of overlap between SNPs annotated in A1−A2, A3−A4 and A5−A6

(v) equals 50%. M = 10, 000, K = 15, α1 = α2 = 0.4 in Beta(αd, 1), d = 1, 2. Results
are summarized from 100 replications. Outliers are not displayed in the plots.

controlled under the nominal level.

4.5.2 Joint Association Results

AUC: Figure 4.6 shows the AUC comparison between Multi-GPA-Tree and LPM for

identification of SNPs that are jointly associated with traits P1 and P2. Similar to the

marginal case, Multi-GPA-Tree showed relatively higher AUC and lower variability

in AUC compared to LPM for all u when v = 50%. AUC for both Multi-GPA-Tree

and LPM improved as signal-to-noise ratio increased (i.e., as u increased). When
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Figure 4.6: Comparison of AUC between Multi-GPA-Tree and LPM to detect SNPs that are
jointly associated with traits P1 andP2. The results are presented for different proportions
of SNPs annotated in A1 − A6 (u; x-axis) when the proportion of overlap between SNPs
annotated in A1 − A2, A3 − A4 and A5 − A6 (v) equals 50%. M = 10, 000, K = 15,
α1 = α2 = 0.4 in Beta(αd, 1), d = 1, 2. Results are summarized from 100 replications.
Outliers are not displayed in the plots.

signal in the data is highest (i.e., when u = 20%) LPM demonstrated performance

closer to Multi-GPA-Tree.

Statistical power: Figure 4.7 compares the statistical power to detect risk SNPs
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Figure 4.7: Comparison of statistical power between Multi-GPA-Tree and LPM to detect
SNPs that are jointly associated with traits P1 and P2 when fdr is controlled at the nominal
level of 0.05. The results are presented for different proportions of SNPs annotated in
A1 − A6 (u; x-axis) when the proportion of overlap between SNPs annotated in A1 − A2,
A3 − A4 and A5 − A6 (v) equals 50%. M = 10, 000, K = 15, α1 = α2 = 0.4 in
Beta(αd, 1), d = 1, 2. Results are summarized from 100 replications. Outliers are not
displayed in the plots.

that are jointly associated with traits P1 and P2 when fdr is controlled at the nomi-

nal level of 0.05, using Multi-GPA-Tree and LPM. Compared to LPM, Multi-GPA-
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Figure 4.8: Comparison of predicted fdr between Multi-GPA-Tree and LPM when fdr is
controlled at the nominal level of 0.05 to detect SNPs that are jointly associated with traits
P1 and P2. The results are presented for different proportions of SNPs annotated inA1−A6

(u; x-axis) when the proportion of overlap between SNPs annotated inA1−A2,A3−A4 and
A5 − A6 (v) equals 50%. M = 10, 000, K = 15, α1 = α2 = 0.4 in Beta(αd, 1), d = 1, 2.
Results are summarized from 100 replications. Outliers are not displayed in the plots.

Tree showed higher statistical power and lower variability in power for all u when

v = 50%. The performance of LPM improved in most cases as signal-to-noise ratio

increased (i.e., as u increased).
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Figure 4.9: Comparison of estimated (A) α1 and (B) α2 parameters between Multi-GPA-
Tree and LPM for traits P1 and P2, respectively. The results are presented for different
proportions of SNPs annotated in A1 − A6 (u; x-axis) when the proportion of overlap
between SNPs annotated in A1−A2, A3−A4 and A5−A6 (v) equals 50%. M = 10, 000,
K = 15, α1 = α2 = 0.4 in Beta(αd, 1), d = 1, 2. Results are summarized from 100
replications. Outliers are not displayed in the plots.

Predicted fdr control: Figure 4.8 compares the predicted fdr when true fdr is

controlled at the nominal level of 0.05 to detect SNPs that are jointly associated with

traits P1 and P2, using Multi-GPA-Tree and LPM. For both Multi-GPA-Tree and

LPM, the predicted fdr is controlled under the nominal level when performing joint

association analysis.

4.5.3 Other Results

Estimation of α parameters: Figure 4.9 A and B show the α1 and α2 parameter es-

timates obtained using Multi-GPA-Tree and LPM, respectively. LPM was on average
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Figure 4.10: Evaluation of accuracy of detecting the correct functional annotation tree
based on (A) the proportion of simulation data for which all relevant functional annota-
tions in L1, L2 and L3, i.e, annotations A1 − A6 were identified simultaneously; (B) the
average proportion of true functional annotations (A1 − A6) among the functional anno-
tations identified by multi-GPA-Tree; and (C) the average proportion of noise annotations
(A7 −A15) among all annotations identified by Multi-GPA-Tree. The results are presented
for different proportions of SNPs annotated in A1 − A6 (u; x-axis) when the proportion
of overlap between SNPs annotated in A1 − A2, A3 − A4 and A5 − A6 (v) equals 50%.
M = 10, 000, K = 15, α1 = α2 = 0.4 in Beta(αd, 1), d = 1, 2. Results are summarized
from 100 replications. 70



more accurate than Multi-GPA-Tree in estimating α1 and α2. Multi-GPA-Tree gener-

ally overestimated both α parameters and this was most notable when u is small. As

u increases, the α1 and α2 estimates from Multi-GPA-Tree became closer to the true

value. We note that overestimation of the α parameters by Multi-GPA-Tree did not

impact the method’s ability to identify the true combinations of functional annota-

tions or the risk-associated SNPs, which are the main objectives of Multi-GPA-Tree.

Selection of relevant and noise annotations: Figure 4.10A shows the proportion

of times only functional annotations in the true combinations L1, L2 and L3 (A1 −

A6) were simultaneously identified by Multi-GPA-Tree and Figure 4.10B shows the

average proportion of true functional annotations (A1 − A6) among the functional

annotations identified by multi-GPA-Tree. Multi-GPA-Tree successfully identified

all functional annotations included in the true combinations L1, L2 and L3 (A1−A6)

for all u when v = 50% (Figure 4.10A-B). Multi-GPA-Tree also never identified any

noise annotations (A7−A15) (Figure 4.10C). These results demonstrate the potential

of Multi-GPA-Tree to conservatively identify true annotations.

4.6 Real Data Application

We first obtained a combined dataset including the SLE [42], RA [78], and CD and UC [79]

GWAS. Summary statistics in the SLE and RA GWAS was profiled for 18, 264 (6, 748 cases

and 11, 516 controls) and 58, 284 (14, 361 cases and 43, 923 controls) individuals of Euro-

pean ancestry, respectively. Summary statistics in the CD and UC GWAS was profiled

from 8, 467 (4, 686 cases and 3, 781 controls) individuals of European ancestry. Follow-

ing quality control and exclusion of SNPs in the MHC region, approximately 375, 269

SNPs were utilized in the final analysis and integrated with functional annotation data from

GenoSkyline (GS) [43] and GenoSkylinePlus (GSP) [44]. The Manhattan plots and p-value
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histogram plots for the four GWAS data are presented in Figure 4.11 and Figure 4.12, re-

spectively.

Figure 4.11: Manhattan plot for the four GWAS. Genome-wide significance level
(−log10(5× 10−8)) is indicated by the red line.
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Figure 4.12: GWAS association p-value histograms for the four GWAS.

We initially investigated the functional potential of the 375, 269 SNPs using seven

tissue-specific GS annotations. With a GS score cutoff of 0.5, 24.15% of SNPs were

annotated in at least one of the seven tissue types (Figure 4.13 A) and the percentage of

annotated SNPs ranged from 5.72% for lung tissue to 10.44% for GI tissue (Figure 4.13 B).

We also measured the overlap in SNPs annotated in different tissue types using log odds

ratio (Figure 4.13 C). SNPs annotated for blood tissue overlap less with other tissue types.
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On the contrary, SNPs annotated for GI, heart, lung and muscle tissues overlap more with

other tissue types. This is consistent with the literature indicating that blood shows the

lowest levels of eQTL sharing with other tissue types while muscle and lung tissues show

higher levels of eQTL sharing [43, 46].

Figure 4.13: Characteristics of 375, 269 SNPs when integrated with seven GenoSkyline
(GS) annotations. (A) Number of GS tissues in which SNPs are annotated. (B) Proportion
of SNPs that are annotated for each GS tissue type. (C) Overlap of SNPs annotated by
seven GS tissue types, calculated using log odds ratio.

Next, we investigated the functional potential of the 375, 269 SNPs using 10 blood-

related cell-type specific GSP annotations. With a GSP score cutoff of 0.5, 15.4% of SNPs

were annotated in at least one of the 10 blood related cell-type specific annotations (Figure

4.14 A) and the percentage of annotated SNPs ranged from 3.43% for primary T CD8+

memory cells to 6.98% for Primary T regulatory cells (Figure 4.14 B). We also measured

the overlap in SNPs annotated in the 10 blood related cell-type specific annotations using

log odds ratio (Figure 4.14 C). SNPs annotated for the different types of T cells (Primary

helper memory, helper naive, effector/memory enriched, regulatory, CD8+ naive and CD8+

memory T cells) overlap more with each other.
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Figure 4.14: Characteristics of 375, 269 SNPs when integrated with 10 blood related
GenoSkylinePlus (GSP) annotations. (A) Number of GSP tissues in which SNPs are anno-
tated. (B) Proportion of SNPs that are annotated for each blood related GSP annotations.
(C) Overlap of SNPs annotated by 10 blood related GPS annotations, calculated using log
odds ratio.

4.6.1 Integration of Systemic Lupus Erythematosus (SLE) and Rheuma-

toid Arthritis (RA) GWAS

Tissue-level Investigation using GenoSkyline (GS) annotations

Figure 4.15: Functional annotation tree identified by Multi-GPA-Tree approach when seven
tissue-level GenoSkyline (GS) annotations are integrated with SLE and RA GWAS. Each
leaf (terminal node) in the tree shows the total number of SNPs in the leaf and the mean
local FDR for SLE (P1) and RA (P2) for the SNPs in the leaf.

We applied the Multi-GPA-Tree approach to the SLE and RA GWAS and tissue-specific

GS annotations to identify SNPs that are marginally and jointly associated with SLE and
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RA, and to characterize the functional annotations relevant to single and multiple trait risk-

associated SNPs. At the nominal local FDR level of 0.05, Multi-GPA-Tree identified 519

SNPs that are marginally associated with SLE, 388 SNPs that are marginally associated

with RA, and 202 SNPs that are jointly associated with both SLE and RA.

In the joint analysis of SLE and RA with tissue-specific GS annotations, the original

Multi-GPA-Tree model fit identified blood tissue at the root node and included 2 leaves.

Further investigation of the Multi-GPA-Tree model results showed that, among the 519

SNPs that are marginally associated with SLE, 180 are annotated for blood tissue, among

the 388 SNPs that are marginally associated with RA, 129 are annotated for blood tissue,

and among the 202 SNPs that are jointly associated with both SLE and RA, 94 are annotated

for blood tissue.

Cell-type-level Investigation using GenoSkylinePlus (GSP) annotations

Figure 4.16: Functional annotation tree identified by Multi-GPA-Tree approach when 10
blood related GenoSkylinePlus (GSP) annotations are integrated with SLE and RA GWAS.
Each leaf (terminal node) in the tree shows the total number of SNPs in the leaf and the
mean local FDR for SLE (P1) and RA (P2) for the SNPs in the leaf.

Based on the observed relationship between GS annotation for blood tissue and SLE and

RA, in the second phase of the analysis, we applied the Multi-GPA-Tree approach to the

SLE and RA GWAS and 10 blood related cell-specific GSP annotations to identify SNPs
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that are marginally and jointly associated with SLE and RA, and to characterize the blood

related GSP functional annotations relevant to single and multiple trait risk-associated

SNPs. At the nominal local FDR level of 0.05, Multi-GPA-Tree identified 485 SNPs that

are marginally associated with SLE, 381 SNPs that are marginally associated with RA, 177

SNPs that are jointly associated with SLE and RA.

In the joint analysis of SLE and RA with 10 blood related cell-type specific GSP annota-

tions, the original Multi-GPA-Tree model fit identified primary B cells at the root node and

included 2 leaves. Further investigation model results showed that, among the 485 SNPs

that are marginally associated with SLE, 90 are annotated for primary B cells, among the

381 SNPs that are marginally associated with RA, 75 are annotated for primary B cells, and

among the 177 SNPs that are jointly associated with both SLE and RA, 42 are annotated

for primary B cells.
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4.6.2 Integration of Ulcerative Colitis (UC) and Crohn’s Disease (CD)

GWAS

Tissue-level Investigation using GenoSkyline (GS) annotations

Figure 4.17: Functional annotation tree identified by Multi-GPA-Tree approach when seven
tissue-level GenoSkyline (GS) annotations are integrated with UC and CD GWAS. Each
leaf (terminal node) in the tree shows the total number of SNPs in the leaf and the mean
local FDR for UC (P1) and CD (P2) for the SNPs in the leaf.

We also applied the Multi-GPA-Tree approach to the UC and CD GWAS and tissue-specific

GS annotations to identify SNPs that are marginally and jointly associated with UC and CD,

and to characterize the functional annotations relevant to one or more trait risk-associated

SNPs. At the nominal local FDR level of 0.05, Multi-GPA-Tree identified 2, 485 SNPs that

are marginally associated with UC, 2, 304 SNPs that are marginally associated with CD,

and 2, 304 SNPs that are jointly associated with both UC and CD.

In the joint analysis of UC and CD with tissue-specific GS annotations, the original

Multi-GPA-Tree model fit identified blood tissue at the root node and included 2 leaves.

Further investigation of the Multi-GPA-Tree model results showed that, among the 2, 485

SNPs that are marginally associated with UC, 629 are annotated for blood tissue, among the

2, 304 SNPs that are marginally associated with CD, 561 are annotated for blood tissue, and
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among the 2, 304 SNPs that are jointly associated with both UC and CD, 561 are annotated

for blood tissue.

Cell-type-level Investigation using GenoSkylinePlus (GSP) annotations

Figure 4.18: Functional annotation tree identified by Multi-GPA-Tree approach when 10
blood related GenoSkylinePlus (GSP) annotations are integrated with UC and CD GWAS.
Each leaf (terminal node) in the tree shows the total number of SNPs in the leaf and the
mean local FDR for UC (P1) and CD (P2) for the SNPs in the leaf.

Based on the observed relationship between GS annotation for blood tissue, and UC and

CD, in the second phase of the analysis, we applied the Multi-GPA-Tree approach to the

UC and CD GWAS and 10 blood related cell-specific GSP annotations to identify SNPs that

are marginally and jointly associated with UC and CD, and to characterize the blood re-

lated GSP functional annotations relevant to single and multiple trait risk-associated SNPs.

At the nominal local FDR level of 0.05, Multi-GPA-Tree identified 2, 176 SNPs that are

marginally associated with UC, 2, 217 SNPs that are marginally associated with CD, 1, 959

SNPs that are jointly associated with UC and CD.

In the joint analysis of UC and CD with 10 blood related cell-type specific GSP anno-

tations, the original Multi-GPA-Tree model fit identified primary T regulatory cells at the

root node and included 2 leaves. Further investigation of the model results showed that,

among the 2, 176 SNPs that are marginally associated with UC, 294 are annotated for pri-
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mary T regulatory cells, among the 2, 217 SNPs that are marginally associated with CD,

324 are annotated for primary T regulatory cells, and among the 1, 959 SNPs that are jointly

associated with both UC and CD, 222 are annotated for primary T regulatory cells.

4.7 Conclusions

Several statistical methodologies that efficiently integrate GWAS summary statistics and

functional annotation data for multiple traits already exists. However, these methods are

not able to identify the combinations of functional annotations that act in unison to influ-

ence one or more traits. We propose a novel statistical methodology, Multi-GPA-Tree, to

integrate GWAS summary statistics and functional annotation data by leveraging pleiotropy

with the goal to identify risk-associated SNPs and the combinations of functional annota-

tions related to one or more trait risk-associated SNPs.

Multi-GPA-Tree is a hierarchical model, and is implemented by combining an iterative

procedure (EM algorithm) and a multivariate decision tree algorithm (MRT). Multi-GPA-

Tree assumes that given the latent status of the SNPs that define their association status with

one or more traits, their GWAS association p-values come from a Beta-Uniform mixture

distribution. Additionally, SNPs are assumed to be conditionally independent given their

functional annotation information.

We evaluate the performance of Multi-GPA-Tree using simulated data and compare its

performance with existing statistical approaches. Multi-GPA-Tree showed the higher AUC,

higher statistical power and controlled fdr to detect risk-associated SNPs for one or more

traits compared to existing approaches. Multi-GPA-Tree also successfully identified the

true combinations of functional annotations in most cases, facilitating understanding of po-

tential biological mechanisms linking risk-associated SNPs with one more more complex

traits. Overall, the ability of Multi-GPA-Tree to improve SNP prioritization and attribute
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functional characteristics to one or more trait risk-associated SNPs or gene locus can be

powerful in facilitating our understanding of genetic susceptibility factors related to com-

plex traits.
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5. Specific Aim 3

5.1 Introduction

Aim 3 will focus on developing an R package and an R Shiny App to implement the sta-

tistical methodologies developed in Aims 1 and 2. The goal of this aim is to make the

methods easily accessible to basic and clinical science researchers. The R package is called

‘GPATree’ and the R Shiny App is called ’ShinyGPATree’. GPATree can be utilized to

integrate single as well as multiple GWAS association p-values with binary functional an-

notation data as described in Aims 1 and 2. Implementation of the GPATree package is

useful in characterizing the relationship between one or more traits and in obtaining the

combinations of functional annotations that are relevant to one or more trait risk-associated

SNPs. Several functions are implemented as part of the GPATree package. These functions

along with their usage are described in the sections below.

5.2 The R Package ‘GPATree’



Package ‘GPATree’
June 11, 2021

Title A package to implement the GPA-Tree method

Version 0.0.0.9000

Depends R (>= 3.5.0)

Description This package implements the GPA-Tree methodology for post GWAS analysis.

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Imports readr, rpart, rpart.plot, quantreg, rpart.utils, gtools,
dplyr, stringr, base, shiny, DT, graphics, pracma, methods, mvpart

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Aastha Khatiwada [aut, cre] (<https://orcid.org/0000-0002-3565-451X>)

Maintainer Aastha Khatiwada <asthakhatiwada@gmail.com>
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2 GPATree-package

GPATree-package GPATree: A package to implement the GPA-Tree method

Description

This package provides functions for fitting GPA-Tree, a statistical approach for integrative analy-
sis of genome wide association studies (GWAS) data and functional annotation information within
a unified framework. GPA-Tree simultaneously identifies disease risk-associated SNPs and com-
binations of functional annotations that potentially explain the mechanisms through which risk-
associated SNPs are related with phenotypes.

Details

• Package: GPATree

• Type: Package

• Version: 0.0.0.9000

• Date: 2021-02-16

• License: GPL(>=3)

• LazyLoad: yes

This package contains a main class, GPATree, which represents GPATree model fit. This package
contains five main methods for the GPATree framework, GPATree, plot, assoc, prune, leaf. GPA-
Tree method fits the GPATree model and assoc method implements association mapping. leaf pro-
vided information regarding functional annotations that are enriched for the leaves in the GPATree
model results. plot allows plotting the GPATree model result, and prune allows further pruning the
GPATree. This package also contains a methods for the ShinyGPATree visualization, association
mapping and functional annotation tree selection toolkit. ShinyGPATree opens the ShinyGPATree
interface, which takes the results generated from GPATree method as input.

Author(s)

Aastha Khatiwada <asthakhatiwada@gmail.com>

See Also

GPATree, assoc, leaf, prune, plot, ShinyGPATree

Examples

## Not run:
library(GPATree)

# load GPATree example data
data(GPATreeExampleData)

# fitting the GPATree model
fit <- GPATree(GPATreeExampleData$gwasPval, GPATreeExampleData$annMat)

# get functional annotation information
leaf(fit)
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assoc 3

# association mapping
assoc.gpatree <- assoc(fit, FDR = 0.01, fdrControl = 'global')

# pruning the GPATree model fit
pruned.fit <- prune(fit, cp = 0.005)

# plotting the GPATree model results
plot(fit)
plot(pruned.fit)

# run the ShinyGPATree app using output from the GPATree method
ShinyGPATree(fit)

## End(Not run)

assoc Association mapping

Description

This function will implement association mapping for the GPA-Tree model.

Usage

## S4 method for signature 'GPATree'
assoc(object, FDR = 0.05, fdrControl = "global")

Arguments

object An object of class GPATree.

FDR FDR level. Value has to be between 0 and 1.

fdrControl Method to control FDR. Possible values are "global" (global FDR control) and
"local" (local FDR control).

Value

Returns a MX2 matrix where the row represents SNPs, the fist column indicates the association
between each SNP and phenotype, and the second column indicates the leaf in which the SNP falls

Author(s)

Aastha Khatiwada

Examples

## Not run:
library(GPATree)

# load GPATree example data
data(GPATreeExampleData)

#fitting the GPATree model
fit <- GPATree(GPATreeExampleData$gwasPval, GPATreeExampleData$annMat)
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4 GPATree

# pruning the GPATree model fit
assoc.fit <- assoc(fit, FDR = 0.05, fdrControl = "global")

## End(Not run)

decTree GPATree selected decision tree

Description

This function will extract the combinations of functional annotations selected by the decision tree
in the stage 2 of GPATree method that meets the provided threshold in minPredictedProb.

Usage

## S4 method for signature 'GPATree'
decTree(object)

Arguments

object An object of class GPATree.

Value

A list containing variables in combinations selected by the decision tree (CART_PIs), the combi-
nation (CART_PIs_comb) and the predicted proportions for the selected PIs(assoc_pred) meet the
provided threshold in minPredictedProb.

Author(s)

Aastha Khatiwada

GPATree Fit GPA-Tree model

Description

This function will implement the GPA-Tree and the Multi-GPA-Tree approach for integrative anal-
ysis of GWAS and functional annotation data.

Usage

GPATree(gwasPval, annMat, initAlpha = 0.1, cpTry = 0.001)
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GPATree 5

Arguments

gwasPval A matrix of M X 1 dimension, where M is the number of SNPs. The matrix
includes the GWAS association p-values for the phenotype. P-values must be
between 0 and 1.

annMat A matrix of binary annotations, where rows and columns correspond to SNPs
and annotations, respectively.

initAlpha Initial value for alpha estimate. Default is 0.1.

cpTry Complexity parameter (cp) value to be used. cpTry can be between 0 and 1 or
NULL. Default is 0.001. When cpTry is NULL, GPATree will select the optimal
cp to be used.

Details

The GPATree() function fits the GPATree model. It requires to provide GWAS p-value to gwasPval
and binary annotation data to annMat. It is assumed that number of rows of matrix in gwasPval and
annMat are equal and correspond to the same SNP.

The assoc() function implements association mapping.

The plot() function takes in an object of class GPATree and will plot the functional annotation tree
from the GPATree model.

The leaf() function takes in an object of class GPATree and will provide information regarding the
functional annotations that are enriched (1) or not enriched (0) for SNPs in any leaf of the GPATree
model plot.

The prune() function takes in an object of class GPATree and a cp parameter and will prune the
GPATree model result. This function can be useful when the tree obtained from GPATree model is
huge.

The ShinyGPATree app provides visualization of the GPA-Tree model, identifies risk-associated
SNPs, and characterizes the combinations of functional annotations that can describe the risk-
associated SNPs. The app can also be utilized to improve the visualization of the GPA-Tree model
fit to collate or separate layers of the model (add or remove leaves).

Value

Contructs a GPATree class object

Author(s)

Aastha Khatiwada

Examples

## Not run:
library(GPATree)

# load GPATree example data
data(GPATreeExampleData)

# fitting the GPATree model
fit <- GPATree(GPATreeExampleData$gwasPval, GPATreeExampleData$annMat)

# get functional annotation information
leaf(fit)
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6 GPATreeStage1

# association mapping
assoc.gpatree <- assoc(fit, FDR = 0.01, fdrControl = 'global')

# pruning the GPATree model fit
pruned.fit <- prune(fit, cp = 0.005)

# plotting the GPATree model results
plot(fit)
plot(pruned.fit)

# run the ShinyGPATree app using output from the GPATree method
ShinyGPATree(fit)

## End(Not run)

GPATreeExampleData GPATreeExampleData

Description

Simulated data for the GPATree package

Usage

GPATreeExampleData

Format

A List that contains 2 data frames.
The first data frame contains 10,000 rows and 1 column. The rows represent SNPs and the
columns represent the GWAS association p-value for the association between the SNPs and
phenotype

The second dataframe contains 10,000 rows and 10 columns. The rows represent SNPs and
the columns represent 10 binary functional annotations.

Source

Simulated Data

GPATreeStage1 Implement Stage 1 of the GPA-Tree Method.

Description

This function will implement stage 1 of the GPA-Tree method.

Usage

GPATreeStage1(gwasPval, annMat, initAlpha = 0.1)
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GPATreeStage2 7

Arguments

gwasPval A matrix of M X 1 dimension where M is the number of SNPs. The matrix
contains GWAS association p-values. Values must be between 0 and 1.

annMat A matrix of binary annotations, where row and column correspond to SNPs and
annotations, respectively.

initAlpha Initial value for alpha estimate. Default is 0.1.

Value

This function returns a List including:

• numIterConvergence: number of iterations taken for Stage 1 of GPA-Tree to converge.

• pi: predicted posterior probability of being a non-null SNP in Stage 1 of GPA-Tree Method.

• alpha: estimated alpha of GPA-Tree Method.

• beta: beta parameters from the linear model fitted at convergence of Stage 1 of GPA-Tree
Method.

Author(s)

Aastha Khatiwada

GPATreeStage2 Implement Stage 2 of the GPA-Tree approach.

Description

This function will implement Stage 2 of the GPA-Tree approach.

Usage

GPATreeStage2(gwasPval, annMat, alphaStage1, initPi, cpTry)

Arguments

gwasPval A matrix of M X 1 dimension, where M is the number of SNPs. The first col-
umn is labeled ’SNPid’ and contains the SNPid. The second column contains
the GWAS association p-values and is called ’P1’. The values in P1 must be
between 0 and 1.

annMat A matrix of binary annotations, where row and column correspond to SNPs and
annotations, respectively.

alphaStage1 alpha estimated in stage 1 of the GPA-Tree approach.

initPi pi estimated in stage 1 of the GPA-Tree approach.

cpTry Complexity parameter (cp) value to be used to build annotation decision tree.
cpTry can be between 0 and 1 or NULL. Default is 0.001. When cpTry is NULL,
GPATree will select the optimal cp to be used.
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8 leaf

Value

This function returns a List including:

• numIterConvergence: number of iterations taken for GPA-Tree to converge.

• licVec: incomplete log-likelihood from Stage 1 of Multi-GPA-Tree Method.

• lcVec: complete log-likelihood from Stage 1 of Multi-GPA-Tree Method.

• Z: posterior probability of being in the 4 groups using Multi-GPA-Tree method.

• Zmarg: marginal probability of being non-null for the phenotypes.

• pi: predicted posterior probability of being a non-null SNP in Stage 1 of Multi-GPA-Tree
Method.

• fit: CART model selected by GPATree.

• fitSelectVar: annotations included in CART tree.

Author(s)

Aastha Khatiwada

leaf Functional annotation tree.

Description

This function will provide the annotation combinations relevant to risk-associated SNPs.

Usage

## S4 method for signature 'GPATree'
leaf(object)

Arguments

object An object of class GPATree.

Value

Returns a matrix where each row corresponds to a leaf from the GPA-Tree model fit and contains in-
formation regarding the local FDR for SNPs in the leaf, and also information regarding annotations
that are enriched (1) or not enriched (0) for the leaf.

Author(s)

Aastha Khatiwada
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mGPATreeStage1 9

Examples

## Not run:
library(GPATree)

# load GPATree example data
data(GPATreeExampleData)

#fitting the GPATree model
fit <- GPATree(GPATreeExampleData$gwasPval, GPATreeExampleData$annMat)
leaf(fit)

## End(Not run)

mGPATreeStage1 Implement Stage 1 of the Multi-GPA-Tree Method

Description

This function will implement stage 1 of the Multi-GPA-Tree method.

Usage

mGPATreeStage1(gwasPval, annMat, initAlpha = 0.1)

Arguments

gwasPval A matrix of M X 2 dimension where M is the number of SNPs. The first column
contains the SNP id and is labeled ’SNPid’ and the second column contains the
GWAS association p-values and is called P1. Values in P1 must be between 0
and 1.

annMat A matrix of binary annotations, where row and column correspond to SNPs and
annotations, respectively.

initAlpha Initial value for alpha estimate. Default is 0.1.

Value

This function returns a List including:

• numIterConvergence: number of iterations taken for Stage 1 of Multi-GPA-Tree to converge.

• alpha: estimated alpha parameters using Multi-GPA-Tree Method.

• beta: beta parameters from the linear model fitted at convergence of Stage 1 of Multi-GPA-
Tree Method.

• Z: posterior probability of being in the 4 groups using Multi-GPA-Tree method.

• Zmarg: marginal probability of being non-null for the phenotypes.

• pi: predicted posterior probability of being a non-null SNP in Stage 1 of Multi-GPA-Tree
Method.

• licVec: incomplete log-likelihood from Stage 1 of Multi-GPA-Tree Method.

• lcVec: complete log-likelihood from Stage 1 of Multi-GPA-Tree Method.

• annMat: annotation data matrix

• gwasPval: GWAS p-value matrix
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10 mGPATreeStage2

Author(s)

Aastha Khatiwada

mGPATreeStage2 Implement stage 2 of the Multi-GPA-Tree Method.

Description

This function will implement the Multi-GPA-Tree method for multiple phenotypes while leveraging
pleiotropy.

Usage

mGPATreeStage2(gwasPval, annMat, alphaStage1, initPi, cpTry)

Arguments

gwasPval A matrix of M X 2 dimension, where M is the number of SNPs and 2 is the
number of traits. The columns contains the GWAS association p-values for the
respective traits The pvalues must be between 0 and 1.

annMat A matrix of binary annotations, where row and column correspond to SNPs and
annotations, respectively.

alphaStage1 Alpha estimated in stage 1

initPi final alpha at convergence of stage 1

cpTry Complexity parameter (cp) value to be used to build multivaraite CART model.
cpTry can be between 0 and 1 or NULL. Default is 0.001. When cpTry is NULL,
GPATree will select the optimal cp to be used.

Value

This function returns a List including:

• numIterConvergence: number of iterations taken for GPA-Tree to converge.

• fit: CART model selected by GPATree.

• fitSelectVar: annotations included in CART tree.

• Z: posterior probability of being in the 4 groups using Multi-GPA-Tree method.

• Zmarg: marginal probability of being non-null for the phenotypes.

• pi: predicted posterior probability of being a non-null SNP in Stage 1 of Multi-GPA-Tree
Method.

• licVec: incomplete log-likelihood from Stage 1 of Multi-GPA-Tree Method.

• lcVec: complete log-likelihood from Stage 1 of Multi-GPA-Tree Method.

• annMat: annotation data matrix

• gwasPval: GWAS p-value matrix

Author(s)

Aastha Khatiwada
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plot Plot the functional annotation tree

Description

This function will plot the functional annotation tree for the GPA-Tree model fit.

Usage

## S4 method for signature 'GPATree,missing'
plot(x, y, ...)

Arguments

x An object of class GPATree.

y missing (not required).

... ...

Value

Returns a plot for the functional annotation tree from the GPA-Tree model fit.

Author(s)

Aastha Khatiwada

Examples

## Not run:
library(GPATree)

# load GPATree example data
data(GPATreeExampleData)

#fitting the GPATree model
fit <- GPATree(GPATreeExampleData$gwasPval, GPATreeExampleData$annMat)

# plotting the GPATree model fit
plot(fit)

## End(Not run)
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12 quantile_reg_model

prune Prune GPA-Tree model fit

Description

This function will prune the GPA-Tree model fit using the given cp value.

Usage

## S4 method for signature 'GPATree'
prune(object, cp = 0.001)

Arguments

object An object of class GPATree.

cp The cp parameter to be used for pruning. cp must be between 0 and 1.

Value

GPA-Tree model output.

Author(s)

Aastha Khatiwada

Examples

## Not run:
library(GPATree)

# load GPATree example data
data(GPATreeExampleData)

#fitting the GPATree model
fit <- GPATree(GPATreeExampleData$gwasPval, GPATreeExampleData$annMat)

# pruning the GPATree model fit
pruned.fit <- prune(fit, cp = 0.005)

## End(Not run)

quantile_reg_model quantile_reg_model result

Description

Quantile regression model to predict complexity parameter in Stage 2 of the GPA-Tree method

Usage

quantile_reg_model
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Format

An object of class ’rq’. Contains 14 elements:

• coefficients: coefficient of the quantile regression model

• x: provides the x side of the regression model

• y: provides the y side of the regression model

• residuals: the residuals from the fit.

• dual: the vector dual variables from the fit

• fitted.values:

• formula: formula used to fit the quantile regression model.

• terms: terms of the model

• xlevels:

• call: function call

• tau: percentile used in the quantile regression

• rho: The value(s) of objective function at the solution.

• method: the algorithmic method used to compute the fit. There are several options: The
default method is the modified version of the Barrodale and Roberts algorithm for l1-
regression, used by l1fit in S, and is described in detail in Koenker and d’Orey(1987,
1994), default = "br". This is quite efficient for problems up to several thousand observa-
tions, and may be used to compute the full quantile regression process. It also implements
a scheme for computing confidence intervals for the estimated parameters, based on in-
version of a rank test described in Koenker(1994). For larger problems it is advantageous
to use the Frisch–Newton interior point method "fn". And for very large problems one can
use the Frisch–Newton approach after preprocessing "pfn". Both of the latter methods are
described in detail in Portnoy and Koenker(1997), this method is primarily well-suited for
large n, small p problems where the parametric dimension of the model is modest. For
large problems with large parametric dimension it is usually advantageous to use method
"sfn" which uses the Frisch-Newton algorithm, but exploits sparse algebra to compute
iterates. This is typically helpful when the model includes factor variables that, when
expanded, generate design matrices that are very sparse. A sixth option "fnc" that enables
the user to specify linear inequality constraints on the fitted coefficients; in this case one
needs to specify the matrix R and the vector r representing the constraints in the form
Rb q r. See the examples. Finally, there are two penalized methods: "lasso" and "scad"
that implement the lasso penalty and Fan and Li’s smoothly clipped absolute deviation
penalty, respectively. These methods should probably be regarded as experimental.

• model: optionally the model frame, if model=TRUE.

Source

Quantile Regression Model fitted using simulated data

See Also

rq
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14 ShinyGPATree

ShinyGPATree Run ShinyGPATree App

Description

This function will initialize the ShinyGPATree App for dynamic and interactive visualization of
GPA-Tree model results.

Usage

ShinyGPATree(object)

Arguments

object An object of class GPATree.

Value

Output of GPA-Tree model.

Author(s)

Aastha Khatiwada

Examples

## Not run:
library(GPATree)

# load GPATree example data
data(GPATreeExampleData)

#fitting the GPATree model
fit <- GPATree(GPATreeExampleData$gwasPval, GPATreeExampleData$annMat)

# initialize the ShinyGPATree app
ShinyGPATree(fit)

## End(Not run)

96



Index

∗ datasets
GPATreeExampleData, 6
quantile_reg_model, 12

_PACKAGE (GPATree-package), 2

assoc, 3
assoc,GPATree-method (assoc), 3

decTree, 4
decTree,GPATree-method (decTree), 4

GPATree, 4
GPATree-package, 2
GPATree-package,GPATree-method

(GPATree-package), 2
GPATreeExampleData, 6
GPATreeExampleData,GPATree-method

(GPATreeExampleData), 6
GPATreeStage1, 6
GPATreeStage2, 7

leaf, 8
leaf,GPATree-method (leaf), 8

mGPATreeStage1, 9
mGPATreeStage2, 10

plot, 11
plot,GPATree,missing-method (plot), 11
prune, 12
prune,GPATree-method (prune), 12

quantile_reg_model, 12

rq, 13

ShinyGPATree, 14

15

97



5.3 The R Shiny App ‘ShinyGPATree’

We implemented the forementioned GPA-Tree algorithm as an R package ‘GPATree’. To

further facilitate user’s convenience, we developed ‘ShinyGPATree’, a Shiny app for in-

teractive analysis of risk-associated SNPs and the functional annotation tree (Fig 5.1). This

Shiny app can be open by sequentially running GPATree() and ShinyGPATree() func-

tions. First, the GPATree() function takes 4 arguments: gwasPval, annMat, initAlpha

and cpTry. gwasPval is a M × 1 matrix of GWAS association p-values for M SNPs,

annMat is a M × K matrix of K binary functional annotations for M SNPs, initAlpha

is the initial alpha value to be used to fit the GPA-Tree model (default value = 0.1), and

cpTry is the cp parameter to be used to fit the GPA-Tree model (default value = 0.001).

The GPATree() function generates a GPA-Tree model fit required for the ShinyGPATree

app. The ShinyGPATree() function takes the output of GPATree() as an input and opens

the ShinyGPATree app using the R code below.

R> fit <- GPATree(gwasPval, annMat, initAlpha, cpTry)

R> ShinyGPATree(fit)

The ShinyGPATree app provides visualization of the GPA-Tree model fit, identifies risk-

associated SNPs, and characterizes the combinations of functional annotations that can

describe the risk-associated SNPs. The app also allows to improve the visualization of the

GPA-Tree model fit by collating or separating layers of the model using the cp parame-

ter. The numbers of non-risk-associated and risk-associated SNPs that can be characterized

by combinations of functional annotations are also automatically updated based on user-

selected cp, FDR type (global vs. local) and FDR level values. The interactive nature of

the app allows users to effortlessly interact with the GPA-Tree model results to generate

plots, prioritize risk SNPs, and make inferences about relevant combinations of functional

annotations for the risk-associated SNPs. ShinyGPATree consists of two main tabs, namely
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Figure 5.1: Screenshot of the ShinyGPATree app with (A) the ‘Plot’ tab and (B) the ‘Info’
tab open.

‘Plot’ and ‘Info’, which are explained in detail below.

5.3.1 Plot Tab: Visualization of the GPA-Tree Model

Fig 5.1A shows the layout of the ShinyGPATree app, where the ‘Plot’ tab opens by default.

In the displayed plot, each leaf (terminal node) is characterized by combinations of the

functional annotations that are encountered as users move from the root node to the leaf.

The summary information is provided for each leaf, including the number of SNPs that sat-

isfy the combination of functional annotations specific to the leaf and the mean local FDR

for these SNPs. The summary information displayed in each leaf is automatically updated

as the user modifies the cp value on the left panel. Users can also improve visualization of

the functional annotation tree plot using the ‘Plot width’ and ‘Plot height’ options
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on the left panel. The ‘Download Plot’ button on the top allows users to download the

functional annotation tree plot as a PNG format file. Finally, a table titled ‘Leaf Descrip-

tion’ underneath the plot characterizes the functional annotations that are 0 or 1 for SNPs

in specific leaves.

5.3.2 Info Tab: Association Mapping and Annotation Selection

The ‘Info’ tab opens the user interface for association mapping and functional annotation

characterization for SNPs as seen in Fig 5.1B. Under this tab, users can find more infor-

mation on specific SNPs driving the visualization. The top of the panel provides multiple

options to control association mapping, including FDR level and FDR type (global vs. lo-

cal). It also provides options to select which SNPs to display, e.g., choosing SNPs that fall

on specific leaves of the GPA-Tree model and/or selecting SNPs with specific association

status (non-risk-associated vs. risk-associated SNPs). The ‘SNP Table’ at the bottom of

the ‘Info’ tab panel shows information about the SNPs that satisfy these options. Each row

of the table represents a SNP, where columns include SNP ID, local FDR value, GWAS

association p-value, the leaf ID in which the SNP is located, and the corresponding com-

plete functional annotation information. The ‘Download SNP Table’ button allows users

to download the ‘SNP Table’ as a CSV format file.

5.4 Vignette: Using the GPATree Package and the ShinyGPATree App
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1 Overview
This vignette provides an introduction to the GPATree package. R package GPATree implements GPA-
Tree, a novel statistical approach to prioritize genome-wide association studies (GWAS) results while
simultaneously identifying the combinations of functional annotations associated with risk-associated
genetic variants. GPA-Tree integrates GWAS summary statistics and functional annotation data within a
unified framework, by combining a decision tree algorithm (CART)(Leo et al. 1984) within the hierarchical
model.

The package can be loaded with the command:
> library(GPATree)

This vignette is organized as follows. Sections 2.1 and 2.2 illustrate the recommended GPATree-ShinyGPATree
workflow, which provides convenient and interactive genetic data analysis interface. Advanced users might
also find Sections 2.3.1 – 2.3.3 useful as the command lines can be used for integrating GPA-Tree as part
of the more comprehensive genetic data analysis workflow, for example.

Please feel free to contact Dongjun Chung at chung.911@osu.edu for any questions or suggestions regarding
the ‘GPATree’ package.

2 Workflow
In this vignette, we illustrate the GPA-Tree analysis workflow, using the simulated data provided as
the GPATreeExampleData in the GPATree package. In the simulated data, the number of SNPs is set
to M = 10, 000 and the number of functional annotations is set to K = 10. The GWAS association
p-values and the binary functional annotation information are stored in GPATreeExampleData$gwasPval
and GPATreeExampleData$annMat, respectively. The number of rows in GPATreeExampleData$gwasPval

1
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is assumed to be the same as the number of rows in GPATreeExampleData$annMat, where the i-th
(i = 1, ..., M) row of gwasPval and annMat correspond to the same SNP.
> data(GPATreeExampleData)
> dim(GPATreeExampleData$gwasPval)
[1] 10000 1
> head(GPATreeExampleData$gwasPval)

P1
SNP_1 0.7454
SNP_2 0.4894
SNP_3 0.6026
SNP_4 0.1496
SNP_5 0.2538
SNP_6 0.3161
> dim(GPATreeExampleData$annMat)
[1] 10000 10
> head(GPATreeExampleData$annMat)

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
SNP_1 1 0 0 0 0 1 0 0 0 1
SNP_2 1 0 0 0 0 0 0 0 0 0
SNP_3 1 0 0 0 0 0 0 0 0 1
SNP_4 1 0 0 0 0 0 0 0 0 0
SNP_5 1 0 0 0 1 1 0 0 0 0
SNP_6 1 0 0 0 0 1 0 0 0 0

2.1 Fitting the GPA-Tree Model
We can fit the GPA-Tree model using the GWAS association p-values (GPATreeExampleData$gwasPval)
and functional annotation data (GPATreeExampleData$annMat) described above, using the code shown
below.
> fit.GPATree <- GPATree(gwasPval = GPATreeExampleData$gwasPval,
+ annMat = GPATreeExampleData$annMat,
+ initAlpha = 0.1,
+ cpTry = 0.005)

> fit.GPATree
Summary: GPATree model results (class: GPATree)
--------------------------------------------------
Data summary:

Number of GWAS data: 1
Number of Annotations: 10
Number of SNPs: 10000
Alpha estimate: 0.4999

Functional annotation tree description:
local FDR A4 A2 A1 A3

LEAF 1 0.9849 0 0 - -
LEAF 2 0.9834 0 1 0 -
LEAF 3 0.0203 0 1 1 -
LEAF 4 0.9850 1 - - 0
LEAF 5 0.0154 1 - - 1
--------------------------------------------------

2
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2.2 ShinyGPATree
The following command can be used to initialize the ShinyGPATree app. ShinyGPATree allows for
interactive and dynamic investigation of disease-risk-associated SNPs and functional annotation trees using
R Shiny.
> ShinyGPATree(fit.GPATree)

Figure 1 shows the layout of the ShinyGPATree app, where the ‘Plot’ tab opens by default. The summary
statistics displayed in the plot are automatically updated as the user input option for cp (in the log10
scale) on the left panel of the screen is modified. Users can also improve visualization of the functional
annotation tree plot using the plot width and height options on the left panel. The ‘Download Plot’ button
on the top allows users to download the functional annotation tree plot as a Portable Network Graphics
(png) format file. Finally, a table titled ‘Leaf Description’ underneath the plot characterizes the functional
annotations that are 0 or 1 for SNPs in specific leaves.

Figure 1: Screenshot of the ShinyGPATree app with the ‘Plot’ tab open.

As seen in Figure 2, the ‘Info’ tab in the ShinyGPATree app opens the user interface for association mapping
and functional annotation characterization for SNPs. Under this tab, users can find more information on
specific SNPs driving the visualization. At the top of the panel, user input options for FDR level and FDR
type (global vs. local) are located, followed by options to select SNPs that fall on specific leaves of the
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GPA-Tree model or have specific association status (non-risk-associated vs. risk-associated SNPs). The
‘SNP Table’ at the bottom of the ‘Info’ tab panel shows information for SNPs that satisfy all user-specified
input options. Each row of the table represents a SNP and includes its ID, local FDR value, GWAS
association p-value, the leaf in which it is located, and its complete functional annotation information.
The ‘Download SNP Table’ button allows users to download the ‘SNP Table’ as a Microsoft Excel comma
separated values (CSV) file format.

Figure 2: Screenshot of the ShinyGPATree app with the ‘Info’ tab open.

2.3 Advanced use
2.3.1 Prunning GPA-Tree model fit

The prune() function will prune the GPA-Tree model using any cp value between 0 and 1 as shown below.
> fit.GPATree.pruned <- prune(fit.GPATree, cp = 0.3)
> fit.GPATree.pruned
Summary: GPATree model results (class: GPATree)
--------------------------------------------------
Data summary:

4
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Number of GWAS data: 1
Number of Annotations: 10
Number of SNPs: 10000
Alpha estimate: 0.4999

Functional annotation tree description:
local FDR Note

LEAF 1 0.8492 No annotations selected
--------------------------------------------------

2.3.2 Functional annotation tree

The plot() and leaf() functions will plot the GPA-Tree functional annotation tree and provide information
about the leaves (terminal nodes) in the tree as shown below.
> plot(fit.GPATree)

0

0

0

0

1

1

1

1

A4

A2

LEAF 1
 

 N = 7198
 

 local FDR = 0.985

A1

LEAF 2
 

 N = 700
 

 local FDR = 0.983

LEAF 3
 

 N = 701
 

 local FDR = 0.020

A3

LEAF 4
 

 N = 700
 

 local FDR = 0.985

LEAF 5
 

 N = 701
 

 local FDR = 0.015

> leaf(fit.GPATree)
local FDR A4 A2 A1 A3

LEAF 1 0.9849 0 0 - -
LEAF 2 0.9834 0 1 0 -
LEAF 3 0.0203 0 1 1 -
LEAF 4 0.9850 1 - - 0
LEAF 5 0.0154 1 - - 1

2.3.3 Association mapping

For the fitted GPA-Tree model, we can make inferences about SNPs using the assoc() function by: (1)
prioritizing risk-associated SNPs, and (2) identifying the leaves of the GPA-Tree model in which the
risk-associated SNPs are located. The assoc() function returns two columns. The first column contains
binary values where 1 indicates that the SNP is associated with the trait and 0 indicates otherwise.
The second column provides information regarding the leaf in which the SNP is located in the GPA-
Tree plot. The assoc() function allows both local (fdrControl="local") and global FDR controls
(fdrControl="global") and users can set the threshold to be between 0 and 1 using the ‘FDR’ argument.
For GPATreeExampleData, GPA-Tree model identified 870 risk SNPs at the nominal global FDR level
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of 0.01. 371 and 499 of the 870 risk-associated SNPs are located in leaf 3 and leaf 5, respectively. The
following lines of code can be used to investigate association mapping and functional annotation tree.
> assoc.SNP.GPATree <- assoc(fit.GPATree,
+ FDR = 0.01,
+ fdrControl="global")
> head(assoc.SNP.GPATree)

P1 leaf
SNP_1 0 LEAF 1
SNP_2 0 LEAF 1
SNP_3 0 LEAF 1
SNP_4 0 LEAF 1
SNP_5 0 LEAF 1
SNP_6 0 LEAF 1
> table(assoc.SNP.GPATree$P1)

0 1
9130 870
> table(assoc.SNP.GPATree$leaf)

LEAF 1 LEAF 2 LEAF 3 LEAF 4 LEAF 5
7198 700 701 700 701

> table(assoc.SNP.GPATree$P1, assoc.SNP.GPATree$leaf)

LEAF 1 LEAF 2 LEAF 3 LEAF 4 LEAF 5
0 7198 700 330 700 202
1 0 0 371 0 499

References
Leo, Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. 1984. Classification and
regression trees. CRC press.
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5.5 Conclusions

The R package ‘GPATree’ and the R Shiny App ‘ShinyGPATree’ can be used to imple-

ment the GPA-Tree and Multi-GPA-Tree approach described in the preceding chapters and

is a valuable tool for post-GWAS analysis. The ‘GPATree’ package also includes an exam-

ple data and a vignette for step-by-step implementation of the two methods. Availability of

the textttShinyGPATree app makes it convenient for users with limited R skills to efficiently

implement the described methodologies.
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6. Conclusion

6.1 Summary

This dissertation presents two novel statistical methods, GPA-Tree and Multi-GPA-Tree,

for integration of genetic data from GWAS with genomic functional annotation data. These

two methods fill in an important gap in the current literature for post-GWAS analysis, and

are useful tools to identify the combination of functional annotations related to SNPs asso-

ciated with one of more traits. The GPA-Tree and Multi-GPA-Tree approaches outperform

existing statistical approaches in detecting SNPs associated with one or more traits and

identifying the true combinations of functional annotations with high accuracy. To facilitate

the application of the methods described here, we also developed the R package ‘GPATree’

and the R Shiny App ‘ShinyGPATree’. GPA-Tree and Multi-GPA-Tree are valuable tools

that can be utilized to identify genomic regions that are potentially associated with complex

traits, and thus, represent an important advancement in the field of post-GWAS analysis.

6.2 Limitations and Extensions

The GPA-Tree and Multi-GPA-Tree approaches have some limitations. Both approaches

include binary genomic functional annotation data, and therefore are limited in the type of

functional annotation information that is integrated with GWAS data. One avenue for future

work could extend the GPA-Tree and Multi-GPA-Tree approaches to include continous as

well as other types of genomic annotation data. Future research could also extend GPA-

Tree and Multi-GPA-Tree to integrate genetic data from GWAS with other types of ‘omics’

data like proteomics and metabolomics, among others.



Finally, the current Multi-GPA-Tree approach can be utilized to investigate pleiotropic

relationship between two traits only. Expanding Multi-GPA-Tree to efficiently integrate

GWAS for more than two traits with functional annotation data to form networks of com-

plex traits that are informed by functional annotation data could provide valuable insights

to understand the relationships between different complex traits.
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