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1. INTRODUCTION

1.1 Overview

Cancer is one of the leading causes of death. In 2018 alone, there was an estimated 1,735,350

new diagnoses and 609,640 cancer-related deaths in the United States [1]. Much work is ongo-

ing to better understand and treat this group of diseases. However, cancer is an extremely com-

plex disease. There are over 100 types of cancers, located in different organs and subtissues and

emerging from different cell types [1]. Despite this complexity and variability, more and more

targeted drugs and therapies are developed to treat the various types of cancer. The Cancer

Genome Atlas (TCGA) is a landmark cancer genomics platform that provides high through-

put genomic data for over 20,000 matched cancers and normal samples including 33 different

types of cancer [2]. The joint effort between the National Cancer Institute and the National Hu-

man Genome Research Institute offers researchers high quality of TCGA molecular data which

helps us better understand cancer biology [3]. TCGA have generated tremendous amount of

high throughput genomic datasets including somatic mutation, DNA methylation, gene ex-

pression, and DNA copy number alterations (CNA) for each patient. This large-scale cancer

genomic data provides unprecedented opportunity to investigate cancer subgroups using in-

tegrative approaches based on multiple types of genomic data [4]. With increasing availabil-

ity of high throughput genomic data, a statistical and computational tool for identification of

cancer patient subgroups is of critical importance to clinicians and researchers. However, the

development of novel integrative methods that aim to integrate different types of data is non-

trivial [5] due to (i) the challenge to understand shared and data-specific variations; and (ii) the

challenge to integrate different types of data including continuous, binary, count data; and (iii)

the challenge to facilitate biological understanding of novel findings, respectively.

To address these challenges, in Aim 1 we propose a novel latent factor model called "Bayes-

InGRiD" for the simultaneous identification of cancer subgroups and key molecular features
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within a unified framework, based on the joint analysis of continuous, binary and count data.

More over, we plan to use Polya-Gamma mixtures of normal for binary and count data to pro-

mote an exact and fully automatic posterior sampling. Last but not the least, pathway informa-

tion will be utilized to improve accuracy of cancer subgroup and key molecular feature identi-

fication, and facilitates biological understanding of novel findings.

Moreover, our goal is to develop a comprehensive and interactive software implementing

the method developed in Aim 1. In order to improve the computational efficiency and robust-

ness of the Bayes-InGRiD model, we plan to develop an user-friendly function called "BayesIn-

GRiD" and provide it as a part of the R package "InGRiD" [6].

On the other hand, there are growing interests in developing immunotherapies to fight

against various types of cancer. With increasing availability of immune cellular fraction data

in the compositional data form, it is of our interest to apply appropraite variable selection in

compositional data setting and infer key immune subtypes associated. When it comes to Com-

positional Data Analysis (CoDA), the most common compositional replacement is to covert the

data to ratios using the centred log-ratio (clr) [7] transformation. However, the variable selec-

tion applied on the clr-transformed variables makes interpretation challenging. Since our goal

is to identify key cell types, it is crucial to address the issue of interpretability for variable se-

lection. Greenacre [8] purposed an stepwise log-ratio procedure, where a smaller set of ratios

can be chosen to explain as much variability as required to reveal the underlying structure of

the data. For the purpose of identifying key immune cell subtypes, we implement the stepwise

pairwise log-ratio procedure using cellular fractions data induced from Colorectal Adenocar-

cinoma TCGA PanCancer study processed by CIBERSORT [9].

While the pairwise log-ratio stepwise approach is efficient variable selection approach for

low-dimensional compositional data. it is not applicable for high-dimensional zero-inflated

microbiome datasets generated by high throughput sequencing (HTS) technology. With high-

dimensional and zero-inflated nature of microbiome data, we purpose an alternative approach

by considering the microbiome data as univariate and apply zero-inflated Wilcoxon test [10] for

variable selection.
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1.2 Gaps in the Current Literature

The increasing availability of large heterogeneous data sets (e.g. TCGA) has prompted the de-

velopment of novel integrative methods. [5]. A popular latent factor model approach in cancer

genomic field is iCluster [11]. iCluster overcomes many of challenges by simultaneously iden-

tifying cancer subgroups and important genes by integrating multiple continuous data within

a unified framework. The model is built on a latent variable model that captures correlations

among variables through latent factors. The limitation is that it only allows continuous data.

An extension of the iCluster model, icluster+ allows to account for binary, counts and cat-

egorical data [12]. The upgraded icluster+ expands iCluster by using different modeling ap-

proaches for different types of data while sharing a common latent factor matrix across different

data platforms [13]. A limitation of the icluster+ is that statistical inference is not straightfor-

ward due to the computational complexity.

To address the challenge of the icluters+, Mo and others developed a fully Bayesian method

for integrative clustering analysis of multitype omics data [14]. This new method significantly

improves the icluster+ method in terms of statistical computation. In addition, it provides a

posterior probability estimation for each omics feature, which is a great advantage over the

icluster+ method. It provides researchers a powerful tool for integration of multiple types of

data and identification of key cancer subtypes and potential therapeutic targets. In spite of this,

the following challenges still remain unsolved. First, gene-level analysis doesn’t promote bio-

logical understanding and additional gene set enrichment analyses are needed to understand

these genes in the context of biological networks. Second, as closed form is missing for some

parameter updates, Metropolis-Hasting algorithm needs to be employed and this requires tun-

ing of proposal distributions, which is not always straightforward.

Several other matrix factorization approaches like JIVE [15] and iNMF [16] are purposed in

recent years. JIVE and iNMF extends iCluster by adding a data-specific term. This improvement

promotes biological understanding of individual structures and help us study how can data-

specific variations impact the estimation of the shared structure in partial least squares models
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[17]. However, unlike iCluster that provide tools to cluster samples from the latent variables,

JIVE and iNMF do not give guideline to generate a final sample clustering. Also, JIVE and iNMF

are limited as gene-level approach without pathway information in the model.

Another well known multiple data set integration approach is Bayesian consensus cluster-

ing (BCC) [18]. Bayesian consensus clustering is a Bayesian method that represents each data

set with a Dirichlet-multinomial model [19] and it uncovers a single common clustering across

sources. Still, several key limitation remains to be unsolved for BCC: (1)it allows only continu-

ous data; (2) it doesn’t support embedding of pathway information in the model; (3) there is no

identification of key genes and pathways for BCC.

As discussed above, most integrative approach do not incorporate pathway-level informa-

tion, ignoring the fact that Pathway-level can play an importatant role facilitate biological find-

ings. Popular approaches such as iFad and PacFad used Bayesian sparse factor analysis models

to jointly analyze the paired gene expression and drug sensitivity datasets [20] [21]. The key

innovation of these models is that they represent biological pathways as latent factors. Still, the

limitation is excessive number of latent components in the model. In addition, how to speed

up the computation process remains to be a challenge since MCMC methods are usually time-

consuming when applied to high-dimensional inference. Also, the model allows only continu-

ous data.

To address the problem of low reproducibility and instability of identified cancer subgroups

and molecular features for gene-level approaches, Wei and others developed InGRiD (Integra-

tive Genomics Robust iDentification of cancer subgroups) [6]. InGRiD is a multi-step approach

where a Sparse Partial Least Squares (SPLS) Cox regression model is used for gene-level analy-

sis and a LASSO-penalized Cox regression model is built on SPLS latent components to select

a parsimonious set of pathways. However, this approach only considered the gene expression

data. In order to capture more complete picture of cancer landscape and detect signals that are

missing in gene expression data, it will be critical to utilize and integrate other genomic data

types, such as CNA, DNA methylation, and somatic mutations for predicting patient risk.

With the rapid development of immune therapy for cancer, we are interested in analyz-
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ing compositional data of the immune cell composition in clinical tumour samples. In recent

years, many appoaches have been purposed to estimate the fraction of immune cells in clini-

cal tumour samples. One of the widely used approaches is CIBERSORT (Robust enumeration

of cell subsets from tissue expression profiles), which is developed by Newman and others to

estimate cell composition of tumour cells from their gene expression profiles [9]. CIBERSORT

implements support vector regression (SVR) to improve deconvolution performance through a

combination of variable selection and other optimization techniques. CIBERSORT is validated

by many researchers that it is a useful approach for high throughput characterization of cell

types [22]. Still, deconvolution is often sensitive to noise, the robustness of the method could

be further improved. [23].

When it comes to Compositional Data Analysis (CoDA), the most common compositional

replacement is to covert the data to ratios using the centred log-ratio (clr) [7] transformation.

A drawback of this method is that the variable selection applied on the clr-transformed vari-

ables makes interpretation challenging. Since our goal is to identify key cell types, it is crucial

to address the issue of interpretability for variable selection. Hron and others [24] purposed a

covariance-based stepwise procedure for variable selection in 2013. In this procedure, variable

selection is achieved by eliminating the variable whose variance of the corresponding clr vari-

able is the smallest, calculating normalized variance of transformed variables of the remaining

sample space, and repeating the procedure until a purposed test statistics reach a pre-specified

threshold. Another variable selection approach is proposed by Greenacre [8] where all pairwise

ratios of parts are considered for key marker identification. A smaller set of ratios can be chosen

to explain as much variability as required to reveal the underlying structure of the data. For the

purpose of identifying key immune cell subtypes.

Although the covariance-based stepwise procedure and pairwise log-ratio stepwise approach

are efficient variable selection approach for low-dimensional compositional data. these two

approaches are no longer applicable when it comes to high-dimensional zero-inflated micro-

biome datasets generated by HTS technology. Microbiome datasets generated by HTS are com-

positional. To deal with the large proportion of zeros in the microbiome data, many imputation
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approaches have emerged in recent years. The R package zCompositions [25] provides several

methods for the multivariate imputation of zeros and non-detects in compositional data. These

approaches are proposed based on an appropriate coordinate representation of the composi-

tional data in the usual Euclidean geometry. The imputation is achieved by using iterative ap-

proaches where EM algorithm [26], Markov Chain Monte Carlo (MCMC) [27] or multiple impu-

tation are utilized. However, in some extreme cases, we could face microbiome data where the

majority of the data are zeros and the number of variables could be hundreds. The imputation

approaches are not applicable given overwhelming amount of zeros in the data. In addition, it

is important to realize many assumption of multivariate approach that was developed based

on compositional data setting are not fit given the high dimensionality.

1.3 Overall Goal and Specific Aims

During the last decade, the increasing availability of large heterogeneous data sets has prompted

the development of novel integrative methods that aim to capture weak yet consistent patterns

across data types [5]. This task is, however, non-trivial due to (i) the challenge to decipher data-

specific from inter-source variations [11]; and (ii) the different types of noise and confound-

ing effects across platforms, resulting in data heterogeneity. [12]; and (iii) the identification

of key genes does not directly promote understanding of biological networks and additional

downstream analyses are needed to characterize these genes in the context of biological net-

works. [14]. It has been shown that pathway (gene set) information may not only improve ac-

curacy and robustness of cancer subgroup and key molecular feature identification, but also

facilitates biological understanding of novel findings [6]. While various algorithms, such as

iClusterBayes [14], have been developed to identify cancer subtypes using information from

multiple genomic platforms, it still remains a challenging task to simultaneous identify of can-

cer subgroups and key molecular features while facilitating biological understanding of novel

findings using pathway information within a unified framework.

Moreover, with the rapid development of immune therapy for cancer related disease, many
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researchers are interested in analyzing compositional data of the immune cell composition in

clinical tumour samples. Given the increasing availability of immune cellular fraction data in

the compositional data form, it is of great importance to identify and interpret key immune sub-

types associated in the tumor immune microenvironment. When it comes to Compositional

Data Analysis (CoDA), the most common compositional replacement is to covert the data to

ratios using the centred log-ratio (clr) [7] transformation. However, the variable selection ap-

plied on the clr-transformed variables makes interpretation challenging, one must apply in-

verse transformation for interpretation. Since our goal is to identify key cell types, it is crucial

to address the issue of interpretability for variable selection.

Significant advancements have been made in the development and use of targeted drugs for

many types of cancer. However, there are few approaches to evaluate the similarities and differ-

ences that exist between genomic features in cell lines and patient samples [28]. Because of the

complex and multi-factorial nature of the disease, such a comparison must consider the com-

plement of somatic mutations, copy number, gene expression, methylation, and proteomic

changes found in tumors as well as the molecular features whose variation across patients is

inextricably linked, necessitating a modular analysis [29]. In order to address this, it is of need

to integrate multiple types and molecular features and implement system-level analysis for the

cell line data.

In addition, microbiome datasets generated by HTS are compositional because the total

number of sequenced reads depends on the capacity of the instrument. With the high-dimensional

and zero-inflated nature of microbiome data, much more care needs to be devoted to a reason-

able coordinate representation and selection of methods to be used in the compositional data

setting. To deal with the issue of zero-inflation in the microbiome data, imputation approach

such as Model-based ordinary and robust Expectation-Maximisation algorithms (lrEM) [26]

has emerged in recent years. However, most imputation approaches are not applicable given

overwhelming amount of zeros in some extreme cases. In addition, it is important to realize

many assumption of multivariate approach that was developed based on compositional data

setting are not fit given the high dimensionality.
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Aim 1: Develop a Bayesian latent factor model for pathway-guided identification of

cancer subgroups by integrating multiple types of genomic data. This statistical method will

provide researchers a unified framework to simultaneously identify cancer subgroups (cluster-

ing) and key molecular markers (variable selection) based on the joint analysis of continuous,

binary and count data. In addition, we plan to use Polya-Gamma mixtures of normal for binary

and count data to promote an exact and fully automatic posterior sampling. Moreover, path-

way information will be used to improves accuracy and robustness of cancer subgroup and key

molecular features identification.

Aim 2: Develop a comprehensive software implementing the method developed in Aim

1, and apply it to simultaneously identify sample clustering and key features in cancer

genomic study. We aim to develop an user-friendly function called "BayesInGRiD" and provide

it as a part of the R package "InGRiD"

Aim 3: Variable selection in compositional data analysis with application in immunol-

ogy data and microbiome data. We aim to to investigate various variable selection approaches

in compositional data setting, infer key immune subtypes associated by applying stepwise pair-

wise log-ratio procedure on immune cellular fractions data, and identify key species in the mi-

crobiome data by using zero-inflated Wilcoxon rank sum test for Colorectal Adenocarcinoma.

The proposed methods will be developed and evaluated on three types of cancer genomics

datasets: 1) large scale public datasets from the TCGA database, including gene expression,

DNA copy number alteration, somatic mutation data; 2) cellular fractions data induced from

Colorectal Adenocarcinoma TCGA Pan- Cancer study; 3) high dimensional zero-inflated mi-

crobiome data from studies of colorectal cancer.
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2. STATISTICAL BACKGROUND

2.1 Overview of the statistical background

A few strategies have been proposed to integrate heterogeneous omics data to uncover coordi-

nated cellular processes acting across different omic layers. The first group of methods is the

iCluster series approaches, including Integrative clustering of multiple genomic data [11], In-

tegrative clustering of multi-type genomic data [12] and a fully Bayesian latent variable model

for integrative clustering [14], where a latent factor framework were purposed to integrate mul-

tiple datasets. The second category includes introduce Joint and individual variation explained

(JIVE) [15] and non-negative matrix factorization (iNMF) [16] for investigating common vari-

ations across omics using matrix factorization. Finally, we will review Bayesian and network-

based approach specifically tailored for data integration such as Bayesian concensus clustering

(BCC) [18].

It is key to realize that existing integrative approaches only focus on gene-level analysis

and lack the ability to facilitate biological findings in pathway-level. Some statistical approach

have been purposed to improve the robustness in biological findings and the interpretation

of subgroups of cancer patients, including integrative factor analysis model (iFad) [20] and

Bayesian sparse factor modeling for the inference of pathways responsive to drug treatment

(FacPad) [21], where biological pathways are represent as latent factors. To address the chal-

lenge of low reproducibility and instability of identified cancer subgroups and molecular fea-

tures, Integrative Genomics Robust iDentification of cancer subgroups (InGRiD) [6] simultane-

ously represents the gene expression profiles of pathways and selects key genes from each path-

way by constructing pathway-level latent components based on sparse partial least squares

(SPLS) Cox regression.

In order to extend the latent factor model framework to the compositional data setting, we

look into a well-known deconvolution method, CIBERSORT (Robust enumeration of cell sub-

9



sets from tissue expression profiles) [9], that describes the gene expression of a sample as the

weighted sum of the expression profiles of the cell types. Since we are interested in identifying

patient clusters and the key cell type associate, we also introduce a covariance-based variable

selection for compositional data [24] that performs covariance-based stepwise procedure to

omit variables.

2.2 Integrative clustering of multiple genomic data types using a joint latent variable

model (iCluster)

iCluster is a Gaussian joint latent variable model that perform clustering on single shared latent

factor matrix across T data sets Yt of dimensions pt (t = 1, · · · , T ) byN measured on the same

N samples [11]. The model is based on an latent variable model that captures correlations

among variables through latent factors where the latent variable matrix is shared across T data

sets. For tth data, the model can be written as:

Yt = βtZ + εt

Z ∼ Nq(0, I)

where βt is the pt by q factor loading matrix of data set t, Z is the q by N common latent vari-

able matrix, and εt is the pt by N error matrix that has a multivariate Gaussian distribution

Npt(0, φt) with zero mean and diagonal covariance matrix φt = diag(σt2,1 , · · · , σt2,pt ). The key

is to assume latent variables are shared among all T data sets. An Expectation-Maximization

algorithm [30] is performed for parameter estimation on the multivariate normal distribution.

Then k-means clustering is applied to the posterior expectation of the latent factors E(Z|Y )

for patient subgroup clustering. An l1 penalty is imposed on the loading coefficients to perform

variable selection. The Least absolute shrinkage and selection operator (LASSO) penalty [30]

results in sparse estimates of β in which many of the coefficients are shrunken toward zero

while some coefficients to exactly zero. As a result, key genes can be identified using loading
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matrix and subtype can be clustered on the latent factor Z.

The contribution of iCluster is that it serves as a landmark where it integrates multiple con-

tinuous data, while simultaneously reducing the dimensionality of the datasets and identifying

patient clusters. Still, it is in need to develop approaches that can integrate different types of

data including binary, counts and categorical data.

2.3 Integrative clustering of multi-type genomic data (iCluster+)

Shen and others extended the iCluster model by creating icluster+, where icluster+ allows to

account for binary, counts and categorical data [12]. Specifically, icluster+ expands iCluster by

making the assumption of different modeling approaches for different data platforms. iClus-

ter+ fits a latent variable model that integrates diverse data types including binary, continuous,

categorical and count data with different modeling assumptions including logistic, normal lin-

ear, multilogit, and Poisson distributions [12].

Building on original iCluster model, now if Yt is binary data, it is modeled with the classical

logistic regression; if Yt is count data, Poisson regression is considered for the model; If Yt is

a multicategory variable, the model would be constructed based on multilogit regression. As

for the common latent variable vector Z, it still represents the underlying driving factors that

can be used for disease subtype clustering. LASSO penalty is introduced to address the spar-

sity issue in βjt [31]. The sparsity-inducing parameter λt is allowed to take different values for

different data types.

The Strength of the iCluster+ is that it promotes simultaneously identification of cancer

subgroups and key genes from multiple genomic platforms. And it boosts a joint analysis of

binary, counts and categorical data within a unified statistical model. However, iCluster+ has

the limitation of challenging parameter tuning.
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2.4 A fully Bayesian latent variable model for integrative clustering analysis of multi-

type omics data

To address the challenges in iCluster+, Mo et al. developed a fully Bayesian latent variable

method (called iClusterBayes) that can jointly models omics data of continuous and discrete

data types for identification of tumor subtypes and relevant omics features [14]. Specifically, it

uses a Bayesian latent factor model to integrate multiple omics data sets and achieve joint di-

mension reduction. As a result, the tumor samples can be clustered in the latent variable space

and key molecular features that drive the sample clustering are identified through Bayesian

variable selection.

The Bayesian latent factor model allows one to make assumptions on multiple types of data

sets with distinct distributions, as well as on the correlations among data sets. More over, it

avoids complicated parameter tuning required when a penalization approach is used. In con-

trast, the icluster+ method doesn’t provide statistical inference (e.g., p-value or confidence in-

terval) for variable selection due to the limitation of LASSO-type penalized regression. And the

Bayesian model provides an posterior estimation for each omics feature, which can be used as

an uncertainty measurement for feature selection and patient subgroup prediction.

A few limitations still remain for iClusterBayes. First, it is a gene-level approach, and we

need a model that embeds pathway information in the model. Second, Metropolis-Hasting

approach is used for binary and count data analysis where parameter tuning could make infer-

ence less straightforward.

2.5 Joint and individual variation explained for integrated analysis of multiple data types

(JIVE)

JIVE extends iCluster by adding a data-specific term [15]. Motivated by the biological interest of

studying individual structures and also by observing that data-specific variations, the addition

of the data-specific term plays an important role in the estimation of the shared structure in

partial least squares models. The model can be written as follow:
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Yt = βtZ + βstZ
s
t + εt

where βst of size pt by qt and Zst of size qt byN are the data-specific loading and latent variable

matrices, respectively. Note that q and qt are not necessarily equal, implying that the joint and

individual approximations may be of different dimensions. To solve the identifiability issue

of the decomposition, the authors imposed an orthogonality constraint between the joint and

individual terms. The parameter estimation is performed by estimating the joint and individual

structures via singular value decomposition (SVD). Sparsity is induced during the estimation

procedure by an L1 penalty on the loading matrices. The level of sparsity is determined using

the Bayesian information criterion.

One should notice that JIVE allows only continuous data, and no pathway or gene set in-

formation is incorporated in the model. Unlike iCluster series approach that provide tools to

cluster samples from the latent variables, no guideline is given to generate a final sample clus-

tering.

2.6 A non-negative matrix factorization method for detecting modules in heterogeneous

omics multi-modal data (iNMF)

Similar to JIVE we introduced above, iNMF [16] also aims to capture the shared and data spe-

cific structures. However, there are two notable differences for iNMF. First, the latent variables

are estimated using a non-negativity constraint instead of orthogonality. Second, a common

coefficient matrix βt is shared between the data-specificZsT and the commonZ basis matrices

where the coefficient and basis matrices are the counterparts of the loading and latent variable

matrices. iNMF optimizes the following problem with a Euclidean loss function:

min
Z,Zs

1 ,···Zs
T

β1,··· ,βT

T∑
t=1

‖ Yt − (Z + Zst )βt ‖2 +λ

T∑
t=1

‖ Zst βt ‖2

While non-negative factorization approaches have a naturally sparse representation [32],
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iNMF also applys an l1-penalization on the data-specific term to induce sparsity. This con-

straint imposed on the data-specific effects implies that the parameterλ controls for the factor-

ization homogeneity. The authors also propose to apply an l1-penalty on the coefficient matrix

βk to enforce variable selection. The dimension of the shared and specific structures is chosen

through a consensus-based approach that selects the number of latent variables maximizing

the clustering stability across multiple iNMF runs.

Similarly to JIVE, no guidelines are provided to obtain a final sample clustering. And iNMF

is limited to continuous data without incorporation of pathway information.

2.7 Bayesian consensus clustering (BCC)

When it comes to integrative approaches that contructed based on Bayesian framework set-

ting, Bayesian consensus clustering (BCC) [18] is a Bayesian method that represents each data

set with a Dirichlet-multinomial allocation mixture model [19]. BCC aims to uncover a single

common clustering across sources by relating the source-specific clustering Lt in data set t to

a consensus clustering through the following dependence function:

P (Ltn = l | Cn) =


αt, ifCn = 1

1−αt
1−q , otherwise

where, for sample n, Cn and Ltn are the overall and source-specific cluster allocations in data

source t,αt is the adherence of data set t to the overall clustering and q is the maximum number

of clusters (both shared and source specific). The adherence parameterαt models how specific

and shared clusters are related to each other. The parameter q is chosen so that the mean adher-

ence over the sources is maximized, which results in a smaller number of selected clusters. For

BCC model, a Gibbs sampler is used to estimate the posterior distribution of the parameters.

BCC model allows only continuous data, and it doesn’t promote embedding of pathway in-

formation in the model. Note that the BCC model assumes a simple and general dependency

structure between data sources. When an overall clustering is not sought, or when such a clus-
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tering does not make sense as an assumption, BCC may be no longer be appropriate. In addi-

tion, this two-step procedure of separate clusterings followed by post hoc integration limits the

power to detect the structure shared between different omics data.

2.8 Integrative factor analysis model (iFad) and Bayesian sparse factor modeling for the

inference of pathways responsive to drug treatment (FacPad)

In order to study gene-pathway–drug-pathway associations and integrate gene expression and

drug sensitivity data, a Bayesian sparse factor analysis model (iFad) was developed to jointly an-

alyze the paired gene expression and drug sensitivity datasets measured for same samples [20].

iFad enables direct incorporation of prior knowledge of gene-pathway and/or drug-pathway

associations by using pathway to guide factor definition, where pathways are treats as latent

factors. In order to use the prior knowledge of pathway information, spike-and-slab mixture

prior is used [33] for the factor loading matrices. Ma and Zhao then used a modified collapsed

Gibbs sampling algorithm for statistical inference.

Later on, Ma and Zhao developed FacPad, a Bayesian sparse factor model, for the inference

of pathways responsive to drug treatments [21]. Similar to iFad, this approach also represents

biological pathways as latent factors. The difference of FacPad compared to iFad is that it calcu-

lates the similarity among different drugs and tries to detect the association strength between

drugs and pathways through large-scale data mining. It is worthy of note that the FacPad model

is developed under the assumption that all the latent factors needed for decomposition of the

data matrix are known, where the latent factors are matched to KEGG pathways.

For both iFad and FacPad, the limitation is excessive number of latent components in the

model, MCMC approach is time-consuming when applied to high-dimensional inference. Also,

it is important to note that the model allows to be applied to only continuous data.
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2.9 Semi-supervised identification of cancer subgroups using survival outcomes and over-

lapping grouping information (InGRiD)

Another newly developed pathway-level analysis approach is Integrative Genomics Robust iDen-

tification of cancer subgroups (InGRiD) [6]. Here Wei et al aimed to address the issue of low

reproducibility and instability when it comes to identification of cancer subgroups and molec-

ular features. InGRiD integrates pathway information with gene expression data to improve

the robustness and accuracy for identification of key molecular feature and gene sets as well as

cancer patients subgroups. [6].

InGRiD is a multi-step semi-supervised approach. A Sparse partial least squares (SPLS) Cox

regresion model is constructed for gene-level analysis [34]. For each pathway, InGRiD simuta-

neously summarizes its genes as a latent component (dimension reduction) and selects key

genes among those (variable selection). When it comes to pathway-level analysis, a LASSO-

penalized Cox regression model is built on SPLS latent components to obtain a parsimonious

set of key pathways. InGRiD also provides patient subgroup resulting as low, intermediate and

high risk group of patient.

A limitation of InGRiD is that the multi-stage setting is essentially making pathway-level

predictions based on prediction result from previous step (gene-level). Gene-level and Pathway-

level information are not integrated within a unified model to guide gene selection. One should

also notice InGRiD is not an integrative method and it limits to only continuous data.

2.10 Robust enumeration of cell subsets from tissue expression profiles (CIBERSORT)

In recent years, many appoaches have been purposed to estimate the immune cell compo-

sition in clinical tumour samples. One of the widely used approach is CIBERSORT (Robust

enumeration of cell subsets from tissue expression profiles), which was developed by New-

man and others to process cell composition of tumour cells from their gene expression pro-

files [9]. CIBERSORT implements support vector regression (SVR) to improve deconvolution

performance through a combination of variable selection and other optimization techniques.
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CIBERSORT is validated by many researchers that it is a useful approach for high throughput

characterization of cell types [22].

The objective of most gene expression deconvolution algorithms, including CIBERSORT, is

to solve the following system of linear equations for f :

m = f ×B

where m is defined as a vector of a mixture gene expression profiles, f is a vector containing

the fraction of each cell type in the signature matrix, and B is a “signature matrix” that includes

signature genes for cell subsets of interest. Notice that m is the input data, B is the signature

information that are known a priori, and f is unknown.

The difference between CIBERSORT and previous deconvolution methods is in its applica-

tion of a machine learning technique, v-support vector regression (v-SVR), to solve for f . More

specifically, SVR uses a hyperplane that includes as many data points as possible given pre-

specified constraints, and reduces overfitting by only penalizing data points outside support

vectors using a loss function. f is determined by orientation of the hyperplane. The parameterv

determines the lower bound of support vectors and the upper bound of training errors. In addi-

tion, v-SVR incorporatesL2-norm regularization, which minimizes the variance in the weights

assigned to highly correlated cell types, thereby mitigating issues owing to multicollinearity.

Despite the various successful applications of computational methodologies, several issues

remain to be improved. For example, since deconvolution is sensitive to noise, it is in need to

improve the robustness of the method. [23].

2.11 Covariance-Based Variable Selection for Compositional Data

To address the growing interest in development of immune therapy of cancer related disease,

researchers are often facing the challenge of analyzing compositional data of immune cell com-

position in clinical tumour samples. In order to perform Compositional Data Analysis (CoDA),

an widely used approach is to transform the compositional data to ratios using the centred
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log-ratio (clr) [7] transformation. However, one must realize the limitation that the variable

selection applied on the clr-transformed variables makes interpretation challenging. For that

purpose, Hron and others [24] developed an covariance-based stepwise procedure to omit vari-

ables in compositional data analysis.

First, the sample space can be defined asx = (x1, · · · , xp)T , lety = clr(x) = (y1, · · · , yp)T .

An important theorem of the normalized variance is that var(yi) ≥ var(yj) if and only if

p∑
k=1

var(ln
xi
xk

) ≥
p∑

k=1

var(ln
xj
xk

)

Next, if we consider a compositionx = (x1, · · · , xp)T such that var(y1) ≥ · · · ≥ var(yp), more

specifically,
p∑

k=1

var(ln
x1
xk

) ≥
p∑

k=1

var(ln
x2
xk

) ≥ · · · ≥
p∑

k=1

var(ln
xp
xk

)

The step-wise algorithm can be performed as follow:

1. Eliminate variable xp whose variance of the corresponding clr variable is the smallest.

2. Perform clr transformation on the induced subcompositionx1, wherex1 = (x1, · · · , xp−1)T .

3. Calculate the variances of the elements in the transformed subcomposition x1.

4. Repeat step 1 to 3 untilH0 is rejected or the number of steps reaches p-2.

Here the null hypothesis is that the total variance of xi being equal to the total variance of

xi−1, while the alternative is the total variance of xi being less than the total variance of xi−1,

Given these hypotheses, the null is rejected if proposed test statistics U+
i < Z0.95 where

U+
i =

ˆtotvar(xi)− totvar(xi−1)√
2

n− 1
tr(Σ̂2

i )

And Σ̂i represents the sample covariance matrix of the composition xi in clr coordinates.

The goal of this procedure is to eleminate components in compositional data based on the

total variance until a significant reduction would occur. And the procedure allows us to reach
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a subcomposition that still retains the important information contained in the multivariate

data structure. The strength of the algorithm is that it make the loss of the information rather

negligible when moving from composition to subcomposition.

2.12 Stepwise Pairwise Log-ratio Variable Selection for Compositional Data

Another variable selection approach for compositional data is proposed by Greenacre [8] where

all pairwise ratios of parts are considered for key marker identification. A smaller set of ratios

can be chosen to explain as much variability as required to reveal the underlying structure of

the data.

We consider the compositional data that are made up of the relative proportions of a whole

and can be represented in the simplex of d parts:

Sd := {x = (x1, · · · , xd) ∈ Rd|
d∑
i=1

θi = 1, θi ≥ 0, ∀i}

The basic measure of variability of a random composition x = (x1, · · · , xd) is the variation

matrix [7], defined as

T =

{
var

(
ln
xi
xj

)}D
i,j=1

Each element in the variation matrix defines the variability of the log-ratio ln xi
xj

: The log-ratio

tends to be a constant if the value of the variance is small. Total variance is defined as the sum

of the elements of the variation matrix, where

totvar(x) =
1

2D

D∑
i=1

D∑
j=1

var

(
ln
xi
xj

)

Redundancy analysis (RDA) were used to measure how much of the total variance is ex-

plained by a subset of logratios of certain explanatory variables after the logratio variance are

calculated. RDA is a form of multivariate regression. If a variable is correlated with many of
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the other logratios, the explained variance of the corresponding variable will be high. In addi-

tion, Procrustes analysis was applied to decide how close their multivariate structures are, more

specifically, it decide how close a configuration based on a subset of logratios is to the config-

uration based on all the logratios. Procrustes correlation is the measurement for the matching

of two configurations.

The stepwise procedure variable selection in the compositional data can proceed as follow:

1. Calculate all the pairwise logratios.

2. Select the one with the highest percentage of variance explained. This ratio is then fixed as

the first logratio.

3. The second best logratio in combination with the first is sought, then fixed, and so on.

4. Repeat step 1 to 3 until variance explained reach 100%.

It must take into account that one should choose ratios that are independent of the ones

already chosen: for example, if A/B and B/C have already been selected, thenA/C is no longer

a candidate for selection, since it depends on the others: A/C = A/B × B/C . On the log

scale, log(A) − log(C) is the sum of, and thus linearly dependent on, log(A) − log(B) and

log(B) − log(C). Since the dimensionality of an m-part compositional data set is m − 1, and

all the parts will have appeared in at least one logratio afterm−1 steps of the above procedure,

the variance explained will be 100%.

2.13 Zero-inflated Wilcoxon Rank Sum Test (ZIW)

Zero-inflated Wilcoxon test was first proposed in 2010 by Hallstrom [10] and it is further mod-

ified by Wang and others. [35]. The theory of the zero-inflated Wilcoxon rank sum test is as

follow. We consider 2N patients in a randomized study, where N patients are assigned to the

treatment groupT1 and control groupT2, respectively . We define f1 and f2 as the distributions

of the non-zero values under T1 and T2. Letni be the number of non-zero scores in each group,

n = max(n1, n2) and m = |n1 − n2| . Without loss of generosity, we assume there are no ties
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among the 2nm non-zero scores. In order to compute the rank-sums, we assign rank 1 to the

highest score, rank 2 to the second highest score and so on. Hence, we have 2(Nn)+m zeros tied

at the highest rank.

The zero-inflated Wilcoxon rank sum test will be based on the 2n observations remaining

when N − n observations with zero score have been removed from each group. Let r be the

sum of the ranks of the observations in group 1 among all 2n observations. Let r0 be the sum

of the ranks of the non-zero scores of group 1. Then

r =

r0 +m
(2n−m+ 1 + 2n)

2
, if n1 ≤ n2

r0, if n1 ≥ n2
(2.1)

and under the null f1 = f2, the Wilcoxon rank-sum statistic, s = r −N(2N + 1)/2, satisfies

E(s = r − n(2n+ 1)/2|n1, n2) =

mn/2, if n1 ≤ n2

−mn/2 if n1 ≥ n2
(2.2)

Then

V ar(s|n1, n2) = V ar(r|n1, n2)

= V ar(ro|n1, n2)

= n(nm)(2nm+ 1)/12

= n3/6 + nm2/12−mn2/4 + n2/12− nm/12

(2.3)

Let µi,j = E((n/N)i(m/N)j). Then

E(V ar(s|n1, n2)) = N3(µ3,0/6 + µ1,2/12− µ2,1/4) +N2(µ2,0 − µ1,1)/12 (2.4)

Under the null, it is equally likely that n1 is less than or greater than n2, so E(s) = 0 and

V ar(E(s|n1, n2) = E((mn/2)2) = N4µ2,2/4. SinceV ar(s) = V ar(E(s|n1, n2)+E(V ar(s|n1, n2)),
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it follows

V ar(s) = N4µ2,2/4 +N3(µ3,0/6 + µ1,2/12− µ2,1/4) +N2(µ2,0 − µ1,1)/12

It is defined that the zero-inflated Wilcoxon rank sum test byW = s/
√
V ar(s).
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3. SPECIFIC AIM 1

For Aim 1, our goal is to develop a Bayesian sparse latent factor model for pathway-guided

identification of cancer subgroups by integrating multiple types of genomic data. This statisti-

cal method will provide researchers a unified framework to simultaneous identify cancer sub-

groups (clustering) and key molecular markers (variable selection) based on the joint analysis

of continuous, binary and count data. In addition, we plan to use Polya-Gamma mixtures of

normal for binary and count data to promote an exact and fully automatic posterior sampling.

Moreover, pathway information will be used to improves accuracy and robustness of cancer

subgroup and key molecular features identification.

3.1 Introduction

In cancer genomics, it is of critical interest to identify cancer patient subgroups as it can fa-

cilitate development of personalized medicine. The identification of novel molecular features

associated with these patient subgroups can potentially lead to a novel biomarker for progno-

sis, and diagnosis and novel therapeutic targets. The emergence of comprehensive cancer ge-

nomics platform, such as The Cancer Genome Atlas (TCGA) [2], opened unprecedented oppor-

tunities for such investigation by providing researchers an enormous amount of high through-

put genomic datasets for each patient, including gene expression, DNA copy number alter-

ations, DNA methylation, somatic mutation, miRNA and proteomics [2]. At the same time,

the availability of large-scale high-throughput multi-omics data sets requires development of

novel data integration methods that can effectively detect interactions and shared information

among multiple data sets. Moreover, these datasets consist of both continuous and discrete

form, and hence, there is need for a statistical approach that is also capable of handling various

types of data.

Traditionally, principal component analysis (PCA) [36] has been used to decipher a single



data set in a continuous form. As PCA achieves dimension reduction, its latent components

can be used to identify patient subgroups. However, approaches such as PCA are no longer ad-

equate for integrative analysis of multiple data sets, since the latent components induced from

PCA will be distinct between data types. To integrate multiple continuous data, joint latent fac-

tor models have been proposed to study both common and unique variations across different

data sets, e.g., iCluster [11], iNMF [16] and JIVE [15]. Specifically, iCluster features a joint la-

tent variable model and cancer subgroups can be identified by applying a clustering algorithm

on the shared latent factors [11], while key genes can be identified from multiple genomic plat-

forms through regularization on the factor loading. JIVE and iNMF further extended iCluster by

introducing a data-specific term, which affects the estimation of shared structures [16] [15]. Al-

though integrative approaches like JIVE and iNMF promoted understanding of individual data

structures, they still lack guidance on a meaningful patient subgroup clustering.

iCluster+ overcame the limitation of integrating only continuous data and implements the

joint analysis of continuous, binary, counts, and categorical data using a latent factor model

[12] [13]. Recently, Mo and others improved iCluster+ and developed a Bayesian sparse latent

factor model to integrate multiple types of omics data, called iClusterBayes [14]. The advan-

tages of this Bayesian framework in data integration are three-fold: (i) It has flexibility in the

specification of distributional assumptions on multiple types of data sets, as well as on the cor-

relations among data sets; and (ii) it allows us to avoid complicated parameter tuning required

when a penalization algorithm is used; and (iii) one could incorporate prior biological expert

knowledge. This new method enables a posterior probability estimation for gene selection and

improves the iCluster+ method regarding computational speed significantly [14].

While integration approaches such as iCluster+ and iClusterBayes help us capture molecu-

lar interactions among different omics datasets, most existing methods only focus on gene-

level analysis and lack the ability to facilitate biological findings at the pathway-level. The

pathway-level analysis provides information about natural grouping structure and key insights

to guide factor definition [29]. iFad [20] and PacFad [21] enable incorporation of prior knowl-

edge and represent biological pathways as latent factors in the Bayesian sparse factor analysis
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models. However, iFad and PacFad are only applicable to continuous data and the problem

of an excessive number of latent factors in the model still remains a challenge that leads to a

higher computational burden. InGRiD [6] is another approach that examines the genetic fea-

tures at the pathway-level. To promote a robust interpretation of the pathway-level analysis

results, Wei and colleagues built pathway-level latent components using sparse partial least

squares (SPLS) Cox regression model [34], an approach that allows simultaneous identification

of key genes and pathways without a need for separate downstream gene set enrichment analy-

sis. However, this approach can only be applied to single continuous data. To fully understand

tumorigenesis at the system level, it is necessary to integrate the changes found in multiple

types of omics data (i.e., continuous, discrete) at the pathway level.

Another limitation of the iClusterBayes approach is the need for Metropolis–Hastings sam-

pling [?] for the Bayesian inference. There are no close forms for the posterior distributions of

multiple parameters, especially in the models derived for binary and count data. Although the

Metropolis–Hastings sampling is popularly used, it still can be less computationally efficient

compared to the Gibbs sampler and involves parameter tuning, which might not be straight-

forward in practice. Hence, an alternative posterior sampling strategy without a need of using

Metropolis-Hasting sampling can be of great interest. Recently, Polson and colleagues pro-

posed an alternative Gibbs sampler that introduces a vector of latent variables that are scale

mixtures of normals with independent Pólya-Gamma precision terms [37]. Pillow and Scott

further extended the model to handle negative binomial (NB) case [38] for the count data. The

application of Pólya-Gamma mixtures of normals leads to simple, effective methods for poste-

rior inference and boosts fully automatic Gibbs sampler to avoid parameter tuning.

To overcome these limitations, here we propose a novel pathway-guided Bayesian sparse

latent factor method, named Bayes-InGRiD (Bayesian Integrative Genomics Robust iDentifi-

cation of cancer subgroups). Bayes-InGRiD can jointly model continuous, binary, and count

omics data within a unified framework and can simultaneously identify patient subgroups and

key molecular features. In addition, Bayes-InGRiD employs Pólya-Gamma mixtures of normal

for binary and count data to promote an exact and fully automatic posterior sampling. Finally,
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pathway information is used to guide latent factor construction, provides information about

natural grouping structure, and facilitates biological understanding and interpretation.

3.2 Methods

Here our main goals include (i) construction of a natural and unified framework for integrative

analysis; (ii) incorporating prior biological knowledge; and (iii) implementing efficient poste-

rior sampling. We developed our model based on a Bayesian sparse latent factor model equipped

with the Pólya-Gamma approach and the prior-guided latent factor structure to achieve the

goals. Suppose we havem types of genomic data fornpatients. We define yit = (yi1t, · · · , yiptt)T

to be the data vector, where yijt denotes genomic measurement for the j-th molecular feature

(j = 1, · · · , pt) of the i-th sample (i = 1, · · · , n) in the t-th data type (t = 1, · · · ,m). Mod-

eling the high-dimensional space {Yt}mt=1, as a sparse linear combination of latent factors in-

duces dimensionality reduction to a low-dimensional subspace Z = (z1, · · · , zn)T . We define

zi = (zi1, · · · , zik), i = 1, · · · , n, where zi is a continuous latent variable from a standard multi-

variate normal distributionMVN(0, Ik) and k is the number of latent components. The latent

factor space Z captures the hidden structure shared among different data types in integrated

data analysis that can be used for patient subgroup clustering.

3.2.1 Bayesian latent factor model

In this section, we will first introduce the Bayesian latent factor model framework, which is

motivated by the iClusterBayes [14] approach. If yijt is a continuous variable, we assume the

following model,

yijt = ziΓjtβjt + εijt, i = 1, · · · , n, j = 1, · · · , pt, t = 1, · · · ,m, (3.1)

where zi = (1, zi1, · · · , zik) is a latent factor vector of the ith sample; Γjt = diag(1, γjt, · · · , γjt)

is a diagonal matrix serving as an indicator variable, where γjt takes values of either 0 or 1

for variable selection [39]; βjt = (β0jt, β1jt, · · · , βkjt)T denote the coefficient vector of the
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Figure 3.1: Illustration of the Bayes-InGRiD framework
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j-th feature in the t-th data set. We assume εijt ∼ N(0, σ2jt). The model is designed so that

yijt = β0jt + εijt if γjt = 0, which means that the corresponding feature is not selected

as a key molecular feature for the patient subgroup identification. If γjt = 1, then yijt =

β0jt + β1jtzi1 + · · · + βkjtzik + εijt, which means the corresponding βjt is sufficiently away

from zero and thus the corresponding feature contributes to the patient subgrouping. Next, if

yijt is a binary variable, we assume the following logistic regression model.

log
( P (yijt = 1 | zi)

1− P (yijt = 1 | zi)

)
= ziΓjtβjt, i = 1, · · · , n, j = 1, · · · , pt, t = 1, · · · ,m. (3.2)

Moreover, if yijt is a count variable, we assume the following negative binomial (NB) regression

model.

P (yijt | rjt, zi) =
Γ(yijt + rjt)

Γ(rjt)yijt!
(1− ψijt)rjtψ

yijt
ijt , rjt > 0, j = 1, · · · , pt, t = 1, · · · ,m

logit(ψijt) = ziΓjtβjt,

(3.3)

where rjt is the dispersion parameter. Finally, the joint model for the latent factor model for

data integration is as follow

P (yijt, zi | βjt,Γjt) ∝
m∏
t=1

n∏
i=1

pt∏
j=1

P (yijt | zi, βjt,Γjt)P (zi), (3.4)

where zi follows a standard multivariate normal distributionMVN(0, Ik);P (yijt | zi, βjt,Γjt)

is the conditional density function, where the form of distribution of P (yijt | zi, βjt,Γjt) can

be Gaussian, Bernoulli or NB depending on the data type; and the conditional independence

of yijt is assumed given zi.

To achieve computationally efficient posterior sampling for the Bayesian inference, we will

modify above models by introducing scale mixtures of normals using Pólya-Gamma in the fol-

lowing two subsections.
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3.2.2 Bayesian latent factor model for binary data

To devise an alternative Gibbs sampler for logistic models, we apply scale mixtures of normals

with independent Pólya-Gamma precision terms proposed by Polson and colleagues [38]. As-

suming a random variable ω has a Pólya-Gamma distribution, an important property of the

PG(b, 0) density− is that for a ∈ <, b > 0 and η ∈ <,

(eη)a

(1 + eη)b
= 2−beκη

∫ ∞
0

e−ωη
2/2p(ω|b, 0)dω, (3.5)

where κ = a − b/2 and p(ω|b, 0) denotes a PG(b, 0) density. Specifically, under the logistic

model, the conditional likelihood for the binary response variable yijt is

P (yijt | zi) =
(eziΓjtβjt)yijt

1 + eziΓjtβjt
=

(eηijt)yijt

1 + eηijt
, i = 1, · · · , n, j = 1, · · · , pt, t = 1, · · · ,m, (3.6)

where ηijt = ziΓjtβjt. With a = Yijt and b = 1, we can re-write the Bernoulli likelihood in

terms of the Pólya-Gamma random variables Ωjt = diag(ω1jt, · · · , ωnjt) as

P (yijt | rjt, β) = eκijtηijt
∫ ∞
0

e−ωijtη
2
ijt/2p(ωijt|rjt + yijt, 0)dωijt, (3.7)

where κijt = yijt − 1/2 and the ωijt ’s are independently distributed according to PG(1, ηijt).

By using to the above properties of the Pólya-Gamma distribution, we can show the full condi-

tional distribution of β is

P (βjt | Z,yjt,Ωjt,Γjt) ∝ P (βjt)exp{
1

2
(ujt − ZΓjtβjt)

TΩjt(ujt − ZΓjtβjt)}, (3.8)

where ujt = (u1jt, · · · , unjt) is a length n vector and its i-th element uijt = (yijt− 1/2)/(ωijt).

3.2.3 Bayesian latent factor model for count data

By parameterizing the NB probability parameterψijt with the expit function, where expit(x) =

1/(1 + exp(−x)), we can apply the same properties of the Pólya-Gamma density as in the lo-
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gistic case [37]. Exploiting the earlier property of the Pólya-Gamma distribution with Equation

(5), it follows that κijt = (yijt + rjt)/2 and the ωi ’s are independently distributed according

to PG(yijt + rjt, ηijt) [37]. The parameter rjt is used to capture the over-dispersion in count

data. In particular, the counts become increasingly dispersed relative to the Poisson distribu-

tion when rjt → 0. The full conditional for βjt is

P (βjt | Z,yjt,Ωjt,Γjt) ∝ P (βjt)exp{
1

2
(ujt − ZΓjtβjt)

TΩjt(ujt − ZΓjtβjt)}, (3.9)

where ujt = (u1jt, · · · , unjt) is a length n vector and its i-th element uijt = (yijt− rjt)/(2ωijt).

To promote conjugate Gibbs update for dispersion parameter rjt in the NB process, we use

Chinese restaurant table (CRT) distribution for sampling of rjt [40] [41]. The approach intro-

duces a sample of latent counts, lijt, underlying each observed count yijt. Regarding sampling

of over-dispersion parameter, conditional on yijt and rjt, lijt has a distribution defined by a

CRT distribution:

lijt =

yijt∑
d=1

µd

µd ∼ Bern
( rjt
rjt + d− 1

)
.

(3.10)

where µd = 1 if a new customer sits in an unoccupied table in a Chinese restaurant (accord-

ing to a so-called "Chinese restaurant process"), and lijt is the total number of occupied tables

in the restaurant after yijt customers. By applying the two-step conjugate Gibbs update for

rjt [40], we first draw lijt according to this CRT distribution. Next, NB distribution can be de-

rived from a random convolution of logarithmic random variables. Specially, they note that,

conditional on rjt and ψijt,

lijt ∼ Poisson[−rjt ln(1− ψijt)]

ψijt ∼
eziΓjtβjt

1 + eziΓjtβjt

(3.11)
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Thus, if we assume aGa(e, f) prior for rjt, then the full conditional for rjt is

rjt | ljt, ψjt ∼ Ga

[
e+

n∑
i=1

lijt , f −
n∑
i=1

ln(1− ψijt)

]
,

the Gibbs update first draws lijt independently from a CRT distribution, and then rjt from its

full conditional Gamma distribution given ljt and ψjt.

3.2.4 Pathway-level data integration

One of the most important features of our approach is the utilization of pathway-level infor-

mation. For the pathway-level analysis, we define G as the collection of pathways, where G =

{G1, · · · , Gs} for spathways. In our pathway model, we incorporate prior biological knowledge

by specifying the factor loading matrix based on the known pathway annotation. Specifically,

if the pathway annotations are disjointed, we have factor loading matrix βjt of dimension p

by s + 1, where p =
∑s

i Gi. Then we put constraints on the factor loading matrix, where the

genes in βjt that belong to certain pathways are free to update, while the remaining elements

in βjt are forced to be zero. For example, we only update the first G1 elements of the first la-

tent factor in the factor loading matrix β fromN(0, 1), and force the remaining elements of the

first latent factor to be zero. To address the issue of identifiability [42], we update the first non-

zero elements of each latent factor using the truncated Gaussian distribution TN(0, 1, 0,∞).

In the pathway-level analysis model, we set the number of latent factors k equal to the number

of pathways. We cluster the patients into k subgroups using a k-means approach [43]. No-

tice that the pathway-level analysis setting helps make the factor loading matrix significantly

sparser and addresses the challenging issue of selecting the number of factors. A graphical de-

scription of the model is shown in Figure 1.

For joint analysis of continuous, binary, and count data, we first focus on the common la-

tent factor matrix Z, since it is shared across the data-type-specific models. By joint analysis

of multiple data, the patient subgroups can be identified using the latent factor matrix Z and

key molecular feature j that drives the sample clustering can be identified in a given set t. In
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particular, the model for feature j of i-th sample is given as

uij − β0j = Γjβjzi + εijt, i = 1, · · · , n, j = 1, · · · , pt, t = 1, · · · ,m, (3.12)

where uij = (uij1, · · · , uijm) is a length m vector, and its t-th element depends on the t-th data

type as

uijt =



yijt, if t-th data type is continuous,

yijt −
1

2
ωijt

, if t-th data type is binary,
yijt − rjt

2ωijt
, if t-th data type is count.

(3.13)

We let β0j = (β0j1, · · · , β0jm)T be the intercept vector; zi = (zi1, · · · , zik) be the latent

variable for patient i; Γj = diag(γj1, · · · , γjm) be a diagonal matrix and its t-th diagonal el-

ement γjt depends on the t-th data type; εijt be the error term with mean 0 and its variance

depends on the t-th data type as

εijt ∼


N(0, σ2jt), if t-th data type is continuous,

N(0, ω−1ijt ), if t-th data type is binary,

N(0, ω−1ijt ), if t-th data type is count.

(3.14)

We define Σ = diag(V ar(εij1), · · · , V ar(εijm)), where Σ is the diagonal variance-covariance

matrix whose diagonal components are variance of random errors. As for prior distributions

of model parameters, we assume βjt ∼ MVN(β0t,Σ0t), σ2jt ∼ IG(v0/2, v0σ
2
0), and γjt ∼

Bernoulli(qt), where the coefficient vectorβjt,σ2jt, the indicator variable γjt follow a multivari-

ate normal distribution, inverse-gamma distribution, and Bernoulli distribution, respectively.

Hence, we have the conditional posterior distributions of variance term depending on the t-th
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data type as the following:

P (σ2jt | Z,yjt, βjt,Γjt) = IG
(V0 + n

2
,
V0σ

2
0 + (yjt − ZΓjtβjt)

T (yjt − ZΓjtβjt)

2

)
,

if t-th data type is continuous,

P (ωijt | Z, βjt,Γjt) ∼ PG(1, ziΓjtβjt), if t-th data type is binary,

P (ωijt | Z,yjt, βjt,Γjt, rjt) ∼ PG(yijt + rjt, ziΓjtβjt), if t-th data type is count.

We have the conditional posterior distributions of βjt as follows.

P (βjt | Z, uijt,Σ,Γjt) ∼MVN(µβ,Σβ),where

µβ = (ΓTjtZ
TΣ−1ZΓjt + Σ−10t )−1(ΓTjtZ

TΣ−1uijt + Σ−10t β0t),

Σβ = (ΓTjtZ
TΣ−1ZΓjt + Σ−10t )−1.

Next, we define βj is an m × k matrix in which the t-th row is (β1jt, · · · , βkjt). In word, it

is βjt without its intercept. By utilizing the Pólya-Gamma mixture of Normal distributions, we

can derive the exact posterior distribution of zi as the following:

P (zi | βj ,yij ,Σ,Γj) ∼MVN(µn,Σn),where

µn = {
p∑
j

(Γjβj)
TΣ−1Γjβj + I}−1{

p∑
j

(Γjβj)
TΣ−1(yij − β0j)},

Σn = {
p∑
j

(Γjβj)
TΣ−1Γjβj + I}−1.

Since there is no closed-form for parameter Γjt, we use the Bayes rule to obtain samples

from their posterior distributions, where we take Γjt from the previous iteration. We define

Γ̃jt = diag(1, 1−γjt, · · · , 1−γjt) as a (k+1)×(k+1) diagonal matrix, and ψ̃ijt = eziΓ̃jtβjt/(1+

eziΓ̃jtβjt). Finally, we have the conditional posterior distributions of the indicator variable term

Γjt depending on the t-th data type as follows.
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P (Γjt | βjt,Z,yjt, σ2jt) ∝
exp{− 1

2σ2jt
(yjt − ZΓjtβjt)

T (yjt − ZΓjtβjt)}

exp{− 1

2σ2jt
(yjt − ZΓjtβjt)T (yjt − ZΓjtβjt)}) + exp{− 1

2σ2jt
(yjt − ZΓ̃jtβjt)T (yjt − ZΓ̃jtβjt)}

,

if t-th data type is continuous,

P (Γjt | βjt,Z,yjt) ∝

∏n
i=1

exp(ziΓjtβjt)
yijt

1 + exp(ziΓjtβjt)∏n
i=1

exp(ziΓjtβjt)
yijt

1 + exp(ziΓjtβjt)
+
∏n
i=1

exp(ziΓ̃jtβjt)
yijt

1 + exp(ziΓ̃jtβjt)

, if t-th data type is binary,

P (Γjt | βjt,Z,yjt, rjt) ∝

∏n
i=1

Γ(yijt + rjt)

Γ(rjt)yijt!
(1− ψijt)rjtψ

yijt
ijt∏n

i=1

Γ(yijt + rjt)

Γ(rjt)yijt!
(1− ψijt)rjtψ

yijt
ijt +

∏n
i=1

Γ(yijt + rjt)

Γ(rjt)yijt!
(1− ψ̃ijt)rjtψ̃ijt

yijt
, if t-th data type is count.
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By introducing Pólya-Gamma latent variables, we derived all the poste-

rior distributions in a closed form, thus we can use the Gibbs sampling algo-

rithm to obtain samples from their posterior distributions in MCMC.

3.3 Simulation

To compare feature selection performance between the pathway-level and

the gene-level analyses, we performed simulation studies on separate data

types including continuous, binary, and count data. We constructed each

data set with 120 molecular features and 50% of them are informative fea-

tures to define the patient subgroups. We assumed that the samples were

from three subgroups of patients (A, B, and C) and each of the subgroups

had 20 samples.

For continuous data, we let patient subgroup A be characterized by the

first 20 genes with an amplified signal. Patient subgroup B was character-

ized by the second 20 genes with reduced signal, and subgroup C was char-

acterized by the third 20 genes with amplified signal. To be specific, features

with amplified and reduced signal were randomly generated from N(µ, 1)

andN(−µ, 1), respectively. We used different signal levels to evaluate model

performance, where we let µ = 0.8, 1, 1.2, 1.5. The background noise was

randomly generated fromN(0, 1).

For the pathway-level analysis, we used the prior knowledge that matches
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with our gene specification in the simulation setting. We define the first 20

genes as pathway 1, the second 20 genes as pathway 2, the third 20 genes as

pathway 3, and the remaining 60 genes as pathway 4. In our pathway model,

we set the number of latent factors equal to the number of pathways (4). To

specify the factor loading matrix based on the known pathway annotation,

we only updated the first 20 elements of the first latent factor, the second 20

elements of the second latent factor, the third 20 elements of the third latent

factor, and the last 60 elements of the fourth latent factor in factor loading

matrix β fromN(0, 1), while forcing the rest of elements of the factor loading

matrix to be zero. To address the issue of identifiability, TN(0, 1, 0,∞) was

used to update the first nonzero element of each latent factor, which is the

first element of the first latent factor, 21st element of the second latent fac-

tor, 41st element of the third latent factor, and 61st element of the last latent

factor in the factor loading matrix. We used the uninformative priors for σ2jt
and γjt, where we set Inverse-gamma(1, 1) for σ2jt andBernoulli(0.5) for the

indicator variable γjt. In each simulation, we ran 20,000 MCMC iterations,

and the first 10 000 were removed as burn-in.

Figure 3.1 A shows the Bayesian information criterion (BIC) values for the

gene-level analysis of the continuous data with N(1, 1) and N(−1, 1) as the

signal, andN(0, 1) as the background. We observed the minimum BIC value

when k = 2. For all the gene-level analysis models, we used BIC to determine

the optimal choice of k.
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Gene level

Signal level Sensitivity (%) Specificity (%)
µ=0.8 30.4 96.7
µ=1.0 57.1 96.7
µ=1.2 82.1 96.7
µ=1.5 100.0 98.3

Pathway level

Signal level Sensitivity (%) Specificity (%)
µ=0.8 60.7 89.9
µ=1.0 82.1 91.5
µ=1.2 96.4 96.7
µ=1.5 96.4 96.7

Sensitivity and specificity for the continuous data withN(µ, 1) andN(−µ, 1) as signal,
N(0, 1) as background.

Table 3.1: Feature selection performance for continuous data

Figures 3.1B and 3.1C present the posterior probabilities that the genomic

features for the continuous data withN(1, 1) andN(−1, 1) as the signal, and

N(0, 1) as the background. Table 3.1 illustrates when signal level µ = 1, and

pathway-level analysis showed significantly higher level of sensitivity (82.1%)

compared to gene-level analysis (57.1%) while specificity was comparable

between two cases (96.7% and 91.5% for gene- and pathway-level analyses,

respectively). It showed that the pathway-level model performs better in de-

tecting informative features especially when signals are weak. This occurred

because the information sharing using the pathway information improved

the statistical power to detect the true signals. As the signal gets stronger,
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Fig. 3.1. Model and variable selection for the continuous data withN(1, 1) andN(−1, 1) as
signal,N(0, 1) as background. (A) The BIC curve as a function of the number of latent

components (k). the gene-level analysis model fits the data best when k = 2. (B): Posterior
probabilities of being informative features when k = 2 for gene-level analysis. Genes with
posterior probabilities greater than 0.5 are considered the driver for the patient subgroup

clustering. (C): Posterior probabilities of being informative features for pathway-level
analysis.

the performance of the gene-level analysis improves and becomes compa-

rable to the pathway-level analysis in the sense of sensitivity. The gene-level

analysis provides slightly higher specificity in general but with a significant

sacrifice of sensitivity.

To set the driver features in the simulation study for binary data, we had

the first 20 genes in patient subgroup A, the second 20 genes in patient sub-

group B, and the third 20 genes in patient subgroup C to be characterized

by a higher probability of being 1. Specifically, the genes with a higher prob-

ability of being 1 were randomly generated from Bernoulli(P ). We let P =

0.4, 0.5, 0.6, 0.7 to check the model performance. The background genes were

randomly generated fromBernoulli(0.02).
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Figure 3.2A shows the BIC values for the gene-level analysis of the binary

data with Bernoulli(0.4) as signal and Bernoulli(0.02) as the background.

The best model fit was obtained when k = 2 based on BIC. Figures 3.2B and

3.2C demonstrate that the pathway-level model provided higher sensitivity in

distinguishing informative features from uninformative features compared

to the gene-level model when signals were generated from Bernoulli(0.4).

Table 3.2 further indicates that the proposed pathway-level method can achieve

high sensitivity and specificity in detecting the true signals compared to the

gene-level approach.
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Fig. 3.2 Model and variable selection for the binary data withBernoulli(0.4) as signal,
Bernoulli(0.02) as background. (A) BIC and the gene-level analysis model fits the data best

when k = 2. (B): Posterior probabilities of being informative features when k = 2 for
gene-level analysis. Genes with posterior probabilities greater than 0.5 are considered the
driver for the patient subgroup clustering. (C): Posterior probabilities of being informative

features for pathway-level analysis.
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Gene level

Signal level Sensitivity (%) Specificity (%)
P=0.4 51.8 100.0
P=0.5 89.4 100.0
P=0.6 96.4 100.0
P=0.7 100.0 100.0

Pathway level

Signal level Sensitivity (%) Specificity (%)
P=0.4 96.4 100.0
P=0.5 100.0 100.0
P=0.6 100.0 100.0
P=0.7 100.0 100.0

Sensitivity and specificity for the binary data withBernoulli(S) as signal,Bernoulli(0.02)
as background.

Table 3.2: Feature selection performance for binary data

For the simulation of count data, we let patient subgroup A be character-

ized by the first 20 genes with amplified signal, patient subgroup B be charac-

terized by the second 20 genes with reduced signal, and subgroup C be char-

acterized by the third 20 genes with amplified signal. Specifically, the count

data for genes with amplified- and reduced-signal were randomly generated

from NB(µ = µ1) and NB(µ = 1), respectively. We set different signal lev-

els to evaluate model performance, where we set µ1 = 7, 9, 11, 13. The data

for background genes were randomly generated from aNB(µ = (µ1+1)/2).

Figure 3.3A shows the BIC values for the gene-level analysis of the count data

with NB(µ = 11) and NB(µ = 1) as the signal, NB(µ = 6) as the back-
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ground, respectively. The best model fit was obtained when k = 2 based on

BIC. Figures 3.3B and 3.3C demonstrate better performance for the pathway-

level model in detecting true signal genes. Table 3.3 further confirms this ob-

servation across different signal-to-noise ratios.

Gene level

Signal level Sensitivity (%) Specificity (%)
µ1 = 7, µ2 = 1 30.4 100.0
µ1 = 9, µ2 = 1 48.2 100.0
µ1 = 11, µ2 = 1 69.6 100.0
µ1 = 13, µ2 = 1 78.6 100.0

Pathway level

Signal level Sensitivity (%) Specificity (%)
µ1 = 7, µ2 = 1 87.5 98.9
µ1 = 9, µ2 = 1 89.3 100.0
µ1 = 11, µ2 = 1 92.9 100.0
µ1 = 13, µ2 = 1 96.4 100.0

Sensitivity and specificity for the count data withNB(µ = µ1) andNB(µ = 1) as signal,
NB(µ = (µ1 + 1)/2) as background.

Table 3.3: Feature selection performance for count data
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Fig. 3.3 Model and variable selection for the count data withNB(µ = 11) andNB(µ = 1)

as signal,NB(µ = 6) as background. (A) BIC and the gene-level analysis model fits the data
best when k = 2. (B): Posterior probabilities of being informative features when k = 2 for
gene-level analysis. Genes with posterior probabilities greater than 0.5 are considered the
driver for the patient subgroup clustering. (C): Posterior probabilities of being informative

features for pathway-level analysis.
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Finally, we performed a simulation study for the joint analysis of contin-

uous, binary, and count data. We used the same setting as the separate data

analyses above, where each data set had 120 genomic features and 50% of

them were informative features to define the patient subgroups. We defined

that these samples were from three patient subgroups (A, B, and C) and each

of the subgroups has 20 samples. To set the signal genes, we set the first 20

genes in patient subgroup A, the second 20 genes in patient subgroup B, and

the third 20 genes in patient subgroup C to be characterized by signal for each

data. Specifically, we usedN(0.8, 1) andN(−0.8, 1) as the signal, andN(0, 1)

as the background for the continuous data;Bernoulli(0.6) as the signal, and

Bernoulli(0.02) as the background for the binary data; NB(µ = 11) and

NB(µ = 1) as the signal, and NB(µ = 6) as the background for the count

data. For the gene-level analysis of the integrated data analysis, we observed

the minimum BIC value when the number of latent components k is equal to

2. For the pathway-level analysis, we set k = 4 as the number of pathways.

Table 3.4 presents feature selection performance comparing integrated data

analysis to separate data analysis. We observed higher sensitivity and speci-

ficity for integrated data analysis overall, demonstrating the benefit of added

information through joint data analysis. In addition, pathway-level analysis

was superior in selecting key molecular features compared to separate data

analysis, especially when it came to separating out the true signal from the

background.
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Separated data analysis Integrated data analysis

Gene level Pathway level Gene level Pathway level

Signal level Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity
Continuous data: µ = 0.8 30.4 96.7 60.7 89.9 50.9 96.7 71.9 92.9
Binary data: P = 0.6 96.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Count data: µ = 11, µ = 1 69.6 100.0 92.9 100.0 96.4 98.3 98.3 93.3

Samples are drawn fromN(0.8, 1) andN(−0.8, 1) as signal,N(0, 1) as background for
continuous data;Bernoulli(0.6) as signal,Bernoulli(0.02) as background for somatic

mutation data;NB(µ = 11) andNB(µ = 1) as signal,NB(µ = 6) as background for gene
expression data, respectively. For gene-level analysis, we observe the minimum BIC value

when k is equal to 2 for each signal level. For pathway-level analysis, k is set as 4.

Table 3.4: Feature selection performance for integrated data analysis and
separate data analysis
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3.4 Real data analysis

In this section, we used a cohort of high-grade serous ovarian cancer (HG-

SOC) patients from the TCGA project [2] to demonstrate the benefit of the

proposed Bayes-InGRiD approach. Specifically, gene expression (z-scores)

and copy number alteration measurements (relative linear copy-number val-

ues) for 489 patients were obtained from the cBio Cancer Genomics Portal

(http://cbioportal.org/). For pathway information, we used KEGG pathway

annotations from the MSigDB database [?] [?]. In this analysis, we considered

only the 1045 genes from the 15 previously profiled cancer signaling path-

ways [44], and the importance of these pathways has been discussed in the

previous literature [45] [46].

To deal with the issue of overlapping genes among the 15 signaling path-

ways, we implemented the gene-cluster approach employed by InGRiD [6].

Specifically, if a gene is shared by multiple gene sets, this gene would be re-

allocated to a new pathway using the Partitioning Around Medoids (PAM) al-

gorithm [47]. Two additional gene sets were identified by applying the gene-

cluster approach, which are defined as "MAPK & APOPTOSIS" and "WNT &

HEDGEHOG" gene sets. The "MAPK & APOPTOSIS" gene set mainly contains

genes from the MAPK (62 genes) and the APOPTOSIS pathways (42 genes),

and most genes in the "WNT & HEDGEHOG" gene set are from the WNT_SIGNALING

(46 genes) and the HEDGEHOG_SIGNALING (32 genes) pathways. The gene
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lists of the two additional gene sets can be found in Table S1 and S2 of the

Supplementary Materials. We used the prior Bernoulli(0.5) for the indica-

tor variable Γjt, j = 1, ..., pt, t = 1, ...,m, and we ran 20,000 MCMC itera-

tions with first 10,000 iterations considered as burn-in. The optimal number

of clusters k was the one that maximizes the average silhouette over a range

of possible values for k. We chose k = 2 by comparing k = 1, · · · , 10.

The Bayes-InGRiD results for the mRNA expression data are presented

in Table 3.5. Gene sets are selected if more than one gene is selected. We

ranked the pathway based on the weighted averages of factor loadings of se-

lected genes , namely ’pathway coefficient’. In Bayes-InGRiD, both gene-level

and pathway-level analyses are performed simultaneously within the unified

model, since prior pathway knowledge is embedded in the latent factor set-

ting. In addition, pathway information guides the factor loading specifica-

tion and the number of latent factors in the model. We use factor loading to

select key genes, and we use the weighted average of absolute factor loading

values to determine pathway ranking. Bayes-InGRiD identified 387 unique

genes from 14 gene sets based on the mRNA expression data. CELL_CYCLE

and CELL_ADHESION_MOLECULES_CAMS pathways are the two pathways

with the highest pathway coefficient and the number of genes selected.
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Genes selected Pathway coefficient Top three genes
CELL_ADHESION_MOLECULES_CAMS 76 (122) 0.524 HLA.DRB1 HLA.DPB1 HLA.DPA1
CELL_CYCLE 69 (86) 0.506 ORC1 CDC25C PLK1
NUCLEOTIDE_EXCISION_REPAIR 6 (20) 0.493 CUL4A ERCC5 ERCC1
MAPK_SIGNALING_PATHWAY 129 (192) 0.431 FGF4 PLA2G12B CACNG3
MISMATCH_REPAIR 4 (8) 0.367 MSH6 MSH2 MSH3
APOPTOSIS 7 (39) 0.353 BIRC2 ENDOD1 BIRC3
WNT_SIGNALING_PATHWAY 5 (21) 0.321 APC CTNNBIP1 CSNK2B
MTOR_SIGNALING_PATHWAY 8 (31) 0.301 PRKAA1 RICTOR RPTOR
NOTCH_SIGNALING_PATHWAY 11 (37) 0.280 DLL3 PSENEN PSEN2
WNT&HEDGEHOG 11 (85) 0.237 PCNA PLCB1 PLCB4
MAPK&APOPTOSIS 20 (74) 0.224 PPP3CA NFKB1 CASP3
JAK_STAT_SIGNALING_PATHWAY 18 (121) 0.214 JAK2 IFNB1 IFNE
PHOSPHATIDYLINOSITOL_SIGNALING_SYSTEM 14 (59) 0.196 ITPR2 DGKH PIP5K1A
HEDGEHOG_SIGNALING_PATHWAY 9 (20) 0.187 SUFU GAS1 STK36
BASE_EXCISION_REPAIR 0 (25)
NON_HOMOLOGOUS_END_JOINING 0 (13)
TGF_BETA_SIGNALING 0 (51)

Note: Pathways are ranked based on ’Pathway coefficient’, which are their weighted averages
of factor loadings of selected genes. ’Genes selected’ refers to the the number of genes

selected in each pathway, total number of genes in each pathway are also included within
parenthesis in the column ’Genes selected’. Genes that rank top three in coefficient

estimates would be shown in column ’Top three genes’

Table 3.5: Top pathways and genes selected for the mRNA expression data
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Fig. 3.4 Heatmap of the genes with posterior probability> 0.5 for mRNA data. The genomic
pattern for gene expression is shown in the heatmap (red, high-level expression; blue,

low-level expression). Column color bar labeled ’subtype’ contains 4 expression subtypes
classified in annotated TCGA subtypes including: differentiated, immunoreactive,

mesenchymal and proliferative. Column color bar labeled ’cluster’ shows the patient
subgroups identified using Bayes-InGRiD. Row color bar shows the 14 pathways with genes

selected.

49



To make sense of the patient subgrouping, we used the 4 expression sub-

types classified in annotated TCGA subtypes by Noushmehr and Malta [48],

where the patients are clustered into differentiated, immunoreactive, mes-

enchymal, and proliferative subtypes. Figure 3.4 demonstrates the heatmap

of the selected genes for mRNA gene expression data. The integrative clus-

ter 1 is highly correlated with immunoreactive and mesenchymal expression

subtypes based on the overlapping color bars in Figure 3.4. The integrative

cluster 2 is strongly correlated with the expression subtypes differentiated

and proliferative. Figure 3.4 also presents different patterns of alterations

across the two clusters especially in "MAPK & APOPTOSIS" gene set, CELL_CYCLE

pathway, and CELL_ADHESION_MOLECULES_CAMS pathway. Figure S2 in

the Supplementary Materials indicates the coefficients for the selected genes

in each pathway.

Pathway and gene selection results of the copy number data are presented

in Table 6. Bayes-InGRiD identified 166 unique genes from the 14 gene sets

using the copy number data. While CELL_ADHESION_MOLECULES_CAMS

and CELL_CYCLE pathways are the two pathways with the highest pathway

coefficient in the gene expression data, they have the lowest pathway coef-

ficient in copy number data. Figure S3 in the supplementary Materials indi-

cates that the coefficients are low for almost all the selected genes in those

two pathways. Furthermore, it demonstrates the importance of incorporat-

ing prior biological knowledge into our estimate for the posterior inference of
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genes and pathways. More specifically, pathways such as CELL_ADHESION_MOLECULES_CAMS

and CELL_CYCLE with dense and weak signals can be paid less attention to

although 22 out of 122 genes are selected for that pathway. In contrast to the

dense weak signal we found in CELL_ADHESION_MOLECULES_CAMS and

CELL_CYCLE pathways, MISMATCH_REPAIR, APOPTOSIS, MTOR_SIGNALING_PATHWAY,

and WNT_SIGNALING_PATHWAY are the pathways with only a few genes se-

lected, however, the relatively high coefficients for the selected genes indicate

sparse and strong signals for these pathways. Figure 3.5 shows the heatmap

of the selected genes for copy number alteration data, we can observe differ-

ent patterns of alterations in the two clusters, especially in "MTOR_SIGNALING"

pathway.
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Genes selected Pathway coefficient Top three genes
MISMATCH_REPAIR 2 (8) 0.574 MSH2 MSH6
JAK_STAT_SIGNALING_PATHWAY 24 (121) 0.438 IFNA6 IFNA2 IFNE
APOPTOSIS 6 (39) 0.354 BIRC2 BIRC3 ENDOD1
MTOR_SIGNALING_PATHWAY 3 (31) 0.352 RICTOR PRKAA1 MTOR
WNT_SIGNALING_PATHWAY 2 (21) 0.284 APC CAMK2A
PHOSPHATIDYLINOSITOL_SIGNALING_SYSTEM 13 (59) 0.250 PLCZ1 PIK3C2G ITPR2
NUCLEOTIDE_EXCISION_REPAIR 5 (20) 0.209 CUL4A ERCC5 ERCC2
WNT&HEDGEHOG 20 (85) 0.205 PLCB4 PLCB1 BMP2
HEDGEHOG_SIGNALING_PATHWAY 5 (20) 0.191 PTCH1 GAS1 SUFU
NOTCH_SIGNALING_PATHWAY 23 (37) 0.182 DLL3 PSENEN NUMBL
MAPK&APOPTOSIS 27 (74) 0.127 NFKB1 PPP3CA MAPK10
MAPK_SIGNALING_PATHWAY 8 (192) 0.126 RASGRP4 MAP4K1 PTPRR
CELL_CYCLE 6 (86) 0.103 CCNE1 CDK1 FZR1
CELL_ADHESION_MOLECULES_CAMS 22 (122) 0.079 CDH4 CLDN23 ICAM1
BASE_EXCISION_REPAIR 0 (25)
NON_HOMOLOGOUS_END_JOINING 0 (13)
TGF_BETA_SIGNALING 0 (51)

Note: Pathways are ranked based on ’Pathway coefficient’, which are their weighted averages
of factor loadings of selected genes. ’Genes selected’ refers to the the number of genes

selected in each pathway, total number of genes in each pathway are also included within
parenthesis in the column ’Genes selected’. Genes that rank top three in coefficient

estimates would be shown in column ’Top three genes’

Table 3.6: Top pathways and genes selected for the copy number data

52



Fig. 3.5 Heatmap of the selected genes for the copy number data. The genomic pattern for
gene expression is shown in the heatmap (red, high-level expression; blue, low-level

expression). Column color bar labeled ’subtype’ contains 4 expression subtypes classified in
annotated TCGA subtypes including: differentiated, immunoreactive, mesenchymal and
proliferative. Column color bar labeled ’cluster’ shows the patient subgroups identified

using Bayes-InGRiD. Row color bar shows the 14 pathways with genes selected.
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3.5 Conclusions

In this aim, we present Bayes-InGRiD, a Bayesian sparse latent factor model

for the simultaneous identification of cancer patient subtypes and key molec-

ular features within a unified framework, based on the integrative analysis of

continuous, binary, and count data. Bayes-InGRiD does not only improve the

accuracy of patient subgroup and key molecular feature identification, but

also improves biological interpretation by using pathway information. The

results from the simulation studies revealed the superiority of the pathway-

level analyses over gene-level analyses in identifying key molecular features

for both separate data analysis and integrative data analysis, especially when

the signal-to-noise ratio is low. Additionally, we observed higher sensitivity

and specificity in integrated data analysis compared to separate data analy-

sis, demonstrating the benefit of added information through joint data anal-

ysis. Bayes-InGRiD outperforms the gene-level approach and it provides a

means for us to incorporate additional pathway information into the infer-

ence of gene and pathway association. In summary, Bayes-InGRiD can be

a powerful approach for investigating cancer patient subgroups and their

molecular features.
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4. SPECIFIC AIM 2

For Aim 2, Out goal is to develop a comprehensive software implementing the

method developed in Aim 1, and apply it to simultaneously identify sample

clustering and key features in cancer genomic study. We aim to develop an

user-friendly function called "BayesInGRiD" and provide it as a part of the R

package "InGRiD".

4.1 Software Development

We have previously developed a unified statistical framework called "InGRiD"

(Semi-supervised Identification of Cancer Subgroups using Survival Outcomes

and Overlapping Grouping Information) [6] for pathway-guided identifica-

tion of cancer patient subgroups. InGRiD has advantages of utilizing survival

outcomes and addressing the issue of overlapping grouping information. I

helped developing the R package called "InGRiD" in 2018 and it is currently

publicly available in our research group GitHub webpage (https://dongjunchung.github.io/INGRID/).

The following document is the vignette for the R package "InGRiD":



1   Overview 

 

This vignette provides basic information about the package for the pathway-guided 
identification of cancer subtypes. The proposed approach improves identification of 
molecularly-defined subgroups of cancer patients by utilizing information from pathway 
databases in the following four aspects. 

(1) Integration of genomic data at the pathway-level improves robustness and stability 
in identification of cancer subgroups and driver molecular features; 

(2) Summarizing multiple genes and genomic platforms at the pathway-level can 
potentially improve statistical power to identify important driver pathways because 
moderate signals in multiple genes can be aggregated; 

(3) In INGRID, we consider the ‘’cooperation’’ or ‘’interaction’’ between pathways, 
instead assuming that each pathway operates independently during the cancer 
progression, which may be unrealistic; 

(4)  INGRID allows simultaneous inference in multiple biological layers within a 
statistically rigorous and unified framework without any additional laborious 
downstream analysis. 

The package can be loaded with the command: 

library(INGRID) 

 

2   Input Data 

 

The package requires that the response consist of 4 components: (1) gene expression z-
scores in the form of a either data frame or matrix; (2) survival time and censoring 
indicator in the form of vectors; (3) pathway information in the form of a list, where each 
element is a vector of the names of gene belonging to the pathway. 

In this vignette, a small subset of the Cancer Genome Atlas (TCGA) data is used to illustrate 
the ‘INGRID’ package. Specifically, we consider z-scores for the mRNA expression data of 
389 genes for 50 randomly selected high-grade serous ovarian cancer patients, along with 
their survival times and censoring statuses. This dataset is included as an example data 
‘TCGA_full’ in the ‘’ package. This TCGA data was originally downloaded from the cBio 
Portal (http://www.cbioportal.org/) using the R package ‘cgdsr’ and here we consider z-
scores for the mRNA expression data. The ‘TCGA_full’ is a list object with four elements, 
including the ‘geneexpr’ data frame of z-scores for the mRNA expression, the ‘t’ vector of 
the survival time, the ‘d’ vector of the censoring status indicator, and the ‘pathList’ list of 



the pathway information. The ‘pathList’ has 15 elements, each of which contains names of 
genes belonging to each pathway. 

`This dataset can be loaded as follows: 

library(INGRID) 
data(TCGA_full) 
TCGA_full$geneexpr[1:5,1:5] 

##        ACSS2        GCK       PGK2       PDHB      PDHA2 
## 1 -0.6521542 -1.1418104  0.5335282 -1.8419419 -0.1576928 
## 2 -0.4066970 -0.8228400 -0.9112831  0.2184275 -1.1624208 
## 3 -0.1197093 -0.6620549  0.5464014 -3.0176011 -1.0981827 
## 4  1.5466998 -0.5097975 -0.6933681  0.4179899  0.8276257 
## 5  0.1488380 -0.6588924  0.2642286 -1.3683970 -0.9166555 

TCGA_full$t[1:5] 

## [1] 43.89 40.97 49.12  2.00 46.59 

TCGA_full$d[1:5] 

## [1] 1 1 0 1 0 

TCGA_full$pathList[1] 

## $KEGG_HEDGEHOG_SIGNALING_PATHWAY 
##  [1] "CSNK1A1L" "HHIP"     "PTCH2"    "GAS1"     "WNT3A"    "ZIC2"     
##  [7] "WNT9B"    "WNT9A"    "LRP2"     "CSNK1G1"  "WNT2B"    "WNT11"    
## [13] "WNT10B"   "IHH"      "SMO"      "WNT10A"   "WNT4"     "CSNK1G3"  
## [19] "SHH"      "WNT1"     "CSNK1D"   "RAB23"    "CSNK1A1"  "CSNK1G2"  
## [25] "CSNK1E"   "BMP8A"    "GSK3B"    "WNT7A"    "BTRC"     "WNT7B"    
## [31] "WNT8A"    "WNT8B"    "WNT2"     "WNT3"     "PRKX"     "WNT5A"    
## [37] "WNT6"     "FBXW11"   "STK36"    "WNT5B"    "GLI1"     "DHH"      
## [43] "PRKACA"   "PRKACB"   "SUFU"     "BMP4"     "PRKACG"   "BMP2"     
## [49] "GLI2"     "BMP7"     "GLI3"     "PTCH1"    "BMP8B"    "WNT16"    
## [55] "BMP5"     "BMP6" 

 

3   Gene Regrouping 

 

Gene Regrouping step is to redefine the gene set membership of genes. First, the gene 
remains to be as a member if it is a core member of the gene set. A gene is defined as a 
“core member” of a gene set if it belongs to only that gene set. Second, if the gene maps to 
more than one gene sets, then this gene is re-assigned to one of the gene sets based on the 
k-medoids algorithm minimizing the binary distance between genes within cluster 
distance. 



geneRegroup.results <- geneRegroup(TCGA_full$pathList) 
geneRegroup.results 

## Summary: Gene regrouping results (class: RegroupGene) 
## -------------------------------------------------- 
## Gene sets before the gene regrouping 
## List of 15 
##  $ KEGG_HEDGEHOG_SIGNALING_PATHWAY           : chr [1:56] "CSNK1A1L" "HHIP
" "PTCH2" "GAS1" ... 
##  $ KEGG_MTOR_SIGNALING_PATHWAY               : chr [1:52] "TSC2" "IGF1" "R
PS6KA6" "MTOR" ... 
##  $ KEGG_NOTCH_SIGNALING_PATHWAY              : chr [1:47] "HES5" "DTX3" "N
OTCH4" "DTX3L" ... 
##  $ KEGG_NUCLEOTIDE_EXCISION_REPAIR           : chr [1:44] "MNAT1" "POLE4" 
"ERCC4" "POLE3" ... 
##  $ KEGG_CELL_CYCLE                           : chr [1:128] "CDC16" "CDC7" 
"CDC45" "GADD45B" ... 
##  $ KEGG_CELL_ADHESION_MOLECULES_CAMS         : chr [1:134] "CDH5" "JAM3" "
CDH3" "NLGN3" ... 
##  $ KEGG_JAK_STAT_SIGNALING_PATHWAY           : chr [1:155] "STAT3" "STAT4" 
"STAT1" "STAT2" ... 
##  $ KEGG_PHOSPHATIDYLINOSITOL_SIGNALING_SYSTEM: chr [1:76] "PLCB2" "CALM2" 
"INPP1" "PLCB1" ... 
##  $ KEGG_MAPK_SIGNALING_PATHWAY               : chr [1:267] "JUN" "MEF2C" "
ELK4" "ELK1" ... 
##  $ KEGG_MISMATCH_REPAIR                      : chr [1:23] "MLH3" "POLD1" "
MLH1" "POLD2" ... 
##  $ KEGG_APOPTOSIS                            : chr [1:88] "CASP10" "CASP9" 
"CASP8" "CASP7" ... 
##  $ KEGG_WNT_SIGNALING_PATHWAY                : chr [1:151] "JUN" "LRP5" "L
RP6" "PPP3R2" ... 
##  $ KEGG_BASE_EXCISION_REPAIR                 : chr [1:35] "NEIL2" "MPG" "S
MUG1" "XRCC1" ... 
##  $ KEGG_NON_HOMOLOGOUS_END_JOINING           : chr [1:14] "XRCC4" "MRE11A" 
"POLL" "POLM" ... 
##  $ KEGG_TGF_BETA_SIGNALING_PATHWAY           : chr [1:86] "TFDP1" "NOG" "T
NF" "GDF7" ... 
## -------------------------------------------------- 
## Gene sets after the gene regrouping 
## List of 17 
##  $ gene_set_16                               : chr [1:97] "CSNK1A1L" "WNT3
A" "WNT9B" "WNT9A" ... 
##  $ gene_set_17                               : chr [1:80] "PRKX" "PRKACA" 
"PRKACB" "PRKACG" ... 
##  $ KEGG_HEDGEHOG_SIGNALING_PATHWAY           : chr [1:20] "HHIP" "PTCH2" "
GAS1" "ZIC2" ... 
##  $ KEGG_MTOR_SIGNALING_PATHWAY               : chr [1:32] "TSC2" "IGF1" "M
TOR" "EIF4B" ... 
##  $ KEGG_NOTCH_SIGNALING_PATHWAY              : chr [1:37] "HES5" "DTX3" "N
OTCH4" "DTX3L" ... 



##  $ KEGG_NUCLEOTIDE_EXCISION_REPAIR           : chr [1:22] "MNAT1" "ERCC4" 
"ERCC3" "ERCC6" ... 
##  $ KEGG_CELL_CYCLE                           : chr [1:91] "CDC16" "CDC7" "
CDC45" "DBF4" ... 
##  $ KEGG_CELL_ADHESION_MOLECULES_CAMS         : chr [1:134] "CDH5" "JAM3" "
CDH3" "NLGN3" ... 
##  $ KEGG_JAK_STAT_SIGNALING_PATHWAY           : chr [1:130] "STAT3" "STAT4" 
"STAT1" "STAT2" ... 
##  $ KEGG_PHOSPHATIDYLINOSITOL_SIGNALING_SYSTEM: chr [1:61] "CALM2" "INPP1" 
"PLCD1" "CALM1" ... 
##  $ KEGG_MAPK_SIGNALING_PATHWAY               : chr [1:201] "MEF2C" "ELK4" 
"ELK1" "JUND" ... 
##  $ KEGG_MISMATCH_REPAIR                      : chr [1:8] "MLH3" "MLH1" "MS
H2" "MSH3" ... 
##  $ KEGG_APOPTOSIS                            : chr [1:42] "CASP10" "CASP9" 
"CASP8" "CASP7" ... 
##  $ KEGG_WNT_SIGNALING_PATHWAY                : chr [1:70] "LRP5" "LRP6" "S
FRP2" "SFRP1" ... 
##  $ KEGG_BASE_EXCISION_REPAIR                 : chr [1:23] "NEIL2" "MPG" "S
MUG1" "XRCC1" ... 
##  $ KEGG_NON_HOMOLOGOUS_END_JOINING           : chr [1:10] "XRCC4" "MRE11A" 
"POLM" "NHEJ1" ... 
##  $ KEGG_TGF_BETA_SIGNALING_PATHWAY           : chr [1:45] "NOG" "GDF7" "IN
HBB" "INHBC" ... 
## -------------------------------------------------- 
## Comparison of the gene set before and after gene regrouping 
##             s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 
## gene_set_16 32  2 10 22 26  0  6  4  0  15   0  54  12   4  32 
## gene_set_17  4 18  0  0 11  0 19 11 66   0  46  27   0   0   9 
##  
## where 
##                                  gene_set_name 
## s1             KEGG_HEDGEHOG_SIGNALING_PATHWAY 
## s2                 KEGG_MTOR_SIGNALING_PATHWAY 
## s3                KEGG_NOTCH_SIGNALING_PATHWAY 
## s4             KEGG_NUCLEOTIDE_EXCISION_REPAIR 
## s5                             KEGG_CELL_CYCLE 
## s6           KEGG_CELL_ADHESION_MOLECULES_CAMS 
## s7             KEGG_JAK_STAT_SIGNALING_PATHWAY 
## s8  KEGG_PHOSPHATIDYLINOSITOL_SIGNALING_SYSTEM 
## s9                 KEGG_MAPK_SIGNALING_PATHWAY 
## s10                       KEGG_MISMATCH_REPAIR 
## s11                             KEGG_APOPTOSIS 
## s12                 KEGG_WNT_SIGNALING_PATHWAY 
## s13                  KEGG_BASE_EXCISION_REPAIR 
## s14            KEGG_NON_HOMOLOGOUS_END_JOINING 
## s15            KEGG_TGF_BETA_SIGNALING_PATHWAY 

The table above shows the number of genes in a new gene set that is from each of the 
original gene sets. For instance, the new gene set “gene_set_16” has 32 gene from s1, which 



is KEGG_HEDGEHOG_SIGNALING_PATHWAY, 2 genes from s2, which is 
KEGG_MTOR_SIGNALING_PATHWAY, and so on. 

To refine the candidate set of genes, we first conduct a supervised pre-filtering by fitting a 
Cox regression model of the mRNA expression measure of each gene on the patient 
survival. Only the gene expressions associated with patient survival at p-values smaller 
than a pre-specified cut-off are included in the subsequent analysis. By default, p = 0.5 is 
used as cut-off point. 

prefilter.results <- prefilter( data=TCGA_full$geneexpr  
                                time=TCGA_full$t,  
                                status=TCGA_full$d, 
                                plist=geneRegroup.results@gset )  
prefilter.results 

## Summary: Pre-filtering results (class: Prefiltered) 
## -------------------------------------------------- 
## Number of genes before prefiltering: 4944 
## Number of genes after prefiltering: 588 
## -------------------------------------------------- 

 

4   Gene Selection 

 

In order to select key genes associated with patient survivals and effectively summarize 
them by taking into account correlation among them, we fit a sparse partial least squares 
(SPLS) Cox regression model of patient survivals on gene expression measurements for 
each pathway. 

Using the object ‘prefilter.results’, gene-level analysis result can be generated with 
‘selectGene’ function as follows. 

gene.results <- selectGene(prefilter.results)  
gene.results 

## Summary: Gene-level analysis results (class: FitGene) 
## -------------------------------------------------- 
## Number of prefiltered genes: 588 
## Number of selected genes: 58 
## -------------------------------------------------- 

coef(gene.results) 

## $gene_set_16 
##   gene_set coefficient_estimate 
## 1    POLD3          -0.07362205 
## 2    POLD2          -0.08861809 
## 3     FEN1          -0.07550862 



## 4  RPS6KB2          -0.07542887 
## 5     BTRC           0.08027315 
## 6     BMP4           0.07546504 
##  
## $gene_set_17 
##   gene_set coefficient_estimate 
## 1  RPS6KA2            0.2275404 
## 2   PPP3CA            0.2302891 
##  
## $KEGG_HEDGEHOG_SIGNALING_PATHWAY 
##   gene_set coefficient_estimate 
## 1     GAS1            0.2149472 
## 2  CSNK1G1            0.1606427 
## 3  CSNK1G3            0.1681516 
## 4   CSNK1D           -0.1455008 
##  
## $KEGG_MTOR_SIGNALING_PATHWAY 
##   gene_set coefficient_estimate 
## 1    PDPK1           0.09866496 
## 2    VEGFA          -0.10331126 
## 3    CAB39           0.09485034 
##  
## $KEGG_NOTCH_SIGNALING_PATHWAY 
##   gene_set coefficient_estimate 
## 1   NOTCH4           -0.1959747 
##  
## $KEGG_NUCLEOTIDE_EXCISION_REPAIR 
##   gene_set coefficient_estimate 
## 1   GTF2H4           -0.1623209 
## 2     DDB2           -0.1579492 
##  
## $KEGG_CELL_CYCLE 
##   gene_set coefficient_estimate 
## 1     MCM3           -0.1615686 
## 2  ANAPC11           -0.1475621 
##  
## $KEGG_CELL_ADHESION_MOLECULES_CAMS 
##   gene_set coefficient_estimate 
## 1  HLA-DOB           -0.2238179 
##  
## $KEGG_JAK_STAT_SIGNALING_PATHWAY 
##   gene_set coefficient_estimate 
## 1    IL21R           -0.1412788 
## 2    SOCS5            0.1563292 
##  
## $KEGG_PHOSPHATIDYLINOSITOL_SIGNALING_SYSTEM 
##   gene_set coefficient_estimate 
## 1    PLCG1            0.1200187 
##  
## $KEGG_MAPK_SIGNALING_PATHWAY 



##   gene_set coefficient_estimate 
## 1  PLA2G2D           -0.2530461 
##  
## $KEGG_MISMATCH_REPAIR 
##   gene_set coefficient_estimate 
## 1    SSBP1           -0.1836033 
## 2     MLH3           -0.1172121 
##  
## $KEGG_APOPTOSIS 
##   gene_set coefficient_estimate 
## 1    APAF1           0.08014538 
## 2    IRAK2          -0.08003993 
##  
## $KEGG_WNT_SIGNALING_PATHWAY 
##   gene_set coefficient_estimate 
## 1      APC            0.2507789 
##  
## $KEGG_BASE_EXCISION_REPAIR 
##   gene_set coefficient_estimate 
## 1      UNG          -0.09162912 
## 2    PARP4           0.08610522 
## 3    APEX1          -0.09058163 
## 4    MUTYH          -0.09184070 
##  
## $KEGG_NON_HOMOLOGOUS_END_JOINING 
##   gene_set coefficient_estimate 
## 1    RAD50            0.1191509 
##  
## $KEGG_TGF_BETA_SIGNALING_PATHWAY 
##    gene_set coefficient_estimate 
## 1     INHBC           0.01915876 
## 2     INHBA           0.02819471 
## 3    ACVR2A           0.02383607 
## 4     AMHR2          -0.02285503 
## 5    BMPR1A           0.03172572 
## 6     THBS1           0.02923280 
## 7    SMURF1           0.01971317 
## 8      COMP           0.04560903 
## 9     THBS4           0.02996526 
## 10      ID1           0.03262260 
## 11      ID4          -0.03161342 
## 12    NODAL          -0.02837672 
## 13     CHRD          -0.01828115 
## 14      ID3           0.03327949 
## 15    LTBP1           0.04072656 
## 16   LEFTY1          -0.03924803 
## 17   LEFTY2           0.02425622 
## 18     GDF6           0.04489707 
## 19      SP1           0.02523787 
## 20   ZFYVE9           0.02635107 



## 21  ZFYVE16           0.01842494 
## 22    THBS2           0.03912128 
## 23      DCN           0.03840006 

The list of the SPLS regression coefficients of cancer-related genes can be generated using 
the function . 

The function ‘selectGene’ has two main tuning parameters: ‘eta’ represents the sparsity 
tuning parameter and ‘K’ is the number of hidden (latent) components. Parameters can be 
chosen by (𝑣-fold) cross-validation. Users can search the range for these parameters and 
the cross-validation procedure searches within these ranges. Note that ‘’ should have a 
value between 0 and 1 while ‘’ is integer-valued and can range between 1 and min{p, (v-1) 
n / v} , where 𝑝 is the number of genes and 𝑛 is the sample size. For example, if 10-fold 
cross-validation is used (default), ‘K’ should be smaller than min{p, 0.9n}. For the TCGA 
data, we set the number of folds as 5, ‘K’ as 5, and search the optimal ‘’ in the range between 
0.1 and 0.9. 

 

5   Pathway Selection 

 

Next, in order to identify a parsimonious set of pathways associated with patient survivals, 
we fit a LASSO-penalized Cox regression on latent components derived from all the 
pathways. Specifically, a pathway is selected if at least one of its latent components has 
non-zero LASSO coefficient estimate. 

This approach has the following two strengths: First, the latent components generated 
from the SPLS step preserve pathway structure and also reflect correlation among genes 
and their association with survival outcomes. Second, this approach can potentially 
improve the stability of estimation in the subsequent analysis. 

Using the ‘gene.results’, pathway-level analysis result can be generated with ‘selectPath’ 
function. 

path.results <- selectPath(gene.results) 
path.results 

## Summary: Pathway-level analysis results (class: FitPath) 
## -------------------------------------------------- 
## Number of all pathways: 17 
## Number of selected pathways: 8 
##  
## List of selected pathways: 
##  gene_set_16 
##  gene_set_17 
##  KEGG_HEDGEHOG_SIGNALING_PATHWAY 
##  KEGG_NUCLEOTIDE_EXCISION_REPAIR 
##  KEGG_CELL_CYCLE 



##  KEGG_CELL_ADHESION_MOLECULES_CAMS 
##  KEGG_MAPK_SIGNALING_PATHWAY 
##  KEGG_MISMATCH_REPAIR 
## -------------------------------------------------- 

coef(path.results) 

##                                      gene_set coefficient_estimate 
## 1                                 gene_set_16          0.007902704 
## 2                                 gene_set_17          0.084730150 
## 3             KEGG_HEDGEHOG_SIGNALING_PATHWAY          0.118576527 
## 4             KEGG_HEDGEHOG_SIGNALING_PATHWAY          0.000000000 
## 5                 KEGG_MTOR_SIGNALING_PATHWAY          0.000000000 
## 6                KEGG_NOTCH_SIGNALING_PATHWAY          0.000000000 
## 7             KEGG_NUCLEOTIDE_EXCISION_REPAIR          0.025337081 
## 8                             KEGG_CELL_CYCLE          0.013060080 
## 9           KEGG_CELL_ADHESION_MOLECULES_CAMS          0.027034990 
## 10            KEGG_JAK_STAT_SIGNALING_PATHWAY          0.000000000 
## 11 KEGG_PHOSPHATIDYLINOSITOL_SIGNALING_SYSTEM          0.000000000 
## 12                KEGG_MAPK_SIGNALING_PATHWAY          0.048544818 
## 13                       KEGG_MISMATCH_REPAIR          0.022330896 
## 14                       KEGG_MISMATCH_REPAIR          0.000000000 
## 15                             KEGG_APOPTOSIS          0.000000000 
## 16                 KEGG_WNT_SIGNALING_PATHWAY          0.000000000 
## 17                  KEGG_BASE_EXCISION_REPAIR          0.000000000 
## 18            KEGG_NON_HOMOLOGOUS_END_JOINING          0.000000000 
## 19            KEGG_TGF_BETA_SIGNALING_PATHWAY          0.000000000 

LASSO regression coefficients of cancer-related pathways can be generated using the 
function . 

head(coef(path.results)) 

##                          gene_set coefficient_estimate 
## 1                     gene_set_16          0.007902704 
## 2                     gene_set_17          0.084730150 
## 3 KEGG_HEDGEHOG_SIGNALING_PATHWAY          0.118576527 
## 4 KEGG_HEDGEHOG_SIGNALING_PATHWAY          0.000000000 
## 5     KEGG_MTOR_SIGNALING_PATHWAY          0.000000000 
## 6    KEGG_NOTCH_SIGNALING_PATHWAY          0.000000000 

Hazard ratio plot associated with each latent component in the selected pathways can be 
generated using the function  with the argument . 

Figure below shows the hazard ratio (HR) associated with each latent component in the 
pathways selected by the INGRID. Based on the TCGA data, pathways with the largest effect 
on survival are  gene_set_17 and KEGG_MAPK_SIGNALING_PATHWAY gene sets. 

plot(path.results, type="HR") 



 

 

 

6   Risk Group Prediction 

 

Risk group predictions can be made using the function  

predicted <- predict(path.results) 

The function ‘’ returns a list with the following three elements: (1) risk.index : number of 
pathways with elevated activity for each patient; (2) riskcat: risk group prediction for each 
patient; (3) cuts: cut off to determine low, intermediate and high risk groups. 

predicted 

## $risk.index 
##   [1] 4 8 2 7 3 3 7 2 5 2 8 3 5 3 4 6 1 3 5 8 5 3 2 3 4 4 6 6 2 6 5 7 4 7 
6 5 6 
##  [38] 6 2 1 1 1 2 2 6 8 5 2 4 1 4 2 1 0 4 2 7 6 4 6 3 4 3 7 4 1 6 5 3 4 4 
5 3 6 
##  [75] 6 6 3 3 4 1 2 4 1 2 4 5 3 2 2 3 1 0 2 3 2 3 3 2 4 3 4 5 0 2  
 
##  



## $riskcat 
##   [1] "med"  "high" "low"  "high" "low"  "low"  "high" "low"  "med"  "low"  
##  [11] "high" "low"  "med"  "low"  "med"  "high" "low"  "low"  "med"  "high
" 
##  [21] "med"  "low"  "low"  "low"  "med"  "med"  "high" "high" "low"  "high
" 
##  [31] "med"  "high" "med"  "high" "high" "med"  "high" "high" "low"  "low"  
##  [41] "low"  "low"  "low"  "low"  "high" "high" "med"  "low"  "med"  "low"  
##  [51] "med"  "low"  "low"  "low"  "med"  "low"  "high" "high" "med"  "high
" 
##  [61] "low"  "med"  "low"  "high" "med"  "low"  "high" "med"  "low"  "med"  
##  [71] "med"  "med"  "low"  "high" "high" "high" "low"  "low"  "med"  "low"  
##  [81] "low"  "med"  "low"  "low"  "med"  "med"  "low"  "low"  "low"  "low"  
##  [91] "low"  "low"  "low"  "low"  "low"  "low"  "low"  "low"  "med"  "low"  
## [101] "med"  "med"  "low"  "low"  "med"  "high" "low"  "med"  "low"  "med"  
##  
## $cuts 
## [1] 3 6 
##  
## $time 
##   [1]  43.89  40.97  49.12   2.00  46.59  18.50  11.86  65.44  63.01  48.7
2 
##  [11]  21.55  63.93  49.25  32.49  44.29  33.64  76.48  71.42  56.51  19.9
7 
##  [21]  38.34 118.99  29.04  84.14  55.36  27.86  28.62  64.59  36.20  31.8
3 
##  [31]  47.67  45.30  29.14  57.69  17.94  35.51   9.95  38.41  89.26  41.5
6 
##  [41]  57.53  61.83  55.33  30.46  17.97   3.02   8.54   6.11  35.12   4.5
0 
##  [51] 112.29  71.06  63.05  39.72  20.89  12.45  25.89  81.80  18.46  34.1
7 
##  [61]  32.85  14.65   6.67  35.38  36.89  19.97  20.89   6.21  24.57  44.5
2 
##  [71]  39.56   2.73  12.39  31.14  15.18  17.77  55.13   2.46  11.17  11.5
3 
##  [81]  34.04  32.23  31.01  28.55  21.39   8.41  38.90  36.70  28.68  30.3
2 
##  [91]  19.55   8.71   7.79   8.11   8.28   8.18  43.79  35.25  35.28  13.6
0 
## [101]  68.86 107.10  91.33  74.22  66.59  70.34  61.76  67.94  68.96  43.3
3 
##  
## $status 
##   [1] 1 1 0 1 0 1 1 0 0 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 
1 1 1 
##  [38] 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 
##  [75] 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1  
 



 

7   Survival ROC 

 

The predictive performance of “INGRID” method can be presented by Kaplan-Meier curves. 
Kaplan-Meier curves of predicted patient subgroups can be generated with  plot() function 
with argument type="KM". 

Figure below shows the Kaplan-Meier curves of predicted patient subgroups and indicates 
that the  INGRID approach successfully separates out high, intermediate and low risk 
groups. 

plot(path.results, type="KM") 

 

 

 



 

8   Survival ROC 

 

The predictive performance of  INGRID method can be further evaluated based on area 
under the time dependent receiver operating curve (ROC). ROC plot can be generated using 
plot() function with argument type="ROC". 

plot(path.results, type="ROC") 

 

Figure above shows the ROC curves for survival, and for the TCGA data, the area under 
curve (AUC) associated with the  INGRID approach was 0.671. 



 

9   Bayes-InGRiD 

 

The InGRiD approach supplies statistically rigorous and biologically interpretable inference 
tools for molecularly-defined cancer subgroup identification. Unfortunately, InGRiD is 
limited to only continuous data and lacks the ability of integrating multiple data types. To 
this end, a novel approach has been developed in AIM 1, namely Bayes-InGRiD, a Bayesian 
sparse latent factor model for the simultaneous identification of cancer subgroups and key 
molecular markers within a unified framework, based on the joint analysis of continuous, 
binary and count data. We developed an user-friendly function called “bayesIngrid” and 
provide it as a part of the R package “INGRID”. 

In this section, we used a cohort of high-grade serous ovarian cancer (HGSOC) patients 
from the TCGA project to demonstrate the benefit of the proposed Bayes-InGRiD approach. 
Specifically, gene expression (z-scores) and copy number alteration measurements 
(relative linear copy-number values) for 489 patients were obtained from the cBio Cancer 
Genomics Portal (http://cbioportal.org/). 

Using the gene expression and copy number alteration measurements are the data input, 
these two data can be loaded as follow 

 

data(TCGA_bayes) 
list(data_cnv[1:5,1:5], data_mrna[1:5,1:5]) 

## [[1]] 
##                   BMP2   BMP4  BMP5   BMP6   BMP7 
## TCGA.13.1510.01 -0.016 -0.800 0.748  0.946 -0.037 
## TCGA.13.1404.01 -0.944  0.079 0.074  0.968 -0.118 
## TCGA.13.1506.01  0.536 -0.097 0.019 -0.609  0.799 
## TCGA.23.1116.01  0.241 -0.287 0.276  0.286  0.358 
## TCGA.13.1505.01  0.600 -0.288 0.505 -0.349  0.331 
##  
## [[2]] 
##                   BMP2   BMP4   BMP5   BMP6   BMP7 
## TCGA.13.1510.01 -0.570 -1.069 -0.709 -0.197 -0.402 
## TCGA.13.1404.01 -0.459 -0.024 -0.343 -0.031 -0.835 
## TCGA.13.1506.01 -0.417 -0.807  0.148 -0.240  1.138 
## TCGA.23.1116.01 -0.159  0.896 -0.155 -0.143  0.490 
## TCGA.13.1505.01  0.174  1.360 -0.230  1.466  0.132 

 

 

 

 



 

In addition, the pathway information after “gene_regroup” step is in the data input, and it 
can be shown as follow 

 

plist_regroup[1] 

## $gene_set_16 
##  [1] "BMP2"     "BMP4"     "BMP5"     "BMP6"     "BMP7"     "BMP8A"    
##  [7] "BMP8B"    "BTRC"     "CSNK1A1"  "CSNK1A1L" "CSNK1E"   "FBXW11"   
## [13] "GSK3B"    "WNT1"     "WNT10A"   "WNT10B"   "WNT11"    "WNT16"    
## [19] "WNT2"     "WNT2B"    "WNT3"     "WNT3A"    "WNT4"     "WNT5A"    
## [25] "WNT5B"    "WNT6"     "WNT7A"    "WNT7B"    "WNT8A"    "WNT8B"    
## [31] "WNT9A"    "WNT9B"    "RPS6KB1"  "RPS6KB2"  "CREBBP"   "CTBP1"    
## [37] "CTBP2"    "DVL1"     "DVL2"     "DVL3"     "EP300"    "HDAC1"    
## [43] "HDAC2"    "PSEN1"    "CCNH"     "CDK7"     "LIG1"     "PCNA"     
## [49] "POLD1"    "POLD2"    "POLD3"    "POLD4"    "POLE"     "POLE2"    
## [55] "POLE3"    "POLE4"    "RBX1"     "RFC1"     "RFC2"     "RFC3"     
## [61] "RFC4"     "RFC5"     "RPA1"     "RPA2"     "RPA3"     "CCND1"    
## [67] "CCND2"    "CCND3"    "CDKN2B"   "CUL1"     "E2F4"     "E2F5"     
## [73] "PRKDC"    "RBL1"     "RBL2"     "SKP1"     "SMAD2"    "SMAD3"    
## [79] "SMAD4"    "TFDP1"    "IFNG"     "PLCB1"    "PLCB2"    "PLCB3"    
## [85] "PLCB4" 

str(plist_regroup) 

## List of 14 
##  $ gene_set_16                               : chr [1:85] "BMP2" "BMP4" "BMP5" 
"BMP6" ... 
##  $ gene_set_17                               : chr [1:74] "PRKACA" "PRKACB" 
"PRKACG" "AKT1" ... 
##  $ KEGG_HEDGEHOG_SIGNALING_PATHWAY           : chr [1:20] "CSNK1D" "CSNK1G1" 
"CSNK1G2" "CSNK1G3" ... 
##  $ KEGG_MTOR_SIGNALING_PATHWAY               : chr [1:31] "CAB39" "CAB39L" "DDIT4" 
"EIF4B" ... 
##  $ KEGG_NOTCH_SIGNALING_PATHWAY              : chr [1:37] "ADAM17" "APH1A" "CIR1" 
"DLL1" ... 
##  $ KEGG_NUCLEOTIDE_EXCISION_REPAIR           : chr [1:20] "CUL4A" "DDB1" "DDB2" 
"ERCC1" ... 
##  $ KEGG_CELL_CYCLE                           : chr [1:86] "ABL1" "ANAPC1" 
"ANAPC10" "ANAPC11" ... 
##  $ KEGG_CELL_ADHESION_MOLECULES_CAMS         : chr [1:122] "ALCAM" "CADM1" "CADM3" 
"CD2" ... 
##  $ KEGG_JAK_STAT_SIGNALING_PATHWAY           : chr [1:121] "CBL" "CBLB" "CBLC" 
"CISH" ... 
##  $ KEGG_PHOSPHATIDYLINOSITOL_SIGNALING_SYSTEM: chr [1:59] "CALM1" "CALM2" "CALM 

 

 

 

 



 

 

3" "CALML3" ... 
##  $ KEGG_MAPK_SIGNALING_PATHWAY               : chr [1:192] "ARRB1" "ARRB2" "ATF2" 
"ATF4" ... 
##  $ KEGG_MISMATCH_REPAIR                      : chr [1:8] "EXO1" "MLH1" "MLH3" "MSH
2" ... 
##  $ KEGG_APOPTOSIS                            : chr [1:39] "APAF1" "BAD" "BAX" "BCL
2" ... 
##  $ KEGG_WNT_SIGNALING_PATHWAY                : chr [1:21] "APC" "APC2" "AXIN1" "AX
IN2" ... 

 

 

In the "bayesIngrid" function, user need to specify the number of data, data input, types of 
the data, and the type of the analysis, pathway level data if pathway analysis is chosen, the 
latent component number k, the number of MCMC iterations N, and the number of burnin 
samples in the MCMC. 

An example running the "bayesIngrid" function can be shown as follow 

 

bayesingrid.result=bayesIngrid( ndata = 2,  
                                data = list(data_cnv,data_mrna),  
                                datatype =c("continuous","continuous"),  
                                analysistype = "pathway",  
                                pathwaydata = plist_regroup, 
                                k = 14,  
                                N = 10000, 
                                burin = 5000) 
 

 

 

 

 

 

 

 

 

 

 



Note that user must specify the parameters as follow. 
 

n   = data number of datas 
         data  = list of N by P dataframes, where N is number of observations, P is number of genes 
datatype  =  type of the datas for the input 

       analysistype  =  if analysistype is "pathway", pathway-level analysis,  
          if analysistype is "gene", gene-level analysis 

      pathwaydata  = list of pathway information if analysistype is "pathway"  
                             k  = number of latent components. k is the number of pathways, if  analysistype = "pathway". 
                            N  = number of iterations for MCMC.  
                  burnin  = number of iterations discarded as burnin in the MCMC. 
 
The following warning would show if the input is not correct. 
 

         if data is not a list    :  print "datasets must be a list" 
          if there is missing value in data    :  print "data cannot have NAs. please exclude or impute missing values." 
                    if k is missing in the input    :  print "must specify k (gene-level: # of sample clusters; pathway-level: # of pathways )" 
       if datatype is missing in the input   :  print "must specify datatype vector of (continuous, binary or count)"                                 
if analysistype is missing in the input   :  print "must specify analysistype: "gene" or "pathway" 
 



 

User can use "fitBayes" function to show the "bayesIngrid" function result table 

Pathways are ranked based on 'Pathway coefficient', which are their weighted averages of 
factor loadings of selected genes. 'selected' refers to the number of genes selected in each 
pathway, total number of genes in each pathway are also included within parenthesis in the 
column 'selected'. Genes that rank top three in coefficient estimates would be shown in 
column 'Top three genes' 

 

bayes.results = fitBayes( data = Bayes_result ) 

## Summary: Bayes-InGRiD Pathway-level analysis results (class: FitPath) 
## -------------------------------------------------- 
## data1 result:  
##                                         select selected_average top_3_genes_1 
## CELL_ADHESION_MOLECULES_CAMS           76(122)            0.524      HLA.DRB1 
## CELL_CYCLE                              69(86)            0.506          ORC1 
## NUCLEOTIDE_EXCISION_REPAIR               6(20)            0.493         CUL4A 
## MAPK_SIGNALING_PATHWAY                129(192)            0.431          FGF4 
## MISMATCH_REPAIR                           4(8)            0.367          MSH6 
## APOPTOSIS                                7(39)            0.353         BIRC2 
## WNT_SIGNALING_PATHWAY                    5(21)            0.321           APC 
## MTOR_SIGNALING_PATHWAY                   8(31)            0.301        PRKAA1 
## NOTCH_SIGNALING_PATHWAY                 11(37)            0.280          DLL3 
## WNT&HEDGEHOG                            11(85)            0.237          PCNA 
## MAPK&APOPTOSIS                          20(74)            0.224        PPP3CA 
## JAK_STAT_SIGNALING_PATHWAY             18(121)            0.214          JAK2 
## PHOSPHATIDYLINOSITOL_SIGNALING_SYSTEM   14(59)            0.196         ITPR2 
## HEDGEHOG_SIGNALING_PATHWAY               9(20)            0.187          SUFU 
## BASE_EXCISION_REPAIR                     0(25)               NA          <NA> 
## NON_HOMOLOGOUS_END_JOINING               0(13)               NA          <NA> 
## TGF_BETA_SIGNALING                       0(51)               NA          <NA> 
##                                       top_3_genes_2 top_3_genes_3 
## CELL_ADHESION_MOLECULES_CAMS               HLA.DPB1      HLA.DPA1 
## CELL_CYCLE                                   CDC25C          PLK1 
## NUCLEOTIDE_EXCISION_REPAIR                    ERCC5         ERCC1 
## MAPK_SIGNALING_PATHWAY                     PLA2G12B        CACNG3 
## MISMATCH_REPAIR                                MSH2          MSH3 
## APOPTOSIS                                    ENDOD1         BIRC3 
## WNT_SIGNALING_PATHWAY                      CTNNBIP1        CSNK2B 
## MTOR_SIGNALING_PATHWAY                       RICTOR         RPTOR 
## NOTCH_SIGNALING_PATHWAY                      PSENEN         PSEN2 
## WNT&HEDGEHOG                                  PLCB1         PLCB4 
## MAPK&APOPTOSIS                                NFKB1         CASP3 
## JAK_STAT_SIGNALING_PATHWAY                    IFNB1          IFNE 
## PHOSPHATIDYLINOSITOL_SIGNALING_SYSTEM          DGKH       PIP5K1A  
## HEDGEHOG_SIGNALING_PATHWAY                     GAS1         STK36 

 

 



 

 

## BASE_EXCISION_REPAIR                           <NA>          <NA> 
## NON_HOMOLOGOUS_END_JOINING                     <NA>          <NA> 
## TGF_BETA_SIGNALING                             <NA>          <NA> 
## -------------------------------------------------- 
## data2 result:  
##                                        select selected_average top_3_genes_1 
## MISMATCH_REPAIR                          2(8)            0.574          MSH2 
## JAK_STAT_SIGNALING_PATHWAY            24(121)            0.438         IFNA6 
## APOPTOSIS                               6(39)            0.354         BIRC2 
## MTOR_SIGNALING_PATHWAY                  3(31)            0.352        RICTOR 
## WNT_SIGNALING_PATHWAY                   2(21)            0.284           APC 
## PHOSPHATIDYLINOSITOL_SIGNALING_SYSTEM  13(59)            0.250         PLCZ1 
## NUCLEOTIDE_EXCISION_REPAIR              5(20)            0.209         CUL4A 
## WNT&HEDGEHOG                           20(85)            0.205         PLCB4 
## HEDGEHOG_SIGNALING_PATHWAY              5(20)            0.191         PTCH1 
## NOTCH_SIGNALING_PATHWAY                23(37)            0.182          DLL3 
## MAPK&APOPTOSIS                         27(74)            0.127         NFKB1 
## MAPK_SIGNALING_PATHWAY                 8(192)            0.126       RASGRP4 
## CELL_CYCLE                              6(86)            0.103         CCNE1 
## CELL_ADHESION_MOLECULES_CAMS          22(122)            0.079          CDH4  
## BASE_EXCISION_REPAIR                    0(25)               NA          <NA> 
## NON_HOMOLOGOUS_END_JOINING              0(13)               NA          <NA> 
## TGF_BETA_SIGNALING                      0(51)               NA          <NA> 
##                                       top_3_genes_2 top_3_genes_3 
## MISMATCH_REPAIR                                MSH6          <NA> 
## JAK_STAT_SIGNALING_PATHWAY                    IFNA2          IFNE 
## APOPTOSIS                                     BIRC3        ENDOD1 
## MTOR_SIGNALING_PATHWAY                       PRKAA1          MTOR 
## WNT_SIGNALING_PATHWAY                        CAMK2A          <NA> 
## PHOSPHATIDYLINOSITOL_SIGNALING_SYSTEM       PIK3C2G         ITPR2 
## NUCLEOTIDE_EXCISION_REPAIR                    ERCC5         ERCC2 
## WNT&HEDGEHOG                                  PLCB1          BMP2 
## HEDGEHOG_SIGNALING_PATHWAY                     GAS1          SUFU 
## NOTCH_SIGNALING_PATHWAY                      PSENEN         NUMBL 
## MAPK&APOPTOSIS                               PPP3CA        MAPK10 
## MAPK_SIGNALING_PATHWAY                       MAP4K1         PTPRR 
## CELL_CYCLE                                     CDK1          FZR1 
## CELL_ADHESION_MOLECULES_CAMS                 CLDN23         ICAM1 
## BASE_EXCISION_REPAIR                           <NA>          <NA> 
## NON_HOMOLOGOUS_END_JOINING                     <NA>          <NA> 
## TGF_BETA_SIGNALING                             <NA>          <NA> 

 

 

 

 

 



 

 

User can use extract the posterior probability of a gene being selected by calling the 
parameter gamma of the “fitbayes” output. In addition, the latent factor score can also be 
acquired from the same output. 

 

bayes.results$gamma[[1]][1:20] 

##  [1] 1.00000000 0.03448565 0.10406705 0.11692439 1.00000000 0.04819840 
##  [7] 0.06099534 0.05894284 0.17149143 0.17808520 0.53551773 0.04860600 
## [13] 0.85819443 0.01922394 0.89441458 0.02019641 0.05326754 0.24004749 
## [19] 0.52111706 0.01709189 

bayes.results$gamma[[2]][1:20] 

##  [1] 1.00000000 0.03448565 0.10406705 0.11692439 1.00000000 0.04819840 
##  [7] 0.06099534 0.05894284 0.17149143 0.17808520 0.53551773 0.04860600 
## [13] 0.85819443 0.01922394 0.89441458 0.02019641 0.05326754 0.24004749 
## [19] 0.52111706 0.01709189 

bayes.results$score[1:5,1:5] 

##            [,1]        [,2]       [,3]       [,4]       [,5] 
## [1,] -0.5140492 -0.95313526 -0.5133698 -0.6521319 -1.3382263 
## [2,] -1.9191046 -1.41925462 -1.1517966  1.4444156 -1.8951507 
## [3,]  0.3793968  0.82842823 -0.2786184  1.0162063  2.3592605 
## [4,] -0.1454551  0.43700823 -0.1865393  0.2094766  1.8979575 
## [5,]  0.4645647 -0.05658318 -0.5068286  0.1467986 -0.1980622 

 

 

Lastly, the plot of the posterior probability of a gene being selected can be shown using the 
plot() function with type = “bayes” 

 

plot(bayes.results, type = "bayes") 
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5. SPECIFIC AIM 3

For Aim 3, our goal is to investigate various variable selection approaches

in compositional data setting, infer key immune subtypes associated by ap-

plying stepwise pairwise log-ratio procedure on immune cellular fractions

data, and identify key species in the microbiome data by using zero-inflated

Wilcoxon rank sum test for Colorectal Adenocarcinoma.

5.1 Introduction

Nowadays, in order to find ways to advance research on immunotherapy for

cancer treatment, it is of crucial importance to understand the tumor-immune

interactions [49]. Many researchers are dedicated to study infiltration of tumour-

associated immune cells and try to identify key immune subtypes and make

meaningful biological interpretation of the results. For example, the Immune

Landscape of Cancer [50] is a landmark that carried out a large-scale im-

munogenomic analysis of more than 10,000 tumors of 33 various cancer types

based on TCGA data. Emergence of such new data type motivates develop-

ment of an approach that identifies patient subgroups and key immune cell

types simultaneously in the compositional data analysis framework setting.

In the last decade, many studies have attempted to deconvolve gene expres-



sion data into their constituent cellular fractions. More specifically, these ap-

proaches solve the problem as a system of equations that describe the gene

expression of a sample as the weighted sum of the expression profiles of the

cell types. For example, CIBERSORT estimates proportions of cell types from

gene expression profiles using Support Vector Regression (SVR) [51]. There

are some other methods focusing on deconvolution of microarray data ob-

tained from normal tissue into cell-type-specific profiles, by calculating en-

richment score. [52] [53] [54] [55]. These methods take advantage of the dif-

ferences in transcriptome properties of distinct cell types [56]. In this aim,

one of our interest is to identify key immune subtypes using cellular frac-

tions data induced from Colorectal Adenocarcinoma TCGA PanCancer study

processed by CIBERSORT [9].

When it comes to Compositional Data Analysis (CoDA), the most com-

mon compositional replacement is to covert the data to ratios using the cen-

tred log-ratio (clr) [7] transformation. A drawback of this method is that the

variable selection applied on the clr-transformed variables makes interpre-

tation challenging. Since our goal is to identify key cell types, it is crucial

to address the issue of interpretability for variable selection. Hron and oth-

ers [24] purposed a covariance-based stepwise procedure for variable selec-

tion in 2013. In this procedure, variable selection is achieved by eliminating

the variable whose variance of the corresponding clr variable is the smallest,

calculating normalized variance of transformed variables of the remaining
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sample space, and repeating the procedure until a purposed test statistics

reach a pre-specified threshold. Another variable selection approach is pro-

posed by Greenacre [8] where all pairwise ratios of parts are considered for

key marker identification. A smaller set of ratios can be chosen to explain as

much variability as required to reveal the underlying structure of the data.

For the purpose of identifying key immune cell subtypes, we implement the

stepwise pairwise log-ratio developed by Greenacre [8] for variable selection.

While the covariance-based stepwise procedure and pairwise log-ratio

stepwise approach are efficient variable selection approach for low-dimensional

compositional data. However, when it comes to high-dimensional zero-inflated

microbiome datasets generated by high throughput sequencing (HTS) tech-

nology, these two approach are no longer applicable. Microbiome datasets

generated by HTS are compositional because the total number of sequenced

reads depends on the capacity of the instrument. It is crucial to recognize

several key features for Microbiome data: 1) data are strictly positive or zero,

never negative; 2) each count is not compositional itself, but the share out of

counts is; 3) data often present excessive zeros, which may be due to under-

sampling, high heterogeneity, or real absence.

With high-dimensional and zero-inflated nature of microbiome data, much

more care needs to be devoted to a reasonable coordinate representation

and selection of methods to be used in the compositional data analysis. To

deal with the large proportion of zeros in the microbiome data, many im-
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putation approaches have emerged in recent years. The R package zCom-

positions [25] provides several methods for the multivariate imputation of

zeros and non-detects in compositional data. These approaches are pro-

posed based on an appropriate coordinate representation of the composi-

tional data in the usual Euclidean geometry. The imputation is achieved by

using iterative approaches where EM algorithm [26], Markov Chain Monte

Carlo (MCMC) [27] or multiple imputation are utilized. However, in some ex-

treme cases, we could face microbiome data where the majority of the data

are zeros and the number of variables could be hundreds. The imputation

approaches are not applicable given overwhelming amount of zeros in the

data. In addition, it is important to realize many assumption of multivariate

approach that was developed based on compositional data setting are not fit

given the high dimensionality. Alternatively, we could consider the data as

univariate and apply zero-inflated Wilcoxon test [10] for variable selection.

To investigate variable selection in compositional data analysis in im-

munology data and microbiome data, we will apply stepwise pairwise log-

ratio for key cell type identification using cellular fractions data induced from

Colorectal Adenocarcinoma TCGA Pan-Cancer study processed by CIBER-

SORT. As for the microbiome data, we take into account key aspects of the

data including large proportion of zeros and high dimensionality and apply

zero-inflated Wilcoxon test to identify key species in the metagenomic data

of six cross-sectional studies of colorectal cancer.
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5.2 Methods

In the methods section, we first look at the variable selection approach that

can be applied to low-dimensional immunology data in the compositional

data analysis. Next, we will discuss the variable selection for high-dimensional

zero-inflated microbiome data.

For low-dimensional immunology data in the compositional data setting,

we apply the stepwise pairwise log-ratio approach [8] for key cell type iden-

tification using cellular fractions data. We consider the compositional data

that are made up of the relative proportions of a whole and can be repre-

sented in the simplex of d parts:

Sm := {x = (x1, · · · , xm) ∈ Rm|
m∑
i=1

xi = 1, xi > 0,∀i}

The basic measure of variability of a random composition x = (x1, · · · , xm)

is the variation matrix [7], defined as

T =

{
var

(
ln
xi
xj

)}M
i,j=1

Each element in the variation matrix defines the variability of the log-ratio

ln
xi
xj

: The log-ratio tends to be a constant if the value of the variance is small.

Total variance is defined as the sum of the elements of the variation matrix,
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where

totvar(x) =
1

2m

M∑
i=1

M∑
j=1

var

(
ln
xi
xj

)
Total variance presents the total variability of the compositional data set. It

can also be written as

totvar(x) =
∑
j<j′

1

n

∑
i

(zi,jj′ − z̄jj′)2 (5.1)

where zi,jj′ = log
xij
x

ij′
and z̄jj′ = 1

n

∑
i zi,jj′ , the notation

∑
j<j′ indicates

the double summation over all 1

2
m(m−1) unique pairs of the index. It is im-

portant to note that the sum of all the 1

2
m(m − 1) logratio variances, which

is the half triangle of this matrix, can measure of total variability for the com-

position.

Furthermore, the total variance can derived that in terms of all the pairwise-

squared differences between the logratios.

totvar(x) =
1

n2

∑
i<i′

∑
j<j′

(zi,jj′ − zi′,jj′)2

=
1

n2

∑
i<i′

∑
j<j′

(log
xij
xij′
− log

xi′j
x

i′j′
)2

=
1

n2

∑
i<i′

∑
j<j′

(log
xij
xij′

xi′j
xi′j′

)2

(5.2)

We define ALR:k as a set of ALR logratios with respect to a specified part k,

82



where the ith sample contains (m− 1) values. Specifically,

ALR : k(i) = log
xij
xik

, j = 1, · · · ,m, j 6= k.

For compositional data, it sums to 1 for each row, where the row weights

are ri = 1/n, and the weights are constant for all samples. We define the col-

umn weights as c1, c2, · · · , cm, where cj is jth part mean, notice that the col-

umn weightes also sum to 1. As a result, variables with relatively low means

have high variance in the corresponding logratios, and these variables will be

down-weighted. It follows

totvar(x) =
∑
j<j′

cjcj′
∑
i

ri(zi,jj′ − z̄jj′)2 (5.3)

where zi,jj′ = log
xij
x

ij′
and z̄jj′ =

∑
i rizi,jj′

totvar(x) =
∑
i<i′

riri′
∑
j<j′

cjcj′(zi,jj′ − zi′,jj′)2

=
∑
i<i′

∑
j<j′

riri′cjcj′(log
xij
xij′
− log

xi′j
x

i′j′
)2

=
∑
i<i′

∑
j<j′

riri′cjcj′(log
xij
xij′

xi′j
xi′j′

)2

(5.4)

The weighted structure presents a perfect symmetric formulation in terms of

rows and columns. If cj = 1/m for all j, the total variance can be defined as
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“unweighted”. Meanwhile, if ri = 1/n for all i, it would be same as equation

5.1 divided bym2. The logratio distance between two samples i and i′ is

dii′ =

√∑
j<j′

cjcj′(log
xij
xij′
− log

xi′j
x

i′j′
)2

=

√∑
j<j′

cjcj′(log
xij
xij′

xi′j
xi′j′

)2
(5.5)

so that the logratio variance can also be written as the weighted sum of squares

of all the inter-sample distances.

totvar(x) =
∑
i<i′

riri′d
2
ii′ (5.6)

After the logratio variance are calculated, Redundancy analysis (RDA) [57]

were used to measure how much of the total variance is explained by a sub-

set of logratios of certain explanatory variables. RDA is a form of multivari-

ate regression. If a variable is correlated with many of the other logratios, the

explained variance of the corresponding variable will be high. In addition,

Procrustes analysis [58] was applied to decide how close their multivariate

structures are, more specifically, it decide how close a configuration based

on a subset of logratios is to the configuration based on all the logratios. Pro-

crustes correlation is the measurement for the matching of two configura-

tions, and it was achieved by matching one to the other by rotation, transla-

tion and rescaling.
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The stepwise procedure variable selection in the compositional data can

proceed as follow:

1. Calculate all the pairwise logratios.

2. Select the one with the highest percentage of variance explained. This ratio

is then fixed as the first logratio.

3. The second best logratio in combination with the first is sought, then fixed,

and so on.

4. Repeat step 1 to 3 until variance explained reach 100%.

It must take into account that one should choose ratios that are indepen-

dent of the ones already chosen: for example, if A/B and B/C have already

been selected, then A/C is no longer a candidate for selection, since it de-

pends on the others: A/C = A/B×B/C . On the log scale, log(A)− log(C)

is the sum of, and thus linearly dependent on, log(A)− log(B) and log(B)−

log(C). Since the dimensionality of anm-part compositional data set ism−1,

and all the parts will have appeared in at least one logratio after m− 1 steps

of the above procedure, the variance explained will be 100%.

As for microbiome data, we must take into account key issues of data in-

cluding the high dimensionality and the large proportion of zeros. First, it

is not a good fit to apply multivariate approach on compositional data set-

ting, since the assumption of multinomial distribution is often violated due

to the high dimensionality. In alternative, to address the challenge of zero

inflation, we could consider the data as univariate and apply zero-inflated
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Wilcoxon test [10] for variable selection.

Zero-inflated Wilcoxon test was first proposed in 2010 by Hallstrom [10]

and it is further modified by Wang and others. [35]. The theory of the zero-

inflated Wilcoxon rank sum test is as follow. We consider 2N patients in a

randomized study, where N patients are assigned to the treatment group T1

and control group T2, respectively . We define f1 and f2 as the distributions

of the non-zero values under T1 and T2. Let ni be the number of non-zero

scores in each group, n = max(n1, n2) and m = |n1 − n2| . Without loss of

generosity, we assume there are no ties among the 2nm non-zero scores. In

order to compute the rank-sums, we assign rank 1 to the highest score, rank

2 to the second highest score and so on. Hence, we have 2(Nn)+m zeros tied

at the highest rank.

The zero-inflated Wilcoxon rank sum test will be based on the 2nobserva-

tions remaining whenN−nobservations with zero score have been removed

from each group. Let r be the sum of the ranks of the observations in group

1 among all 2n observations. Let r0 be the sum of the ranks of the non-zero

scores of group 1. Then

r =

r0 +m
(2n−m+ 1 + 2n)

2
, if n1 ≤ n2

r0, if n1 ≥ n2
(5.7)

and under the null f1 = f2, the Wilcoxon rank-sum statistic, s = r−N(2N+
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1)/2, satisfies

E(s = r − n(2n+ 1)/2|n1, n2) =

mn/2, if n1 ≤ n2

−mn/2 if n1 ≥ n2
(5.8)

Then

V ar(s|n1, n2) = V ar(r|n1, n2)

= V ar(ro|n1, n2)

= n(nm)(2nm+ 1)/12

= n3/6 + nm2/12−mn2/4 + n2/12− nm/12

(5.9)

Let µi,j = E((n/N)i(m/N)j). Then

E(V ar(s|n1, n2)) = N3(µ3,0/6 + µ1,2/12− µ2,1/4) +N2(µ2,0 − µ1,1)/12

(5.10)

Under the null hypothesis, it is equally likely that n1 is less than or greater

than n2, so E(s) = 0 and V ar(E(s|n1, n2) = E((mn/2)2) = N4µ2,2/4.

Since V ar(s) = V ar(E(s|n1, n2) + E(V ar(s|n1, n2)), it follows

V ar(s) = N4µ2,2/4 +N3(µ3,0/6 + µ1,2/12− µ2,1/4) +N2(µ2,0 − µ1,1)/12

It is defined that the zero-inflated Wilcoxon rank sum test byW = s/
√
V ar(s).
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Next, key species were identified by implementing zero-inflated Wilcoxon

rank sum test between treatment and control group for each species and ad-

justing for the multiple testing, e.g. using the Benjamini-Hochberg proce-

dure.
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5.3 Simulation

For the simulation section, based on the different nature of immunology data

and microbiome data, we apply distinct strategies for the simulation study.

First, for the simulation of low-dimensional immunology data, we plan to

implement small scale simulation study focuses on the stepwise pairwise log-

ratio approach. More specifically, we aim to identify the signal variables from

noise, and recover the underlying correlation structure among the selected

variables.

The cellular fractions data induced from Colorectal Adenocarcinoma TCGA

Pan-Cancer study that we used in the real data analysis contain 254 patients,

including 58 African American and 196 European American. To mimic this,

We examined six sample sizes, namely n = 200 with 2 groups, and we gener-

ate equal number of samples in the two groups. In addition, the immunology

data we use in the real data analysis contains 9 celltypes. To mimic this, we

will consider three different composition lengths,D = (3, 6, 9), with varying

numbers of signal features.

For the given number of components and sample sizes, we first gener-

ated data from aDirichlet(α) distribution, whereDirichlet(α) is a family of

continuous multivariate probability distributions parameterized by a matrix

α. We generated theαmatrix from a truncated multivariate normal distribu-

tion,MVN(µ,Σ). The mean of the αmatrix µ is set for the underlying clus-
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tering structure, more specifically, we choose different mean structure for the

two groups. Next, in the multivariate normal distribution, the covariance ma-

trix Σ is a diagonal matrix, by setting different level for diagonal elements of

the covariance matrix, we can set different level of signals. The larger the vari-

ance is, the stronger the signal is. In addition, we can control the correlation

of the variables by setting the elements of the covariance matrix.

We evaluate the performance of the stepwise pairwise log-ratio approach

by checking its detection power, which is defined as ability to separate out

signal features from noise features. In addition, we will check the perfor-

mance of stepwise pairwise log-ratio approach on whether it can detect fea-

tures that are highly correlated to each other, by looking at the numbers on

the edges shown in the stepwise procedure, where large number of links in-

dicate more variation for that feature. Finally, we will evaluate that if the fea-

tures in the stepwise pairwise log-ratio approach can preserve the underlying

clustering structure. In particular, we will apply PCA on the features selected

from the simulation, and apply K-means algorithm for the sample clustering.

Sensitivity and specificity will be used to evaluate the performance.
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For example, if we set sample size n = 200, and generate α matrix using

truncated multivariate normal where µ = (50, 50, 50, 50, 50, 50, 50, 50) and

the covariance matrix

Σ =

V1 V2 V3 V4 V5 V6 V7 V8



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 100 0 0 0 0 0

0 0 0 100 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 100 0

0 0 0 0 0 0 0 100

We have the first 10 rows of α matrix shown in Table 5.1. Next, we gener-

ated simulation data from a Dirichlet(α) distribution, and the first 10 sam-

ples of the compositional simulation data is shown in Table 5.2:
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v1 v2 v3 v4 v5 v6 v7 v8
49.038 49.707 52.588 38.479 50.196 50.030 50.854 61.166
48.781 51.267 42.552 38.688 49.284 50.253 51.520 46.923
49.047 49.352 62.243 51.998 49.422 49.058 47.963 33.335
49.516 49.259 61.606 60.121 49.928 48.863 59.006 58.518
50.728 50.737 46.479 57.055 51.300 50.038 40.207 57.938
50.787 49.690 66.989 42.054 50.348 47.735 48.378 61.309
49.544 49.101 57.268 41.906 50.267 48.263 35.886 45.464
48.965 51.362 59.175 42.149 50.574 50.918 52.563 53.520
51.174 49.519 45.812 59.551 48.711 50.186 49.687 54.671
51.024 50.267 52.318 57.476 51.217 50.383 40.119 48.431

Table 5.1: First 10 rows of αmatrix

sample v1 v2 v3 v4 v5 v6 v7 v8
1 0.108 0.129 0.116 0.090 0.118 0.141 0.138 0.159
2 0.107 0.128 0.103 0.141 0.144 0.143 0.117 0.117
3 0.104 0.135 0.160 0.136 0.106 0.136 0.155 0.067
4 0.134 0.111 0.123 0.147 0.096 0.118 0.127 0.144
5 0.107 0.154 0.142 0.117 0.131 0.115 0.094 0.142
6 0.110 0.126 0.155 0.086 0.125 0.108 0.152 0.139
7 0.154 0.140 0.153 0.100 0.130 0.126 0.089 0.109
8 0.122 0.121 0.137 0.097 0.117 0.141 0.158 0.108
9 0.139 0.119 0.114 0.146 0.128 0.131 0.095 0.128
10 0.135 0.114 0.118 0.143 0.155 0.105 0.108 0.122

Table 5.2: First 10 samples of the compositional simulation data
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cummulative_explained_variance median 2.50% 97.50%
v3/v4 0.248 -0.039 -0.827 0.684
v3/v8 0.475 0.028 -0.743 0.814
v4/v7 0.682 -0.005 -0.727 0.672
v6/v7 0.792 0.014 -0.550 0.635
v1/v8 0.872 0.016 -0.518 0.735
v4/v5 0.939 -0.004 -0.717 0.478
v2/v5 1.000 0.007 -0.358 0.390

Table 5.3: Sequence of logratios of markers entering in a stepwise search, ex-
plaining the logratio variance of the whole compositional data set.

Table 5.3 presents the sequence of logratios of markers entering in a step-

wise search, explaining the logratio variance of the simulation compositional

data set. Table 5.3 also reports the medians of these ratios, as well as their

reference ranges based on the estimated 0.025 and 0.975 quantiles. As we

can observe from Table 5.3, the true signal v3, v4, v7, v8 was detected by the

first 3 logratios. Notice that the top 3 logratios in Table 5.3 are v3/v4, v3/v8

and v4/v7, and they represent all the pairwise combination of v3, v4, v7, v8.

(v3/v7 = v3/v4× v4/v7) And the top 3 logratio explained 68.2% of the total

variance.
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In order to evaluate the proposed approach for the analysis of micro-

biome data, we plan to implement comprehensive simulation studies that

take into account key aspects of microbiome data, especially the large pro-

portion of zeros (sparsity) and high-dimensionality. The pooled samples from

the metagenomic data we use in the real data analysis section contain 387

CRC cases and 384 healthy controls. To simulate this, we will consider varying

numbers of samples (100, 200, 300, . . . ,1000) with 2 groups, where cases and

controls are generated with 1:1 ratio. The metagenomic data we use in this

study contains 719 features. To mimic this, we will consider 700 features, with

varying numbers of signal features (10, 50, 100). The matrix of the metage-

nomic data we use in this paper contains 85% zeros. By considering this, we

will consider varying proportions of zeros when generating the simulation

data. In addition, we will consider the case without zeros (0%) to define the

baseline with perfect information and to quantify relative information loss.

To mimic the microbiome data where excessive numbers of zero values

are presented, we will simulate each feature from a zero-inflated Beta (ZIB)

distribution. More specifically, to model structural zeros, for j-th species, we

assumeYj follows ZIB distribution with parameters (πj , aj , bj), whereπj rep-

resents the probability of non-zeros. We can generate data from ZIB distribu-

tion by using the two-step approach. Specifically, we first generate the latent

non-zero indicatorZj from Bernoulli distribution of parameter πj . IfZj = 0,

then we set Yj = 0. If Zj = 1, then we generate Yj from Beta distribution

94



with parameters (aj , bj).

We will set the parameters (πj , aj , bj) so that it can closely match the lev-

els of zero-inflation in the real metagenome data. Specifically, we will ob-

tain the empirical distribution of proportions of zeros from the metagenome

data and generate πj from this empirical distribution. Likewise, we will fit

Beta distribution to each feature in the metagenome data and obtain MLEs

or MOMs (or their robust versions) of aj , bj . We will use these estimated aj , bj

to generate non-zero part of data.

We evaluate the performance of the zero-inflated Wilcoxon rank sum test

by considering the simulation univariate, and apply the test on each vari-

ables. After controling for FDR, features with adjusted p-value less than 0.5

will be selected as significant feature. Sensitivity and specificity will be calu-

cated to evaluate the accuracy of detection.
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CRC Control
shape1 shape2 % nonzero shape1 shape2 % nonzero
0.05 27.77 0.81 0.09 120.28 0.54
0.23 102.69 0.68 0.07 56.77 0.4
0.13 92.35 0.4 0.23 784.83 0.05
0.17 107.77 0.42 0.06 212.54 0.07
0.1 97.62 0.39 0.1 586.44 0.08
0.05 11.97 0.57 0.03 63.87 0.2
0.13 34.87 0.45 0.03 34.9 0.09
0.06 6.06 0.32 0.07 99.49 0.06
0.12 14.18 0.12 24.88 519449.5 0.01
0.03 6.36 0.17 1.61 20701.7 0.01
0.1 104.35 0.67 0.05 395.16 0.42
0.09 66.7 0.1 11.76 76473.82 0.01
0.14 289.1 0.12 0.67 22929.41 0.02
0.21 72.36 0.12 0.54 9032 0.02
0.33 1304.11 0.08 0.94 139234.4 0.01

Table 5.4: Parameter estimation of signal species using MOMs approach,
shape 1 and shape 2 are the parameter estimation of nonzero elements using
beta distribution, % nonzero is the percent of nonzero element of that signal
species
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CRC Control
shape1 shape2 % nonzero shape1 shape2 % nonzero
0.28 636.35 0.02 0.53 2069.32 0.03
0.2 412.11 0.03 0.16 307.49 0.04
0.36 89.33 0.13 0.27 115.72 0.12
0.39 33.8 0.86 0.51 44.25 0.86
67.81 17713.99 0.01 2.99 1541.99 0.01
0.18 59.06 0.18 0.07 20.28 0.17
0.27 627.46 0.04 0.39 1181.77 0.04
0.29 377.83 0.05 0.67 1188.22 0.04
0.36 9442.15 0.19 1.05 35626.28 0.2
4.87 97085.22 0.04 1.89 35215.35 0.05
1.02 16898.4 0.17 0.31 4390.55 0.18
0.36 14992.73 0.01 0.53 2820.13 0.01
0.54 48.74 0.01 0.18 0.66 0.01
0.21 53.24 0.33 0.15 21.92 0.32
0.33 1304.11 0.08 0.94 139234.4 0.01

Table 5.5: Parameter estimation of noise species using MOMs approach
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Rank Sum test Zero-inflated Wilcoxon test
Sensitivity 0.970 0.990
Specificity 0.990 0.983

Table 5.6: Sensitivity and Specificity for Rank sum test versus Zero-inflated
Wilcoxon test

For example, we pick the signal species using pvalue cutoff at 0.001 (A

species is singal is pvalue < 0.001) and we pick the noise with pvalue cut-

off at 0.7 (A species is singal is pvalue > 0.7). Table 5.4 and Table 5.5 shows

the parameter estimation of signal and noise species using MOMs approach,

respectively. Shape 1 and shape 2 are the parameter estimation of nonzero

elements under beta distribution assumption, "% nonzero" in Table 5.4 indi-

cates the percent of nonzero element of that signal species. Simulation sam-

ples are generated by randomly select a set of (π, a, b) for CRC and control

group. In this simulation study, we choose sample size n as 600, with 300

samples in both CRC and control. We set the first 100 species as signal, and

the next 600 species as noise.

Table 5.6 shows the comparison of the performance between Rank sum

test and Zero-inflated Wilcoxon test. In this example, Zero-inflated Wilcoxon

test shows better performance in detecting true signal, while Rank Sum test

is slightly better for specificity.
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5.4 Real data analysis

As an application of the proposed approach, we used the immune cellular

fractions data for Colorectal Adenocarcinoma TCGA PanCancer study char-

acterized by CIBERSORT [9]. TCGA data for colorectal cancer previously ana-

lyzed by Thorsson and colleagues [48] can be accessed through the National

Cancer Institute Genomic Data Commons. We downloaded the data from

the cBioportal database (http://www.cbioportal.org/) and kept all colorectal

cancer patients with immunophenotype data for whom race, sex and sur-

vival data were available. In this data of 254 patients, 58 (23%) were African

American and 196 (77%) were European American. 126 were female (50%)

and 128 were male (50%). Previous studies have shown remarkable discrep-

ancy exists in outcomes between different sex [59] [60] and race [61]. In this

compositional data analysis setting, we sought to identify key immune sub-

types and potentially expose sex and race as predictors of response to cancer

immunotherapy.
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Weight Procruste Correlation
Macrophage 0.453 0.602
T.cells.CD8 0.142 0.562
Mast.cells 0.088 0.528
T.cells.CD4 0.165 0.524
B.cells 0.072 0.523
NK.cells 0.051 0.487
Neutrophils 0.008 0.461
Dendritic.cells 0.017 0.415
Eosinophils 0.003 0.398

Table 5.7: Results for ALRs using each part in turn as the reference one in the
denominator: weight is the average proportion of the reference part, used
in the weighted analysis; Procrustes correlation measures similarity between
the multidimensional geometry of the samples in the ALR space and that of
the samples using all logratios.

The categorization of the leukocyte composition associated with each

colon cancer sample within TCGA was discussed in the Immune Landscape

of Cancer [50]. There were 3 types of aggregation described in the Supple-

mentary Materials of Thorsson et al. We used “Aggregate 2” that was imple-

mented in the study, where immune cell subsets are aggregated into nine

classes with respect to the cytokine network, including CD8 T cells, CD4 T

cells (naïve, memory, resting and activated), B cells (naïve and memory), NK

cells (resting and activated), macrophage (M0, M1, M2), dendritic cells (rest-

ing, activated), mast cells (resting and activated), neutrophils and eosinophils;

After aggregation of the immune cell subsets, we re-normalized the immune

cellular fractions so that they can sum to 100% as compositional data.
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cummulative explained variance median 2.50% 97.50%
T.cells.CD4/Macrophage 0.320 -1.078 -8.131 0.591
Macrophage/Dendritic.cells 0.563 3.891 1.250 12.124
T.cells.CD8/Mast.cells 0.699 0.435 -2.531 5.194
T.cells.CD8/Macrophage 0.805 -1.222 -4.014 0.666
B.cells/Macrophage 0.892 -2.175 -5.662 0.445
NK.cells/Macrophage 0.955 -2.375 -5.981 -0.449
Macrophage/Neutrophils 0.988 7.724 1.779 8.612
Macrophage/Eosinophils 1.000 8.974 2.392 9.534

Table 5.8: Sequence of logratios of markers entering in a stepwise search, ex-
plaining the logratio variance of the whole compositional data set.

The stepwise procedure starts by selecting, from the 36 logratios in this

example, the one that explains the most logratio variance, using redundancy

analysis (RDA). The sequence of ratios and their accumulated explained vari-

ances are given in Table 5.8. In addition, Table 5.8 reports the medians of

these ratios, as well as their reference ranges based on the estimated 0.025

and 0.975 quantiles (i.e., 2.5 and 97.5% percentiles, respectively). The logratio

of T.cells.CD4/Macrophage turned out to be the best, explaining 32.0% of the

variance. The second best is Macrophage/Dendritic.cells, explaining an ad-

ditional 24.3%; so the variance explained is now 56.3%. Then, T.cells.CD8/Mast.cells

and T.cells.CD8/Macrophage brings the variance explained up to 80.5%, and

so on. The number of links to Macrophags being 8 indicates large variation.
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Figure 5.1: Graph of the eight ratios chosen in a stepwise procedure to ex-
plain maximum logratio variance, with numbers indicating their rank in the
variable selection.
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Figure 5.2: PCA contribution biplot of the eight ratios chosen in a stepwise
procedure to explain maximum logratio variance.

Figure 5.1 represents the set of ratios in its acyclic graph connecting all

the parts, where the numbers on the edges show their order of entry in the

stepwise procedure, large number of links indicate more variation for that

immune cell type. Figure 5.1 shows that the number of links to Macrophags

is 8, it indicates Macrophags presents the largest variation revealed in the tu-

mor immune microenvironment. Based on the ranking shown in the Figure

5.1, Macrophages, CD4 T cells, dendritic cells, CD8 T cells, and mast cells re-

veals most variation in the tumor immune microenvironment, which is con-

sistent to the cell types identified in recent study ( [62]).
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Figure 5.3: PCA contribution biplot of the top five ratios chosen in a stepwise
procedure to explain maximum logratio variance.
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The logratio biplot of using the 10 identified logratios in Figure 5.2 pro-

vides more insight on the choice of the ratios. These are the 10 identified

logratios in Table 5.8, which explain 100% of the logratio variance. PCA is

applied on these 10 identified logratios, and Figure 5.2 presents the first two

dimension of the dimension reduction result. The first two dimension ex-

plains combined 64.6% of the total variance. The Macrophage versus Den-

dritic.cells opposition appears as the most important along the first axis, which

clarifies the choice of the second ratio as Macrophage/Dendritic.cells. In ad-

dition, the samples are labeled as AA and EA, represent African American

and European American respectively. We can find certain clustering pattern

where AA are mostly clustered in the top-left and bottom-right in the biplot.

Figure 5.3 presents the biplot of the top five ratios chosen in a stepwise

procedure to explain maximum logratio variance. Here the first two dimen-

sion explains combined 72.5% of the total variance. Moreover, most African

American samples are clustered in the bottom-left of the biplot, which indi-

cates that the top five ratios chosen in a stepwise procedure reveals certain

level of racial difference.

We also include the biplot of the top five ratios with the samples labeled

with both sex and racial information, which can be found in the Supplemen-

tal Figure A.5 and A.6. It is challenging to identify sex and racial subgroups

from these two plots.
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For the real data analysis of microbiome data, we downloaded the prepro-

cessed metagenomic data of six cross-sectional studies of colonrectal can-

cer from the curatedMetagenomicData R package [63], which is supplemen-

tal to the meta-analysis by Thomas, A. M. [64], et al. The data includes in-

formation of metadata, taxonomic and functional composition, and relative

abundance of each species and metabolic pathway. Since the preprocessed

metagenomic data for the other two validation studies used in the meta-analysis

were not available, we downloaded their raw fastq files from the DNA Data

Bank of Japan database (project No. DRA00668432) and European Nucleotide

Archive (project No. PRJEB2792814), respectively. Data preprocessing was

performed strictly as described in the meta-analysis to make it consistent

with the other six cohorts. Overall, we use the name of the country where the

cohorts were recruited to denote the eight studies: ThomasAM_2018a rep-

resents cohort in Italy (ITA 1), ThomasAM_2018b represents cohort in Italy

(ITA 2), FengQ_2015 represents cohort in Austria (AUS), VogtmannE_2016

represents cohort in the United States (USA), YuJ_2015 represents cohort in

China (CHI), and ZellerG_2014 represents cohort in France (FRA), project No.

DRA006684 represents cohort in Japan (JAP), and project No. PRJEB27928

represent cohorts in Germany (GEM). In total, the pooled samples contain

387 CRC cases and 384 healthy controls.
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# of control # of CRC T-test Rank sum test Zero-inflated Wilcoxon
FengQ_2015 61 46 0.000 0.057 0.081
ThomasAM_2018a 24 29 0.000 0.000 0.000
ThomasAM_2018b 28 32 0.000 0.010 0.010
VogtmannE_2016 52 52 0.000 0.000 0.011
YuJ_2015 53 75 0.000 0.045 0.078
ZellerG_2014 61 53 0.000 0.021 0.036
PRJDB4176 40 40 0.000 0.009 0.023
PRJEB27928 64 60 0.004 0.174 0.190
Pooled 383 387 0.037 0.181 0.200

Table 5.9: Proportion of species selected using T-test, Wilcoxon rank sum test
and Zero-inflated Wilcoxon test.

Table 5.9 presents the proportion of species selected using T-test, Wilcoxon

rank sum test and Zero-inflated Wilcoxon test. We can observe from the ta-

ble that t-test has the least power in identifying the signal species. Rank sum

test and zero-inflated Wilcoxon test show similar performance. Zero-inflated

Wilcoxon test is slightly more powerful in finding key species, where the pro-

portion of species selected are higher across all cohorts and meta data analy-

sis. The large proportion of zeros played an important role in the microbiome

data analysis. For the rank sum test, the excessive number of zeros results in

many ties when calculate the rank sum, which lead to loss of power.
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# of selected species Top 3 species
FengQ_2015 28 Prevotella_copri Fusobacterium_nucleatum Porphyromonas_asaccharolytica
ThomasAM_2018a 0 NA NA NA
ThomasAM_2018b 4 Gemella_morbillorum Parvimonas_micra Parvimonas_unclassified
VogtmannE_2016 0 NA NA NA
YuJ_2015 22 Peptostreptococcus_stomatis Parvimonas_unclassified Gemella_morbillorum
ZellerG_2014 11 Fusobacterium_nucleatum Peptostreptococcus_stomatis Porphyromonas_asaccharolytica
PRJDB4176 4 Parvimonas_unclassified Gemella_morbillorum Peptostreptococcus_stomatis
PRJEB27928 78 Anaerotruncus_unclassified Parvimonas_unclassified Solobacterium_moorei
pooled 126 Parvimonas_unclassified Peptostreptococcus_stomatis Fusobacterium_nucleatum

Table 5.10: Number of significant species and the top 3 species identified us-
ing Wilcoxon rank sum test

Figure 5.4: Venn Diagram of the cohorts and metadata for significant species
identified using Wilcoxon rank sum test
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# of selected species Top 3 species
FengQ_2015 40 Fusobacterium_nucleatum Prevotella_copri Porphyromonas_asaccharolytica
ThomasAM_2018a 0 NA NA NA
ThomasAM_2018b 4 Gemella_morbillorum Parvimonas_micra Parvimonas_unclassified
VogtmannE_2016 5 Fusobacterium_nucleatum Porphyromonas_uenonis Gemella_morbillorum
YuJ_2015 38 Peptostreptococcus_stomatis Parvimonas_unclassified Parvimonas_micra
ZellerG_2014 19 Fusobacterium_nucleatum Peptostreptococcus_stomatis Porphyromonas_asaccharolytica
PRJDB4176 10 Gemella_morbillorum Parvimonas_unclassified Peptostreptococcus_stomatis
PRJEB27928 85 Parvimonas_unclassified Anaerotruncus_unclassified Parvimonas_micra
pooled 139 Clostridium_hathewayi Clostridium_symbiosum Fusobacterium_nucleatum

Table 5.11: Number of significant species and the top 3 species identified us-
ing Zero-inflated Wilcoxon test

Figure 5.5: Venn Diagram of the cohorts and metadata for significant species
identified using Zero-inflated Wilcoxon test

109



Figure 5.4 present the Venn Diagram of the significant species identified

using Wilcoxon rank sum test comparing the cohorts FengQ_2015, YuJ_2015,

ZellerG_2014, PRJEB27928, and the metadata including all 8 cohorts studies.

The lighter the color in the plot, the large count it is. Also, the number of total

number of significant species for each cohort is listed beside the study name

in the plot. Figure 5.4 shows that there are 5 species that are shared by the

5 categories. And those 5 species are "Clostridium_hathewayi", "Fusobac-

terium_nucleatum", "Parvimonas_micra", "Peptostreptococcus_stomatis",

and "Porphyromonas_asaccharolytica". Clostridium_hathewayi is a newly

described gram-negative, endospore-forming, rod-shaped bacterium, and

Fusobacterium nucleatum is an oral bacterium, commensal to the human

oral cavity, that plays a role in periodontal disease. Parvimonas micra is a

rare pathogen for psoas abscess and a Gram-positive anaerobic coccus. Pep-

tostreptococcus stomat is a species of anaerobic, gram-positive coccoid bac-

teria belonging to the genus. Porphyromonas asaccharolytica is a rare causative

agent for Lemierre’s Syndrome.

On the other hand, the Venn Diagram in Figure 5.5 shows the significant

species identified using Zero-inflated Wilcoxon test comparing the cohorts

FengQ_2015, YuJ_2015, ZellerG_2014, PRJEB27928, and the metadata includ-

ing all 8 cohorts studies. Figure 5.5 shows that there are 7 species that are

shared by the 5 categories. And those 5 species are "Clostridium_hathewayi",

"Fusobacterium_nucleatum", "Parvimonas_micra", "Peptostreptococcus_stomatis",
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"Porphyromonas_asaccharolytica", "Parvimonas_unclassified" and "Gemella_morbillorum".

The first 5 species are the same as the 5 species identified using Wilcoxon rank

sum test. The two species that are uniquely identified using Zero-inflated

Wilcoxon test are "Parvimonas_unclassified" and "Gemella_morbillorum".

There are 18 items that were listed as unclassified Parvimonas in the taxon-

omy browswer in NCBI. Limited information is available for "Parvimonas_unclassified".

As for "Gemella_morbillorum", it is a species of bacteria within the genus

Gemella. It is a facultative anaerobic Gram positive coccus usually prefer-

ring capnophilic or microaerophilic environments. Zero-inflated Wilcoxon

shows higher power in detecting signal species.

Table 5.10 presents the number of significant species and 3 species with

smallest p-values using Wilcoxon rank sum test. If we consider only the co-

horts with number of selected species larger than 0. There is only 1 species

that are shared by the rest of the categories, which is shown in the Supple-

mental Figure A.1, and that one species is "Peptostreptococcus_stomatis".

In the meantime, Supplemental Figure A.2 presents Venn Diagram of signif-

icant species identified using Zero-inflated Wilcoxon test for the same 6 co-

horts and metadata. Using Zero-inflated Wilcoxon test, 4 species are shared

among all categories. More detailed Venn Diagram comparing the two ap-

proach for 4 cohorts only are included in the Supplemental Figure A.3 and

A.4. Overall, we observe higher number of selected species identified using

Zero-inflated Wilcoxon test for almost all the cases.
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5.5 Conclusions

In this aim, we investigated variable selection in compositional data anal-

ysis with application to immunology data and microbiome data. For low-

dimensional microbiome data, we applied stepwise pairwise log-ratio proce-

dure for variable selection and identified key immune subtypes using cellular

fractions data induced from Colorectal Adenocarcinoma TCGA PanCancer

study. Macrophags presents the largest variation in the tumor immune mi-

croenvironment. It is also shown that Macrophages, CD4 T cells, dendritic

cells, CD8 T cells, and mast cells are the top ranking immnue subtypes with

most variation. By applying the stepwise pairwise log-ratio procedure, we

identified the key immune subtypes and revealed the relationship among the

top ranking subtypes. As for the microbiome data, we took into account key

aspects of the data including large proportion of zeros and high dimensional-

ity. Key species are identified in the metagenomic data of six cross-sectional

studies of CRC by applying zero-inflated Wilcoxon test for variable selection.

Overall, various variable selection approaches investigated in compositional

data analysis for immunology data and microbiome data in this study will

provide researchers meaningful insight for identifying key features in cancer

study.
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A. APPENDIX: Supplementary Figures and Tables

Fig. S1. Pathway Coefficient of mRNA vs CNV.
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KEGG_HEDGEHOG_SIGNALING_PATHWAY 32
KEGG_MTOR_SIGNALING_PATHWAY 2
KEGG_NOTCH_SIGNALING_PATHWAY 10
KEGG_NUCLEOTIDE_EXCISION_REPAIR 21
KEGG_CELL_CYCLE 24
KEGG_CELL_ADHESION_MOLECULES_CAMS 0
KEGG_JAK_STAT_SIGNALING_PATHWAY 6
KEGG_PHOSPHATIDYLINOSITOL_SIGNALING_SYSTEM 4
KEGG_MAPK_SIGNALING_PATHWAY 0
KEGG_MISMATCH_REPAIR 14
KEGG_APOPTOSIS 0
KEGG_WNT_SIGNALING_PATHWAY 46
KEGG_BASE_EXCISION_REPAIR 10
KEGG_NON_HOMOLOGOUS_END_JOINING 1
KEGG_TGF_BETA_SIGNALING_PATHWAY 24

Table. S1. Gene membership of WNT & MTOR gene set

KEGG_HEDGEHOG_SIGNALING_PATHWAY 3
KEGG_MTOR_SIGNALING_PATHWAY 16
KEGG_NOTCH_SIGNALING_PATHWAY 0
KEGG_NUCLEOTIDE_EXCISION_REPAIR 0
KEGG_CELL_CYCLE 10
KEGG_CELL_ADHESION_MOLECULES_CAMS 0
KEGG_JAK_STAT_SIGNALING_PATHWAY 18
KEGG_PHOSPHATIDYLINOSITOL_SIGNALING_SYSTEM 11
KEGG_MAPK_SIGNALING_PATHWAY 62
KEGG_MISMATCH_REPAIR 0
KEGG_APOPTOSIS 42
KEGG_WNT_SIGNALING_PATHWAY 26
KEGG_BASE_EXCISION_REPAIR 0
KEGG_NON_HOMOLOGOUS_END_JOINING 0
KEGG_TGF_BETA_SIGNALING_PATHWAY 9
Table. S2. Gene membership of MARK & APOPTOSIS gene set
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Fig. S2. Coefficients of genes for each pathway for mRNA data.
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Fig. S3. Coefficients of genes for each pathway for CNV data.
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Figure A.1: Venn Diagram of the 8 cohorts and metadata for significant
species identified using Wilcoxon rank sum test

Figure A.2: Venn Diagram of the 8 cohorts and metadata for significant
species identified using Zero-inflated Wilcoxon test
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Figure A.3: Venn Diagram of the 4 cohorts for significant species identified
using Wilcoxon rank sum test

Figure A.4: Venn Diagram of the 4 cohorts for significant species identified
using Zero-inflated Wilcoxon test
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Figure A.5: PCA contribution biplot of the eight ratios chosen in a stepwise
procedure to explain maximum logratio variance (each sample labeled with
sex and race information).

Figure A.6: PCA contribution biplot of the top 5 ratios chosen in a stepwise
procedure to explain maximum logratio variance (each sample labeled with
sex and race information).

132


	Statistical Methods for Integrative Analysis, Subgroup Identification, and Variable Selection Using Cancer Genomic Data
	Recommended Citation

	CHAPTERS
	INTRODUCTION
	Overview
	Gaps in the Current Literature
	Overall Goal and Specific Aims

	STATISTICAL BACKGROUND
	Overview of the statistical background
	Integrative clustering of multiple genomic data types using a joint latent variable model (iCluster)
	Integrative clustering of multi-type genomic data (iCluster+)
	A fully Bayesian latent variable model for integrative clustering analysis of multi-type omics data
	Joint and individual variation explained for integrated analysis of multiple data types (JIVE)
	A non-negative matrix factorization method for detecting modules in heterogeneous omics multi-modal data (iNMF)
	Bayesian consensus clustering (BCC)
	Integrative factor analysis model (iFad) and Bayesian sparse factor modeling for the inference of pathways responsive to drug treatment (FacPad)
	Semi-supervised identification of cancer subgroups using survival outcomes and overlapping grouping information (InGRiD)
	Robust enumeration of cell subsets from tissue expression profiles (CIBERSORT)
	Covariance-Based Variable Selection for Compositional Data
	Stepwise Pairwise Log-ratio Variable Selection for Compositional Data
	Zero-inflated Wilcoxon Rank Sum Test (ZIW)

	SPECIFIC AIM 1
	Introduction
	Methods
	Simulation
	Real data analysis
	Conclusions

	SPECIFIC AIM 2
	Software Development

	SPECIFIC AIM 3
	Introduction
	Methods
	Simulation
	Real data analysis
	Conclusions

	REFERENCES
	APPENDIX
	APPENDIX: Supplementary Figures and Tables

