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Abstract 
. 

Introduction: Mitogen Activating Protein (MAPK) kinase phosphatase-1 

(MKP-1) has been shown to be a key negative regulator of the MAP kinase 

pathways of the innate immune system. The impact of MKP-1 in an endodontic 

model has yet to be studied. Thus, the purpose of this study was to determine 

the role of MKP-1 in a bacterial-driven model of pathological endodontic bone 

loss. 

Methods: Pulps were exposed in both lower 1 st molars of 10-week old 

Dusp-1+1+IMKP-1 +1+ and Dusp-1-1-IMKP-1-1- mice and left open to the oral 

environment for either 3 or 8 weeks. At sacrifice, mandibles were harvested and 

scanned by microcomputed tomography (microCT) to determine periapical bone 

loss. Histopathological scoring was then performed on the samples to determine 

the amount of inflammatory infiltrate within the periapical microenvironment. 

Results: Significant bone loss and inflammatory infiltrate were found in all 

experimental groups when compared to control. No statistical difference was 

found between Dusp-1+1+IMKP-1 +1+ and Dusp-1-1-IMKP-1-1- at either time point with 

respect to bone loss or inflammatory infiltrate. At 8 weeks, male DUSP-1-1-/MKP-

1-1- mice were found to have Significantly more bone loss and inflammatory 

infiltrate when compared to female Dusp-1-1-IMKP-1-1- mice. There was also a 

significant correlation between an increase in bone loss and increase in 

inflammatory infiltrate. 
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Conclusions: A sexual dimorphism exists in the periapical inflammatory 

process, where male Dusp-1-1-IMKP-1-1- mice have more inflammation than 

female Dusp-1-1-IMKP-1-1- mice. The increase in inflammatory infiltrate correlates 

to more bone loss in the male mice. 
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Introduction 

Etiology and Pathogenesis of Endodontic Disease 

The etiology of endodontic disease and ultimately apical periodontitis is 

microbial in origin, primarily initiated by a carious lesion of tooth structure causing 

infection of the root canal system. It has been proven that without bacteria there 

can be no pulpal necrosis or subsequent apical periodontitis (Kakehashi 1965.) 

In germ-free mice, pulp exposed teeth were able to repair themselves to health, 

whereas mice with normal oral flora developed apical periodontitis. Another 

study was able to show similar results in a population of monkeys with either 

bacterially infected root canals or non-infected root canals (Moller 1981.) Caries 

is the primary origin of bacteria causing necrosis, but the process could also be 

initiated by trauma injury, fracture of tooth structure or iatrogenic exposure of the 

pulp tissue. Fungi and viruses have also reportedly been found in infected root 

canal systems, but bacteria remain the primary causative factor for pulpal 

necrosis (Gomes 2010, Sabeti 2012.) 

Because the normal root canal system is a sterile environment, any 

bacterial species that is able to reach these confines is potentially harmful to the 

pulp. Primary intraradicular infection can be caused by bacteria that initially 

entered the root canal system through the carious process or could be 

opportunistic pathogens that took advantage of the necrotic environment. The 

root canal system is an ideal space for bacteria to colonize, as there are plentiful 

nutrients from the necrotic tissue, there is protection from the immune response 



and the root canal walls are conducive to setting up a biofilm colony. These 

infections have a high proportion of anaerobic bacteria, characteristic of the 

occupied environment. It is a mixed infection with many species types having 

been identified. Bacterial load has been quantified and ranges from 103 to 108 

per root canal (Sakamoto 2007, Siqueira 2007, Sundqvist 1976) with a mean of 

10 to 20 species per root canal (Munson 2002, Rocas 2008, Siqueira 2005.) It 

has also been shown that the size of the bony lesion is directly proportional to the 

number of species present in the canal with some canals having over 40 species 

identified (Rocas 2008.) Specific species as identified by molecular methods are 

both gram negative and gram positive. Most prevalent species present in 

primary infections include Dia/ister in vis us, Bacteroidetes clone X083, 

Pseudoramibacter alactolyticus, Porphyromonas endodonta/is, Treponema 

denticola, Dialister pneumosintes, Filifactor alocis and Tannerela forsythia 

(Siqueira FEMS Micro Lett 2005, Siqueira JOE 2004, Siqueira JOE 2005, 

Siqueira J Clin Micro 2005.) Roughly half of the microbiota species in infected 

root canals are still uncultivated and may actually be some of the most prevalent 

species involved in root canal infection (Sakamoto 2006.) 

Bacterial invasion into the pulp stimulates initiation of a pulpal immune 

response. Pulpal response begins with antigen recognition by immunocompetent 

macrophages and dendritic cells. Pulpal blood flow is increased allowing for the 

infiltration of polymorphonuclear neutrophils (PMNs) and monocytes in the early 

stages of inflammation (Bergenholtz 1985.) The number of inflammatory cells 
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increases as the infection progresses, activating cells of the adaptive immune 

system. These are primarily T cells but also B cells (Hahn 1989.) The immune 

system has a difficult time eradicating an infection of the root canal system due to 

its confined space and limited blood supply. These limitations of the pulpal 

immune response lead to progressive necrosis of the pulp in focal areas and 

eventually total tissue necrosis. 

Bacteria and their by-products gain access to the periodontium through 

the primary apical foramen, as well as lateral portals of exit. The immune 

response in the periapex is similar to that of the pulp proper with the primary 

difference being the destruction of osseous tissue in the area surrounding the 

infected root apex. It has been proposed that the periapical lesion is a 

teleological response to odontogenic infection to prevent systemic infection from 

occurring (Stashenko 1990.) 

Endodontic Inflammation and Bone Loss 

Periapical inflammation progresses in a manner similar to that of pulpal 

inflammation, with the addition of bone destruction. Bacterial constituents reach 

the periapex and initially cause an influx of PMN's and monocytes (Okiji 1994.) 

In rodent models, the innate immune response alone has been sufficient to 

cause an increase in osteoclastogenesis and subsequent bone destruction in the 

periapex (Rittling 2010.) In this early stage, chemical mediators (chemokines) 
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such as interleukin (IL)-B and monocyte chemoattractant peptide-1, are produced 

in the periapex. These mediators serve to regulate the influx of PMN's and 

monocytes. The innate immune response is activated in multiple cell types 

associated with endodontic lesions, including monocytes/macrophages, 

granulocytes, pulpal fibroblasts, osteoclast precursors and mesenchymal cells 

(Hirao 2009, Bar-Shavit 200B.) Lipopolysaccharide (LPS) is the major inducer of 

the innate immune response in endodontic disease, but other bacterial 

constituents causing an immune response could be lipoteichoic acid, 

peptidoglycans, flagellins, and RNA or DNA fragments. These are collectively 

known as pathogen-associated molecular patterns (PAMPs) that interact with 

pathogen recognition receptors (PRRs) on immune cells, namely toll-like 

receptors (TLRs.) TLR's on the cell surface recognize the extracellular bacterial 

signals and begin the conversion to a cellular response. TLR-4 specifically 

recognizes LPS after LPS has already bound to LPS-binding protein (LBP) and a 

macrophage cell-surface receptor, CD-14. Intracellular molecules bind to the 

trans-membrane components of the TLR and activate a cascade of events that 

include the stress kinase pathway and the nuclear factor-KB (NF-KB) 

inflammatory cascade '(Liu 2009). These cascades lead to the production of a 

number of inflammatory cytokines. Notable cytokines produced in endodontic 

disease are IL-10, IL-1~, and TNF-o and are derived mostly from PMN's and 

macrophages (Stashenko 1995.) IL-1 ~ seems to be primarily associated with the 

pathogenesis of periapical disease, as its levels have been shown to decrease 

after endodontic therapy, whereas IL-1 a levels increase after treatment (Matsuo 
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1994.) IL-6 has been identified in periapical lesions and is associated with 

osteoclast formation (Hutter 1998.) 

The production of proinflammatory cytokines by macrophages as well as 

fibroblasts, osteoblasts, and neutrophils, leads to tissue destruction in the 

periapical region. IL-1, and to a lesser extent TNF, induce the expression of 

receptor activator of nuclear factor-KB ligand (RANKL) by osteoblasts, causing 

activation of osteoclasts and resulting bone resorption (Dewhirst 1985, Bertolini 

1986.) IL-1, TNFa, and IL-6 have been associated with increased bone 

resorption, including RANKL production and osteoclastogenesis. IL-1 has been 

shown to playa crucial role in inducing bone loss by using an IL-1 receptor 

antagonist in an experimental model. Lesion development was decreased by 

60% when IL-1 was antagonized (Stashenko 1994.) In humans IL-1 ~ and TNFa 

cause an increase in expression of matrix metalloproteinases (MMPs.) MMP's 

cause degradation of the extracellular matrix, enhancing the development of 

periapical lesion formation and bone loss. Cytokines can also enhance 

osteoclastogenesis directly or indirectly through stimulation of RANKL 

expression. RANKL's interaction with receptor activator of nuclear factor-KB 

(RANK) induces osteoclast differentiation and activation, also enhancing 

formation of the periapical osseous lesion. Osteoprotegrin (OPG) acts as an 

inhibitor of the interaction between RANK and RANKL, thus decreasing 

osteoclast activation and bone destruction. During an inflammatory process, 

RANKL concentration is higher than OPG, allowing bone destruction to occur 
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(Graves 2011.) Adaptive immunity is also important in periapical lesion 

formation. Adaptive cells were found to be primarily T cells and to a lesser extent 

B cells (Stashenko 1992.) T H1 associated cytokines, especially IFNy, have been 

associated with cell mediated immunity (Nair 2004) and in general are 

proinflammatory (Graves 2011.) T H2 cells produce cytokines IL-4, 5, and 6 and 

are associated with production of antibodies by plasma cells (Nair 2004) and in 

general are considered anti-inflammatory (Graves 2011.) IL-1 ~ and TNF-a also 

cause an increase in prostaglandin E2 (PGE2) production (Saito 1990), as well as 

increases in destructive proteinases (Meikle 1989) and an inhibition of new bone 

formation (Barkhordar 1999, Stashenko 1994.) The root canal and periapical 

environment are such that the root canal system provides a protected source of 

bacteria and bacterial toxins. Once the pulp tissue has necrosed, immune cells 

are unable to reach the confines of the root canal system to resolve the infection 

(Nair 2004.) A continuous source of inflammation causes bone resorption in the 

periapex to go on indefinitely as the immune system battles this barrage of 

insults. 

Innate Immunity and Signal Transduction 

The production of inflammatory cytokines is the consequence of activation 

of key intracellular pathways, including MAPK pathways (Yang 2003, Whitmarsh 

2007, Whitmarsh, Davis 2007.) The stress kinase cascade involves multiple 
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phosphorylations of mitogen activated protein (MAP) kinases. Activation of MAP 

kinase kinase kinase (MAPK3) phophorylates MAP kinase kinase (MAPK2) 

which in turn phophorylates MAP kinase (MAPK.) MAPK can then phosphorylate 

a number of downstream targets. These include activation of activating protein 

(AP)-1, enhancing cytokine gene transcription, and help regulate protein 

expression through alterations in mRNA transcripts containing AU-rich elements 

(Liu 2009.) This process localizes to the cell nucleus where specific MAP 

kinases, including extracellular signal related kinases (ERK), c-jun N-Terminal 

kinases (JNK) and p38 relay, amplify and integrate signals, modulating a series 

of physiological responses including cellular proliferation, differentiation, 

development, inflammatory responses and apoptosis (Keyse 2000.) Production 

of cytokines includes pro-inflammatory IL-1, IL-6 and TNF and anti-inflammatory 

IL-10. This cascade also can result in enhanced RANKL production, 

osteoclastogenesis and bone resorption (Hirao 2009, Bar-Shavit 2008.) The 

MAP kinases also interact with proteins that negatively regulate the inflammatory 

cascade. As MAP kinases are activated by phosphorylation, they can be 

inactivated by dephosphorylation. The primary phosphatases in mammalian 

cells considered responsible for MAP kinase dephosphorylation are a group of 

dual specificity protein phosphatases known as MAP kinase phosphatases 

(MKPs), of which at least 10 are presently known (Liu 2009.) The first of these 

phosphatases to be discovered is known as MKP-1, with DUSP-1 being the gene 

encoding for the protein MKP-1. MAP kinases not only activate MKP's but can 

also affect MKPs' stability. ERK enhances the stability of MKP's, while JNK 
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causes degradation of the protein. MAPK's also enhance the catalytic activity of 

the phosphatases. MKP's dephosphorylate MAPK's, with preference for JNK 

and p38, attenuating the inflammatory cascade (Liu 2009.) Although the 

activation of MAPK pathways is critical to initiate an innate immune response 

against proliferating pathogens, sustained production of pro-inflammatory 

cytokines can result in extensive bone resorption. A number of studies have 

demonstrated that LPS from gram-negative bacteria was capable of inducing 

bone resorption in vivo (Orcel 1993, Nishida 2001, Rogers 2007.) Therefore, 

modulating MAPK immune response to an appropriate level is essential to 

attenuate bone resorption associated with bacterial infection. 

Sexual Dimorphism in Innate Immunity 

Gender differences have been well documented in innate immunity. In 

general it has been shown that males have a more pronounced immune 

response with more sequela in comparison to females. With respect to systemic 

inflammation, females have been shown to have a 30% lower innate immune 

response when the level of cytokine TNF was measured after LPS challenge 

(Moxley 2002.) In a similar study, females produced significantly less LPS 

challenged TNF and IL-1 J3 than males and also had lower overall MAPK 

phosphorylation (Imahara 2005.) Females have a more responsive and 

protective cell-mediated and humoral response to antigenic challenge (Marriott, 
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Huet-Hudson 2006) whereas males have been shown to have an increase in 

macrophage TLR-4 and CD-14, possibly causing an increase in cytokine 

production and more intense immune response (Marriott, Bost 2006.) The 

mechanisms for the apparent sexual dimorphism in innate immunity are generally 

unknown, but there are several theories that may contribute to the biological 

basis for the differences. It has been proposed that sex hormones help regulate 

immune cell function (Wyle 1977.) Estrogen may be an important regulator of 

the immune system as it has been shown to affect the synthesis and release of 

pro-inflammatory cytokines (Angele 2000, Frink 2007.) In trauma and sepsis 

studies, premenopausal women have higher survival rates than either men or 

postmenopausal women, showing a relationship between estrogen and immune 

function (George 2003, Schroder 1998.) In the dental litera~ure, estrogen was 

shown to have a protective role in inflammation. Estrogen deficient female rats 

had a significantly greater systemic response to periapical lesion formation, 

showing an increase in serum concentrations of IL-1, TNFo, IL-6 and MMP-9 

(Zhang 2011.) The sexual dimorphism in innate immunity is most likely multi­

factorial. Another explanation is the genetic difference between males and 

females. There is an X-linked gene base responsible for cytokine receptors and 

proteins and immune related transcription factors that may be different between 

genders (Fish 2008.) 

Studies have shown that Dusp-1-1-IMKP-1-1
- mice are more susceptible to 

endotoxic shock and exhibited a marked increase in production of pro-
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inflammatory cytokines TNF-a, IL-6, and an anti-inflammatory cytokine IL-10 as 

compared with wild-type animals (Zhao 2006.) Dusp-1-1-IMKP-1-1
- mice also had 

a marked increase in both the incidence and severity of experimentally induced 

autoimmune arthritis (Chi 2006, Salojin 2006) and exhibited more periodontal 

bone loss after LPS challenge as compared with wild-type animals (Sartori 

2009.) These results highlight the significance of MAPK/MKP-1 regulation on 

innate immune response to LPS-induced inflammation and maintaining bone 

homeostasis, suggesting that restriction of activated MAPKs is a potential 

therapeutic strategy for diseases associated with exaggerated MAPK responses. 

Recent studies confirmed that MKP-1 is a key negative regulator of periodontal 

disease progression in LPS-driven models of experimental periodontal disease 

(Sartori 2009, Yu 2010,) but its role in a bacterial-driven environment has not 

been determined. Thus, the purpose of this study was to determine the role of 

MKP-1 in a bacterial-driven model of pathological endodontic bone loss. 

Material and Methods 

Animals 

The Institutional Animal Care and Use Committee (IACUC) at the Medical 

University of South Carolina approved all experimental protocols. Mice used for 

this application were initially obtained through a material transfer agreement 

(MT A) from Bristol Myers Squibb. Generation of homozygous Dusp-1 knockout 
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mice (KO) was done through mating Dusp-1+1
- mice to obtain Dusp-1 null mice 

and maintained on a mixed C57/129 genetic background. 

Periapical Bone Loss Model 

Pulp exposure was obtained as described in previous endodontic models 

(Kawashima 1999, Hou 2000.) Briefly, 10-week old male and female mice were 

anesthetized using intraperitoneal injection of Ketamine (80mg/kg) and xylazine 

(10mg/kg) in sterile phosphate-buffered saline after induction with inhalational 

isoflurane. For experimental groups, lower first molars were accessed and pulps 

exposed under surgical operating microscope (Olympus Highlight 31 00/SZ61; 

Olympus Imaging America, Center Valley, PA) with a dental handpiece 

(Aseptico; Woodinville, WA) and ~ round bur. Access allowed penetration of #6 

endodontic hand file to the mesial and distal root canals. The pulp was then left 

exposed to the oral environment for three or eight weeks. Euthanization 

occurred by CO2 asphyxiation. Mandibles were harvested and sectioned into two 

halves at the midline for analysis. Control mice were mixed gender and did not 

receive exposure. 

MicroCT Analysis 

Anatomic sections were performed to include the mandibular 1 st through 

3rd molars, as well as surrounding osseous tissues. Samples were placed in 10% 

formalin for 24 hours and then stored in 70% ethanol. Cone-beam 

microcomputed tomography (~lCT) scans were obtained using high-resolution 
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desktop ~lCT (jlCT40 scanner; Scanco USA, Inc., Wayne, PA). Initial data 

reconstruction was performed using Scanco Medical Open VMS software 

(Scanco USA, Inc.) For visualization, samples were digitally reconstructed so 

that a two-dimensional slice could be obtained showing a patent mesial and 

distal canal in the first molar.using GE MicroView software (GE Healthcare 

BioSciences, Chalfont St. Giles, UK). Data was exported into ImageJ for further 

analYSis. Periapical regions of interest were obtained by digital cropping and 

measured by the software in square pixels. All measurements were performed 

by the same trained examiners and repeated at separate time intervals. Mean 

bone loss cross-sectional area was compared in wild-type and knockout mice. 

Histology and Inflammation Indices 

Following J.tCT analysis, specimens were decalcified in a 0.5 M EDTA 

solution pH 8.0 for 4 weeks at 4°C. Mandibular sections were paraffin-embedded, 

and 7 IJm sagittal sections prepared. Some sections were stained with 

hematoxylin and eosin (H&E) for descriptive histology. Scoring of inflammatory 

infiltrate was performed with a trained pathologist (HY). Scoring of inflammation 

corresponded with the following index: 0 = No neutrophils near the root; 1 = 

sparse «5%) neutrophils adjacent to the root apex; 2 = 5-20% neutrophil 

infiltration adjacent to the root apex; 3 = 20-50% neutrophils in the area limited 

adjacent to root apex; 4 = numerous (>500/0) neutrophils in area greater than 

50% adjacent to root apex. 
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Statistical analysis 

Non-parametric Wilcoxon (Mann-Whitney) rank-sum test was used with an 

alpha=0.05 two-sided significance level to evaluate potential differences between 

knockout and wild-type mice in bone loss and histological scoring measures per 

hem i-mandible. To accommodate for the within-cluster dependence of the data, 

the corrected variance formula for the Wilcoxon rank-sum statistics developed by 

Rosner and colleagues (Rosner 2006) was applied. Mean and standard error 

results were estimated utilizing mixed effect regression models. Multivariable 

mixed effect regression models were used to assess associations between bone 

loss and histological scoring, while adjusting for time, gender, and Dusp-1-1-

IMKP-1-1- versus Dusp-1-1-IMKP-1 +/+ status. All possible 3- and 2-way interactions 

were tested in this multivariable model. All statistical analyses were performed 

using SAS® Proprietary software, 9.2, © 2002-2008, SAS Institute Inc., Cary, 

NC, USA. 

Results 

Post-endodontic exposure, )l.CT analysis of mandibular samples revealed 

that a significant amount of periapical bone loss was achieved using this 

experimental protocol compared to untreated controls in all groups (Fig. 1.) 

Although analysis of Dusp-1-1-IMKP-1-1
- mice showed numerically greater 

amounts of bone loss than bone loss observed in age-match wild-type littermate 
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controls, significant differences in bone loss were not detected at either 3- or 8-

week time points. However, among Dusp-1-1-IMKP-1-1
- mice at 8 weeks, 

significantly more bone loss occurred in males compared to age-match female 

mice (P<.05), a result that was not observed among wild-type mice (Fig. 2.) 

Figure 3 shows representative !JCT splines of control, 3 and 8 week treatment 

samples demonstrating periapical bone loss. 

To determine if the degree of inflammation was consistent with llCT data, 

inflammatory infiltrate was evaluated and quantitated in the periapical area. 

Similar to data from J..lCT analysis, there was not a significant difference in the 

amount of neutrophil infiltrate between Dusp-1-1-IMKP-1-1- and Dusp-1+1+IMKP-1+1+ 

mice at either 3- or 8-week time points (Fig 4), although the mean scoring for 

Dusp-1-1-IMKP-1-1
- mice was higher than that of age-match wild-type control mice. 

As with bone loss, there was a significantly higher histopathology score in Dusp-

1-1-/MKP-1-1- males compared to Dusp-1-1-IMKP-1-1- females at 8 weeks (P<.05) 

(Fig. 4). Figure 5 shows representative H&E slides corresponding to periapical 

areas used for histopathologic analysis of control group, 3 and 8 week treatment 

group demonstrating areas of periapical inflammation. There was a significant 

correlation found to exist between histopathology score and amount of bone loss 

among all groups (P<.05.) 
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Discussion/Conclusions 

Invasion of the dental pulp system by bacterial constituents, such as LPS, 

leads to the stimulation of the innate immune system through multiple 

intracellular signaling pathways, including the MAPK cascade. Innate immune 

cells (Le., neutrophils and macrophages) within the periapical microenvironment 

are activated to both produce and respond to pro-inflammatory cytokines leading 

to enhanced osteoclastogenesis and bone resorption. In previous studies, MKP-

1 has been shown to be a key component in the attenuation of bone loss through 

a role as negative regulator of the MAPK system. 

The endodontic model in this experiment was shown to be effective in 

producing a measurable amount of bone loss. Previous endodontic studies used 

injections of human bacterial pathogens into the root canal system to induce an 

inflammatory response and bone loss (Kawashima 1999, Hou 2000.) In this 

study, the animal's own commensal oral bacteria were the cause of the bone loss 

outcome due to the root canal access remaining open to the oral cavity. It is 

unknown what bacteria are present in this murine model, but the end result of the 

inflammatory process was more important in this study than which bacteria were 

the causative agents. Further studies could determine the bacteria present in the 

murine model. It is also important to note that the mice were maintained in a 

healthy state. If the mice had lost more than 10% of their initial body weight they 

would have been sacrificed per IAeUe protocol. All mice stayed within the 

parameters of healthy weight over the course of the experiment (Figures 6 &7.) 
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Although in this study a trend existed where Dusp-1-1-IMKP-1-1- mice had 

more bone loss than wild-type counterparts, this did not reach significance. 

There was, however, a significant difference in bone loss and histological scoring 

between male and female genders of the 8-week Dusp-1-1-IMKP-1-1- group. 

Males showed an increased periapical inflammatory response as compared to 

females with respect to bone loss and histological score. 

There have been previous studies showing a sexual dimorphism related to 

inflammation similar to that observed in this study. The protective role of 

estrogen has been shown in a study of ovariectomized rats with induced 

periapical lesions. This protective effect has been hypothesized to be due to 

effect on the synthesis and release of pro-inflammatory cytokines (Zhang 2011.) 

In the periodontal literature, it has been shown that males are more prone to 

periodontal infection than females (Desvarieux 2004.) Elevation of LPS binding 

protein, CD14 and TLR-4 in males, was noted as a plausible explanation for the 

gender difference (Marriot, Bost 2006.) 

The clinical significance of sexual dimorphism in periapical inflammation 

has not been fully elucidated. In a previous endodontic outcome study, it was 

found that male patients were more likely to be associated with preoperative 

radiolucency than were female patients. The same study showed that presence 

or absence of a preoperative radiolucency was the most significant predictor for 

success in initial root canal therapy (Marquis 2006.) One could potentially make 

the conclusion that males, especially those with preoperative apical periodontitis, 
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could have a lower success rate in endodontics. A direct comparison for gender 

and success was not shown in this study, so other factors could come into play. 

Male patients may wait longer to seek treatment where females could tend to 

take care of tooth problems sooner. In one large population study, it was shown 

that males had a significantly lower success rate of initial root canal treatment 

when compared to females. Male success was 84% where root canals in females 

had a success rate of 900/0. It was also noted that association with apical 

periodontitis decreased the success rate (Swartz 1983.) Few endodontic studies 

mention a difference in healing that is associated with gender. Based upon 

findings in this study, further investigation is necessary to determine whether 

sexual dimorphism associated with periapical inflammation is clinically significant. 

Future Work 

With samples that have already been obtained several follow-up studies 

could be performed. Unstained histological sections could be used for 

immunohistochemical (IHe) staining of cytokines present in the periapical area. 

IHe can be performed on previously collected samples to determine levels and 

types of cytokines present at different time periods. The presence of IL-1 and 

TNF would indicate active inflammation and bone resorption. Other cytokines, 

such as IL-8 and monocyte chemoattractant peptide are produced early in the 

inflammatory process and are important in regulation. Flow cytometry could also 

be implemented in determining the hematopoietic population of immune 

responsive cells and pre-osteoclastic cells. Brown and Brenn staining could be 

17 



performed on slides already obtained. This stain will allow recognition of gram 

positive or gram negative bacteria present in the sample. Along the lines of 

microbiology, in a future study using the same model, bacteriological samples 

could be obtained from the mouse's open root canal system to determine what 

species are present in the disease process. In this experiment, the species of 

bacteria were not important, but future studies could use germ-free mice that 

receive bacteria injections in different combinations. In this way, the effect of 

varying bacteria on MKP-1 could be determined. 

In the future, the issue of gender could be addressed several different 

ways. Overiectomized mice could be used to remove the possible confounding 

affect of estrogen in females. Sex hormones playa crucial role in development 

of the immune response and removal of estrogen along with other hormones 

could affect periapical disease. Sex linked genes also playa role in the immune 

response of these animals as different genes can affect expression of 

inflammatory cytokines involved in disease. A microarray could be established to 

determine which sex linked cytokines are expressed in male versus female. This 

could be used to determine which genes may cause any differences in periapical 

inflammation. 
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Figure 1 
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Microcomputed tomography reveals significant periapical bone loss for all 

experimental groups compared to control. Mean periapical bone loss area as 

determined by JlCT analysis from control and 3-and 8-week exposed molar 

groups in wild type and MKP-1 deficient mice. (N= 10/group; *P<.05) 
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Figure 2 
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Microcomputed tomogr~phy indicates significant periapical bone loss from 

Dusp-1-1-IMKP-1-1
- male mice. Average periapical bone loss separated by 

gender. (N= 10/group; * P<.05) 
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Figure 3 

Representative f.!CT splines of control group (A), 3-week treatment group (B), 

and 8-week treatment group (C). All JlCT images are from MKP-1-1
- male mice. 
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Figure 4 
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Histopathology indicates that male MKP-1~/~ male mice have increased 

neutrophil infiltrate. Scatter plot analysis with mean histopathologic scoring of 

neutrophil infiltrate indicated by horizontal line from control and 3- and 8-week 

treated groups in wild type and MKP-1-1
- mice. (N= 10/group; * P<.05) 
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Figure 5 

Representative H&E slides corresponding to periapical areas used for 

histopathologic analysis of control group (B), 3-week treatment group (C), and 8-

week treatment group (0). All histological images are from MKP-1-1
- male mice. 

Arrowheads indicate neutrophil infiltrate; scale bar is 100~tM. 
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Figure 6 
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maintained healthy weight in relation to start weight over 3 weeks. 
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Figure 7 
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