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ABSTRACT 

JASON ALLEN FUNK. Promoting Mitochondrial Biogenesis with the SIRTI Activator 
SRT1720 to Improve Mitochondrial and Renal Function after Acute Kidney Injury 
(Under the direction of Dr. Rick G. Schnellmann) 

Mitochondrial dysfunction is a primary pathological consequence of acute kidney injury 

(AKl). Induction of mitochondrial biogenesis via the nuclear coactivator of transcription 

PP ARy-coactivator-l a (PGC-l a), the master regulator of mitochondrial biogenesis, 

rescues mitochondrial function in renal cells after oxidant injury. The primary goal of 

this project was to evaluate the recovery of mitochondrial function after in vivo AKl, and 

to determine the influence of mitochondrial biogenesis during the repair process. 

Deacetylation of PGC-I u by the class III HDAC SIRT 1 produces a more active form of 

the protein and stimulates mitochondrial biogenesis. The potent SIR T 1 activator 

SRT1720 induced deacetylation ofPGC-lu, increased mitochondrial proteins, and 

elevated mitochondrial respiration and total cellular ATP levels in primary renal proximal 

tubule cell (RPTC) cultures. The effects ofSRT1720 occurred in a SIRTI-dependent 

manner and exposure of SRT1720 following oxidant injury to RPTC expedited recovery 

of mitochondrial and cellular functions. 

Acute kidney injury (AKI), either by ischemia-reperfusion (I/R) or glycerol-induced 

myoglobinuric injury, produced persistent proximal tubule damage even in the face of 

recovered glomerular filtration. Tubule pathology was determined histologically, by the 

continued presence of dilated, flattened tubules, and the loss ofN a + ,K+ -ATPase 
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expreSSIon. The persistent tubule injury was associated with sustained loss of 

mitochondrial protein expression, alterations in fusion/fission proteins, and elevated 

mitochondrial biogenesis proteins. 

Treating with SRT1720 after I/R injury in rats induced PGC-l a deacetylation and 

restored mitochondrial protein expression and function by 144h after reperfusion, but not 

at 72h. Restoration of mitochondrial function was associated with attenuated kidney 

injury molecule-I (Kim-I), recovery ofNa+,K+-ATPase expression and localization, and 

normalized vimentin expression. The results suggested that recovery of mitochondrial 

function correlates with faster recovery of a normal, differentiated, polarized proximal 

tubule epithelium. 

Taken together, we have demonstrated that mitochondrial biogenesis is an essential 

component of renal cell repair following AKI, and by promoting faster recovery of 

mitochondrial function, we can expedite recovery of the differentiated tubule epithelium 

with basolateral-apical polarity. These discoveries may ultimately point towards new 

therapeutic techniques that can be further examined as potential interventions to treat 

AKI and other disorders associated with sustained mitochondrial dysfunction. 
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Chapter 1: 

Acute kidney injury and mitochondrial biogenesis 

RENAL ANATOMY 

Overview 

The primary functions of the kidney are to regulate body fluid volume, electrolyte 

balance, and excretion of waste products such as urea, ammonia, and xenobiotics in the 

bloodstream. The kidney also secretes hormones (e.g. renin) which, along with 

maintaining fluid volume, help regulate blood pressure. The kidney is comprised of three 

distinct zones, from the outer most region designated the renal cortex, to the renal 

medulla (divided into the outer medulla, further segmented into the outer stripe and inner 

stripe, and the inner medulla), to the inner most region designated as the renal papilla. 

The nephron 

The nephron is the functional unit of the kidney and is responsible for urine formation by 

maintaining fluid and so lute balance through a series of filtration, secretion, and 

reabsorption mechanisms. The nephron consists of a vascular element, the glomerulus, 

and a tubular component (further segmented into the proximal tubule, the loop of Henle, 

and the distal tubule and collecting duct). Each of these components is discussed in 

further detail below. 
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Renal vasculature. The glomerulus is supplied with blood via the afferent arterioles, and 

it exits through the efferent arterioles. The afferent and efferent arterioles are able to 

regulate blood flow and capillary pressure within the glomerulus, which respond to 

nervous system innervation, angiotensin II, vasopressin, endothelin, adenosine, and 

norepinephrine. After exiting the glomeruli via the efferent arterioles, blood is then 

routed to either the peritubular network, supplying the cortical tubules, or to the vasa 

recta, a capillary loop supplying the medullary regions. The cortical region receives the 

highest proportion of blood flow entering the kidney at approximately 900/0. In 

comparison, the renal medulla receives only 6-10% of renal blood flow, and the papilla 

approximately 1-2%. 

Glomerulus. Plasma components must first pass through the glomerular filtration 

barrier, which entails passing through the capillary endothelium, the basement 

membrane, and the epithelial cells of Bowman's capsule. The glomerulus allows a large 

fraction of fluid to be filtered, but acts as a size- and charge-specific barrier to particles in 

the blood (37). In general small molecules «60kD) are freely filtered, whereas larger 

molecules are restricted due to the size of pores created by podocytes, the epithelium of 

the glomerulus. Polyanionic molecules are generally restricted from passing through 

with the glomerular filtrate, due to an electrostatic repulsion generated by the anionic 

nature of the glomerular basement membrane. Therefore, size and charge, as well as 

shape of a molecule determine whether it will pass through with the glomerular filtrate. 

Glomerular filtration rate (GFR), which is dependent on differences in capillary pressures 

as described in the vasculature section above, is a measure of the functional capacity of 
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the kidney. Normal GFR in humans is approximately 180 mllmin; however as discussed 

in more detail below, almost all of this fluid is reabsorbed in the tubules. 

Proximal ,Tubule. The proximal tubule is segmented into the SI, S2, and S3 regions of 

the tubule. The three segments have distinct characteristics, such as distinguishable 

differences in brush border morphology, as well as mitochondrial and lysosomal 

numbers. The majority of renal reabsorption occurs within the proximal tubule, where 

approximately 75-90% of H20, and 65% Na+, as well as Cf, Ca2+, P04, and HC03-

filtered by the glomerulus are reabsorbed in this tubular section. Additionally, the 

proximal tubule is the primary site for reabsorption of glucose, carbohydrates, amino 

acids, and small peptides. Aside from morphological differences, segments of the 

proximal tubule can also be distinguished by distinct physio logical properties 

characterized by differences in reabsorption capacity of specific solutes at each segment. 

The S 1 segment is the primary site of HC03 -, low molecular weight proteins, amino 

acids, and glucose. Organic anion secretion occurs primarily at the S2 segment, and 

cation secretion at the S 1/S2 segments. Glutathione (GSH) transport primarily occurs at 

the S3 segment. Metabolic differences and enzyme localization are distinguishing 

characteristics which influence the physiological distinctions among the S 1, S2, and S3 

segments. 

Loop of Henle~ distal tubule~ and collecting duct. The loop of Henle consists of the thin 

descending and ascending limbs and the thick ascending limb. The majority of the Na +, 

K+, and water that is not reabsorbed at the proximal tubule are reabsorbed at this site of 

3 



the tubular network. Approximately 25% ofNa + is reabsorbed at the loop of Henle. The 

thick ascending limb requires a lot of energy provided by the Na +, K+ -ATPase to actively 

transport ions across the membrane. This dependence on metabolic activity for the Na +, 

K+-ATPase in the absence of adequate blood supply makes this segment particularly 

susceptible to ischemic injury. The distal tubule and collecting duct is where the final 

solute reabsorption and fluid balancing takes place in urine production. 

ACUTE KIDNEY INJURY 

Acute kidney injury definition 

Acute kidney injury (AKI) is defined as an abrupt reduction in renal function associated 

with decreased urine output and an accumulation of serum waste products, namely urea 

and creatinine (243). Classically, the term acute renal failure (ARF) was used to describe 

a sudden decline in glomerular filtration rate (GFR). More recently, however, AKI has 

replaced ARF to encompass the entire spectrum of renal injury that occurs, including a 

decline in glomerular filtration as well as the less severe challenges to the kidney which 

lead to clinically relevant changes in renal function. By current standards, this would be 

reflected by an increase in serum creatinine 0[0.3 mg/dL. The term kidney failure has 

since been reserved for a situation in which functional decline has persisted, and renal 

replacement therapy is considered a last alternative. More specifically, classification 

systems have been introduced to better stratify the injury., based upon changes in serum 

creatinine or GFR, and changes in urine output. The Acute Dialysis Quality Initiative 

(ADQI) and the Acute Kidney Injury Network (AKIN) introduced the stratification 

systems defined as Risk, Injury, Failure, Loss, and End-stage kidney disease (RIFLE 
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criteria) and the AKIN classification system illustrated in Fig 1 below. Briefly, the 

RIFLE criteria define Risk as a l.5-fold increase in Ser or 250/0 decrease in GFR, Injury 

as a 2~fold increase in SCr or 50% reduction in GFR, Failure as a 3-fold increase in SCr 

or a 75% reduction in GFR. Additionally, loss of urine output over progressively longer 

periods of time can be used to stratify the injury as well, as detailed in Fig 1-1. Loss of 

kidney function is determined when there is persistent renal failure for greater than four 

weeks, and end-stage renal disease is the final step before renal replacement therapy is 

initiated. The AKIN classification system stratifies AKI in three distinct stages with 

similar criteria outlined above in the RIFLE description. Classification of the injury has 

allowed for better comparison across clinical studies covering diverse populations and 

severities, as well as better prognostic measures to be taken as outcome severity 

correlates with stage of AKi (159). 
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Risk 

Cr/GFR criteria UO criteria 

Increased Cr x 1.5 
UO <0.5 mUkglh 

or 
x 6h 

GFR decreases >25% 

Increased Cr x 2 
UO <0.5 mUkglh 

or 
GFR decreases >50% 

x 12 h 

Increased Cr x 3 
or 

UO <0.3 mUkg/h 
GFR decreases >75% 

x 24 h 
or 

Cr ~4 mg/dL or 

(with acute rise 
anuria x 12 h 

of ~0.5 mgldL) 

Persistent ARF = 
complete loss of renal function 

for >4 wk 

End-stage renal 
disease 

b 

Stage 1 

Cr criteria UO criteria 

Increased Cr x 1.5 
UO <0.5 mUkg/h 

or 
~0.3 mgldL 

x 6h 

Increased Cr x 2 
UO <0.5 mUkglh 

x 12 h 

Increased Cr x 3 
UO <0.3 mUkglh 

or 
Cr ~4 mg/dL 

x 24 h 
or 

(with acute rise 
anuria x 12 h 

of ~0.5 mgldl) 

Patients who receive RRT are considered 
to have met the criteria for stage 3 

irrespective of the stage that they are in 
at the time of commencement of RRT 

Fig. 1-1 (a) Risk, Injury, Failure, Loss of renal function and End-stage kidney disease 
(RIFLE) and (b) Acute Kidney Injury Network (AKIN) classifications for acute 
kidney injury (adapted from Bellomo et al. and Mehta et al. , with permission from 
BioMed Central) . ARF = acute renal failure; Cr = creatinIne; 
GFR = glomerular filtration rate; RR T = renal replacement therapy; 
va = urine output (159). 
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AKI incidence, mortality, and cost 

In hospitalized patient populations, incidence of AKI has been estimated at 5-7% (194), 

and this number can be as high as 250/0 in critically ill patients (74, 165). Mortality rates 

vary depending on severity of injury and populations studied; however in leu patients it 

is estimated at 50-800/0 (165, 212, 243, 273). Additionally, in the U.S. medical expenses 

associated with treatment of AKI have been estimated to exceed $8 billion per year (87, 

116). Reliable statistics are difficult to find on the demographics of AKl populations, due 

in part to the varying degrees of injury that are seen clinically, as well as the influence 

that certain populations studied skew the numbers, and the inherent nature of the injury 

associated with underlying and/or secondary complications. Stratifying the injury and 

evaluating the additional consequences attributed to a specific degree of injury may help 

clarify the overall impact on healthcare of AKI. In such a study, it was determined that 

even a moderate, although clinically-relevant, increase in serum creatinine of 0.3 - 0.4 

mg/dl resulted in a 70% increase in risk of death, an increased length of hospital stay of 

3.5 days, and an added $9000 in total costs (54). When more robust changes in ser 

were examined, these numbers were greatly inflated. Figure 1-2 depicts two of the 

graphs from this study which demonstrate the exponential increase in mortality risk and 

added cost associated with progressively elevated ser levels. Apparent in these graphs is 

that even moderate changes (which constituted the majority of cases observed) resulted in 

elevated risk of death and cost and more robust elevations resulted in marked increases in 

these adverse outcomes (Fig 1-2). The results of this study again highlight the important 

contribution that classification systems such as the RIFLE criteria and the AKIN system 

have had in order to correlate varying degrees of injury with adverse outcomes, the 
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significant impact on patient recovery and cost from even minor renal dysfunction, and a 

platform to better compare data across clinical studies with diverse populations and 

InJurIes. 
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Fig 1-2a. Mortality associated with change in serum creatinine. Green bars are 
unadjusted, blue bars are age and gender adjusted, and gray bars are multivariable 
adjusted. Multivariable analyses adjusted for age, gender, diagnosis-related group 
(DRG) weight, chronic kidney disease (CKD) status, and ICD-9-CM codes for 
respiratory, gastrointestinal, malignant, and infectious diseases; n = 1564, 885, 246, 
and 105 for change in Ser 0.3 to 0.4,0.5 to 0.9,1.0 to 1.9, and >2.0 mg/dL 
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Fig 1-2b. Mean hospital costs associated with changes in Sere Green bars are 
unadjusted, blue bars are age and gender adjusted, and gray bars are multivariable 
adjusted. Multivariable analyses adjusted for age, gender, DRG weight, and lCD-9-
eM codes for cardiovascular, respiratory, malignant, and infectious diseases; n = 
1564,885,246, and 105 for change in Ser 0.3 to 0.4, 0.5 to 0.9, 1.0 to 1.9, and >2.0 
mg/dl (54). 
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Pre-renal, intrinsic, and post-renal AKI 

AKl can be further classified into subcategories describing initiation of injury: prerenal, 

renal (or intrinsic), and postrenal AKI. Prerenal azotemia, which account for 55 -60% of 

AKl cases, describes conditions in which there is precipitous loss of blood flow to the 

kidney (e.g. hypoperfusion), commonly observed in cases of septic shock or vascular 

disease/injury. The loss of renal blood flow often leads to direct renal cell injury 

(primarily within the proximal tubule), which overlaps intrinsic injury and often leads to 

confusion when attempting to differentially diagnose these two classifications of renal 

injury. Intrinsic AKI develops when there is direct damage to components of the nephron 

(e.g. the glomerulus, tubules, vasculature, etc). Most commonly, intrinsic AKI is 

observed with acute tubular necrosis from nephrotoxic or ischemic injury. Intrinsic AKI 

accounts for 35-40% of cases observed, and when examined together, pre-renal causes 

with ischemic ATN account for approximately 750/0 of AKI cases (194). Post-renal 

injury may be observed when there is obstruction of urine outflow within the urinary tract 

can lead to increased pressure within the kidney and reduced GFR. 

Causes of AKI 

The majority of AKI cases can be attributed to septic shock, major surgery, cardiogenic 

shock, hypovolemia, and drug/toxicant exposure. A recent study identified septic shock 

associated with 47.5% of AKi cases examined in an leu patient cohort. A number of 

drugs have been linked to AKI, including aminoglycoside antibiotics, anticancer agents, 

radio contrast media, and NSAIDs. Gentamicin, which is used for the treatment of gram 

negative bacteria, has a high rate of nephrotoxicity associated with its use. As high as 
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30% of patients treated for more than 7 days with gentamicin develop symptoms of AKI 

(174). Cisplatin is used in the treatment of a number of cancers, but it has a high rate of 

nephrotoxicity associated with its use, and thus cisplatin therapies must be monitored 

closely. Cisplatin-induced AKi results from direct tubule toxicity due to mitochondrial 

dysfunction, ROS production, inflammation, and ATP depletion (5, 45, 148). 

Radiocontrast media are commonly used clinically., such as in cardiac catheterization, but 

is a frequent cause of AKI in the hospital (41). In patients with certain cardiovascular or 

pre-existing kidney disorders, incidence of AKi from radio contrast media can be as high 

as 500/0 (6). Nephrotoxicity is associated with direct tubule toxicity., as well as reduced 

blood flow to the kidney and GFR (82). Acetaminophen is a widely used analgesic., but 

in high doses is known to cause liver and kidney injury. Acetaminophen toxicity is 

associated with acute tubular necrosis due to increased oxidative stress and lipid 

peroxidation, as well as GSH depletion (1, 21). 

Pathophysiology of ischemia/reperfusion (I/R) AKI 

Renal ischemia/reperfusion (I/R) is a common cause of AKI. An ischemic insult occurs 

when there is reduced blood flow to the kidney and may occur after drug or toxicant 

exposure, vascular diseases, sepsis, or blood volume depletion and hypotension (29, 273). 

The pathophysiology of ischemic AKI is comprised of both microvascular and tubular 

components. The microvascular injury is characterized by increased vasoconstriction and 

decreased vasodilation, endothelial and smooth muscle cell damage, and leukocyte 

infiltration (29, 59, 252). The tubular component consists of cytoskeletal breakdown, 

loss of cell po larity, cell death, desquamation of viable and nonviable cells, and tubular 
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obstruction (28-29). These components are discussed in further detail in the following 

sections. 

Spatial/temporal pattern of f/R injury. During initiation of injury, the effects of disrupted 

perfusion and ATP depletion are most widely felt, primarily in the PT. After post­

ischemic reperfusion, the extension phase is characterized by both recovery and further 

injury, as A TP is restored but injury to the vascular endothelium results in persistent 

localized ischemia which further progresses the injury, The injury during this phase 

occurs mostly commonly in the S3 segment of PT and medullary thick ascending limb 

(MTAL) at the cortico-medullary border (187). This is prinlarily due to the network of 

microvessels in the region and the oxygen demands of the tubules located in the outer 

stripe of the outer medulla (101, 286). Finally, during the maintenance phase, there is 

again a combination of both recovery and injury mechanislTIs. Local ischemia may have 

subsided, however the effects of inflammation and cellular responses to apoptotic stimuli 

leads to continued cell injury/death. 

Vascular injury in fiR. The microvascular injury that occurs primarily in the glomerulus 

and medulla consists of structural damage to the endothelial cells and the vascular 

smooth muscle cells. The vessels experience persistent constriction due to the combined 

effects of increased reactivity to vasoconstrictors (endothelin, adenosine, angiotensin II, 

thromboxane A2, and sympathetic nerve activity) as well as a decreased reactivity to 

vasodilators (nitric oxide, PGE2, acetylcholine, bradykinin) (59). The microvascular 

architecture within the kidney leads to differential reperfusion in the post-ischemic 
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kidney, which may help explain why certain zones are more affected during the extension 

phase of the injury. In the post-ischemic kidney, there is a reduction in blood flow to the 

outer medulla compared to the cortical capillaries (286). 

Lethal tubular injury in fiR. Both necrosis and apoptosis appear to have a role in the 

pathology of ischemic AKI. The extent of each may depend on the severity of the injury 

and the region of the nephron affected. Severe ATP depletion during ischemic phase can 

lead to necrotic cell death, most commonly seen in the proximal tubule, and may occur 

via opening ofa plasma membrane "death channel" early in the injury process (78). ATP 

depletion may also lead to disrupted ion balance (28), and generalized protein 

dephosphorylation, disruption, and aggregation (28, 153, 262). Persistent localized 

ischemia, primarily within the outer medullary region, leads to a more extensive necrotic 

response in the affected areas. 

Apoptosis undoubtedly occurs during ischemic injury, as demonstrated in both animal 

models (147, 235) as well as human AKI (44, 206,244). However, the influence on 

observed organ dysfunction is still controversial as it has been estimated that only 3-5% 

of tubule cells undergo apoptosis, which questions the contribution of this form of cell 

death. Additionally, the majority of apoptosis occurs in the more susceptible distal 

tubule, whereas the bulk of viable and non-viable cell loss occurs in the proximal tubule 

segments. Finally ATP, which is required for the apoptotic program, is severely depleted 

early during the ischemic episode. The influence of apoptosis in ischemic AKI appears 

to increase over time after injury as expression of pro-apoptotic proteins, such as bax, 
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bad, bak, and caspases, increase in response to a number of pathological mechanisms, 

including DNA damage, ROS production, ceramide production, and inflammation (98, 

146,260). 

Sub-lethal tubular injury in fiR. There is substantial loss of cytoskeletal integrity and cell 

polarity during ischemic injury, which results in mislocalization of membrane proteins 

and adhesion molecules. The actin network is disrupted early after onset of ischemia due 

to several cell processes altered during ischemic injury which can affect cytoskeletal 

components and cytoskeleton-membrane interactions. One, ATP is dramatically reduced 

during ischemia, and ATP is required for polymerizationJdepolymerization of actin and 

tubulin, and for actin-myosin interactions (19-20). Two, Ca2
+ is elevated after ischemia. 

Ca2
+ modulates actin-myosin interactions, microtubule formation, as well as actin­

binding proteins (3, 298). Additionally, Ca2
+ activation of calpains may affect 

degradation of actin and actin-binding proteins, as well as integral membrane proteins 

(e.g. laminin, fibronectin), membrane associated proteins (e.g. ankyrin, a-actinin), and 

cross linking proteins (e.g. villin, fimbrin) (63, 108, 197). Third, degradation of 

phospholipids which interact with cytoskeletal proteins, such as diacylglycerol and 

palmitic acid to a-actinin, may also be altered during ischemic injury (197). Finally, 

abnormal production of ROS, which have been shown to cross link actin and actin­

binding proteins, may disrupt cytoskeleton in response to ischemia (181, 274). 

Cytoskeletal disruption and loss of polarity leads to significant functional consequences, 

including the loss of the apical brush border and redistribution of membrane proteins, 
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including the N a +, K+ -ATPase and cell adhesion molecules. Apical microvilli are lost 

during ischemia, and are either shed into the tubular lumen and excreted or internalized 

into the cell (95-96, 285). This results in a substantial reduction in membrane surface 

area, a functional necessity of the apical membrane for efficient reabsorption. 

Redistribution of membrane proteins, which are localized to specific sides of the 

polarized proximal tubule epithelial cell, occurs early during ischemia and happens 

concurrently with disruption of the actin cytoskeleton. This phenomenon is best 

exemplified by the delocalization of the Na+, K+-ATPase from the basolateral membrane. 

Under normal physiologic conditions, N a + enters the cell actively and passively through 

transport proteins on the apical membrane. Na + is then shuttled out of the cell against its 

electrochemical gradient via the Na+, K+-ATPase on the basolateral membrane and is 

coupled to ATP utilization, providing the gradient needed for uptake of a variety of 

solutes and water reabsorption through apical membrane proteins. Redistribution of the 

Na +, K+ -ATPase from the basolateral membrane to the apical disrupts proximal tubule 

Na + reabsorption, as apical transport ofNa + establishes a futile cycle where Na + is both 

absorbed and subsequently transported back out of the cell at the apical membrane (184, 

186, 256). Tubule epithelial cells are attached to the extra cellular matrix (ECM) by 

integrin adhesion molecules and to each other by junctional complexes and adherens 

complexes. Cells become detached from the basement membrane and from adjacent cells 

during ischemic injury due, in part, to the delocalization and disruption of adhesion 

complexes (100). This process leads to sloughing of both viable and non-viable cells in 

to the tubular lumen, along with detached microvilli and glycoproteins, such as 
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fibronectin (324). The clinical manifestation is observed by the presence of tubular casts, 

which further obstruct luminal flow, and also appear in the urine of AKI patients (100). 

Tubule epithelial repair: de-differentiationlproliferationlre-differentiation. The renal 

tubule epithelium has a unique capacity to fully recover after acute ischemic or toxic 

injury. Normal recovery after AKI is essential due to the increased risk of progression to 

CKD and ESRD (136). Following AKl, there is a robust elevation in renal cell turnover, 

which is in contrast to the normally slow turnover rate under normal circumstances (193). 

The increase in cell turnover is a consequence of significant cell death after injury as well 

as elevated proliferation to replace these cells, most prominently seen in the S3 segment 

of the proximal tubule in the necrotic outer stripe of the outer medulla. The source of 

progenitor cells after injury has been an intense area of study in which there is still not a 

definitive answer. It has been proposed that the new cells may originate from either bone 

marrow stromal cells, a resident renal progenitor population, or from surviving attached 

epithelial cells. Several studies have demonstrated that bone marrow derived cells, such 

as hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs), directly replace 

epithelial cells after injury (143, 167). Administration of exogenous MSCs following 

injury promotes restoration of normal epithelium and accelerates the recovery of renal 

function, suggesting that MSCs may indeed play an important role in renal regeneration 

(69, 126-127, 245, 257); however, subsequent studies contradicted this assessment and 

instead suggested that the bone marrow derived cells have a more supportive role in the 

repair process (79, 127-128). More recent studies examining whether an intrarenal stem 

cell population or resident epithelial cells were the source of proliferating cells in the 
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tubular epithelium suggest that the surviving tubular cells proliferate after injury (128). 

After injury with epithelial cell loss, surviving cells de-differentiate, migrate, proliferate, 

and re-differentiate to repopulate the denuded tubular epithelium (273). The process is 

illustrated in Fig 1-3, and discussed in more detail below. 

The signaling network activated after injury is a complex cascade which stimulates the 

normally quiescent tubules to initiate a vigorous mitogenic response. Initially, surviving 

tubular cells transition from mature, polarized cells to a less differentiated phenotype 

(115). Undifferentiated, proliferating cells express developmental markers such as the 

proliferation marker PCNA and the intermediate filament vimentin, indicating a switch 

from epithelial to mesenchymal phenotype (302). Epithelial to mesenchymal transition 

(EMT) is dependent on activation of the EGF receptor (322). At this time, de­

differentiated cells do not retain apical-basal polarity_ This is highlighted by the 

mislocalization of specific proteins, namely the Na +,K+ -ATPase, from the basolateral 

membrane (201-202, 204). Following migration and proliferation, the surviving cells re­

differentiate to restore the normal polarized tubular epithelium. When the EGF receptor 

is turned off following dedifferentiation, mesenchymal RPTC redifferentiate and 

repolarize as evidenced by reductions in vimentin expression, return of cortical actin 

structure and the basolaterallocalization of the Na+,K+-ATPase (115). 
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Fig 1-3. Repair and regeneration ofRPTC following acute sublethal toxicant injury. 
Sublethally injured RPTC either repair physiological functions and restore normal 
tubular function or dedifferentiate, migrate, and/or proliferate to replace lost cells, then 
differentiate and resume normal function. The processes of repair and regeneration 
work in concert to ensure relining of the damaged nephron and restoration of renal 
function. (203) 
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Abnormal repair and progression to ESRD. Ideal recovery after AKI would result in 

complete repair of the tubular epithelium as described in the previous section. 

Frequently, however, due to a number of factors, there is abnormal recovery which 

results in incomplete repair of the kidney. Factors such as microvascular damage and 

persistent hypoxia, chronic tubulointerestitial inflammation, as well as fibroblast 

proliferation and excess extracellular matrix deposition can lead to postischemic fibrosis 

and incomplete tubular repair. A fundamental difference exists which may ultimately 

determine whether injured tubules undergo repair versus fibrotic responses during 

recovery; however, the mechanisms governing this molecular switch are still unclear. 

There is some debate on the source of myofibroblasts present in injured tubules. 

Evidence suggests that epithelial cells undergo transition to a mesenchymal phenotype 

(EMT), and may be a primary mechanism of fibrosis; however, contrasting data has 

pointed to perivascular fibroblasts in the generation ofmyofibroblasts (128-129, 137, 

157,320-321). 

Myoglobinuric AKI 

Rhabdomyolysis is a condition in which heme proteins, released in the form of 

myoglobin from muscle cells or hemoglobin from erythrocytes, produce secondary organ 

toxicity, predominantly AKl (36, 195). Although the mechanism of myoglobin uric­

induced AKI is not entirely known, a number of factors including ischemic injury 

resulting from vasoconstriction and blood volume depletion as blood pools at the site of 

muscle injury, direct tubule toxicity from iron influx and hydroxyl radical formation, and 

tubular obstruction contribute to the disease process (36, 215-216). 
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Mechanisms of myoglob in uric kidney injury. Renal vasoconstriction is an essential 

component to the progression of myoglobin uric AKI. The importance of this factor is 

underscored by the fact that volume expansion or early renal vasodilator therapy can 

significantly attenuate injury to the kidney (Dubrow, et aI., Acute Renal Failure, 1988, 

p279). There are several mechanisms which lead to renal vasoconstriction in 

rhabdomyolysis, including fluid third spacing and intravascular volume depletion, 

endotoxin cytokine release after muscle injury, and inhibition of endogenous 

vasodilators. Muscle necrosis leads to significant third spacing., where as much as 18 

liters of fluid may extravascate into injured limbs, leading to dramatic intravascular 

volume depletion (22). Volume repletion early in the injury process can ameliorate 

clinical symptoms of kidney injury validates the influence of fluid loss on the injury (22, 

225, 231). Endotoxin release following severe muscle injury can also lead to renal 

vasoconstriction (11,200,250,311-312), and the pathological role of endotoxin release 

has been supported by studies demonstrating that endotoxin tolerance prevents heme­

protein induced renal damage (200, 250). 

Heme protein cytotoxicity. Besides the effects on renal vasoconstriction, there is also 

evidence that the heme-protein myoglobin is directly toxic to the proximal tubule 

epithelial cells. There is evidence that an adverse heme protein-ischemic interaction 

occurs within the proximal tubule, without hemodynamic effects. It is suspected that 

porphyrin iron ring present in hemoglobin and myoglobin mediates its toxic effects (61). 
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Oxidant stress. Using 59Fe labeled hemoglobin, Bunn, et aI., showed that the proximal 

tubules epithelium reabsorbs the Fe after it is readily filtered (42-43). When the amount 

of hemoglobin is tolerable for the proximal tubule to handle, the porphyrin ring is 

catabolized and the released iron is transferred to ferritin (42-43). However, when excess 

hemoglobin is present, and reabsorption capacity is surpassed, significant intraluminal 

free iron release is observed (42-43,315). 

As a transition metal, iron readily accepts and donates electrons, facilitating the 

production of free radicals (8, 66, 113-114, 183). The influence of free radicals on cell 

and tissue damage is well characterized in both renal and extrarenal injuries (88, 142, 

210, 248, 292, 296). Iron-mediated oxidant stress has been described in many systems as 

a pathological mechanism leading to tissue damage (88, 142, 296), and iron chelators 

have been shown to be protective in these models. A role for free iron in the nephrotoxic 

response to hemoglobin and myoglobin was conclusively demonstrated when it was 

shown that the iron chelator DFO and hydroxyl radical scavengers attenuated kidney 

injury in an i.v. hemoglobin-induced nephrotoxicity model, a glycerol-mediated AKl 

model, and a combined ischemic/hemoglobinuric AKI model (107, 211, 249). Protection 

of organ function was associated with a reduction in lipid peroxidation. Subsequently, it 

was demonstrated that there is a dramatic increase in H20 2 production in rat kidneys in a 

myohemoglobinuric injury model (107). This observation, in addition to the protection 

with iron chelators and hydroxyl radical scavengers, confirms the role that free iron and 

radical production contribute to the injury process. 
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Preventing and treating myohemoglobinuric AKl. Intravascular volume depletion is a 

primary factor in the development of renal failure following myohemoglobinuria. There 

is evidence that immediate and vigorous volume replacement therapy early after onset of 

clinical rhabdomyolysis offers significant protection from AKI. Retrospective analyses 

on crush syndrome patients indicated that those patients who were given i. v. saline 

immediately after injury did not develop AKl, whereas patients who did not receive fluid 

replacement for up to six hours after injury developed AKl (22, 225, 231). A second 

benefit of volume replacement therapy is that glomerular filtration rate (GFR) is 

increased and flushes out intraluminal heme proteins, thus preventing heme protein cast 

formation and proximal tubule heme uptake. Mannitol infusion has also proven effective 

at mitigating injury in experimental myohemoglobinuric AKI (313-314). Mannitol is a 

proximal tubule acting diuretic, and thus induces excretion of heme proteins and reduces 

proximal tubule reabsorption. It is also a potent renal vasodilator, which increases renal 

perfusion and lessening effects of ischemic injury and heme protein injury. Finally, 

neutralizing the toxicity of heme protein may be an effective measure to limit renal injury 

under myohemoglobinuric conditions. The most promising candidates in this strategy is 

the use of iron chelators, such as DFO, or antioxidants, such as glutathione, to limit 

cytotoxicity (2, 211, 249, 314, 316). 

Animal models of AKI 

The use of animal models to study AKI is an essential practice that has led to our 

understanding of many of the pathological processes involved in development of kidney 

injury and/or failure described in the previous sections. There are obvious limitations 
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inherent with any model employed with the purpose to simulate a type of disease or 

injury observed clinically in humans; however, there are several acute renal failure 

models which have proven reliable systems to study mechanisms of kidney injury and 

recovery which sufficiently mimic human disorders. 

fiR model of AKl. I/R injury can be simulated in a number of animals, but is most 

commonly perfomled in mice and rats. Experimentally, this can be accomplished by 

clamping and obstructing blood flow to either one or both kidneys (clamping of the renal 

artery or the renal pedicle) for a specified amount of time followed by reperfusion for 

typically 24h. In rats, it has been reported that a 60m clamping of both kidneys followed 

by 24h reperfusion resulted in development of acute renal failure (23). Unilateral 

clamping for 45-60m followed by 24h reperfusion has also been reported to sufficiently 

induce kidney injury (71, 166). These procedures have also been used in mouse models, 

although the ischemia time in mice in generally less than used in rat models (261). 

Experimental I/R results in acute tubular necrosis of renal epithelial cells primarily 

located within the region bordering the cortex and outer medulla (122). Apoptotic cell 

death may also be present after the initial insult, and pathologically I/R injury is 

characterized by dilated tubules with flattened epithelial cells and cast formations 

obstructing the tubular lumen (122). 

Glycerol-induced myoglobinuric AKi model. Myoglobinuric AKI was discussed in 

section 2.6, and as mentioned, it is generally the result of a muscle injury due to trauma, 

exertion, drugs/toxins, disease and/or virus (283). Experimentally, myoglobinuric AKI is 
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most often simulated by administering an intramuscular (i.m.) injection of 50% glycerol 

(v/v in water) at a dose of 8-1 0 mVkg body weight equally distributed between the two 

hind limbs of a rat (238). Because of the influence of intravascular volume depletion on 

manifestation of the AKl in this type of injury, rats are generally dehydrated for 12-24h 

prior to glycerol injection (237). Similar to what is observed in cases of rhabdom yo lysis 

in humans, glycerol-induced AKI results in myoglobinuria, acute tubular necrosis, and 

alterations in renal hemodynamics (145, 303). 

AKI Biomarkers 

Several new biomarkers have emerged in the last 10 years as a result of more emphasis 

placed on the need to identify new markers that are able to detect earlier or milder kidney 

injury, as well as markers that differentially diagnose the site of injury, and provide better 

diagnostic information. Fig 1-4 highlights some of the more promising biomarkers to 

emerge, and the advantage they represent when compared to more traditional markers, 

such as serum creatinine. Some of these are discussed in the following sections. 

Creatinine. Serum creatinine is a standard measurement that has been used extensively 

to diagnose AKl. Creatinine can be measured in the urine, and by using mathematical 

approaches, creatinine clearance can be estimated. However, there are several limitations 

to the use of creatinine as a marker of kidney function. Serum creatinine concentrations 

can vary greatly within age groups, muscle mass, and hydration status. Therefore, 

baseline creatinine measurements for individuals are important to establish changes due 

to reduced kidney function. Changes in creatinine may not be detectable until significant 
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kidney function is already lost, which makes it a poor biomarker for detection of early 

renal injury. 

Blood urea nitrogen. BUN is another marker which has been used extensively as a 

diagnostic tool for AKl. However, like creatinine measurements, BUN levels can be 

affected by factors outside of strictly renal influence. 

KIM-i. Kidney injury molecule-l (KlM-l in humans, Kim-l in rodents) is a cell 

membrane glycoprotein which has a short intracellular domain, a transmembrane domain, 

and a large extracellular domain. It was identified using a PCR-based technique to 

identify genes up-regulated after ischemia/reperfusion in the rat (131). KlM-l has many 

properties which make it an ideal biomarker, such as the absence of its expression in the 

normal kidney; its robust elevation after injury and its presence in the apical membrane of 

proximal tubules; its expression is maintained until comp lete cell recovery; rapid 

cleavage of its ectodomain and excretion into the urine; and the relative stability of the 

cleaved domain in urine samples at room temperature. In pre-clinical studies, Kim-l has 

proven to be a specific and early predictor of tubule damage scored by histopathology 

when compared to other AKI biomarkers (including BUN and SCr) after exposure to a 

panel of toxicants (281). KlM~ 1 has also shown to be an effective clinical predictor of 

AKI in post-operative populations which have undergone cardiac surgery (117), in renal 

transplant patients (263), in patients with congestive heart failure (72), and in patients 

with nondiabetic chronic kidney disease with proteinuria (291). 
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NGAL. NGAL is a 25 kDa protein originally discovered in neutrophils, which forms a 

barrel-shaped structure with a hydrophobic region that binds small, lipophilic molecules, 

such as the iron-binding siderophores. NGAL is expressed at very low levels in human 

tissue, but is dramatically up-regulated in injured kidney epithelial cells - NGAL is also 

elevated in colon, liver, and lung after injury. NGAL has proven to be an effective early 

indicator of AKl, as it is among the fastest up-regulated genes in the post-ischemic 

kidney, and is detectable in urine within 2 hours ofreperfusion (260). It has also proven 

an effective prognostic indicator for clinical outcomes, including dialysis and mortality 

(110). 
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Fig 1-4. Biomarkers of AKI: Traditionally used markers, such as blood urea nitrogen 
(BUN) and creatinine (CR), are insensitive, nonspecific, and do not adequately 
differentiate between the different stages of AKI. A delay in diagnosis prevents timely 
patient management decisions, including administration of putative therapeutic agents. 
Urinary biomarkers of AKI will facilitate earlier diagnosis and specific preventative 
and therapeutic strategies, ultimately resulting in fewer complications and improved 
outcomes (280). 
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Pharmacological treatment of AKI 

Pharmacological approaches. As a preventative measure, numerous pharmacological 

agents have been tested in patients at risk for AKI. Targets which have been investigated 

include agents which promote natriuresis, increase renal blood flow, or inhibit 

inflammation and oxidative stress. Therapies which have been attempted but have been 

proven ineffective include, 1) vasoactive drugs: dopamine (163), feno ldopam (258), and 

theophylline (156), 2) anti-inflammatory or antioxidant drugs: dexamethasone (1 71), N­

acetylcysteine (109), and 3) loop diuretics (163, 253). Drugs which have shown some 

promise in various studies, but still require further investigation include, 1) anti­

inflammatory/antioxidant drugs: sodium bicarbonate (111) and statins (309), 2) growth 

factor erythropoietin (254), and 3) vasoactive drugs: natriuretic peptides (191), 

fenoldopam (190), nitroprusside sodium (149), and clonidine (158). Although a number 

of interventions have been examined, there are currently no drugs available which have 

demonstrated conclusive evidence for improved renal protection or recovery. The 

complexity of the injury certainly has a role in the failures of many pharmacological 

interventions attempted, but it may also be attributed to multiple pathological 

mechanisms occurring simultaneously, or optimization of dosing protocols after injury. 

Currently, no pharmacological intervention has proven consistently successful to reverse 

established AKl with improved outcomes. Improved biomarkers for earlier diagnosis of 

AKl will certainly help improve efficacy of pharmacological intervention. Also, 

recognition of the multi-faceted nature of the injury, with a potential need for a multi­

targeted therapeutic approach may also improve outcome in AKI intervention studies. 
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MITOCHONDRIAL DYSFUNCTION 

Mitochondrial dysfunction in disease and aging 

Reduced mitochondrial biogenesis and function have been observed in diseases 

characterized by metabolic deficiencies, such as obesity and diabetes (226, 232, 246). 

Insulin resistance is associated with mitochondrial dysfunction; however, it is not 

completely clear whether insulin resistance is the result of mitochondrial impairment or if 

changes in mitochondrial function are the result of insulin resistance (53). There is a 

strong positive correlation between high fat content and reduced PGC-l a in obese 

subjects, mice, and adipocytes treated with high glucose (226, 246). Reduced 

mitochondrial DNA and proteins has been observed in adipocytes from diabetic mouse 

models(55,232). Additionally, both PGC-lu and PGC-IJ3 are considerably reduced in 

skeletal muscle from diabetic patients (213). Consistent with these findings, reductions 

in PGC-l a responsive genes involved in oxidative phosphorylation have also been 

observed in skeletal muscle of diabetic patients compared to healthy individuals (188). 

Insulin resistance and high glucose and fat exposure also alter mitochondrial morphology, 

including smaller mitochondria and condensed cristae (92). The altered morphology is 

associated with decreased expression of the mitochondrial fusion protein Mfn 1, and 

increased expression of fission protein Drp 1. Reduced Mfn2 has also been reported in 

skeletal muscle taken from type 2 diabetic patients (9-10, 92). This is consistent with the 

observations of small mitochondrial size and elevated fragmentation in diabetic patients 

(150, 277). 
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During the normal aging process, there is also reduced mitochondrial biogenesis, with 

decreased expression of mitochondrial genes in skeletal muscle, adipose tissue, kidney, 

brain, and heart (170, 173, 177,318). In addition to reduced mitochondrial biogenesis, 

there is a general decrease in mitochondrial turnover (269-271). This combination may 

result in an accumulation of damaged and/or dysfunctional mitochondria. 

Mitochondrial Toxicants 

A number of xenobiotics that produce cell and tissue dysfunction elicit their toxic effects 

by targeting the mitochondria, either directly or indirectly. In fact, since 1960 there have 

been 44 drugs withdrawn from the market which have demonstrated mitochondrial 

dysfunction, and there are another 384 labeled with black box warnings, which show 

higher than normal mitochondrial toxicity (81). Mitochondrial toxicants may function by 

inhibiting complexes of the electron transport chain (ETC), obstructing electron flow, 

disrupting ATP synthesis, altering Ca2
+ homeostasis, or disrupting mitochondrial 

membrane integrity (293). For example, complex I of the ETC is a common target of 

toxicants, such as the compound I-methyl-4-phenylpyridinium (MPP+), which is used in 

animal models of Parkinson's disease (13, 141). Other commonly used ETC toxicants in 

the study of mitochondrial toxicity/function include rotenone, antimycin, cyanide, and 

oligomycin (120-121, 175). As a primary site of oxidant and free radical generation, due 

to the ETC chain, toxicants containing transition metals or structures capable of redox 

cycling can exert mitochondrial toxicity by facilitating the excessive production of 

damaging oxidized agents (293). One such example is the chemotherapeutic drug 
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doxorubicin, which induces generation ofROS and increased lipid oxidation, resulting in 

reduced integrity of the mitochondrial membrane (102-103). 

Mitochondrial dysfunction in AKI 

Mitochondrial damage is a major contributor to the lethal and sublethal tubular cell injury 

observed in the disease progression of AKl (86, 112, 139-140, 297). Increased 

production ofROS and NO, formed prominently within the mitochondria, as well as 

compromised antioxidant mechanisms following ischemic periods make the mitochondria 

particularly susceptible (215-216, 249, 317). Additionally, elevations in intracellular and 

mitochondrial Ca2
+ and Fe3

+ may contribute to the central role of the mitochondria in the 

disease process (65, 140). Subsequent disruption of mitochondrial respiratory 

complexes, membrane depolarization, ATP depletion, lipid peroxidation, membrane 
," 

permeabilization and release of apoptotic proteins contribute to mitochondrial and 

cellular injury (28-29, 36, 112). Depolarization with high amplitude swelling can be 

visualized in mitochondria following hypoxia/reoxygenation (297). This is shown in Fig 

1-5 below (Fig 1-5D, arrowhead). 

The dynamic nature of mitochondria lends to dramatic alterations in structural integrity 

and population fo llowing acute toxic challenge. Mitochondrial fragmentation has been 

observed in models of AKI, and this process contributes to the resulting injury (39). 

Additionally, it has been reported that inhibiting mitochondrial fragmentation using a 

dominant-negative to Drp1 prevents the morphological changes to mitochondria, as well 

as the release of apoptotic proteins, and attenuates measurable injury in a mouse I/R 

31 



model (39). However, the role of mitochondrial fission and fusion following initial 

injury and during the recovery and maintenance phase is still not completely understood. 
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Fig 1-5. Mitochondrial ultrastructural changes. (a) Control. (b) Sixty-minute 
hypoxia. (c and d) Sixty-minute hypoxia followed by 60-min reoxygenation. 
Arrowhead, mitochondrion with high-amplitude swelling. (x24, 1 00.) (297) 
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MITOCHONDRIAL BIOGENESIS 

Definition of mitochondrial biogenesis 

Mitochondrial biogenesis is the growth and divi sion of pre-existing mitochondria, 

whether that occurs during the cell cycle or from normal mitochondrial turnover (7). The 

term biogenesis can be interpreted several different ways, and therefore in an attempt to 

describe mitochondrial biogenesis, it has been classified into three categories: 1) de novo 

synthesis of the organelle from precursor units, 2) formation from other membranous 

structures, and 3) growth and division of pre-existing mitochondria (198). The majority 

of evidence supports option 3 as the typical method of mitochondrial biogenesis. 

Mitochondrial biogenesis occurs under basal conditions and is an adaptive response 

initiated by cells to maintain energy demands or heat expenditure following injury, cold 

exposure, or caloric restriction (217, 310). A primary regulator of mitochondrial 

biogenesis is the nuclear transcriptional coactivator peroxisome proliferator-activated 

receptor coactivator-1 a (PGC-1 a). Through induction of uncoupling proteins (UCP-2), 

nuclear respiratory factors (NRF 1/2), and as a coactivator of the promoter region of 

mitochondrial transcription factors Tfam, TFB1M, and TFB2M, PGC-lu has significant 

influence on mitochondrial function (97, 168,217,219,308). 

Transcriptional regulation of mitochondrial biogenesis 

Nuclear Transcription Factors 

NRF-l. Nuclear respiratory factor-1 (NRF -1) binding sites were first discovered in the 

cytochrome c promoter region (83). Since its discovery within the cytochrome c 

promoter, specific NRF -1 binding sites within the promoters of numerous mitochondrial 
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respiratory genes have been identified (52, 83), including the majority of nuclear-encoded 

subunits of the respiratory chain (151, 240-241). NRF -1 also has a role in coordinating 

expression of mitochondrial-encoded respiratory genes. Mitochondrial transcription 

factor A (Tfam) and transcription factor Bland B2 (TFB 1 M and TFB2M) contain NRF-

1 binding sites within their respective promoters. Reviewed more extensively later, 

mitochondrial transcription factors regulate expression and replication of the 

mitochondrial genome. TOM20 and TOM70, subunits of the transport of outer 

membrane complex, as well as COX17, an assembly factor for cytochrome oxidase, are 

also activated by NRF-l (25, 264). Signals that increase mitochondrial biogenesis, such 

as exercise-induced Ca2+ and AMPK pathways, also elevate NRF-l expression, 

highlighting its role in energy dependent adaptation (18, 24-25). It should be noted, 

however, that the same effects of exercise on NRF -1 expression observed in rodent 

models has not yet been reported in humans. 

NRF-2. Nuclear respiratory factor 2, also known as GA-binding protein, was discovered 

via a cis-acting domain within the promoter of subunit IV of cytochrome c oxidase 

(COXIV) (239). In addition to COXIV, NRF-2 has been linked to several other COX 

subunits, as knockdown results in diminished expression of all nuclear-encoded COX 

genes (207). Outside of COX expression, NRF-2 has been shown to regulate expression 

of respiratory genes such as the mitochondrial transcription factors Tfam and TFBIM and 

TFB2M (97, 289). 
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ERRs. The estrogen-related receptor (ERR) family consists ofERRu, ERR~, and ERRy 

members. The ERRs are sequentially similar to the estrogen receptor and share similar 

DNA-binding and ligand-binding domains (94), but are not activated by estrogens or 

estrogen-like molecules (104). Similar to the other transcription factors discussed in this 

section, the transcriptional activity of the ERRs is regulated by physical interactions with 

coactivators such as the PGC-l family and SRC, and corepressors such as RIP140 (94, 

287), and this is particularly exemplified by the activity of ERRu, which seems to only be 

active when associated with PGC-l coactivators (130, 144,242). ERRs bind to ERR 

response elements within the promoter region of transcriptional targets, regulating 

transcription of genes associated with fatty acid oxidation, oxidative-phosphorylation, the 

tricarboxylic acid (TeA) cycle, and mitochondrial import and dynamics (94, 288). ERR 

response elements are enriched in regulatory domains ofPGe-la and mitochondrial 

genes, and are often associated with NRF sites as well (80, 189, 242, 255). Additionally, 

similar to PGC-l a expression, ERR distribution demonstrates a positive correlation with 

tissues that are highly metabolic (94, 189, 242). Knockdown studies have demonstrated 

that ERRa expression is required for exogenous PGC-la-induced mitochondrial 

biogenesis and respiratory control (189, 242). 

PPARs. The peroxisome proliferator-activated receptors (PPARu, PPARy, and PPAR8) 

are a family of nuclear receptors that primarily regulate lipid metabolism. PPARu and 

PPAR8 regulate lipid metabolism, and PPARy is a primary regulator of lipid synthesis 

and storage. Similar to the NRFs and ERRs, PPARs associate with PGC-I coactivators 

to enhance transcription of target genes (217, 284, 295). Although not as ubiquitous as 
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the NRFs or ERRs, PPARs (specifically PPARy and PPARb) have a role in 

mitochondrial biogenesis in specific cell types. Adipose tissues, which are not 

particularly enriched with mitochondria, respond to PPARy agonists, such as 

pioglitazone, and PPAR ligands to increase mitochondrial biogenesis (55, 232, 301). 

Additionally, PGC-l a contains a PP AR response element in its promoter region, which, 

as a PPARy coactivator, enables PGC-lu to enhance its own transcription (124). Indeed, 

PGC-l a expression is elevated in studies examining PP AR ligands, suggesting that 

PP AR activation also indirectly activates mitochondrial biogenesis via up-regulation of 

PGC-l a (232, 301). In skeletal muscle, activation of PP ARb stimulates mitochondrial 

biogenesis, and enhances lipid metabolism and fatty acid oxidation (265). Similar to 

PPARy activation, the role ofPPAR8 may be an indirect role on mitochondrial 

biogenesis by increasing PGC-I expression instead of direct induction of mitochondrial 

genes, such as those involved in oxidative phosphorylation (14, 124, 265). 

PGC-lu and the nuclear coactivators 

As outlined in the previous section, there are several diverse classes of transcription 

factors which control expression of a variety of activities associated with mitochondrial 

biogenesis. This observation prompted the hypothesis that there was a common molecule 

coordinating the activities of these transcription factors, which was confIrmed with the 

discovery of the PGC-l transcriptional coactivators (217). 

PGC-J a. Peroxisome proliferator activated receptor y (PP AR) coactivator-l a was 

discovered as an interacting partner with PPARy regulating adaptive thermogenesis upon 
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cold exposure in brown adipose tissue (217). Several studies have demonstrated essential 

LXXLL motifs adjacent to the activation domain for coactivating function ofPGC-Ia. In 

addition to PP AR)" PGC-1 a associates with several other nuclear hormone receptors, 

including the NRFs and ERRs. PGC-1 a associates with the NRFs and trans-activates 

genes involved in mitochondrial respiration (236). Additionally, PGC-la increases Tfam 

and TFB mRNA by targeting NRF recognition sites within the promoters of these genes 

(73). PGC-Ia also induces expression of respiratory genes via conserved ERR and NRF2 

recognition sites located within promoter regions of genes encoding cytochrome c and 

ATP synthase ~ (143, 190). 

PGC-1 a is highly expressed in metabolic tissues, and its expression and activity are 

regulated by a network of receptors, including the nuclear hormone receptors thyroid 

hormone and PP ARy (217, 306); signaling pathways, such as the MAPK and CaMK 

pathways (12, 307); and post-translational phosphorylation, methylation, and acetylation 

modifications (12, 62, 218, 272). Additionally, PGC-1 a transcription is regulated by the 

activity of signaling molecules and transcription factors such as protein kinase B, 

forkhead transcription factor, and myocyte enhancer factor-2 (~1EF-2) (68, 70). 

Mitochondrial transcription factors 

1Jam. Tfam is a nuclear-encoded, mitochondrial transcription factor that is up-regulated 

and then translocated to the mitochondria when there is a mitochondrial biogenesis 

signal. It is involved in the transcription and replication of the mitochondrial genome, 
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binding to a common site on the promoters of the two strands of the mitochondrial 

genome. 

Other components of mitochondrial biogenesis 

Protein Import. Because only 13 of the 1000+ proteins which comprise an intact 

mitochondrion are actually encoded within the mitochondrion, the vast majority of 

mitochondrial proteins must be imported into the organelle and assembled after being 

synthesized exogenously. Nuclear-encoded transcripts are translated in the cytosol 

containing specific mitochondrial targeting sequences directing the precursor proteins to 

appropriate sites within mitochondria where they undergo further processing and folding 

to create the mature protein. The proteins are transported across the mitochondrial 

membranes via the translocase of the outer membrane (TOM) complex and the 

translocase of inner membrane (TIM) complex, and are then subjected to further cleavage 

and folding by mitochondrial proteases and chaperones. 

Physiological states that induce mitochondrial biogenesis 

Activation of the network of genes associated with mitochondrial biogenesis 

accompanies a diverse set of signaling pathways initiated in response to various 

physiological stimuli when there is an increased energetic demand or a need for increased 

efficiency. Outlined in Fig 1-6 below and described in the next section, endurance 

exercise training in muscle cells, cold exposure in brown adipose tissue, and caloric 

restriction all activate pathways which lead to enhanced PGC-l a expression and/or 

activity and mitochondrial biogenesis. Additionally, as documented in numerous studies 
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examining cell/tissue injury, specifically those that target the mitochondria, biogenic 

pathways are up-regulated after injurious stimuli, including damage to renal cells. 
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Fig 1-6. Diverse physiological signals regulate mitochondrial biogenesis in a tissue­
specific manner. Shown are signaling pathways that induce mitochondrial biogenesis 
in skeletal muscle in response to endurance exercise or caloric restriction, in BAT in 
response to cold exposure, and in macrophages in response to signals promoting 
alternative activation. The signals enhance activity (orange outlines ) and/or expression 
(upward blue vertical arrows) of transcriptional regulators PGC-1a, GABP, or PGC-
1~ (123). 
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Exercise. Physical activity induces an energetic demand that can induce a mitochondrial 

biogenic response, particularly within skeletal muscle. Increased cytosolic Ca2
+ due to 

muscle contraction as well as stimulation of AMPK in response to energy deficit can lead 

to a transcriptional response to up-regulate mitochondrial gene expression (228). 

Additionally, sympathetic nervous system stimulation results in adrenergic receptor 

activation, increasing cAMP signaling. Even after a single bout of exercise, increased 

expression ofPGC-lu, NRF-l, ERRu, and mitochondrial genes have been observed (51, 

176, 214, 228, 234), and repeated bouts result in measurable increases in mitochondrial 

numbers (56, 228). 

Cold exposure. PGC-lu is induced upon cold exposure via sympathetic nervous system 

activity and adrenergic receptor stimulation, which in rodents occurs primarily in brown 

adipose tissue (BAT), resulting in elevated cAMP and subsequently activation of protein 

kinase A, p38 MAPK, and CREB. Cold exposure also induces a state of adaptive 

thermogenesis by inducing PGC-lu to stimulate uncoupling proteins (Ucpl), which 

generate heat by manipulating the mitochondrial proton gradient (50, 21 7, 219) .. 

Caloric restriction. Mitochondrial biogenesis under a restricted diet has been well 

studied and the two primary mediators of the response have been AMPK and SIRTI (57, 

172, 199). Additionally, activation of endothelial nitric oxide synthase (eNOS) has been 

implicated in the biogenic response in caloric restriction models. The demand for more 

efficient energetic utilization is likely the catalyst for the effects of CR on mitochondria, 
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and activation of each of these factors results in regulation of PGC-l a activity and 

expression (34, 93, 138). 

Mitochondrial biogenesis in renal cell injury. Previous work from our lab has 

demonstrated that severe mitochondrial dysfunction occurs within at least 24h after acute 

oxidant exposure to primary renal proximal tubule cells (RPTC), represented by dramatic 

reductions in ATP levels and mitochondrial oxygen consumption (205, 220). Nowak, et 

aI., showed that these functional parameters spontaneously recovered over the course of 

approximately 6 days (205). Rasbach, et aI., further clarified this recovery with the 

discovery that PGC-la was robustly up-regulated in response to mitochondrial injury via 

a Src-EGFR-p38 MAPK signaling pathway (220). Fig 1-7 below illustrates the induction 

ofPGC-la protein 24h after TBHP exposure. The elevated expression is maintained for 

72h after exposure. Concurrently, basal and FCCP-uncouple oxygen consumption 

recover from maximal injury at 24h until full recovery by 6 days after exposure (Fig 1-7). 

Recovery of other mitochondrial and cellular functions, including cellular ATP levels, 

ouabain-sensitive respiration, glucose uptake fo How similar patterns and also recover 

during this period of elevated PGC-l a (205). 
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Figure 1-7. Induction of PGC-lu protein (A,B) correlates with recovery of basal 
(C) and uncoupled (D) respiration after oxidant injury in RPTC (220) . 
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Further support for the role of PGC-l a in the recovery of mitochondrial function 

following acute oxidant injury was demonstrated when PGC-l a was overexpressed 

following oxidant injury (221). In cells overexpressing PGC-l a after injury, recovery of 

mitochondrial proteins, ATP, and mitochondrial respiration occurred within 24h after 

overexpression (Fig 1-8). Illustrated in Fig 1-8 below, the mitochondrial proteins A TP 

synthase J3 and NOUFB8 were significantly reduced after TBHP exposure, but were 

nearly fully recovered in cells forced to over-express PGC-l a (Fig 1-8A). Additionally, 

as expected mitochondrial functional markers, including total cellular ATP (Fig 1-8B), 

basal respiration (Fig 1-8C) and uncoupled respiration (Fig 1-80) were significantly 

reduced following oxidant injury, but were fully recovered in cell overexpressing PGC-

1a. 
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Figure 1-8. Overexpression of PGC-1 a after oxidant injury restored mitochondrial 
protein expression (A), as well as total cellular ATP (B) and basal (C) and uncoupled 
(D) oxygen consumption in RPTC exposed to tertbutyl-hydroperoxide (221). 
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SIRTI and AMPK regulation of PGC-l« 

In addition to transcriptional control of PGC-I u, it is also subject to a number of post­

translational modifications. Under energetic crises, primary responders for maintaining 

energy and nutrient homeostasis are AMP-activated kinase (AMPK) and SIRTI. 

A MPK. AMPK is a Ser/Thr kinase, which upon activation stimulates a series of signaling 

pathways which promote ATP production and inhibit energy-expending processes. 

AMPK is able to influence metabolic activities in both the short tenn, by directly 

phosphorylating metabolic enzymes, as well as more long-lasting effects by altering gene 

expression profiles to accommodate changes in metabolic status. AMPK monitors 

cellular energy levels, inducing ATP synthesis and inhibiting A TP expenditure when 

ATP levels are low (118), by regulating expression of mitochondrial and metabolic genes 

via direct phosphorylation ofPGC-la (138). 

SIRT1. SIRTI is a nuclear protein that is also activated in response to energy depletion, 

and promotes induction of genes that regulate metabolic adaptation to low energy levels. 

As a member ofa conserved family ofNAD+-dependent deacetylase enzymes known as 

the sirtuins, SIRTI is one of seven mammalian orthologs of the silent information 

regulator 2 (Sir2), a yeast protein that has been shown to regulate gene silencing and 

lifespan (133). Upon activation, SIRTI catalyzes a lysine deacetylation reaction, which 

hydrolyzes NAD+ in the process (267), resulting in a de-acetylated protein target, 

nicotinamide, and O-acetyl-ADP ribose (35, 266). Targets of SIRTI deacetylation 

include transcription factors, coregulators of transcription, and histones (84). 
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SIRT 1, and the yeast protein Sir2, has been proposed as a link between the effects of 

caloric restriction and lifespan extension (105-106, 169,230,276). Consistent with these 

findings are the reports that treatment with the SIRT1 activator resveratrol also extended 

lifespan in a number of organisms (125, 304). In mammals the link between SIRT1 and 

lifespan extension is a little less clear. It has been documented that caloric restriction 

modulates lifespan in mammals, including primates (162, 233), and SIRT1 is activated in 

caloric restriction models (58). Additionally, SIRTI overexpression in mice mimics 

several characteristics found under calorie restriction, including increased metabolic 

activity and lealll1ess, and reduced cholesterol, insulin, and fasted glucose levels (33). 

Fig 1-9 illustrates some of the known key regulatory factors which control SIRTI 

function, as well as the biological effects of increased SIRT1 activity. 
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Fig 1-9. Potential regulatory pathways ofSIRTl that could be exploited to increase 
SIRTI-mediated deacetylation. Phosphorylation, sumoylation, AMPK, small 
mo lecules, increased N AD + levels and AROS binding are purposed activators 
(depicted in green). Nicotinamide, DBCl binding, and de-sumoylation are purposed 
inhibitory pathways that could be regulated to increase SIRTI activity (depicted in 
red). AMPK: AMP-activated kinase, AROS: Active regulator ofSIRTl, DBCl: 
Deleted in breast cancer-I, NAM: Nicotinamide, NAMPT: Nicotinamide 
phosphoribosyltransferase, NMANT: Nicotinamide mononucleotide 
adenylyltransferase, OAADPr: O-Acetyl-ADP-ribose, SENPl: Sentrin specific 
protease 1, SUMO: Small ubiquitin-like modifier. (77) 
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One of the primary targets of SIR T 1 deacetylation is the transcriptional co-activator 

PGC-lu. SIRTI catalyzes the deacetylation and activation ofPGC-la in both in vitro 

and in vivo systems (196, 229), which may contribute to a protective role in metabolic 

regulation and resistance to oxidative stress (32, 125). Additionally, mutation of the 

acetylation sites on PGC-I u to an arginine, mimicking the deacetylated state, enhances 

PGC-1 a transcriptional activity (229), supporting SIRT 1 deacetylation as a positive 

influence on PGC-Ia activity. Conversely, the acetyltransferases Steroid Receptor 

Coactivator 3 (SRC-3) and General Control Nonderepressible 5 (GCNS) have been 

shown to acetylate PGC-lu and repress its activity (62). Under states of high-fat feeding, 

SRC-3 and GCNS are elevated and SIRTI expression is decreased, leading to 

hyperacetylation ofPGC-1 a (62). In contrast, under fasting conditions or caloric 

restriction, SIR T 1 is elevated and SRC-3 and GCN 5 are reduced, which results in 

deacetylated PGC-I u. 

Rather than exclusive mechanisms of adaptation, recent evidence points to concurrent 

regulation and convergent mechanisms induced by AMPK and SIRTI in response to 

changes in cellular energy levels and redox states, with a primary target of both pathways 

converging on PGC-l u (48). 

Pharmacological activators of mitochondrial biogenesis 

SIRTl activators. A widely recognized SIRTI activator is the compound resveratrol 

found primarily in the skins of grapes. Resveratrol is a natural antioxidant and 

phytoestrogenic compound., and has been shown to increase SIRTI activity when 
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examined by in vitro activation assays (16, 125). The interaction ofresveratrol with 

SIR T I is allosteric., and increases SIR T 1 affinity for its target substrate as well as N AD+ 

(125). Additionally, resveratrol treatment has been shown to have effects on lifespan 

extenstion, mimicking caloric restriction-mediated Sir2 activation (125, 169). Recently, 

there has been a lot of controversy about the actual intracellular target of resveratro1., and 

some reports suggest that it may not be a direct activator ofSIRTI (208). The structures 

of proposed SIRTI activators, including resveratrol, are shown in Fig 1-10 below. 

Our lab demonstrated that a number ofisoflavone-derived molecules were able to 

increase SIRTI activity (either by increasing expression or activity ofSIRT1)., and induce 

mitochondrial biogenesis in primary RPTC (223). Daidzein, formononetin, 3-(2',4'­

dichloropheny 1)-7 -hydroxy-4 H -chromen-4-one (DCH C) and 7-hydoroxy-4 H -chomen-4-

one (7 -C) increased activation of SIRT 1 in an in vitro fluorescence-based deactylation 

assay. Daidzein, fonnononetin, genistein, biochanin A,4', 7 -dimethoxyisoflavone ( 4'.,7-

D), and5,7,4'-trimethoxyisoflavone ( 5,7,4'-T) increased SIRTI expression in RPTC. 

RPTC exposed to the compounds had increased mitochondrial protein expression 

(including the OXPHOS proteins ATP synthase f3 and NDUFB8)., as well as elevated 

mitochondrial respiration rates and cellular ATP levels (223). 

SRT1720, a potent SIRTl activator. SRTI720 was first reported as a SIRTI activator in 

a high-throughput in vitro fluorescence polarization screen (178). Along with two other 

compounds identified in the screen, SRT1720 was found to activate SIRTI over 1000-

fold more potently than resveratrol, and exposure of this compound led to deacetylation 
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ofSIRTl target proteins in both cells and animals (85, 178). The structure ofSRT1720 is 

depicted in Fig 1-10. It should be noted that although it has been characterized as a 

potent SIR T 1 activator in vitro, and exposure induces deacetylation of SIR T I-target 

proteins, the true direct target of SRT 1720 has been controversial (208). In genetic and 

diet-induced obese and diabetic rodents, 4- to la-weeks ofSRTl720 treatment improves 

insulin sensitivity and reduces plasma glucose levels while enhancing skeletal muscle 

mitochondrial activity (1 78). Additionally, C2C 12 cells treated with SRT 1720 express 

elevated citrate synthase activity and ATP levels, suggesting induction of mitochondrial 

biogenesis upon exposure (251). Recently, it was reported that SRT1720 treatment in 

obese mice extends both mean and maximum lifespan (180). In addition to increased 

lifespan, SRT 1 720 also had positive effects on health benefits such as reduced liver 

steatosis, increased insulin sensitivity, enhanced locomoter activity, and reduced markers 

of inflammation. Using conditional knockouts, Minor, et aL, also demonstrated that the 

effects ofSRT1720 were dependent on SIRTI and POC-ln (180). 
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Assessing mitochondrial biogenesis 

Fluorescent Microscopy. Fluorescent microscopy is a commonly used method to 

evaluate mitochondrial abundance and health. Potentiometric dyes such as TMRM, 

Rhodamine 123, and JC-l are sequestered within the mitochondrial membrane based on 

the membrane potential of polarized mitochondria. Therefore, these dyes are excellent 

tools for evaluating mitochondrial health because visualization is dependent on respiring, 

polarized mitochondria in cells in culture or in living tissue (via intravital microscopy); 

however, the potentiometric dyes are not ideal for examining mitochondrial abundance 

because they may not detect all mitochondria present. Dyes such as Mito-tracker, which 

fluoresces upon entering the mitochondria, and lO-n-nonyl-acridine orange, which binds 

to cardiolipin in the inner membrane, are thought to be less dependent on mitochondrial 

membrane potential; however, studies in yeast have shown that this may not always be 

accurate (99). 

Mitochondrial DNA (mtDNA) content. As previously described, mitochondria have their 

own genome set which typically ranges from approximately 2 to 10 copies per 

mitochondrion. Despite the lack of a true 1: 1 ratio for mtDNA:mitochondria, the 

measure ofmtDNA should be proportional to the number of mitochondria. 

Determination of mitochondrial DNA content can be done by traditional Southern blot 

techniques, or by more commonly applied PeR-based assays. In such cases, primers are 

designed against a region of the mitochondrial genome, such as a coding region (e.g. 

NADH dehydrogenase subunit 1) or a non-coding region (e.g. the mitochondrial D-Ioop), 
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to measure the content ofmtDNA and are normalized to a marker of total genomic DNA 

(26). 

Examining components of biogenic machinery. As detailed previously in this section, 

there are several key components of the mitochondrial biogenic process which are 

universally enhanced to coordinate the nuclear and mitochondrial transcriptional 

activities involved. NRFI and NRF2 are transcription factors involved in regulating 

nuclear transcriptional activities. Tfam is a mitochondrial transcription factor which 

regulates mtDNA transcription and replication. PGC-l a is a nuclear coactivator of 

transcription which associates with a number of transcription factors which regulate 

mitochondrial gene expression (such as the NRFs), coordinating the cell's response to 

external stimuli with a mitochondrial gene profile to increase abundance. Up-regulation 

of these factors can be detected by conventional methonds (e.g. peR, western analysis, 

etc.) when mitochondrial biogenesis is turned on. One concern with examining 

components of the biogenic process, however, is that these factors may only be 

transiently up-regulated, so determining the optimal time of examination is essentiaL 

Mitochondrial respiratory complexes. An indirect measure of mitochondrial content is to 

evaluate transcript or protein expression of subunits of the mitochondrial respiratory 

chain. Greater numbers of mitochondria should equate to elevated expression of OxPhos 

complexes. There are both nuclear-encoded and mitochondrial-encoded subunits which 

comprise the NADH dehydrogenase (complex I), cytochrome c oxidase (complex IV), 

and ATP synthase (complex V), and antibodies are available which recognize a number 
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of the subunits within these complexes. Additionally, mRNA expression of the subunits 

can also be examined, although as discussed previously in the biogenic machinery 

section, some of these genes may only be transiently up-regulated. 

Evaluating mitochondrial function. Finally, a relatively quick way to evaluate 

mitochondrial biogenesis is by examining functional output. High throughput assays can 

be developed using the Seahorse Extracellular Flux to measure maximal oxygen 

consumption rates (uncoupled respiration) to evaluate mitochondrial biogenesis and 

toxicity (17). We have also demonstrated that intracellular ATP levels can correlate with 

increased mitochondrial numbers (221, 223). Of course, either of these measurements 

may only mean that the mitochondria are functioning more efficiently in one sample set 

versus another, so these types of measurements would generally need to be used in 

combination with one or more of the methods described above. 
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Chapter 2: 

SRT1720 Induces Mitochondrial Biogenesis and Rescues Mitochondrial 

Function After Oxidant Injury in Renal Proximal Tubule Cells 

ABSTRACT 

Mitochondrial biogenesis occurs under basal conditions and is an adaptive response 

initiated by cells to maintain energetic demands and metabolic homeostasis following 

injuries targeting mitochondrial function. Identifying pharmacological agents that 

stimulate mitochondrial biogenesis is a critical step in the development of new 

therapeutics for the treatment of these injuries and to test the hypothesis that these agents 

will expedite recovery of cell and organ function following acute organ injuries. In this 

study, we examined the effects of SRT 1720 on mitochondrial biogenesis and function in 

primary cultures of renal proximal tubule cells (RPTC). We also tested the ability of this 

compound to restore mitochondrial functions following oxidant-induced RPTC injury. 

SRT1720 (3-10 ~M) induced mitochondrial biogenesis in RPTC within 24 hrs as 

determined by elevations in mitochondrial DNA copy number, increased expression of 

the mitochondrial proteins NDUFB8 and ATP synthase ~, and elevated mitochondrial 

respiration rates and ATP levels. Induction of mitochondrial biogenesis was dependent 

on SIRTI deacetylase activity, correlated with deacetylated nuclear PGC-lu, and 

occurred in the absence of AMP-dependent kinase (AMPK) activation. Finally, 

SRT1720 treatment accelerated recovery of mitochondrial functions following acute 

oxidant injury. This study demonstrates that SRT1720 can induce mitochondrial 
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biogenesis through SIRTI activity and deacetylated PGC-lu, but not AMPK, in RPTC 

within 24 hrs following oxidant injury. The results support further study of 

mitochondrial biogenesis as a repair process and a pharmacological target in acute organ 

injuries and disorders plagued by mitochondrial impairment. 
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INTRODUCTION 

Mitochondrial dysfunction is a primary pathological consequence of ischemic or toxic 

insults. In ischemic acute kidney injury (AKI), de-energization of the mitochondria and 

persistent energy depletion may hinder critical energy -dependent repair mechanisms and 

lead to irreversible cell injury, limiting restoration of organ function (86, 297). As such, 

there is therapeutic potential for agents that promote mitochondrial function to treat 

injuries characterized by mitochondrial impairment. 

Mitochondrial biogenesis occurs under basal conditions and is an adaptive response 

initiated by cells to maintain energy demands or heat expenditure following injury, cold 

exposure, or caloric restriction (217, 310). A primary regulator of mitochondrial 

biogenesis is the nuclear transcriptional coactivator peroxisome proliferator-activated 

receptor coactivator-1a (PGC-1a). Through induction of uncoupling proteins (UCP-2), 

nuclear respiratory factors (NRFI/2), and as a coactivator of the promoter region of 

mitochondrial transcription factors Tfam, TFB 1M, and TFB2M, PGC-1 a has significant 

influence on mitochondrial function (97, 168,217,219,308). 

PGC-1 a is highly expressed in metabolic tissues, and its expression and activity are 

regulated by a network of receptors, including the nuclear hormone receptors thyroid 

hormone and PPARy (217,306); signaling pathways, such as the MAPK and CaMK 

pathways (12, 307); and post-translational phosphorylation, methylation, and acetylation 

modifications (12, 62, 218, 272). Additionally, PGC-l a transcription is regulated by the 
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activity of signaling molecules and transcription factors such as protein kinase B, 

forkhead transcription factor, and myocyte enhancer factor-2 (MEF-2) (68, 70). 

Under energetic crises, primary responders for maintaining energy and nutrient 

homeostasis are AMP-activated kinase (AMPK) and SIRTI. Rather than exclusive 

mechanisms of adaptation, recent evidence points to concurrent regulation and 

convergent mechanisms induced by AMPK and SIRTI in response to changes in cellular 

energy levels and redox states, with a primary target of both pathways converging on 

PGC-1u (48). AMPK monitors cellular energy levels, inducing ATP synthesis and 

inhibiting ATP expenditure when ATP levels are low (118), by regulating expression of 

mitochondrial and metabolic genes via direct phosphorylation ofPGC-la (138). SIRT1 is 

a nuclear protein that is also activated in response to energy depletion, and promotes 

induction of genes that regulate metabolic adaptation to low energy levels. As a member 

of a conserved family ofNAD+ -dependent deacetylase enzymes known as the sirtuins, 

SIR T 1 monitors cellular energy levels and becomes active in response to elevated 

NAD+/NADH ratios (161). SIRTI catalyzes the deacetylation and activation ofPGC-1a 

in both in vitro and in vivo systems (196, 229), which may contribute to a protective role 

in metabolic regulation and resistance to oxidative stress (32, 125) 

A number of small molecules have been reported, such as resveratrol and isoflavone­

derived compounds (125,223), to induce mitochondrial biogenesis in RPTC. SRT1720 

was reported to be a SIR T 1 activator, and exposure of this compound led to deacetylation 

of SIRT1 target proteins in both cells and animals (85, 178). In genetic and diet-induced 
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obese and diabetic rodents, 4- to 10-weeks of SR T 1 720 treatment improves insulin 

sensitivity and reduces plasma glucose levels while enhancing skeletal muscle 

mitochondrial activity (178). Additionally, C2C 12 cells treated with SRT1720 express 

elevated citrate synthase activity and ATP levels, suggesting induction of mitochondrial 

biogenesis (251). However, the acute effects of this compound in primary cultures of 

renal proximal tubule cells, which better mimic the metabolic properties of cells in vivo 

compared to glycolytic cell lines, on mitochondrial biogenesis have not been explored. 

Furthermore, the effects of this compound in targeted injury models with mitochondrial 

impairment have also not been characterized. 

Mitochondrial dysfunction contributes to oxidant-induced renal cell injury (205), and 

PGC-la plays a predominant role in the recovery of mitochondrial function following the 

initial injury (220). Over-expression ofPGC-la accelerates recovery of mitochondrial 

and cellular functions after oxidant injury (221), but because of the toxicity limitations in 

using adenovirus in vivo, there is a need for pharmacological agents that stimulate 

mitochondrial biogenesis to treat injuries characterized by mitochondrial impairment. In 

this study, we examined the mechanism of SRT 1720 induced mitochondrial biogenesis 

and function in renal epithelial cells and tested the hypothesis that stimulation of 

mitochondrial function accelerates recovery from an acute cellular and mitochondrial 

InjUry. 
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EXPERIMENTAL METHODS 

Reagents - PGC-Iu (H300), NDUFB8, ATP Synthase ~, and GAPDH antibodies were 

obtained from Santa Cruz Biotechnology (Santa Cruz, CA), Invitrogen (Carlsbad, CA), 

Abcam (Cambridge, MA), and Fitzgerald (Concord, MA), respectively. Acetylated 

lysine, phosphorylated AMPK (Thr172), and AMPK antibodies were obtained from Cell 

Signaling Technologies (Danvers, MA). Sirtinol and nicotinamide were purchased from 

Sigma-Aldrich (St. Louis, MO). All other chemicals were obtained from Sigma-Aldrich. 

SRT1720 synthesis and SIRTI activation - SRT1720 was synthesized according to a 

procedure previously described (178) and was confrrmed by NMR and mass 

spectrometry and the final product was purified by HPLC. SIR T 1 de acetylase activity 

was measured using a fluorescence-based SIRTI activity kit (BioMol, Plymouth 

Meeting, PA) according to manufacturer's protocol as previously described (223). 

Isolation and Culture of Renal Proximal Tubules - Female New Zealand White rabbits 

(---2 kg) were purchased from Myrtle's Rabbitry (Thompson Station, TN). Renal proximal 

tubules were isolated using an iron oxide uptake method previously described (220). 

Cells were cultured on 35 mm dishes in a medium consisting of 1: 1 DMEM/Ham's F12 

(lacking glucose, phenol red, and sodium pyruvate), and supplemented with HEPES (15 

mM), glutamine (2.5 mM), pyridoxine Hel (I uM), sodium bicarbonate (15 mM), and 

lactate (6 mM). Hydrocortisone (50 nM), selenium (5 ng/ml), human transferrin (5 

J-lg/ml), bovine insulin (10 nM), and L-ascorbic acid-2-phosphate (50 J-lM) were added 

daily to fresh culture medium. Experiments with RPTC were conducted on the sixth day 

after plating when the cells had reached a confluent monolayer. Treatments were 
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administered for 24 hrs unless otherwise noted. For TBHP injury experiments, cells were 

exposed to 400 J.lM TBHP for 45 min, at which time TBHP media was replaced with 

fresh media. 

Preparation of ceillysates for immunoblot analysis - Twenty-four hours following 

treatment, RPTCs were harvested in RIP A lysis buffer consisting of25 mM Tris-HC1, 

150 mM NaCI, 1 % TritonX-l 00, 1 % sodium deoxycholate, and 0.1 % SDS. Lysates were 

sonicated and total protein was measured by BCA. Immunoblot analysis was perfonned 

as previously described (220). 

Immunoprecipitation - Cells were harvested from pooled culture dishes in a 

homogenization buffer consisting of 50 mM Tris-HCI, 1 mM B-mercaptoethanol, 1 mM 

EDTA, and 0.32 M sucrose. Cells were disrupted by sonication and nuclei were 

collected by centrifugation at 900 x g for 10 min. Following centrifugation, the nuclear 

pellet was resuspended in a nuclear lysis buffer consisting of 10 mM Tris, 500 mM NaCI, 

1 % TritonX-100, 10% glycerol, 1 mM sodium pyrophosphate, 1 mM NaV04, 1 mM NaF, 

and protease inhibitors. lmmunoprecipitations were carried out according to a protocol 

by Roche Diagnostics (Indianapolis, IN). Nuclear protein lysate (500 Jlg) and 5 Jlg PGC­

Ia antibody were used for experiments. Immunoprecipitates were analyzed by 

immunoblotting using antibodies against acetylated lysine residues and PGC-l a. 

Supernatants collected from immunoprecipitations were analyzed for Histone H3 

expression as a control for initial nuclear protein input. 

Quantitative Real-Time peR - Total RNA was isolated from cells with TRIzol 

(Invitrogen, Carlsbad, CA). cDNA was synthesized from 5 Jlg RNA template using a 
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SuperScript II Reverse Transcriptase kit (Invitrogen). PCR reactions were carried out 

using 2.5 flL cDNA template combined with Brilliant II SYBR Green master mix 

(Stratagene) at a final concentration of IX and primers (Integrated DNA Technologies) at 

a concentration of 400 nM. Sequences of primers used for real-time PCR reactions: 

PGC-lu (FW: 5'-AGG AAA TCe GAG CTG AGC TGA ACA-3', REV: 5'-GCA AGA 

AGG CGA CAC ATC GAA CAA-3'), and GAPDH (FW: 5'-GAG CTG AAC GGG 

AAA eTC AC-3', REV: 5'-CAC TGT TGA AGT CGC AGG AG-3'). 

Mitochondrial DNA content - Real-time peR was used to determine relative quantities of 

mitochondrial DNA content in SRT1720-treated cells and control cells. Following a 24 

hr treatment, total genomic DNA was extracted using a DNeasy Blood and Tissue Kit 

(Qiagen). DNA was quantified by measuring A260 values and 50 ng total DNA was 

used for peR reactions. Primers specific to the mitochondrial-encoded ND6 gene (FW: 

ACT GCG ATG GCA ACT GAG GAG TAT, REV: ACe ATA ACT ATA CAA CGC 

CGC CAC) were used to assess mitochondrial DNA copy numbers. Primers designed 

against the nuclear-encoded Pou5fl gene (FW: 5'-GGC CTA TGT CTT TTC CTC 

TGG-3', REV: 5'-TCe AGG TTC TCT CTC CCT AGC-3') were used for 

normalization. 

Oxygen Consumption (Q02) and ATP levels - Basal and FCCP-uncoupled oxygen 

consumption (Q02) and ATP levels were measured 24 hr following treatment with 

SRT1720 and/or TBHP. Q02 was measured using a Clark oxygen electrode as previously 

described (205). ATP content was measured using an ATP bioluminescent assay kit 

(BioMol) as previously described and normalized to cellular protein (220). 
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Statistical Analysis-Data are presented as means +/- SEM and were subjected to one­

way ANOVA. Multiple means were compared post-hoc using Student-Newman-Keuls 

test were considered statistically different when p<O.OS. RPTC isolated from a single 

rabbit represented an individual experiment (n= 1) and were repeated until an n of at least 

6 was obtained. 

RESULTS 

SRT1720 was reported to activate SIRTI (85, 178), and because SIRTI activation can 

increase PGC-l a activity and mitochondrial functioning, we conducted a series of 

experiments to determine if SRT 1 720 mediates mitochondrial biogenesis in primary 

cultures ofRPTC, and if so, by what mechanism. To verify SRT1720 potency, a 

fluorescence-based SIRT 1 activity assay kit measuring deacetylation of a peptide target 

was used to examine SIRTI deacetylase activity when exposed to SRT1720. SRT1720 

increased SIRTI activity in a concentration-dependent manner with a 3-fold increase in 

SIRTI at 1 and 3 I-lM SRT1720 and a 5-fold increase at 10 I-lM (Fig. 2-1). 
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Figure 2-1. SRT1720 enhances SIRTI deacetylase activity. Recombinant SIRTI 
enzyme was incubated with acetylated peptide, NAD+ and various concentrations of 
SRT1720. Increasing concentrations ofSRTl720 corresponded with increased SIRTI 
activity, which was measured indirectly from a fluorescent signal produced that was 
relative to levels of deacetylated product. Data are presented as mean % control +/­
SEM. Different superscripts indicate data are significantly different from each other 
(p<O.05). 
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Because SIRT 1 can modulate PGC-l a expression and/or activity by deacetylation (196, 

229), we assessed the expression and acetylation state of PGC-I a in RPTC exposed to 

SRT1720 or vehicle for 24 hrs. Immunoblot analysis of nuclear lysates revealed elevated 

PGC-Iu expression (Fig. 2-2a). To further examine nuclear PGC-Iu content and 

acetylation state, PGC-l a protein was immunoprecipitated from nuclear lysates and 

subjected to immunoblot analysis with antibodies to acetylated lysine residues and POC-

1 a (Fig. 2-2b). Time course analysis of acetylated PGC-I a consistently revealed reduced 

acetylation with 48 hr SRT1720 treatment with no differences at 24 hrs. Total PGC-la 

levels in the immunoprecipitate were elevated at 24 and 48 hrs. The ratio of acetylated to 

total PGC-l a was decreased approximately 50% in SRT 1720 cells at 24 hrs, indicating 

more active PGC-I a in the nucleus with SRT 1720 treatment. We confIrmed equal 

loading by measuring histone H3 in the supernatant from the immunoprecipitation 

experiments by immunoblot analysis (Fig. 2-2b). 

Because active PGC-I a promotes transcription of the PGC-l gene by an autoregulatory 

feedback loop (68), we examined transcript levels ofPGC-la by real-time peR, but 

found no differences between vehicle and SRT1720-treated cells (Fig. 2-2c). Because 

modifications to PGC-la may regulate degradation of the protein, we tested whether the 

increased expression of POe-I a was due to decreased proteasomal degradation. We 

have previously characterized the degradation of PGC-l a in RPTC, and showed that it 

has a short half-life (37 min) (222). RPTC were treated with vehicle or SRT1720 for 24 

hrs and then protein translation was inhibited with cycloheximide (100 flM) and samples 

taken 30 and 60 min later. Nuclear lysates were probed for PGC-Ia expression by 
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immunoblot analysis. No changes in PGC-lu degradation were observed SRT1720 and 

vehicle treated RPTC (Fig. 2-2d). Taken together, these data provide evidence that 

SR T 1 720 treatment induced accumulation of deacetylated nuclear PGC-l a in RPTC that 

was not the result of either elevated PGC-latranscription at 24 hrs treatment or decreased 

proteasomal degradation. 
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Figure 2-2. Nuclear deacetylated PGC-la expression is elevated in SRT1720-
treated cells. Q, Nuclear lysates were fractionated from vehicle and SRTl720-treated 
cells and PGC- l expression was assessed by immunoblot analysis. Histone H3 
expression verified equal protein input within sample groups. b, The acetylation state 
ofPGC-lu was examined in nuclear lysates by immunoprecipitating PGC-lu followed 
by immunoblot analysis of ace tyla ted lysine residues and PGC-lu. Because SRT1720 
lysates contained more PGC-l u, supernatants from immunoprecipitations were 
subjected to Histone H3 immunoblot analysis for input control. c, PGC-lu mRNA 
expression in SRT1720 and vehicle cells was determined by real-time PCR using 
primers designed to measure PGC-l u transcripts and GAPDH as internal control. d, 
PGC- l u degradation was examined in SRT 1720 cells by extracting nuclear protein at 
0,30, and 60 min following cycloheximide exposure and immunoblotting for PGC-lu 
expression. Histone H3 expression verified protein input. Data are presented as mean 
% control +/ - SEM. Different superscripts indicate data are significantly different 
from each other (p<0.05). 
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Mitochondrial biogenesis was detennined by assessing mitochondrial DNA copy number, 

expression of mitochondrial proteins, and mitochondrial function after 24 hrs of 

SRT1720 treatment. Relative mitochondrial DNA copy number was detennined using 

quantitative real-time peR to examine the ratio of a select mitochondrial-encoded gene 

over nuclear DNA in SRT1720 and vehicle-treated cells (Fig. 2-3a). There was a 3.5-

fold increase in mitochondrial-encoded NADH dehydrogenase subunit 6 (ND6) DNA in 

SRTl720 cells compared to controls. Nuclear-encoded Pou5fl was used for 

normalization. 

Secondly, the effect ofSRT1720 treatment on mitochondrial protein levels was explored. 

SRT 1720 (10 J.1M) elevated ATP Synthase p, a nuclear-encoded protein within the F 1 

subunit of the ATP synthase, 1.5-fold over controls (Fig. 2-3b). NDUFB8, a nuclear­

encoded complex I subunit, also was elevated approximately 1.5-fold over control by 

SRT1720. 

Mitochondrial function was determined by measuring cellular respiration and ATP levels 

in RPTC. Compared to controls, basal respiration was elevated approximately 1.5-fold 

with 3 or 10 J-lM treatments at 24 hrs (Fig. 2-3c). Uncoupled respiration was elevated 

approximately 1.5-fold at the same concentrations. Finally, ATP levels were also 

elevated (1.8-fold) over vehicle controls (Fig. 2-3c). Taken together, the elevations in 

mitochondrial DNA, proteins, and functional capacity provide strong evidence that 

mitochondrial biogenesis occurs in RPTC with SRT1720 treatment. 
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Figure 2-3. SRT1720 induces mitochondrial biogenesis in RPTC within 24 hrs. 
G, Mitochondrial DNA copy numbers were assessed by real-time PCR. DNA isolated 
from RPTC treated with vehicle or 10 I-lM SRT1720 was analyzed by real-time PCR 
for relative quantities of the mitochondrial gene ND6 and the nuclear gene Pou5fl. b, 
Mitochondrial proteins ATP Synthase ~ and NDUFB8 were measured by immunoblot 
analysis in cells treated with 1, 3, or 10 uM SRT1720. GAPDH immunoblots were 
performed to verify equal protein input. c, Mitochondrial function was assessed in 
vehicle and SRT1720-treated cells. Basal and FCCP-uncoupled respiration and ATP 
levels were measured in RPTC treated with 1, 3, or 10 uM SRT1720. Total protein 
was measured by BCA and used for normalization of data. Data are presented as 
mean % control +/ - SEM. Different superscripts indicate data are significantly 
rliffprpnt frntn p~[' h n t hPr (n<() ()", 
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To verify that the RPTC mitochondrial biogenesis produced by SRT1720 is dependent on 

SIRTI activation, pharmacologic inhibitors were used to block SIRTl activity prior to 

SRT1720 exposure, and then mitochondrial DNA content and function were analyzed. 

SRT1720 treatment elevated mitochondrial DNA content compared to vehicle treated 

cells, whereas cells exposed to SRT 1720 in the presence of the SIRTI inhibitor 

nicotinamide (NAM, 100 J.lM) did not show any changes in mitochondrial DNA (Fig. 2-

4a). Additionally, RPTC exposed to SRT1720 for 24 hrs demonstrated elevations in ATP 

levels compared to vehicle cells (Fig. 2-4b). Pretreatment ofRPTC with the synthetic 

SlRT1 inhibitor sirtinol (100 J.1M) or NAM prevented the SRT1720-mediated increased 

ATP levels at 24 hrs. The data from these experiments verify that SIRTI is required for 

SRT1720-induced mitochondrial biogenesis. 
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Figure 2-4. SRT1720-induced mitochondrial biogenesis is SIRTI-dependent. a, 
RPTC were treated with 10 ~M SRT1720 alone or in the presence of the SIRTI 
inhibitor nicotinamide (100 f.lM NAM) for 1 hr prior to SRT1720 addition. 
Mitochondrial DNA levels were analyzed by real-time PCR for the mitochondrial 
gene ND6. The nuclear encoded gene Pou5fl was used for normalization. b, RPTC 
were treated with SRT 1720 alone or in combination with the SIRT 1 inhibitors 
nicotinamide or sirtinol. ATP levels were measured 24 hrs after SRT1720 addition. 
Total protein was measured by BCA and used for normalization. Data are presented 
as mean % control +/ - SEM. Different superscripts indicate data are significantly 
different from each other (p<0.05). 
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AMPK, a primary energy regulator, monitors AMP/ATP levels and activates energy­

producing mechanisms when this ratio is elevated (118). AMPK regulates energy supply 

by directly phosphorylating modulators of metabolic pathways, including PGC-lu (138). 

Indeed, PGC-l a has at least two sites available for AMPK-mediated phosphorylation, 

and activators ofSIRT1, such as resveratrol, can also induce activation of AMPK (319). 

To determine ifSRT1720 also induces AMPK activation, RPTC were treated for 1 hr and 

24 hr with SRT1720 or vehicle and activation of AMPK was detected by immunoblotting 

for phosphorylated AMPK (Thr172). AICAR and metformin were used concurrently as 

positive controls for AMPK activation. At both 1 hr and 24 hr, there was no effect on 

pAMPK levels by SRT1720, whereas a significant induction was observed with 

metformin treatment at both time points (Fig. 2-5). Contrary to previous reports in other 

systems (319), we did not observe any changes in pAMPK with AICAR treatment. Total 

AMPK levels did not change with any treatment. These data provide evidence that 

SRT1720 acts through SIRTI activation and not concurrent activation of AMPK. 
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Figure 2-5. SRT1720 does not activate AMP-dependent kinase (AMPK). RPTC 
treated with 10 f.lM SRT1720 or vehicle for 1 or 24 hrs were subjected to immunoblot 
analysis using antibodies to detect phosphorylated AMPK (Thr 172), total AMPK, and 
GAPDH. The known AMPK activators AI CAR (500 JlM) and metformin (1 mM) 
were used as positive controls for pAMPK antibody. GAPDH expression was 
analyzed for load control. Different superscripts indicate data are significantly 
different from each other (p<0.05). 
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Because PGC-lu and mitochondrial biogenesis have a pivotal role in the recovery of 

RPTC from oxidant-induced mitochondrial dysfunction (220-221), we tested the 

hypothesis that pharmacological activation of mitochondrial biogenesis following injury 

would expedite recovery of mitochondrial functions in RPTC. RPTC were incubated 

with 400 J-lM tert-butyl hydroperoxide (TBHP) to induce oxidant injury. At 6 hr post­

injury, RPTC were treated with SRT1720 to stimulate mitochondrial biogenesis. At 24 

hrs, mitochondrial function and cell morphology of injured RPTC treated with SRT1720 

or vehicle were examined. Uncoupled respiration and ATP levels were approximately 

60% of control in TBHP-injured RPTC at 24 hr (Fig. 2-6). In contrast, injured cells 

treated with SRT1720 demonstrated partial recovery of uncoupled respiration and full 

recovery of ATP levels 24 hrs post-injury (Fig. 2-6). 
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Figure 2-6. Mitochondrial function is rescued in SRT1720-treated cells following 
oxidant injury. RPTC injured with the oxidant tertbutyl hydroperoxide (TBHP) were 
treated with 10 f.1M SRT1720 or an equal volume ofDMSO 6 hrs after injury and ATP 
levels and FCCP-uncoupled respiration were measured 24 hrs post-injury. Total 
protein was measured by BCA for data normalization. Data are presented as mean % 
control +/- SEM. Different superscripts indicate data are significantly different from 
each other (p<0.05). 
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Correlating with partial recovery of mitochondrial functions, recovery ofRPTC 

tnorphology was observed in injured cells treated with SRT1720. Six hours after TBHP 

exposure, the injury was characterized by a loss of approximately 50% of cells as 

visualized by denuded areas of the dish as cells had sloughed off the plate surface, as well 

as a generalized shrinkage and rounding of adherent cells~ RPTC· treated with SRT1720 

for 24 hrs following injury reverted to a pre-injury state characterized by reorganization 

and migration of surviving cells returning to a confluent monolayer and dome formation 

indicative ofpolarized RPTC (Fig. 2-7). This recovery was not as apparent in vehicle­

treated injured cells. The data from these experiments indicate that SIRTI activation can 

reverse oxidant-induced mitochondrial dysfunction, and recovery of mitochondrial 

numbers and function may aid in recovery ofRPTC morphology following acute injury. 
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Figure 2-7. RPTC morphology is partially recovered in cells treated with 
SRT1720 following TBHP toxicity. RPTC exposed to 400 11M TBHP were 
treated with 10 11M SRT1720 or DMSO 6 hrs after injury and then examined by 
light microscopy (10 X magnification) for changes in cell morphology at 24 hrs 
post-injury. 
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DISCUSSION 

Mitochondrial dysfunction is a common mechanism in the etiology of organ injuries and 

diseases characterized by metabolic insufficiency. Mitochondrial health is essential for 

cell and organ function due to their role in ATP production, fatty acid and lipid 

metabo lism, signaling pathways, and apoptosis. Despite potential for treating disorders 

characterized by mitochondrial impairment, very few therapies target the mitochondria to 

promote its function. In this study we demonstrated that pharmacologically-induced 

mitochondrial biogenesis enhanced mitochondrial function in RPTC and restored 

function following an acute injury. 

SRT 1 720 stimulated mitochondrial biogenesis in RPTC within 24 hrs of exposure. 

Elevated levels of mitochondrial DNA, proteins, and function were observed with 10 JlM 

treatment. The findings agree with results we have previously published linking 

isoflavone-induced mitochondrial biogenesis with SIRT 1 activation (223), as well as 

others who have demonstrated mitochondrial biogenesis with resveratrol in other cell 

types (67, 160). The pharmacological advantage ofSRT1720 over isoflavones is that 

SRT 1720 produces mitochondrial biogenesis within 24 hrs, a key requirement if targeting 

acute organ injury. 

While SRT1720 was previously reported as a SIRTl activator, its mechanism of 

mitochondrial biogenesis in a cellular system is incomplete. Previous studies examining 

SRT 1720-induced mitochondrial biogenesis have based their interpretations primarily on 

indirect mitochondrial measurements, such as respiration and ATP levels and ETC 
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activity, predominantly in skeletal muscle cell lines (85, 251). In this study, we sought to 

explore SRTl720-induced mitochondrial biogenesis in primary kidney cell cultures, 

which better mimic the metabolic properties of renal cells in vivo, not only by examining 

alterations in functional output, but also by examining direct measurements of 

mitochondrial protein and DNA expression. When primary RPTC cultures were 

incubated with SRT1720, mitochondrial proteins NDUFB8 and ATP synthase ~, and 

mitochondrial DNA copy numbers were elevated compared to vehicle-treated cells (Fig. 

3), indicating mitochondrial biogenesis occurred within 24 hrs. Furthennore, we 

confrrmed that elevations in mitochondrial components corresponded with increased 

mitochondrial output by examining cellular respiration and ATP production. Finally, we 

verified that the observed effects of SRT 1 720 were dependent on SIRT 1 activity by using 

pharmacologic inhibitors ofSIRTI (Fig. 4), similar to what has been shown previously in 

other cell types using SIRTI shRNA (85). 

SIRTI activation results in deacetylation of target proteins, and several substrates have 

been identified, including PGC-l u. SRT 1720 elevated expression of deacetylated 

nuclear PGC-la at 24 hrs in RPTC (Fig. 2a and 2b). The elevated expression was neither 

the result of increased PGC-I transcription, as we did not observe any changes in PGC­

Ia mRNA expression (Fig. 2c), nor an increased resistance to proteasomal targeted 

degradation (Fig 2d). When SRT1720-treated cells were exposed to the inhibitor of 

protein translation cycloheximide, nuclear PGC-l a degraded at the same rate as vehicle 

cells, indicating the protein is still susceptible to proteasomal degradation (222, 236). 

Taken together, these data indicate that SRT1720 did not induce PGC-lu transcription or 
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increase stability of the protein. However, it is possible that the increased expression of 

nuclear PGC-la may have been the result of an earlier transcriptional event that was 

missed by examining the 24 hr time point or may be the result of increased nuclear 

sequestration. 

We did not observe any activation of AMPK with SRT1720 as examined by 

immunoblotting for Thr172-phosphorylated AMPK or in total AMPK (Fig. 5), which is 

consistent with previous reports that this compound exerts its effects in an AMPK­

independent mechanism (85). Interestingly, metformin induced a robust phosphorylation 

of AMPK within 1 hr of treatment which was maintained for at least 24 hrs. In contrast 

AICAR, which has previously been shown to induce phosphorylation of AMPK in other 

cell types (319), did not have any effect on pAMPK expression after 1 or 24 hr treatment 

in RPTC. We have not explored the reason for the differential effects of AICAR in RPTC 

and other cell types 

PGC-l C1 is an emerging therapeutic target for mitochondrial abnormalities due to its 

regulatory role in controlling metabolic processes and mitochondrial activities and 

biogenesis within the cel1. Enhancing PGC-l a expression or activity has proven effective 

in reversing the phenotypic consequences of mitochondrial impairment. Mitochondrial 

myopathies can be rescued through transgenic expression ofPGC-lu or the 

pharmacologic PPAR pan-agonist bezafibrate, both of which induce mitochondrial 

biogenesis, enhance respiratory capacity, conserve ATP levels, and prolong lifespan 

(299). Phannaco logical stimulation or adenoviral upregulation of PGC-I a rescued 
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mitochondrial function and bioenergetics and restored insulin signaling in insulin­

resistant skeletal muscle cells (209). Finally, the benefits of exercise and caloric 

restriction to rescue or protect against metabolic deficiencies has been linked to enhanced 

PGC-I a activity (27, 155). 

Recent evidence indicates that induction of PGC-I a and mitochondrial biogenesis is a 

critical adaptive response to maintain energy levels and metabolic demands required 

during recovery from certain acute injuries to cells and organs (220, 294, 310). In 

response to partial hepactectomy, C/EBPJ3 transcriptionally induces PGC-l a in order to 

maintain metabolic homeostasis and energy demands of the regenerating liver (294). In 

response to oxidant-induced mitochondrial dysfunction in RPTC, induction of PGC-l a 

and mitochondrial biogenesis is an adaptive repair mechanism initiated by the cell, which 

can be stimulated by PGC-l a over-expression (220-221). Here, we show that 

pharmacologically-induced mitochondrial biogenesis also rescues mitochondrial 

functions following oxidant-induced injury. Within 24 hrs SRT1720 reversed 

mitochondrial dysfunction and ATP depletion resulting from TBHP toxicity (Fig. 6). 

Although the majority of studies investigating PGC-l a-mediated mitochondrial 

regulation through AMPK or SIRTI are focusing on its role in chronic or age-related 

metabolic deficiencies (106, 179), this pathway offers a unique target for the treatment of 

acute organ injuries that are also plagued by mitochondrial impairment. As observed in 

this study as well as previous reports (220-221), mitochondrial biogenesis has a pivotal 

role in recovery of critical mitochondrial functions in oxidant-injured renal cells. Acute 
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organ injuries, such as ischemic acute kidney injury (AKI), are characterized by de­

energization of the mitochondria as well as loss of mitochondrial proteins and depletion 

of cellular energy stores (29, 86, 297), which could exacerbate cell death and organ 

failure or limit energy-dependent repair processes if mitochondrial function is not 

restored. These studies provide evidentiary basis to study the invD lvement of 

mitochondrial repair processes in the recovery from organ injuries such as AKl, and 

highlights the therapeutic potential of pharmacological inducers of mitochondrial 

biogenesis to rescue mitochondrial function in injuries and disorders plagued by 

mitochondrial impairment. 
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CHAPTER 3: 

Persistent Disruption of Mitochondrial Homeostasis after Acute Kidney 

Injury 

ABSTRACT 

While mitochondrial dysfunction is a pathological process that occurs after acute kidney 

injury (AKI), the state of mitochondrial homeostasis during the injury and recovery 

phases of AKI remains unclear. We examined markers of mitochondrial homeostasis in 

two non-lethal rodent AKI models. Myoglobinuric AKI was induced by glycerol 

injection into rats, and mice were subjected to ischemic AKI. Animals in both models 

had elevated serum creatinine 24 h after injury which recovered between 24 hand 144 h. 

Markers of proximal tubule function/injury, including NGAL and urine glucose, did not 

recover during this same period. The persistent pathological state was confirmed by 

sustained caspase 3 cleavage and evidence of tubule dilation and brush border damage. 

Respiratory proteins NDUFB8, ATP synthase 13 (ATPf3), cytochrome c oxidase subunit I 

(COX I), and COX IV were decreased in both injury models and did not recover by 144 

h. Immunohistochemical analysis confirmed that COX IV protein was progressively lost 

in proximal tubules of the kidney cortex after I/R. Expression of mitochondrial fission 

protein Drp 1 was elevated after injury in both models, whereas the fusion protein Mfn2 

was elevated after glycerol injury but decreased after IIR AKI. LC3 -1/11 expression 

revealed that autophagy increased in both injury models at the later time points. Markers 

of mitochondrial biogenesis, such as PGC-1a and PRC, were elevated in both models. 
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These findings reveal that there is persistent disruption of mitochondrial homeostasis and 

sustained tubular damage after AKI, even in the presence of mitochondrial recovery 

signals and improved glomerular filtration. 
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INTRODUCTION 

Acute kidney injury (AKI) is an increasingly prevalent, complex clinical disorder. 

Intrinsic AKI, produced from direct damage to the kidney, may arise in a number of 

ways, including drug/toxicant exposure or ischemia (46, 60,273). Although numerous 

mechanisms of AKI are observed clinically and in experimental models, it is generally 

recognized as a multi-factorial injury with overlapping elements as opposed to a single­

component injury. 

Renal ischemia/reperfusion (I/R) is a common cause of AKI. An ischemic insult occurs 

when there is reduced blood flow to the kidney and may occur after drug or toxicant 

exposure, vascular diseases, sepsis, or blood volume depletion and hypotension (29, 273). 

The pathophysiology of ischemic AKI is comprised of both microvascular and tubular 

components. The microvascular injury is characterized by increased vasoconstriction and 

decreased vasodilation, endothelial and smooth muscle cell damage, and leukocyte 

infiltration (29, 59, 252). 

Rhabdomyolysis is a condition in which heme proteins, released in the form of 

myoglobin from muscle cells or hemoglobin from erythrocytes, produce secondary organ 

toxicity, predominantly AKI (36, 195). Although the mechanism of myoglobinuric­

induced AKI is not entirely known, a number of factors including ischemic injury 

resulting from vasoconstriction and blood volume depletion as blood pools at the site of 

muscle injury, direct tubule toxicity from iron influx and hydroxyl radical formation, and 

tubular obstruction contribute to the disease process (36, 215-216). 
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Subcellular injury to the tubular epithelium is a primary component of AKI, and although 

different injuries may manifest by particular mechanisms, common pathogenic elements 

are observed in multiple injury models. Mitochondrial damage is a major contributor to 

the lethal and sublethal tubular cell injury observed in the disease progression of AKI 

(86, 112, 139-140,297). Increased production ofROS and NO, formed prominently 

within the mitochondria, as well as compromised antioxidant mechanisms following 

ischemic periods make the mitochondria particularly susceptible (215-216~ 249,317). 

Additionally, elevations in intracellular and mitochondrial Ca2
+ and Fe3

+ may contribute 

to the central role of the mitochondria in the disease process (65, 140). Subsequent 

disruption of mitochondrial respiratory complexes, membrane depolarization, ATP 

depletion, lipid peroxidation, membrane permeabilization and release of apoptotic 

proteins contribute to mitochondrial and cellular injury (28-29, 36, 112). 

The dynamic nature of mitochondria lends to dramatic alterations in structural integrity 

and population following acute toxic challenge. Mitochondrial fragmentation has been 

observed in models of AKI, and this process contributes to the resulting injury (39). 

However, the role of mitochondrial fission and fusion following initial injury and during 

the recovery and maintenance phase is still not completely understood. Mitochondrial 

biogenesis is initiated after acute organ injuries (227, 310), including cellular models of 

AKI (220). There is an immediate induction of the transcriptional co-activator 

peroxisome proliferator -activated receptor gamma co-activator I-alpha (PGC-1 a) in 

experimental models of stroke, liver damage, heart failure, and neuromuscular disorders 
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in response to the increased energy demand in such tissues (227,294,299, 310). PGC­

la is a primary regulator of mitochondrial biogenesis and is known to associate with 

transcription factors responsible for mitochondrial gene expression, including the nuclear 

respiratory factors (NRFs) and mitochondrial transcription factor A (Tfam) (308). There 

is significantly less known about other members of the PGC-l family, PGC-I r3 and PGC-

1 related co-activator (PRC), in acute injury models or in mitochondrial biogenesis~ and 

the role of mitochondrial biogenesis during the acute injury phase and throughout 

sustained injury and recovery has not been fully established. 

In this study we asked how mitochondria would initially respond to an acute injury to the 

kidney and during recovery of function. There is evidence that the health of this 

organelle is a critical determinant in both injury progression and recovery in AKI, and 

there is a need to obtain a more complete understanding of mitochondria in this type of 

injury. We assessed several mitochondrial parameters in two rodent AKI models, 

examined expression of respiratory proteins, fission and fusion processes, autophagy, and 

determined mitochondrial biogenesis at initiation of injury and throughout recovery of 

renal function. 
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EXPERIMENTAL PROCEDURES 

Glycerol model of myoglohinuric AKI 

Male Sprague-Dawley rats, 180-200g, were injected with an equally divided hypertonic 

glycerol solution (500/0 glyceroVH20, lOmL/kg, i.m.) into the muscle of each hind limb 

as previously described (313). Renal function was monitored as described below starting 

at 24 h post-injection until rats were euthanized at 24, 72, or 144 h after injections, at 

which time kidneys were harvested and snap-frozen for molecular analysis. All 

procedures involving animals were performed with approval from the Institutional 

Animal Care and Use Committee (IACUC) in accordance with the NIH Guide for the 

Care and Use of Laboratory Animals. 

Ischemia/reperfusion model of AKI 

8-week old male C57BL6 mice weighing 25-30g were subjected to bilateral renal pedicle 

ligation as described previously (323). Briefly, renal artery and vein were isolated and 

blood flow was occluded with a vascular clamp for 20m, and mice were euthanized at 24, 

72, or 144hr after procedure, at which time kidneys were harvested for molecular 

analysis. All procedures involving animals were performed with approval from the 

Institutional Animal Care and Use Committee (IACUC) in accordance with the NIH 

Guide for the Care and Use of Laboratory Animals. 

Assessing renal function 

Tail vein blood was collected from rats at various time points after glycerol injection, and 

serum was used to measure serum creatinine levels. For mice, blood was collected by 
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retro-orbital eye bleed. Creatinine levels were measured using a Quantichrom ™ 

Creatinine Assay Kit (BioAssay Systems, Hayward, CA) according to manufacturer's 

protocol. Urine was collected from rats housed in metabolic cages overnight (16 hrs) at 

various time points throughout the study. Urine samples were used to determine 

creatinine levels (Quantichrom Creatinine Assay Kit, BioAssay Sytems), glucose 

(Quantichrom Glucose Assay Kit, BioAssay Systems), and neutrophil gelatinase­

associated lipocalin (NGAL) levels (NGAL ELISA Kit, BioPorto) according to 

manufacturers' instructions. 

Immunoblot analysis 

Renal cortical tissue was lysed in RIP A buffer containing cocktail protease and 

phosphatase inhibitors. Total protein content was measured by the BCA assay. Fifty J.lg 

total protein was loaded into SDS-P AGE gels and immunoblots were performed as 

previously described (220). 

mRNA analysis 

Total RNA was isolated renal cortical tissue with TRIzol (Invitrogen) according to 

manufacturer's protocol and eDNA synthesized using RevertAid First Strand eDNA 

Synthesis Kit (Fermentas). peR reactions were performed using 3uL diluted eDNA 

product as described previously (90). Primer sets used for peR are listed in Table 1. 
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Immunohistochemistry 

Paraffin-embedded sections were cleared in xylenes, and then rehydrated in a graded 

ethano I wash. Antigen unmasking was performed by boiling sections in citrate buffer for 

10 min followed by cooling at room temperature for 30 min. Endogenous peroxidase 

activity was quenched by incubating sections in 3 % H 20 2 for 10 min. Sections were then 

blocked in 100/0 normal goat serum for 1 hr, followed by COX IV (Abeam, 1 :700 

dilution) antibody incubation for 1 hr. Sections were then incubated in biotinylated anti­

rabbit secondary antibody for 30 min followed by HRP-linked avidin-biotin complex 

reagent (Vectastain) for 30 min. Finally, antibody detection was visualized by DAB 

peroxidase substrate developer (Vectastain), counterstained with hematoxylin, mounted 

and coverslipped. Images were acquired with a Nikon microscope under control of 

QCapture imaging software. Low magnification images are at lOX and high 

magnification images were captured at 40X. 

A TP measurement 

Renal cortical tissue ATP was measured as previously described (290, 299). ATP was 

extracted from flash frozen kidney cortex with 0.4 M HCl04, and ATP levels were 

determined using an ATP bioluminescence assay kit (Roche) and normalized to protein 

concentration. 
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Statistical analysis 

Graphs represent a sample size of3 to 6 for each group. Data were analyzed by ANDV A 

based on ranks fo Uowed by the Mann-Whitney rank -sum test for individual group 

comparisons of non-parametric data. 
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RESULTS 

Rats exposed to intramuscular injection of glycerol exhibited kidney injury within 24 h as 

detennined by an increase in serum creatinine (SCr) levels (Fig 3-1 A). At time of 

injection (t=O h), control and glycerol rats had similar SCr levels. ser in glycerol-treated 

rats increased ~4- fo ld at 24 h, and then gradually decreased at 72 and 144 h without 

reaching control levels. 

Although SCr measurements demonstrated functional recovery between 24 and 144 h 

after glycerol treatment, urinary measurements reveal sustained renal injury. Urinary 

creatinine (UCr) concentrations were reduced 850/0 at 48 h after glycerol injection, and 

remained decreased at 144 h after injury (Fig 3-1B). Because glucose is freely filtered by 

the glomerulus and nearly 100% reabsorbed in the proximal tubule (305), urinary glucose 

is a marker of proximal tubular function. Urine glucose levels increased ,-....,6-fold at 48 h 

and remained at this level at 144 h after glycerol injection (Fig 3-1C). Neutrophil 

gelatinase-associated lipocalin (NGAL) is expressed in low abundance in proximal 

tubular cells, and is upregulated and excreted into the urine after injury, and is now used 

as a biomarker of AKI (182). NGAL increased 40-fold at 48 h and remained elevated at 

144 hr following glycerol injection (Fig 3-1D). Overall, these results reveal partial 

recovery of glomerular function (e.g. glomerular filtration) following AKI, but persistent 

proximal tubular dysfunction. 
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Figure 3-1. Renal dysfunction after glycerol-induced myoglobinuria. A: serum 
creatinine was maximal 24 h after injection and partially recovered between 24 and 
144 h after injury without returning to normal levels. B: urine creatinine was reduced 
48 h after injury and remained decreased at 144 h. Urine glucose (C) and neutrophil 
gelatinase-associated lipocalin (NGAL; D) were elevated 48 h after glycerol injection 
and remained elevated at 144 h. Different superscripts above data points are 
significantly different from one another (P < 0.05). 
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Apoptosis is known to be a primary mechanism of cell death in models of AKl. To 

evaluate apoptosis in our AKI models, we performed caspase-3 immunoblot analysis on 

renal cortical tissue collected at 24 h, 72 h., and 144 h after glycerol-induced AKI (Fig 3-

2A). Cleaved-caspase 3 expression increased and remained elevated throughout the 

experimental period following glycerol injection, suggesting continued activation of 

apoptotic signaling. Additionally, histological evidence revealed persistent tubule 

dysfunction. Tissue structure was examined following Periodic acid-Schiff (PAS) 

staining, and revealed proximal tubule dilation and brush border damage at 24 h after 

glycerol that was sustained throughout the study (Fig 3-2B). 
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injury (AKI). A: activation of caspase 3 was observed by the presence of a caspase 3 
cleavage fragment at 24, 72, and 144 h after glycerol injection. Bars with different 
superscripts are significantly different from one another (P < 0.05). B: periodic acid­
Schiff (PAS) staining in control rats (i) and 24 h (ii), 72 h (iii), or 144 h (iv) after 
glycerol injection at x40 magnification. Arrowheads indicate dilated tubules and 
brush-border damage after injury. 
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Transcript and protein levels of several mitochondrial respiratory genes were examined 

over time after AKI in renal corticallysates. After glycerol-induced AKI, mRNA for the 

mitochondrial-encoded genes NADH-ubiquinone oxidoreductase chain 6 (ND6) and 

cytochrome c oxidase subunit I (COX I) were decreased between 72-144 h after injection 

(Fig 3-3A). In contrast, mRNA expression for the nuclear-encoded mitochondrial protein 

NDUFB8 did not change at any time after injury, and expression of ATP synthase ~ 

increased 144 h after glycerol injection. Similar to mRNA levels, COX I protein 

decreased after injury, although this was seen much earlier than mRNA, and the decrease 

was maintained until 144 h post-injection (Fig 3-3B). In contrast to the results observed 

for NDUFB8 and ATP synthase f3 mRNA, protein levels for these were reduced early 

after injury and remained decreased throughout the study period. 
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Figure 3-3. Sustained depletion of mitochondrial proteins after glycerol­
mediated AKI. A: mRNA from control and glycerol rats was analyzed by qRT -PCR 
for expression of nuclear-encoded respiratory genes NDUFB8 and ATP synthase B 
and the mitochondrial-encoded genes ND6 and COX I at 24, 72, and 144 h after 
injury. B: expression of mitochondrial respiratory proteins from kidneys of control and 
glycerol rats was examined by immunoblot analysis. Bars with different superscripts 
are significantly different from one another (P < 0.05). 
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Because alterations in mitochondrial fission/fusion proteins can change in AKI models 

(39), we examined markers offissionlfusion over time in the glycerol model. Twenty­

four hours after glycerol injection renal dynamin-related protein (Drpl) mRNA was 

elevated approximately 4-fold over control rats and remained at this level through 144 h 

(Fig 3-4A). Correspondingly, Drp 1 protein levels were also elevated early and remained 

elevated through 144 h (Fig 3-4B). No changes were observed in mitofusin 2 (Mfn2) 

mRNA levels (Fig 3-4A); however, Mfn2 protein increased 24 h after injection and 

remained elevated until 144 h (Fig 3-4B). 
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Figure 3-4. Alterations in mitochondrial fission and fusion proteins after 
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Autophagy has been observed in multiple acute injury models, including AKI (152), and 

has been intimately linked with induction ofDrp 1 expression and mitochondrial fission 

(279). Thus, we examined microtubule-associated protein light chain 3 (LC3)-I/II 

expression over time following glycerol. An increase in the autophagic marker LC3-I1 

was not observed until 144 h (Fig 3-5A). These results provide evidence that autophagy 

occurs late in the course of AKI. 
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Initiation of mitochondrial biogenesis occurs in acute injury models (220, 227, 294, 310). 

We assessed expression of several known mediators of mitochondrial biogenesis by peR 

and immunoblot analysis. Peroxisome proliferator activated receptor gamma co­

activator-l a (PGC-l a), PGC-l related co-activator (PRe), and nuclear respiratory factor 

(NRF)-l mRNA levels were elevated within 24 h after glycerol injection, and remained 

elevated throughout 144 h (Fig 3-6A). PGC-I B decreased at 144 hr and no changes were 

observed in NRF-2u or mitochondrial transcription factor A (Tfam) mRNA. 

Correspondingly, there was an elevation in the biogenic proteins PGC-l u, NRF -1, and 

Tfam after injury (Fig 3-6B), and the elevation was sustained throughout the study 

period. 
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Figure 3-6. Mitochondrial biogenesis after glycerol-mediated AKI. A: kidneys 
from control and glycerol-treated rats were analyzed for expression of genes 
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Consistent with expression of biogenic proteins, but in contrast to reduced respiratory 

proteins, tissue A TP levels did not change at 24 h, increased at 72 hr, and was not 

different from controls at 144 h (Fig 3-7 A). 
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To determine whether the observed changes following myoglobinuric AKI were specific 

to the species and/or injury model used, we examined mitochondrial homeostasis markers 

in a mouse ischemia-reperfusion (1/R) injury model. Following a similar pattern to the 

rat myoglobinuria model, mice subjected to renal ischemia-reperfusion injury (I/R) 

exhibited kidney injury within 24 h after reperfusion, with a 7 -fold rise in SCr levels at 

24 h (Fig 3-8). Recovery of SCr levels occurred over time but did not reach control 

levels at 144 h. 
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and 144 h without returning to normal levels. Different superscripts above data points 
are significantly different from one another (P < 0.05). 
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Persistent apoptosis was also observed fo Howing I/R injury, where accumulation of 

cleaved-caspase 3 was noted at 72 and 144 h (Fig 3-9A). Histological evidence also 

revealed persistent tubule damage with proximal tubule dilation and brush border damage 

at 24 h after I/R and that was sustained throughout the study (Fig 3-9B). 
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Figure 3-9. Persistent tubule pathology after I1R AKI. A: activation of caspase 3 
was observed by the presence of a caspase 3 cleavage fragment at 72 and 144 h after 
reperfusion. B: hematoxylin and eosin (H&E) staining in sham mice (i) and 24 h (ii), 
72 h (iii), or 144 h (iv) after I/R at x40 magnification. 
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Loss of proximal tubule basolateral-apical polarity occurs after ischemic injury as a result 

of changes in cytoskeletal components. Depolarized and dedifferentiated proximal tubule 

cells undergo numerous morphological and biochemical changes, which can be evident 

by alterations in the expression of various epithelial and mesenchymal markers. One 

such alteration is the redistribution and loss ofN a + ,K+ -ATPase expression early after 

injury in conjunction with loss of polarity. Normally expressed on the basolateral 

membrane, Na+,K+-ATPase (along with other membrane components such as integrins) 

relocates to the apical membrane or cytosol where it is subject to degradation. 

Examining expression in our model by IHC revealed that Na +,K+ -ATPase was 

ubiquitously expressed specifically on the basolateral membrane of every proximal tubule 

in sham animals (Fig 3-10i). Twenty-four hours after ischemic injury, Na+,K+-ATPase 

redistributed from the basolateral membrane into the cytosol, and there was a generalized 

loss of expression throughout the cortex (Fig 3-1 Oii). At 72h and 144h after I/R, Na +,K+­

ATPase expression was not restored (Fig 3 -1 Oiii, Fig 3-1 Oiv), suggesting that the 

persistent tubule pathology is associated with a lack of repolarization and 

redifferentiation of the proximal tubule epithelium within the 144h study period. 
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Figure 3-10. Sustained loss of Na+,K+-ATPase expression and localization in 
renal cortex proximal tubules after IIR. Expression ofNa +,K+ -ATPase was 
examined after I/R by immunohistochemistry in sham (i), and 24h (ii), 72h (iii), and 
144h (iv) after I/R. Brown stain on basolateral membrane in (i) indicates Na+,K+­
ATPase immunoreactivity visualized by DAB development and hematoxylin 
co unterstain. 
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Twenty-four hours after I/R injury renal ND6, COX I, and ATP synthase p mRNA levels 

decreased and remained decreased at 72 hand 144 h after injury (Fig 3-11A). 

lmmunoblot analysis on renal cortical lysates revealed that NDUFB8, ATP synthase p, 

and COX I protein levels decreased after I/R injury and did not recover over 144 h, 

similar to what was observed in the myoglobinuria model (Fig 3-11B). 

Immunohistochemical analysis confrrmed decreases in mitochondrial protein expression 

in proximal tubules of the kidney cortex. COX IV, which followed the same expression 

pattern as other respiratory proteins (Fig 3-11 B, 3-11 C), was localized throughout the 

kidney cortex, particularly the proximal tubule in sham animals (Fig 3-11 Di). Twenty­

four hours after I/R, COX IV immunoreactivity was less intense and more diffuse, 

although most proximal tubules were still positive for COX IV protein expression (Fig 3-

11Dii). Immunoreactivity of COX IV within the kidney cortex~ particularly with 

proximal tubules, became progressively less intense 72 hand 144 h after injury (Fig 3-

11 Diii, iv, inset). 
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Figure 3-11. Sustained depletion of mitochondrial proteins after I1R AKI. A: 
mRNA from sham and I/R mice was analyzed by qRT -PCR for expression of nuclear­
encoded respiratory genes NDUFB8 and ATP synthase ~ and the mitochondrial­
encoded genes ND6 and COX I at 24, 72, and 144 h after injury. B: expression of 
mitochondrial respiratory proteins from kidneys of sham and I/R mice was examined 
by immunoblot analysis. Bars with different superscripts are significantly different 
from one another (P < 0.05). C: immunoblot analysis confirmed reduced COX IV 
protein expression in kidney cortex from mice 24, 72, and 144 h after I/R. D: COX IV 
immunohistochemistry (brown stain) in sham mice (i) or 24 h (ii), 72 h (iii), or 144 h 
(iv) after reperfusion in I/R mice, with hematoxylin counterstain. Low-magnification 
images were captured at xl 0 and higher-magnification insets were captured at x40. 
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No changes in Drpl or Mfn2 mRNA were detected in kidneys of mice subjected to I/R 

injury (Fig 3-12A). However, immunoblot analysis revealed an increase in Drpl protein 

at 72 and 144 h post-reperfusion (Fig 3-12B). Mfn2 protein decreased within 24 hand 

remained decreased at 72 h after I/R injury. 
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Autophagy, was measured by LC3-I/I1 expression over time after I/R (Fig 3-SB). Similar 

to the findings observed in the myoglobinuric model, LC3-I1 expression increased at 144 

h after reperfusion, again suggesting autophagy was active late in the injury/recovery 

process (Fig 3-5B). 

Following I/R injury, only PRe mRNA was elevated and sustained throughout the study 

period (Fig 3-13A). PGC-lu, PGC-l~, Tfam, and NRF-l rnRNA tended to decrease 

slightly immediately after injury. In contrast to mRNA expression, protein levels of 

PGC-la and Tfam increased after injury, but NRF-l protein levels did not change (Fig 3-

13B). Similar to what was observed in the myoglobinuria model, tissue ATP levels were 

elevated 24 and 72 h after I/R injury and returned to control levels at 144 h (Fig 3-7B). 

ATP was increased 24 hand 72 h after reperfusion, but back to pre-injury level at 144 h. 
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Figure 3-13. Mitochondrial biogenesis after I/R AKI. A: kidneys from sham and 
I/R mice were analyzed for mRNA expression of genes associated with mitochondrial 
biogenesis by qRT -PCR. B: PGC-1u, NRF-1, and Tfam protein expressions were 
examined by immunoblot analysis in kidneys from sham and I/R mice. Bars with 
different superscripts are significantly different from one another (P < 0.05). 
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Because we did not see restoration of normal protein expression within the 6 day time 

frame of the current study, we decided to extend the recovery time twice as long to 12 

days after ischemic injury. Extending the recovery time to 12 days allowed for SCr 

levels to return all the way back to nonnal (Fig 3-14A). Of the mitochondrial proteins 

examined, only COX I was slightly reduced still, whereas both ATP synthase (3, and 

NDUFB8 were back to nonnallevels (Fig 3-14B). Drpl and PGC-la were both still 

slightly elevated compared to sham animals, and Na+,K+ -ATPase expression was still 

slightly reduced (Fig 3-14B). Taken together, the results from these studies reveal that 

although expression of proteins altered after ischemic injury are not completely back to 

normal levels, they are mostly restored at 12 days after injury. 
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DISCUSSION 

In this study, we examined mitochondrial homeostasis in two different rodent AKl 

models. Previous studies have illustrated a central role of the mitochondria in acute 

injuries and provide evidence that the health of this organelle is a primary determinant in 

both the pathogenesis and recovery of organ function. However, many questions need to 

be answered in regards to duration of mitochondrial dysfunction, mechanisms of 

mitochondrial recovery, and influence of mitochondrial biogenesis on restoration of renal 

function. In the current study, we begin to address these questions by evaluating 

mitochondrial respiratory gene and protein expression, fusion and fission processes, 

autophagy, and biogenesis immediately after injury and during a 1 week recovery period. 

In the glycerol model, the levels of mitochondrial proteins (e.g. NDUFB8, ATP synthase 

~, COXI) decreased and remained decreased throughout the partial recovery of 

glomerular function. While mRNA for the mitochondrial-encoded genes ND6 and COXI 

were decreased after injury, transcript levels for the nuclear-encoded mitochondrial 

proteins NDUFB8 and ATP synthase f3 either did not change (NDUFBS) or were elevated 

after injury (ATP synthase ~). This finding would suggest differential regulation of 

transcription occurring in the nucleus versus the mitochondria following injury-induced 

mitochondrial protein degradation. The up-regulation of the mitochondrial biogenesis 

signaling molecules PGC-I a, PRe, and NRF-l provides evidence of active transcription 

of nuclear-encoded mitochondrial proteins, whereas persistent pathological signals or 

damage may prevent active transcription of the mitochondrial genome. Similar to the 

glycero I model, mitochondrial proteins were decreased and remained decreased 
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throughout the partial recovery of glomerular function after IIR. IHC analysis following 

I/R confirmed the loss of COX IV in cortical proximal tubules after injury. However, 

following IIR-induced AKI, transcript levels of both nuclear- and mitochondrial-encoded 

proteins were depressed early after injury and throughout the recovery phase. These 

findings reveal differences in mitochondrial recovery signals in response to different 

inducers of AKI and that active transcription of mitochondrial encoded genes is inhibited 

even in the presence of elevated PGC-I a and other biogenic factors. 

In cellular AKI models we have observed mitochondrial protein loss immediately after 

injury, and recovery of protein expression that was dependent on PGC-lu and 

mitochondrial biogenesis (221). As expected, mitochondrial biogenesis signaling was 

prominent following AKI, as reflected by early and continued elevations in PGC-la, 

PRe and NRF-I transcript and protein levels after injury. These findings are consistent 

with previous reports of induction of PGC-l a and mitochondrial biogenesis in acute 

organ injuries (220, 294, 299, 310). Significantly less has been reported about the roles 

of other PGC-] family members, PGC-I f3 and PRe, in mitochondrial biogenesis and 

following acute injury_ PGC-l ~ mRNA expression did not change after glycerol injury; 

however, PRe mRNA was robustly elevated immediately after injury and remained 

elevated throughout the I-week recovery period. There were also elevations in NRF-l 

and Tfam mRNA and/or protein, which are critical regulators of biogenesis (308). 

Following I/R injury, PRe mRNA was elevated early after injury and remained elevated 

throughout the study period~ however, no increase in transcript levels for any other gene 
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was observed. There were, however, alterations in protein expression ofPGC-la and 

Tfam. PGC-lu was elevated 72 h after injury and Tfam was transiently elevated between 

24 hand 72 h reperfusion. These findings suggest that mitochondrial biogenesis is a 

component of the recovery phase after AKI, and that PGC-la actively participates in 

response to mitochondrial injury. These studies also reveal a prominent response from 

PRC, which may be a critical regulator of mitochondrial biogenesis and maintenance 

following AKI and the role of each of the PGC-l family members may depend on injury­

or tissue-specific responses. Future studies are needed to distinguish the contribution of 

each family member following AKI. 

Initially, the observation that electron transport chain proteins were severely depleted 

early after injury and did not recover while Ser levels returned to normal was 

inconsistent with our expectations that mitochondrial proteins would be restored as 

glomerular function recovered. In part, this was the result of the inherent limitations of 

using only one marker of renal function. However, upon further inspection the loss of 

COX IV in the proximal tubules and the loss of other mitochondrial proteins in the renal 

cortex were consistent with the sustained decrease in proximal tubular function, as 

determined histologically and from urinary glucose and NGAL measurements.. A direct 

causal relationship between loss of mitochondrial proteins and proximal tubular 

dysfunction cannot be established in the current study. It is possible that the correlation 

is merely a secondary effect from numerous pathological signals contributing to the 

injury. Future studies will directly address these questions to elucidate the role of 

mitochondrial biogenesis and function in recovery from AKI. 
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Although mitochondrial electron transport chain proteins remained decreased throughout 

the study period, ATP levels paralleled PGC-l a, and did not decrease but increased 

above control levels. Previous studies have demonstrated that ATP is reduced 

dramatically during ischemia, but is mostly recovered 24 h after reperfusion (135, 259, 

278). Similarly, ATP is decreased within 1 h following glycerol-induced AKI (313). In 

both models, A TP was elevated at 72 h after injury and trended back to control levels at 

144 h. The mechanism or source of higher than normal ATP after injury is still unclear, 

particularly under conditions of extended mitochondrial disruption and reduced oxidative 

phosphorylation proteins. Elevated nucleotide pools have been reported in plasma and 

red blood cells in human and rodent renal failure studies (75, 192) and it has been 

suggested that this may be the result of under excretion in the urine or from salvage 

pathways due excessive accumulation of inorganic phosphate (Pi). Additionally, 

increased gluconeogenesis has been reported in proximal tubules isolated from rat 

kidneys 1-3 days after I/R that may compensate for an increased energy demand (154). It 

is not known ifany of these mechanisms contribute to the elevated renal ATP levels 

observed in the current study. The observation warrants additional exploration, though, 

and illustrates the complex nature of the organelle and the limitations of using only one 

parameter to gauge mitochondrial function. 

Following AKl there were marked changes in mitochondrial fission and fusion protein 

expression. In the myoglobinuria model, both Drpl and Mfn2 protein expression were 
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elevated after injury and remained elevated throughout the recovery period. However, 

increased Drp! protein levels was correlated with increased Drpl mRNA while Mfn2 

protein levels were not associated with increased Mfn2 mRNA, suggesting an altered 

post-transcriptional regulation. In contrast, in the I/R model elevated Drp 1 protein 

expression was delayed until the recovery phase without any change in Drpl mRNA 

expression throughout the study, suggesting there may be changes in protein degradation 

after I/R. Mfn2 protein levels decreased after injury and during recovery without a 

change in Mfn2 mRNA levels. These results reveal differences between the two AKI 

models with respect to mitochondrial fusion protein expression; however, fission protein 

Drp 1 was elevated after injury in both models, suggesting that mitochondrial fission may 

be a more general process in AKl whereas fusion protein expression may be more 

specific ally-regulated. 

Induction of Drp 1 protein and mitochondrial fragmentation has been reported previously 

in I/R AKI models and this process is a major contributor to injury progression (39). 

Brooks, et aI., demonstrated that by inhibiting Orpl either pharmacologically or by 

molecular techniques, attenuated mitochondrial fragmentation, cytochrome c release, 

apoptosis, and kidney injury in both cellular and animal models of AKI. Both of the AKl 

models used in the current study are consistent with the results obtained by Brooks, et al., 

and others, which have demonstrated induction of Drp 1 is correlated with caspase 3 

cleavage and apoptosis (89, 164, 275). However, the current study also demonstrates 

alterations in the mitochondrial fusion protein Mfn2 following AKl, and the contribution 
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of this protein to mitochondrial fragmentation and injury progression has not been fully 

evaluated and warrants additional attention in future studies. 

Autophagy has been reported in a number of acute injury models~ including AKI (152). 

Induction of autophagy is thought to be crucial in the removal of damaged proteins and 

organelles (i.e. mitochondria) after injury, and blocking this response may prevent 

efficient cellular and organ recovery (152). Additionally, autophagy has been linked with 

changes in mitochondrial dynamics, which includes selective mitochondrial fission, 

fusion, and sequestration in the course of removal of damaged mitochondria (279). It is 

interesting that this response was not upregulated until the recovery phase in both models, 

somewhat paralleling the results observed for mitochondrial biogenesis. 

There is an overwhelming need to develop new treatment strategies for AKI as there are 

currently no methods to improve renal function, but rather only procedures to prevent 

further damage and to maintain functional output, such as dialysis. Mitochondria 

undergo significant alterations following AKI and influence the pathophysiology as well 

as recovery of organ function during and after injury. We demonstrated that persistent 

mitochondrial dysfunction occurs within damaged proximal tubules after AKI and may 

contribute to the sustained injury observed within these structures. This phenomenon 

occurs even in the process of active repair signals and during improved glomerular 

function. Additionally, persistent mitochondrial dysfunction may also lead to chronic 

deficiencies in cell and organ function similar to disorders of the heart, brain, and kidney 

which are known to be associated with mitochondrial disease. As such, strategic 

127 



development of methods to improve mitochondrial functions, i.e. mitochondrial 

biogenesis, following injury may offer unique therapeutic targets for the treatment of 

AKI. 
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Chapter 4: 

SRT1720 improves renal cortical mitochondrial and tubular function 

followingischemia-reperfusion inj ury. 

ABSTRACT 

Ischemia-reperfusion (I/R) injury in the kidney primarily targets lethal and sub-lethal 

injury in the proxin1al tubule, most notably observed in the necrotic region in the outer 

stripe of the outer medulla. Sub-lethal injury consists of numerous injury and repair 

mechanisms that occur in response to oxygen deprivation during the ischemic period and 

robust oxidant damage and inflamnlation as a component of the reperfusion injury. 

Mitochondrial dysfunction is a primary pathological consequence of I/R injury, and 

promoting mitochondrial biogenesis as a repair mechanism after injury may offer unique 

benefits to restore mitochondrial and organ function. Rats subjected to bilateral renal 

pedicle ligation for 22m were treated once daily with the SIRTI activator SRT1720 (5 

rug/kg, i.p.) or vehicle starting at 24h after reperfusion until72h or 144h. Mitochondrial 

proteins ATP synthase 13, cytochrome c oxidase subunit I (COX I), and NDUFB8 were 

diminished at 24h, 72h and 144h in rats subjected to I/R plus vehicle treatment. Rats 

treated with SRT1720 after I/R (IR+SRT1720) had improved mitochondrial protein 

expression by 144h; which was associated with restored state 2 and uncoupled 

mitochondrial respiration. PGC-lu was elevated at 72h and 144h in both IR and 

IR+SRT1720 rats; however, SRT1720 treatn1ent was associated with reduced acetylated 

129 



PGC-l u, the more active form. Kidney injury molecule-l (Kim-I), a sensitive and 

specific marker of tubular injury, was persistently elevated in the urine of both IR and 

IR+SRTI720 rats. Tissue analysis revealed that Kim-l was also persistently expressed in 

the renal cortex ofIR rats but was attenuated in IR+SRTI720 rats. Additionally, 

sustained loss of N a,K -ATPase expression and elevated vimentin in IR rats was 

normalized in IR+SRTI720 rats, suggesting treatment was associated with restoration of 

a differentiated, polarized proximal tubule epithelium. Taken together, these results 

suggest that treatment with SR T 1720 expedited recovery of mitochondrial proteins 

expression and function by enhancing mitochondrial biogenesis. Rescue of 

mitochondrial function was associated with a faster recovery of proximal tubule integrity_ 

Targeting mitochondrial biogenesis may offer unique therapeutic benefits as a strategy to 

improve tubule repair fo Howing ischemic injury. 
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INTRODUCTION 

Ischemia-reperfusion (I/R) is a primary cause of acute kidney injury (AKl), and the 

proximal tubule epithelium is particularly sensitive to the damage associated with 

ischemic injury. In addition to lethal injury to proximal tubule cells, sub-lethal injury 

account for much of the functional impairment observed in the post-ischemic kidney. For 

example alterations in cytoskeletal components and loss of polarity, characterized by the 

redistribution of membrane-specific lipids and proteins, such as the basolaterally­

expressed N a + ,K+ -ATPase, contribute to defective ion and water reabsoption after injury 

(184-185). Loss of both viable and non-viable cells into the tubular lumen also account 

for the reduced functional capacity of the proximal tubule after injury, and surviving cells 

must replace the denuded basement membrane by dedifferentiating, migrating, and 

proliferating to reform an intact redifferentiated tubular epithelium (76). During the 

transformation to an undifferentiated phenotype, the cells lose epithelial-like markers, 

such as the intennediate filament cytokeratin, and express mesenchymal and 

developmental markers such as vimentin and PCNA (302). AKI is generally considered 

a reversible injury; however, the extent of recovery may not always be complete, as a 

number of factors can influence the regenerative process, such as persistent inflammation 

and fibrosis (30, 76). 

Mitochondria are a primary subcellular target of I/R injury. Weinberg, et aI., 

demonstrated that 60m hypoxia followed by 60m reperfusion resulted in high amplitude 

swelling of mitochondria, indicative of depolarization and initiation of mitochondrial 

permeability transition (297). We have recently shown that I/R in mice results in early 
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and persistent loss of mitochondrial electron transport chain proteins in the outer cortex 

of the kidney, a zone not generally susceptible to the overt necrotic cell death usually 

seen in the outer medulla (91). A TP synthase p, NDUFB8, and mitochondrial-encoded 

cytochrome c oxidase subunit I (COX I) were depleted within 24h after I/R and did not 

recover by 144h after reperfusion. In fact, our unpublished observations have revealed 

that it took approximately two weeks for mitochondrial protein expression to be restored. 

Additionally, we showed that other markers of mitochondrial homeostasis were 

persistently disrupted, including increased expression of the mitochondrial fission protein 

Drp 1, reduced expression of the fusion protein Mfn2, and up-regulation of proteins 

associated with mitochondrial biogenesis (91). These results were consistent with the 

findings of Brooks, et ai., when they demonstrated that induction ofDrpl and 

mitochondrial fragmentation was a contributor of kidney injury, and inhibiting 

mitochondrial fragmentation preserved mitochondrial integrity, inhibited release of 

cytochrome c and apoptosis, and protected against renal dysfunction in a mouse I/R 

model (39). 

Previous work from our laboratory demonstrated that signaling of mitochondrial 

biogenesis through PGC-l (I was essential for recovery of mitochondrial function in renal 

cells following oxidant-induced injury (220-221). Expression ofPGC-lu was induced 

after oxidant exposure in renal proximal tubule cells (RPTC), and it corresponded with 

recovery of mitochondrial oxygen consumption and cellular A TP levels, which took 

approximately 5-6 days to restore to pre-injury levels (220). Additionally, over-
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expression of PGC-l after oxidant injury expedited recovery of mitochondrial and 

cellular function to approximately 2 days (221). 

We have previously characterized several pharmacological activators of mitochondrial 

biogenesis in RPTC (90~ 223-224). SRT1720 was initially reported as a potent SIRT1 

activator, and treatment for 8 weeks in either a diet-induce obesity model or a genetic 

diabetic mouse model improved glucose tolerance and insulin sensitivity compared to 

vehicle-treated mice (178). In our hands, SRT 1720 stimulated mitochondrial biogenesis 

in RPTC within 24h of exposure, with elevated mitochondrial protein expression, basal 

and uncoupled oxygen consumption, and total cellular ATP in SRTl720-treated cells 

(90). The effects ofSRT1720 were dependent on SIRTl activity, and occurred in the 

absence of AMPK activation. Finally, SRT1720 restored mitochondrial and cellular 

function in an acute oxidant injury model which is known to initiate mitochondrial 

toxicity. Feige, et aI., demonstrated that 15 weeks ofSRT1720 treatment mimicked 

energy deprivation pathways typically stimulated during exercise, preventing diet­

induced obesity, improving glucose and cholesterol homeostasis, and stimulating energy 

expenditure in fat tissue (85). SRT1720 treatment activated genes associated with 

mitochondrial metabolism and function, and fatty acid oxidation in a number of tissues. 

Additionally, SRT1720 was recently studied in a high fat diet model in which mice given 

SRT1720 in combination with a high fat diet showed prolonged mean lifespan and 

improved health (180). SRT 1 720-treated mice had reduced liver steatosis and pancreatic 

toxicity, improved blood glucose levels and insulin sensitivity, and improved locomoter 
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function. Improved metabolic health was associated with reduced POC-In acetylation, 

and restored mitochondrial respiratory capacity. 

The purpose of the current study was to test the hypothesis that mitochondrial biogenesis 

is an essential component of the repair process following AKI, and to examine whether 

SRTI720 treatment could rescue mitochondrial function in an acute injury model. To do 

so, we examined recovery of mitochondrial and renal function in rats treated with 

SRT1720 24h after I/R-induced AKl. Our results demonstrate that SRT1720 treatment 

expedited recovery of mitochondrial proteins and function after I/R. Markers of tubular 

injury/function were also restored in treated animals, including reduction in Kim-l 

expression, and restoration of a polarized, differentiated proximal tubule. 

EXPERIMENTAL PROCEDURES 

Ischemia/reperfusion model of AKI 

Eight-week old male Sprague-Dawley rats weighing 180-200g were subjected to bilateral 

renal pedicle ligation as previously described (323). Briefly, renal artery and vein were 

isolated and blood flow was occluded with a microvascular clamp for 22m. After 

reperfusion, the abdominal opening was sutured and rats were allowed to recover from 

anesthesia. Dosing was initiated at 24h after reperfusion, and rats were given either a 

daily injection of SR T 1 720 (5 mg/kg, i. p.) or vehicle, which was continued until rats 

were euthanized at 72h or 144h. All procedures involving animals were performed with 

approval from the Institutional Animal Care and Use Connnittee (IACUC) in accordance 

with the NIH Guide for the Care and Use of Laboratory Animals. 
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Assessing renal function 

rrail vein blood was collected and serum was used to measure creatinine levels using a 

Quantichrom™ Creatinine Assay Kit (BioAssay Systems, Hayward, CA) according to 

manufacturer's protocoL Urine was collected from rats housed in metabolic cages 

overnight (16h) at various time points throughout the study. IJrine samples were used to 

determine kidney injury molecule-l (Kim-I, Argutus Medica] Rat Kim-l ELISA, 

Dublin, Ireland). 

Immunoblot analysis 

Surface regions of renal cortex,? which are not generally within the zone of extensive 

necrosis, was dissected from flash frozen kidneys, and tissue was lysed in RIP A butTer 

containing cocktail protease and phosphatase inhibitors. Total protein content was 

measured by the DCA assay. Fifty J,1g total protein was loaded into SDS ... PAGE gels and 

immunoblots were perfonned as previously described (220). 

Immunohistochemistry 

Paraffin-embedded sections were cleared in xy1enes, and rehydrated in a graded ethanol 

wash. Antigen unmasking was performed by boiling sections in citrate buffer for 10 min 

followed by cooling at room temperature for 30m. Endogenous peroxidase activity was 

quenched by incubating sections in 3%H20 2 for 10 min. Sections were then blocked in 

10% normal goat serum for lh, followed by primary antibody (Kim-I, R&D Systems; 

Na + ,K+ -ATPase, Upstate Antibodies) overnight at 4°C. Sections were then incubated in 
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biotinylated anti-rabbit secondary antibody for 30 min followed by HRP-linked avidin­

biotin complex reagent (Vectastain) for 30 min. Finally, antibody detection was 

visualized by DAB peroxidase substrate developer (Vectastain), counterstained with 

hematoxylin, mounted and cover slips applied. Images were acquired with a Nikon 

microscope under control of QCapture imaging software. Low magnification images are 

at lOX and high magnification images were captured at 40X. 

Mitochondrial isolation and oxygen consumption 

At the time of euthanasia, kidneys were excised from rats and submerged in an ice-cold 

mitochondrial isolation buffer on ice. Mitochondria were isolated by differential 

centrifugation as previously described (64). The mitochondrial pellet was resuspended in 

an incubation buffer and oxygen consumption (Q02) was measured using a Clark oxygen 

electrode. Briefly:> 1.5 ml of mitochondrial suspension was added to the chamber and 

state 2 respiration was measured. Uncoupled oxygen consumption was determined by 

injecting FCCP for a final concentration of 111M. An aliquot of the mitochondrial 

suspension was saved for protein measurement, and rates were calculated as nrnol O2 

consumed per minute, and were normalized to the amount aftotal protein in each sample. 

Statistical Analysis 

Graphs represent a sample size of 3 to 6 for each group. Data were analyzed by ANOV A 

based on ranks followed by the Mann-Whitney rank-sum test for individual group 

comparisons of non-parametric data. 
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RESULTS 

Approximately 8-week old Sprague-Dawley rats were divided into four groups that 

would undergo either a sham or renal ischemia-reperfusion (l/R) procedure, followed by 

treatment with either SRT 1 720 (5 rug/kg, i. p.) or vehicle starting at 24h after the 

procedure. The four groups were designated as: sham + vehicle (V)., sham + SRT1720 

(S), I/R + vehicle (IRV), and I/R + SRTl720 (IRS), and the rats were euthanized at 72h 

or 144h after the sham or I/R procedure. Mitochondrial DNA (mtDNA) copy number is 

an indirect measure of the number of mitochondria in a certain tissue. Renal cortic al 

mtDNA increased approximately 600/0 in S rats compared to the V group at 144 h (Fig 4-

lA). mtDNA were not different in either of the I/R groups compared to V at this time 

point. PGC-la is increased and mitochondrial biogenesis is induced during recovery 

from AKI (91). PGC-lu protein was up-regulated after injury at both 72h and 144h in 

both SRT1720- and vehicle-treated rats (Fig 4-1B). Because SIRTI is a protein 

deacetylase and PGC-l a is a SIR T 1 target~ and because we have previously shown that 

SRT1720 treatment results in deacetylated PGC-l in primary RPTC (90), we examined 

PGC-l a acetylation in our model. Renal cortical lysates were subjected to 

immunoprecipitation with an acetylated-Iysine antibody, and then subjected to 

immunoblot analysis with an antibody to PGC-la. There was increased acetylated PGC­

Ia in IRV rats at both 72h and 144h after injury that was reduced to control levels in IRS 

rats, suggesting that the majority ofPGC-l which is up-regulated in IRS rats after injury 

is in the deacetylated fonn (Fig 4-1 C). Because differences in nuclear localization of 

PGC-l a can affects its activity and because we have previously shown increased nuclear 

PGC-lu with SRT1720 treatment (90), we examined whether there were any differences 
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in nuclear localization of PGC-l with treatment or after injury. Similar to the cortical 

tissue lysates, PGC-I a expression was increased in nuclear lysates after IIR, but there 

were no differences between the IRV and IRS groups (Fig 4-1D). During the course of 

activation of the mitochondrial biogenesis program, mitochondrial transcription factors 

are up-regulated and translocated to the mitochondria to transcribe and replicate the 

mitochondrial genome. Protein expression of mitochondrial transcription factor A 

(Tfam) was not changed after injury or treatment in whole cortex tissue lysates (data not 

shown)~ however, in isolated mitochondria, Tfam expression was increased in both 

groups that received SRT1720:l suggesting that there is increased mitochondrial Tfam 

localization with SR T 1720 treatment (Fig 4-1 E). Some evidence suggests that SIRT 1 

activators may act on AMPK either instead of or in conjunction with SIRTI (15,73). In 

our model, we observed increased pAMPK (Thr172) in both IRV and IRS rats~ however, 

we did not see any effect of SRT1720 treatment on pAMPK expression (Fig 4-1F), 

Overall:> we suggest that SRT1720 is inducing a mitochondrial biogenic response to 

increase mtDNA, and after injury is activating PGC-la through deacetylation and 

increasing the mitochondrial levels of Tfam., a target of PGC -1 u. 
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Figure 4-1. SRT1720 induces renal mitochondrial biogenesis and increases 
deacetylated PGC-lu after IIR. (A) Mitochondrial DNA (mtDNA) copy number 
was quantified in total genomic DNA isolated from the renal cortex at 144h. (B) 
PGC-lu expression was determined by immunoblot analysis in protein isolated from 
the renal cortex at 72h and 144h. (C) Acetylated PGC-lu was examined in tissue 
lysates from the renal cortex by immunoprecipitating with an acetylated-lysine 
antibody, followed by immunoblot analysis with an antibody against PGC-l u. 
Densitometric quantification of the 144h bands are shown in the graph to the right of 
the representative blots. (D) Nuclear PGC-lu expression was examined by 
immunoblot analysis in lysates of isolated nuclei from the renal cortex at 144h. (E) 
Mitochondrial transcription factor A (Tfam) expression was analyzed in lysates 
generated from iso lated mitochondria from the renal cortex at 144h. (F) pAMPK 
expression was examined by immunoblot analysis in renal cortical tissue lysates at 
144h. 
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From mouse renal I/R studies, we have shown that mitochondrial proteins are depleted 

early after injury and are persistently down-regulated until at least 144h after injury (91). 

In fact, in our unpublished observations, it took approximately two weeks for 

mitochondrial protein expression to recover after IJR. Because we were able to stimulate 

a mitochondrial biogenic response with SRT1720 treatment, we next examined recovery 

of mitochondrial protein expression the rats after injury (Fig 4-2). Twenty-four hours 

after ischemia, prior to initial dosing, the nuclear-encoded proteins A TP synthase ~ and 

NDUFB8, and the mitochondrial-encoded protein COX I were all decreased (Fig 4-2A)~ 

As expected, mitochondrial proteins were still diminished at 72h and 144h in IRV rats 

(Fig 4-2 A),. Rats in the IRS group had higher levels of mitochondrial protein expression 

by the 144h time point, but not at 72h (Fig 4-2A). We next examined mitochondrial 

proteins in mitochondria isolated from the renal cortex to determine whether the 

reduction in mitochondrial protein occurred on a per mitochondrion level or if there was a 

widespread loss of the organelle. There was a moderate but significant reduction in COX 

I protein expression in the isolated mitochondria from the IRV rats which was restored in 

the IRS rats (Fig 2B); however, the reduction was not as substantial as was observed in 

the whole tissue lysates (Fig 2A), and there was no change in the nuclear~encoded 

proteins A TP synthase J3 or NDUFB8. 
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Figure 4-2. Mitochondrial protein expression is restored with SRT1720 
treatment after I/R. (A) Expression of ATP synthase ~, COX I, and NDUFB8 were 
examined by immunoblot analysis in renal corticallysates at 24h, 72h, and 144h. 
Densitometric quantification of bands at 144h is shown in the graph to the right of the 
representative blots. (B) Mitochondrial protein expression in isolated mitochondria 
from the renal cortex at 144h with densitometric quantification depicted in the graph 
to the right of representative blots. 
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Proteins associated with mitochondrial fusion/fission are altered after IfR. Drp 1 mediates 

mitochondrial fission and was persistently up-regulated after I/R, and Mfn2, which is 

involved in fusion of mitochondria, showed sustained down-regulation after injury. 

Examination of cortical tissue lysates revealed that both of these proteins were similarly 

altered as previously reported (Fig 4-3). Mfn2 expression was decreased at 24h, prior to 

initial dosing, and was still reduced in both IRV and IRS rats at 72h and 144h after injury 

(Fig 4-3A). Drp 1 expression was not changed at 24h, but was elevated at both 72h and 

144h in IRV and IRS rats (Fig 4-3A). Drp 1 is expressed in the cytosol and is recruited to 

mitochondria undergoing fragmentation by the outer membrane protein Fis 1. Therefore, 

examination of renal cortical expression may not reflect the level of protein actually 

associated with mitochondrial fission. When we examined isolated mitochondria for 

Drp 1 expression, we observed an increase in mitochondrial-associated Drp 1 in IR V rats, 

and this increase was attenuated in the IRS rats (Fig 4-38). Mfn2 was still down­

regulated in mitochondria from IRV rats and was not restored with SRTl720 treatment. 
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Figure 4-3. Mitochondrial-associated Drpl is attenuated with SRT1720 
treatment after IIR. (A) Mfn2 and Drpl expression are examined by immunoblot 
analysis in renal cortical samples at 24h, 72h, and 144h. Densitometric quantification 
of 144h expression is shown in the graph to the right of the representative blots. (B) 
Mfn2 and Drp 1 expression in mitochondria isolated from the renal cortex at 144h with 
densitometric quantification of Drp 1 expression in the graph to the right of 
representative blots. 
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Because reduced expression of oxidative phosphorylation proteins and altered 

mitochondrial fission/fusion can have significant effects on mitochondrial function, we 

next examined mitochondrial respiratory capacity in each of the groups at 144h. 

Mitochondria isolated from the renal cortex of the rats were examined for state 2 and 

uncoupled oxygen consumption (Q02) (Fig 4-4). Correlating with the observed decrease 

oxidative phosphorylation protein expression, state 2 respiration of mitochondria from 

IRV was down approximately 20% compared to V rats, and FCCP-uncoupled respiration 

was reduced approximately 40% compared to V rats (Fig 4-4). SRTl720 treatment 

restored both state 2 and uncoupled respiratory capacity at 144h after I/R compared to 

IRV rats. 
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Figure 4-4. Mitochondrial Q02 is restored in SRT1720-treated rats. (A) State 2 
or basal Q02 was examined in mitochondria isolated from the renal cortex at 144h. 
(B) Uncoupled Q02 was examined in mitochondria isolated from the renal cortex at 
144h by adding 111M FCCP after state 2 Q02 was recorded. Rates were calculated at 
nmol 02/minlmg protein and expressed at mean fold change compared to the V group. 
Different superscripts indicate data are significant different each other (p<O.05), n=4. 
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We next examined the effect of restoration of mitochondrial function on recovery of renal 

function in rats after AKI. Serum creatinine (Ser) measurements indicated that maximal 

organ dysfunction occurred at 24h after reperfusion, similar to our previous results in 

mice (Fig 4-5). In both IRV and IRS rats, there was a slow, equal and consistent 

recovery ofSer to control levels over the course of the 144h study period (Fig 4-5). 

These results suggest there was complete recovery of glomerular filtration in both 

SRT1720- and vehicle~treated rats after injury. 
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Figure 4-5. Glomerular filtration recovered in rats after IIR. Serum Creatinine 
(SCr) was monitored in rats after I1R to gauge recovery of renal function. 
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Kim- I is a specific marker of kidney injury with tubular damage (117). It is upregulated 

early after injury, and continues to be expressed until the tubular epithelium, has 

recovered (131). Kim-l is a transmembrane protein with a large ectodomain that is 

cleaved and excreted into the urine, and it has been substantiated as a promising 

biomarker for AKI (30). Urinary Kinl-1 increased to maximal1evels after IiR but did not 

decrease in either group during the 144h study period (Fig 4-6A), suggesting that 

persistent tubular damage is occurring in the rats after injury even though glomerular 

filtration has recovered. Kim-l protein was not expressed in kidneys of uninjured rats; 

however, it was robustly expressed in the renal cortex ofIRV rats (Fig 4-6B). Although 

it was still expressed in the IRS rats, Kim-l was attenuated with SRT1720 treatment at 

144h. Examination of Kim-l expression by immunohistochemistry (IHC) showed that it 

was only expressed in the I/R rats, and was localized to the apical TI1embrane of the renal 

cortical tubules (Fig 4-6C). Most of the tubules expressing apical Kinl-1 were dilated 

with flattened morphology (Fig 6Biii). There were also Kim-l positive cells and cellular 

debris inside the tubular lumen, indicative of cell sloughing~ a pattern that was previously 

reported (132). Some of the tubules sho\ved diffuse Kim-l cytoplasnlic staining, 

particularly evident in the sections from IRS rats (Fig 6Civ). Overall, Kim-l expression 

in cortical proxhnal tubules was reduced with SRT1720 treatment (Fig 4-6C). 
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Figure 4-6. Kim-l expression in renal cortex reduced in SRT1720-treated rats 
after I1R. (A) Urinary Kim-l was measured at 24h, 72h, and 144h after I/R in 
SRT1720- and vehicle-treated rats by ELISA. (B) Kim-1 expression in renal cortical 
lysates was examined by immunoblot analysis at 72h and 144h. Densitometric 
quantification of 144h expression is shown in graph under the representative blots. 
(C) Kim-1 expression was examined by immunohistochemistry in the renal cortex of 
(i) V, (ii) S, (iii) IRV, and (iv) IRS rats. Brown stain indicates areas of Kim-1 
immunoreactivity visualized by DAB development and hematoxylin counterstain. 
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Following injury, depolarized and dedifferentiated proximal tubule cells undergo 

numerous morphological and biochemical changes, which can be evident by alterations in 

the expression of various epithelial and tnesenchymal markers (185, 302). One such 

alteration is the redistribution and loss ofNa + ,K+ -ATPase expression early after injury in 

conjunction with loss of apical-basolateral polarity (4, 184-185). Additionally, the 

developmental marker vimentin, which is not typically expressed in the normal 

differentiated tubular epithelium, is increased after injury in proliferating cells (302). In 

our renal I/R model, Na + ,K+ -ATPase expression was reduced in IRV rats at 72 and 144h 

(Fig 4-7 A). Expression ofNa +,K+ -ATPase was restored in rats treated with SRT1720at 

144h after injury (Fig 4-7A). When evaluated by IHC, Na +,K+ -ATPase was robustly 

expressed throughout the renal cortex, and localized to the basolateral menlbrane of 

proximal tubules (Fig 4-7Ci, Fig 4-7Cii and insets). In IRV rats, Na+,K+ -ATPase 

expression was delocalized from the basolateral membrane and there was a generalized 

loss of expression throughout the renal cortex (Fig 4-7Ciii). With SR T 1720 treatment, 

not only was expression restored (Fig 4-7 A, Fig 4-7Civ), but also expression was 

localized to the basolateral membrane similar to what was observed in uninjured rats (Fig 

4-7Civ inset). Vimentin was minimally expressed in uninjured rats, but was markedly 

elevated in IRV rats at 72h and 144h after injury (Fig 4-7B). Although it was still 

elevated compared to uninjured rats, vinlentin expression was attenuated in IRS rats 

compared to the IRV rats at 144h (Fig 4-7B). 
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Figure 4-7. SRT1720 treatment restores polarized, differentiated proximal 
tubule after I/R. (A) Na+,K+-ATPase expression was examined in the renal cortex by 
immunoblot analysis at 72h and 144h. Densitometric quantification of expression at 
144h is shown in the graph below the representative blots. (B) Vimentin expression 
was examined in the renal cortex by immunoblot analysis at 72h and 144h. 
Densitometric quantification of expression at 144h is shown in the graph below the 
representative blots. (C) Immunohistochemical localization ofNa +,K+ -ATPase 
expression was analyzed at 144h in (i) V, (ii) S, (iii) IRV, and (iv) IRS rats. Brown 
staining indicates N a + ,K+ -ATPase immunoreactivity visualized by DAB development 
and hematoxylin counterstain. Lower magnification images are at lOX and higher 
magnification insets are at 40X. 
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Histological examination by Periodic acid Schiff (PAS) staining showed that uninjured 

rats treated with SRT 1720 or vehicle had normal tubule structure consistent with normal 

proximal tubule cell morphology and an intact brush border (Fig 4-8, Veh and SRT 

panels). 144h after I/R, rats give vehicle treatment displayed evidence of proximal tubule 

disruption, including tubule dilation, loss of brush border integrity, and flattened 

epithelial cell morphology (IRV, arrowheads). 
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Figure 4-8. Improved tubule histology with SRT1720 treatment after AKI. 
Uninjured rats displayed normal proximal tubule morphology when examined by PAS 
staining. Histological evidence of tubule disruption was observed 144h after I/R plus 
vehicle treatment (IRV) was characterized by tubule dilation, loss of brush border, and 
flattened cell morphology (arrowheads). Although still observed in SRTl720-treated 
rats after I/R (IRS), tubule disruption appeared to be less extensive compared to IRV 
rats. 
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DISCUSSION 

In this study we have shown that SR T 1 720 stimulates renal mitochondrial biogenesis in 

vivo, and by treating rats with SRT1720 after renal ischemia-reperfusion (I/R), recovery 

of mitochondrial and tubular function was expedited. The effects ofSRT1720 were also 

associated with PGC-l a de acetylation, suggesting the mechanism of action is through a 

SIRTI-mediated pathway_ Overall; we think that using agents that improve 

mitochondrial function after AKl may offer unique therapeutic benefits to aid in 

restoration of kidney function. These agents may also offer new therapeutic strategies for 

treating injuries and/or diseases of other organs which are plagued by mitochondrial 

dysfunction. 

Mitochondrial protein expression was restored in kidneys from rats treated with 

SRT1720. We have previously shown that proteins such as ATPB, NDUFB8, and COX I 

are depleted early after AKI (either I/R-mediated or glycerol-induced myoglobinuric 

AKI) and are not restored within at least 144h after injury (91). Not only did we observe 

restored protein expression, but also we observed reduced mitochondrial-associated 

Drpl, suggesting that mitochondrial fragmentation was diminished in SRT1720-treated 

rats after IfR. The influence of Drp 1, M fn, and mitochondrial fragmentation on apoptosis 

and exacerbation of injury has been well documented in several studies from Zheng 

Dong's group (38-40), and inhibiting this response protects the kidney from further injury 

after IfR. Additionally, we were able to demonstrate recovery of mitochondrial 

respiratory capacity following SRT1720 treatment, indicating that restoration of the 

protein markers correlated with rescued mitochondrial function. The significance of 
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recovery of mitochondrial function after AKl is not completely understood yet. 

However, we have previously shown that persistent loss of mitochondrial protein 

expression correlates with persistent tubule dysfunction after injury (91). The current 

study further supports other studies which have demonstrated the beneficial effects of 

SRT1720, and other SIRTI activators, in models of mitochondrial deficiency (85, 178, 

180). This is the frrst study, however, to demonstrate that SRT1720 can rescue 

mitochondrial function following an acute organ injury with mitochondrial damage. Our 

results are also in agreement with previous reports that SRT1720 treatment results in 

SIRTI activation and deacetylation ofPGC-lu (85, 180). 

As expected, serum creatinine was significantly elevated 24h after injury and recovered 

over the course of 144h. SRT1720 treatment did not alter recovery ofSer compared to 

vehicle treatment after injury. This was not unexpected as ser recovered fairly fast 

without intervention. Additionally, ser is not specific for the type of injury present and 

thus is not the best marker for diagnostic differentiation between prerenal, intrinsic, or 

postrenal AKl, and to detennine whether acute tubular necrosis is present or not. 

We examined Kim-l in the urine and tissue from the rats in our study and found that 

cortical proximal tubule Kim-l expression was persistently elevated after I/R. In both 

tissue lysates as well as within the urine, Kim-l was robustly elevated and did not recover 

over the 144h study period, suggesting that there was persistent tubule damage present. 

Rats treated with SRT 1 720 after injury had reduced Kim-l expression in kidney lysates 

compared to vehicle-treated rats, suggesting that at least some of the injury was reversed 

with treatment. Kim-l has emerged as specific marker proximal tubule damage 
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associated with kidney injury, and there is evidence that it is more effective as a 

diagnostic and prognostic indicator of kidney injury compared to traditional markers such 

as ser and BUN (31). Human KlM-l is also up-regulated in dedifferentiated proximal 

tubules in human renal disease (282). KIM-l was elevated in biopsy and urine samples, 

and co-localized with a-smooth muscle actin (a-SMA), aquaporin, and vimentin 

indicating KlM-l was expressed in undifferentiated proximal tubule cells, and was 

associated with interstitial macrophages and fibrosis (282). Our Kim-l results are 

consistent with the vimentin results indicating that SR T 1720 treatment expedites 

recovery of a normal, differentiated tubule epithelium. Additionally, our results are 

consistent with reports from human disease models, which suggest that the models and 

therapeutic interventions have potential clinical relevance. 

Na+,K+-ATPase expression was lost in the renal cortex of rats after I/R and expression 

was not restored within 144h, indicating a prolonged state of depolarization. 

Additionally, vimentin expression was robustly up-regulated at 72h and 144h after injury, 

suggesting a dedifferentiated state as the epithelium was still undergoing repair processes. 

SR T 1720 treatment restored N a + ,K+ -ATPase expression and nonnalized vimentin 

expression in I/R rats, suggesting that restoration of a po larized, differentiated tubular 

epithelium was expedited in rats treated with SR T 1 720 after injury compared to vehicle­

treated rats. The observation that markers of cell polarity and differentiation were 

restored within approximately 6 days may have significant clinical significance, 

especially in context with our unpublished observations in mouse I/R studies that these 

markers are not nonnalized until approximately two weeks after injury in untreated 
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animals. The connection between rescue of mitochondrial function and restoration of 

cell polarity and differentiation is not completely understood yet, but the results are 

consistent with previous studies in our lab which have correlated restoration of 

mitochondrial function with RPTC redifferentiation, polarization, and repair after oxidant 

injury (115, 220). 

Seo-Mayer, et aI., demonstrated that basolateral expression of the Na+,K+-ATPase may be 

preserved by activating AMPK prior to IIR (247). The authors suggest that, in the face of 

energy-deprivation, stimulation of AMPK may alleviate some of the epithelial cell 

dalnage by activating energy-conserving pathways. Indeed, Na+,K+-ATPase expression 

and function may be regulated by AMPK and AMPK family members, such as the 8alt­

inducible kinases (268). It is possible that similar energy-salvaging mechanisms are 

activated upon SIRTI activation which are restoring Na t,KT -ATPase expression and 

localization after I/R, although this has yet to be shown. Several reports have also 

indicated that SRT1720, and other reported SIRTl activators, in fact activate AMPK, but 

we have not observed this effect in the current study or previously (90), so we assume its 

effects are through SIRTI and not AMPK. AMPK and SIRTl pathways seem to 

converge quite often and have been suggested to even work synergistically on PGC-la 

activation (47-49). In muscle, it has been shown that AMPK and PGC-la regulate 

Na +,K+ -ATPase expression and function (134), as AMPK regulated phosphorylation of 

the PLM subunit, an important regulatory subunit of the Na +,K+ -ATPase, and expression 

of the a1 and 0.2 subunits was significantly reduced in PGC-In KO. As a modulator of 

PGC-lo. activity/expression after injury, SRT1720 treatment may be manipulating one or 
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a combination of these pathways to preserve Na +,K+ -ATPase expression after I/R. 

Although we did not observe any direct evidence of AMPK activation with SRT1720 

treatment in our model, it is possible that the combined effects of AMPK activation after 

injury with SR T 1 720-induced SIR T 1 activation modulated Nat ,K+ -ATPase expression 

via PGC-l a or some other mechanism. 

SIRTI regulates many functions in the cell and it is possible that SRT1720 treatment 

activated recovery mechanisms not related to its effects on mitochondrial function. Mice 

overexpressing SIRTI specifically within the kidney were protected against cisplatin­

induced nephrotoxicity (119). Although they observed sufficient protection of 

mitochondrial function, but not mitochondrial numbers, in the SIRT 1 transgenic mice 

(Tg), the authors attributed the protection to a preservation of peroxisome function a fier 

injury. Retaining peroxisome numbers increased levels of catalase, thus reducing ROS 

and apoptosis and retaining kidney function (119). The authors also examined I/R injury 

in the Tg mice, but did not see any protection in this modeL We did not examine 

peroxisome numbers or function in the current study, so it is possible that SR T 1 720 

treatment had a similar effect that we are not reporting. However, it should be noted that 

in our model, SIRT1 stimulation does not commence until24h after reperfusion when 

tissue injury is extensive and when functional markers such as SCr have reached peak 

levels. In the SIR TIT g mice, there was significant protection from tissue damage, thus 

there are inherent differences in how the injured cells may respond to SIRT 1 activation 

under different conditions. It is conceivable that a cell with severely depleted 

mitochondrial numbers and function may respond quite differently to a SIRTI/PGC-la 
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activator compared to a cell with largely retained function. It must also be pointed out 

that there are different conclusions which can be drawn from various renal biomarkers 

and may reflect specific (or non-specific) functional implications. Whereas Hasegawa, et 

aI., reported protection of kidney function based on attenuated SCr and BUN levels, we 

did not see any changes in Ser, but instead observed recovery of markers associated with 

proximal tubule polarity and function (Kim-I, Na +,K+ -ATPase, vimentin). 

In conclusion, treatment with the SIRTI activator SRT1720 improved renal cortical 

mitochondrial function following I/R within 6 days after injury. Restoration of 

mitochondrial function correlated with nonnalization of proximal tubule polarization and 

differentiation. Recovery of mitochondrial function following AKI appears to be an 

essential component of the recovery process, in particular for recovery of normal 

proximal tubule function. SIR T 1 activation and other compounds which target PGC-l a 

activity and/or expression offer unique therapeutic options to improve tubule repair after 

InjUry. 

159 



Chapter 5: 

Conclusions and Future Directions 

Conclusions 

Lethal and sublethal injury to the proximal tubule epithelium contributes to tubule and 

overt organ dysfunction after acute kidney injury. Repair of the tubule epithelium is 

essential for proper functional recovery. Mitochondrial dysfunction is a primary 

mechanism of subcellular injury during AKI, and restoration of mitochondrial function 

may offer unique therapeutic targets to improve renal repair after injury_ 

In cell models of reperfusion injury using the oxidant tertbutyl hyrdroperoxide (TBHP), 

mitochondrial biogenesis is induced during recovery of mitochondrial function (220). 

Additionally, promoting mitochondrial biogenesis through PGC-I a overexpression 

expedites recovery of mitochondrial and cellular functions in renal proximal tubule cells 

(RPTC) after TBHP injury (221). 

Initially, it was essential to identify compounds that induce mitochondrial biogenesis in 

renal cells. Our laboratory had identified several compounds which increase 

mitochondrial protein expression and function in RPTC, including several compounds 

identified as SIRTI activators and the 5-hydroxytryptamine lIB receptor agonist DOl 

(223-224). SIRTI activation was a promising target to induce mitochondrial biogenesis, 
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and a report identifying potent SIRTI activators identified the compound SRT1720 as a 

potent SIRT 1 agonst (1 78). 

SRT1720 was a potent SIRTI activator when tested in an in vitro assay for SIRTl­

mediated deacetylase activity, induced PGC-l deacetylation, and stimulated 

mitochondrial biogenesis in RPTC. Although it was indirect evidence of mitochondrial 

biogenesis, we observed increased mitochondrial protein expression, increased 

mitochondrial DNA, increased basal and FCCP-uncoupled mitochondrial oxygen 

consumption, and elevated total cellular ATP levels with only 24h exposure of l-lOJ.lM 

SRT1720. The results suggested that we had identified a potent activator of 

mitochondrial biogenesis, and this was the fITst report to show SRT1720 effects in 

primary renal cells. Prior to our report, SRT1720 had been examined in skeletal muscle 

cell lines and with chronic treatment (weeks to months) in animals (85, 178,251). 

SRT1720 stimulated pathways consistent with mitochondrial biogenesis and effectively 

reversed conditions associated with metabolic deficiencies primarily eliciting its effects 

in the skeletal muscle and liver. According to our results, SRT 1720 was also effective in 

renal cells with a short exposure. 

Studies from our laboratory have previously characterized an in vitro reperfusion injury 

model in primary RPTC (205). RPTC exposed to TBHP undergo significant cell death, 

and the surviving cells are sublethally injured. Mitochondrial function is disrupted early 

after oxidant exposure and remains interrupted for 96h to 144h. Mitochondrial function 

spontaneously recovers by 144h due to induction ofPGC-lu mitochondrial biogenesis 
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(205, 220). When we treated injured cells with SRT1720, mitochondrial function was 

restored within 24h as opposed to the previously characterized 6 days. Uncoupled 

mitochondrial respiration and total cellular ATP levels were restored after 24h treatment 

with SRT1720. The results from this study were consistent with our recently published 

results examining serotonergic-regulated mitochondrial biogenesis following oxidant 

exposure (224). These studies were important because we were able to identify 

pharmacological agents that induced mitochondrial biogenesis in renal cells, and because 

we demonstrated that activating mitochondrial biogenesis after oxidant injury expedited 

recovery of mitochondrial function. Although the targeted mechanism appeared to work 

well in a cell model of renal injury, we still did not have evidence that it would work in 

vivo or if restoring mitochondrial function would affect recovery of renal function after 

acute kidney injury. 

Since we had identified a compound that induced mitochondrial biogenesis in primary 

renal cells and expedited recovery of mitochondrial function in cells after oxidant injury, 

we sought to move the studies into an in vivo acute kidney injury model. One model, an 

ischemia-reperfusion injury model in the mouse, induces renal dysfunction within 24h 

after reperfusion. Mitochondrial dysfunction was a well-known consequence ofI/R 

injury, but a full characterization of recovery of mitochondrial function after injury had 

not been described. Additionally, we sought to characterize mitochondrial dysfunction 

and recovery in a glycerol-induced myoglobinuric AKI model. Similar to the I/R model, 

the glycerol model induced renal dysfunction within 24h after injection. Mitochondrial 

dysfunction was also known to occur in the glycerol-mediated AKI model, but a 
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characterization of the mechanisms involved in recovery of mitochondrial function after 

injury had not been described. 

Before we could test our biogenic compounds in vivo we needed to fully understand the 

consequences of AKI on mitochondrial function, as well as the mechanisms and time line 

for mitochondrial and organ repair. Therefore, we initially examined the endogenous 

dysfunction and repair associated with AKI. Because of the results we obtained in the 

RPTC injury model, we hypothesized that mitochondrial dysfunction would be reversed 

after the initial injury. We also hypothesized that mitochondrial biogenesis would be 

activated to restore mitochondrial function, and that restoration of mitochondrial function 

would correlate with recovery of organ function. We had evidence from preliminary 

studies that kidney function is maximally impaired at 24h after AKl (based on Ser), and 

function recovers over the course of approximately 144h. With that in mind, we decided 

to examine the extent of mitochondrial injury and recovery at various time points 

between onset of injury and until recovery of organ function at 144h. In both injury 

models, we observed persistent loss of mitochondrial electron transport chain proteins, 

disruption of fusion and fission proteins, and up-regulation of proteins associated with 

mitochondrial biogenesis. The persistent disruption in mitochondrial homeostasis was 

associated with sustained tubule pathology, even in the presence of recovered glomerular 

filtration. The results from this study revealed that there is persistent mitochondrial 

dysfunction after AKl, and induction of mitochondrial biogenesis later in the recovery 

period (72h - 144h) was not sufficient to restore mitochondrial protein expression. 

Therefore, our initial findings did not fit with our hypothesis because we did not see any 
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recovery of mitochondrial function at any time between 24h and 144h after injury. 

Probing further revealed the persistent tubule injury, and this was the site of 

mitochondrial dysfunction. Therefore, basing our studies on the time course of ser 

recovery was not the best way to design the study because SCr levels do not represent 

tubule dysfunction. Results we have obtained since the study was published indicate that 

restoration of mitochondrial proteins, and normalization of fusion/fission proteins, takes 

approximately two weeks to return to normal levels. This was also the time it took for 

markers of tubule injury (e.g. kidney injury molecule-I) to return to normal in ischemic 

and nephrotoxic injury models (132), and for functional tubule proteins (e.g. Na +,K+­

ATPase expression) to restore suggesting that recovery of mitochondrial function does in 

fact correlate with recovery of tubule function after injury. 

Because mitochondrial proteins were disrupted for an extended period after AKI, we 

hypothesized that treating animals with an activator of mitochondrial biogenesis would 

expedite recovery of mitochondrial function and subsequently renal function. We had 

identified SR T 1720 as an activator of mitochondrial biogenesis in renal cells in culture, 

and we sought to examine its effects in vivo after AKI. From preliminary studies in 

naIve mice, we detennined that a dose of 5 mg/kg body weight effectively induced 

mitochondrial gene expression 24h after just one dose ofSRT1720. 

To test the effects of SRTI720 in an AKl model, we decided to test it in a rat I/R model. 

The rat I/R model was chosen for a couple of reasons: 1) although they reach a similar 

level of kidney dysfunction after I/R (based on SCr), the rats do not appear as sick as the 
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mice, so there are less compounding variables to consider in the model. 2) The majority 

of functional and injury biomarkers are analyzed in the urine, and the rat model 

consistently produces sufficient urine after injury to monitor function/injury. The mice, 

however, often become anuric after injury, thus limiting the number of markers which 

can be measured after injury. 3) Kidney injury molecule-l (Kim-I) is a promising 

biomarker which is specifically up-regulated after tubule damage, and is expressed in the 

urine after injury_ Currently, there are ELISAs available to measure Kim-l in rat urine, 

but they are not yet available for mouse samples. 

Rats were treated with a once-daily dose ofSRT1720 (5 mg/kg) or vehicle starting 24h 

after IiR and markers of kidney and mitochondrial function were monitored after injury. 

SRT1720 did not restore mitochondrial protein expression at 72h after injury, but ATP 

synthase (3, NDUFB8, and COX I were at least partially restored at 144h in SRT1720-

treated rats after injury, whereas these proteins were still significantly depleted in 

vehicle-treated rats. Additionally, both state 2 and uncoupled mitochondrial respiration 

were depressed in I/R rats at 144h, but both of these functional parameters were 

completely restored in rats treated with SRT 1720 rats after injury. These data were 

consistent with what we had previously reported in oxidant-injured RPTC, and 

demonstrated that in vivo treatment with SR T 1 720 after injury restores mitochondrial 

function, albeit within 144h as opposed to 24h observed in cells. 

We had previously demonstrated that tubule disruption persists in our I/R model, even as 

glomerular filtration and Ser levels recover (91). Because we had correlated persistent 
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mitochondrial dysfunction with sustained tubule pathology., we hypothesized that by 

restoring mitochondrial function, we would restore tubule function. Kidney injury 

molecule-l (Kim-I), a protein which is expressed after tubule damage~ was robustly and 

persistently up-regulated after I/R. Treatment with SRT1720 after ischemia diminished 

Kim-l expression in renal cortical tissue. Expression of Kim-l is also associated with 

undifferentiated, depolarized tubule epithelial cells. Loss of N a + ,K+ -ATPase expression 

occurs early after ischemic injury and is characteristic of transition to mesenchymal-type 

cells and loss of basal at era I-apical polarity. Additionally, vimentin is a developmental 

intermediate filament expressed in dedifferentiated cells and is a marker of epithelial­

mesenchymal transition. Loss ofNa~ ,K-t -ATPase expression was evident in both 

immunoblot analyses and by immunohistochemistry. SRT1720 treatment restored 

expression ofNa+,K+-ATPase after injury. Vimentin expression was markedly increased 

after injury, and treatment with SRT1720 attenuated expression by 144h. These results 

suggest that the proximal tubule epithelium undergoes prolonged dedifferentiation and 

depolarization as surviving cells repair the damaged tubule. SRT1720 restored 

expression ofNa + ,K+ -ATPase and normalized vimentin expression suggesting that 

treatment expedited recovery of the polarized, functional proximal tubule. 

Taken together, these results indicate that recovery of mitochondrial function is 

associated with restoration of a normal, differentiated proximal tubule epithelium. 

Mitochondrial biogenesis is a component of recovery of mitochondrial function after 

AKl, but it is a delayed process that takes several weeks to restore mitochondrial protein 

expression and function without intervention. SRT1720 enhances mitochondrial 
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biogenesis by activating the master regulator PGC-Iu via SIRTI-mediated de acetylation. 

We have demonstrated in both the RPTC oxidant injury model as well as an in vivo AKI 

model that stimulating mitochondrial biogenesis with SRT1720 expedites recovery of 

mitochondrial function after injury. Restoration of mitochondrial function was associated 

with recovery of cell and organ function, suggesting that PGC-I a and mitochondrial 

biogenesis is a viable target that warrants further attention as a potential therapeutic 

intervention for AKl. 
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Future Directions 

Mitochondrial biogenesis was initiated after I/R or glycerol-mediated AKI. When we 

examined alterations in gene expression associated with AKI, we observed increased 

expression of the nuclear co-activator PGC-l a. However, we also observed a robust 

increase in the PGC-l family member PGC-I related co-activator (PRe) (Fig 5-1). In 

addition to its elevation after glycerol-induced AKI, PRC was also robustly increased 

after I/R AKl as well. PRC is a ubiquitously expressed protein, and has also been 

associated with mitochondrial biogenesis, although the information on it is much scarcer 

than it is for PGC-I a or PGC-l 13. We did not see PGC-l f3 increase after injury, 

suggesting that it does not contribute to recovery of mitochondrial function. It would be 

interesting to distinguish the roles of each PGC-I family member after AKl, and to verify 

that induction ofPGC-l was essential for recovery from AKl. To accomplish this, we 

would need to take advantage of either conditional knockouts or siRNA in vivo to knock 

down expression of each family member to see how it affects recovery of mitochondrial 

and organ function after AKI. We attempted to use siRNA to reduce PGC-l a expression 

in vivo; however, due to either a dosing/timing issue or other technicality, we were not 

able to successfully knock down expression. Further studies distinguishing the potential 

roles of different mediators of mitochondrial biogenesis may be of interest to help 

identify novel targets to pursue to rescue mitochondrial function after injury. 
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Figure 5-1. Increased PGC-l mRNA after AKI. mRNA expression ofPGC-l 
family members PGC-lu, PGC-~, and PRC were examined by qRT-PCR at 24h, 72h, 
and 144 h after glycero 1-induced AKI. 
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Our laboratory is currently testing a number of compounds that increase PGC-I a activity 

and/or expression. A recent publication by Wills L, et at, demonstrated that the 132 

adrenergic receptor agonist formoterol increases PGC-I a. expression in RPTC and 

induces mitochondrial biogenesis in cell cultures and in the mouse kidney in vivo (300). 

We have tested this compound in the mouse I/R model. Treatment with formoterol 

partially restored mitochondrial gene expression that is depleted after injury (Fig 5-2). 

Mice were administered either forrnoterol (0.1 mg/kg) or vehicle starting at 24h after I/R) 

and were euthanized at 72h after injury. Illustrated below, expression ofPGC-la, NRF-

1, ATP synthase (3, NDl, and COX I were depleted after injury, but were partially 

recovered in mice treated with formoterol. 
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Figure 5-2. Formoterol treatment after IJR partially restores mitochondrial gene 
expression. mRNA expression of genes associated with mitochondrial function and 
mitochondrial biogenesis were examined by qRT -PCR in mice treated with formoterol 
(IR + For) or vehicle (IR + Veh) after I/R. Expression ofPGC-1a, NRF-1, ATP 
synthase B, ND-1, and COX I were examined at 72h after ischemic injury. 

171 



Additionally, restoration of mitochondrial gene expression was associated with recovery 

of kidney function, including ser and urinary glucose levels (Fig 5-3). Further studies 

need to be pursued using formoterol (and possibly other ~2 adrenergic agonists) after 

injury to determine the effect on recovery of tubule function. Because we observed 

recovery of Kim-l expression, N a,K -ATPase expression, and nonnalization of vimentin 

expression with SRT 1720 treatment, using another drug to promote mitochondrial 

biogenesis after injury may help validate PGC-l and restoration of mitochondrial 

function as a common prerequisite for recovery of normal tubule function. 
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Figure 5-3. Formoterol promotes recovery of SCr and urinary glucose levels after IIR. 
Mice were administered formoterol (0.1 mg/kg) or vehicle 24h after IIR until they 
were euthanized at 72h. SCr was monitored during recovery, and urinary glucose 
levels were examined at 72h to assess kidney function . 
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SRT1720 induces mitochondrial biogenesis in kidneys of mice within 24h after a single 

injection (5 mg/kg, i.p.). Mitochondrial biogenesis is also activated in other organs, 

including the skeletal muscle (Fig 5-4), and the liver, heart, and brain (not shown). 

Chronic treatment with SRT1720 in diabetic and obesity models improves glucose 

tolerance, insulin sensitivity, and reduces cholesterol, triglyceride levels, and weight gain 

while promoting a number of other improvements in overall health, such as improved 

locomoter activity and reduced liver inflammation and steatosis (1 78, 180). It would be 

interesting to examine the potential benefits of SRT 1720 treatment in models of acute 

organ injuries to organs outside of the kidney. Enhancing mitochondrial biogenesis after 

acute injuries to other organs which result in mitochondrial dysfunction may offer unique 

therapeutic targets for treating these disorders. 
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Figure 5-4. SRT 1720 increases mitochondrial biogenesis in mouse kidney and 
skeletal muscle. mRNA expression of genes associated with mitochondrial function 
and biogenesis was examined in the kidney and skeletal muscle of mice at one hour 
and 24h after a single injection (5 mg/kg, i.p.). 
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The experiments in my studies were carried out in approximately 8-week old mice or 

rats, representing an age group in humans that does not typically have a high incidence of 

AKI. AKI incidence is generally higher in older and diabetic populations. These 

populations also tend to have lower rates of mitochondrial biogenesis and diminished 

mitochondrial function compared to healthy, younger groups. Additionally, we have 

performed I/R in diabetic rats, and have observed an increased susceptibility to I/R injury 

(Fig 5-5). It would be interesting to characterize the mitochondrial injury associated with 

I/R in a diabetic rat model, or aged mouse model, and the influence of mitochondrial 

biogenesis on restoration of mitochondrial function. Additionally, it would be interesting 

to examine the effects ofSRT1720 treatment, or another agent which promotes 

mitochondrial biogenesis, in the more susceptible animal model to determine whether 

biogenesis is a viable target for populations which are more at risk to develop AKI. 
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Figure 5-5. Diabetic rats are more susceptible to the effects of IIR. Four weeks 
after streptozotocin (STZ) treatment, a model to induce diabetes, rats were subjected 
to 22m l/R. Weight-matched controls were also subjected to llR to compare 
development of AKI. Twenty-four hours after llR, ser was examined to assess renal 
function. 
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