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Abstract 

 

PALLAVI BHARGAVA. The Role of Soluble Guanylyl Cyclase Signaling in 

Mitochondrial Biogenesis and Renal Injury. (Under the direction of RICK G. 

SCHNELLMANN) 

 

 

Soluble Guanylyl Cyclase (sGC) is responsible for converting GTP to cyclic GMP 

(cGMP). sGC function and regulation is complex and cell-type dependent. An increase in 

cGMP production can target phosphodiesterases (PDEs), cGMP gated ion channels, and 

protein kinase G (PKG). Increasing sGC activity and inhibiting the degradation of cGMP 

by targeting PDEs are two approaches to maintaining cGMP levels in a given system. 

Interestingly, cGMP can also regulate mitochondrial biogenesis (MB), the generation of 

new and functional mitochondria.  

 

Previously in our laboratory, we have shown that MB is suppressed after ischemia and 

reperfusion (I/R) injury and certain mitochondrial biogenic compounds can accelerate 

recovery and attenuate the decrease in MB. In particular, we have shown that 

administration of an inhibitor of PDE5, sildenafil, can restore MB and renal function after 

I/R. However, the role of sGC in I/R is still under investigation. Here, we have elucidated 

a potential signaling pathway for the involvement of sGC in the suppression of MB. We 

performed I/R on mice and focused on the events that occur within the first 24 h of I/R 

injury. We optimized an sGC enzyme assay for the kidney to better understand the redox 

state of sGC. We proposed that the suppression of MB is cGMP-dependent and that PKG 

is a mediator of these effects. Moreover, we have proposed a role for ERK1/2 in the 

sGC/cGMP/PKG induced suppression of MB.  

 



 xiii 

Alternatively, we have shown that cGMP can induce MB in renal proximal tubule cells 

by 24 h with exposure to a cGMP analog, 8-Br-cGMP. However, the mechanism behind 

this finding is unknown.  Therefore, we treated renal proximal tubule cells with a 8-Br-

cGMP, for an 1 h to elucidate the mechanism behind this event. We measured the 

phosphorylation of serine and threonine residues on PGC-1α, the master regulator of MB, 

since phosphorylation can prolong the half-life of PGC-1α and induce MB. We found 

that the induction of MB is PKG dependent and that p38 MAPK plays a prominent role in 

the phosphorylation of PGC-1α.  

 

Here, we present sufficient evidence for the role of sGC signaling in regulating MB in the 

kidney.  

 

 

 

 

 

 

 



Chapter 1: Introduction to the Role of Soluble Guanylyl Cyclase Signaling in 

Mitochondrial Biogenesis and Renal Injury 
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Renal Anatomy 

 

The kidney is one of the most energy-demanding organs in the human body. A study 

measuring the resting energy expenditure of various organs in healthy adults, ranging 

from 21 to 73 years of age, found that the kidney and heart had the highest resting 

metabolic rates1. The kidney has the second highest mitochondrial content and oxygen 

consumption after the heart2,3. The resting metabolic rate for the kidney is high because 

the kidney requires an abundance of mitochondria to provide sufficient energy to enable 

it to remove waste from the blood, reabsorb nutrients, regulate the balance of electrolytes 

and fluid, maintain acid-base homeostasis, and regulate blood pressure.  

 

Blood is first received from the afferent arteriole and filtered through the glomerulus 

where glucose, ions, urea, and water are able to pass and larger molecules such as 

hemoglobin are retained. Proximal tubules reabsorb 80% of the filtrate that passes 

through the glomerulus, including glucose, ions, and nutrients. These tasks, especially the 

reabsorption of glucose, ions and nutrients through channels and transporters, are driven 

by ion gradients. Filtrate then passes through the loop of Henle consisting of the thin 

descending limb, thin ascending limb, and thick ascending limb. The thin descending 

limb reabsorbs water via passive transport whereas the thin ascending limb is 

impermeable to water reabsorption. Tight junctions in the thin descending limb are 

considered to be more leaky than tight junction in the thin ascending limb. Ion 

reabsorption continues in the thin ascending limb and thick ascending limb however, the 

process in the thick ascending limb requires active transport. Sodium reabsorption occurs 
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in the thick ascending limb through membrane transport proteins, NKCC2, that are 

located on the apical membrane of the thick ascending limb. NKCC2 transport 2 Cl-, 1 

K+, and, 1 Na+ from the urine across the membrane into the thick ascending limb. 

Subsequently, Na+K+ATPases that are located in the basolateral membrane of the thick 

ascending limb, between the bloodstream and thick ascending limb, pump 3 Na+ ions in 

the blood and 2 K+ ions into the thick ascending limb. This allows for the inside of the 

thick ascending limb to be negatively charged and therefore generates an electrochemical 

gradient for proper movement of ions across NKCC2.  Filtrate from the loop of Henle is 

further filtered in the distal convoluted tubule reabsorbing Ca2+, K+, Na+ ions. In order 

to maintain optimum pH, bicarbonate and H+ ions can be reabsorbed or secreted in the 

filtrate. Hormones such as aldosterone and parathyroid hormone (PTH) exhibit their 

effects in the distal convoluted tubule and collecting ducts. Aldosterone can cause the 

reabsorption of Na+ ions and the secretion of K+ ions into the filtrate creating 

downstream effects such as changes in blood pressure, blood volume, and water 

retention. PTH is secreted to cause the retention of Ca2+ in the kidney, bone, and 

intestine. In terms of the kidney, PTH exhibits its effects in the proximal tubule, distal 

convoluted tubule, and collecting ducts. The resulting filtrate is retained in the collecting 

duct until excreted into the renal pelvis. The process of filtration as explained, involves 

active and passive transport mechanisms that allow for the excretion of wastes and 

retention of nutrients, ions, and glucose.  

 

As mentioned above, Na+,K+-ATPases play a large role in the active transport 

mechanisms used to allow for proper filtration of blood in the kidney. Mitochondria 
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provide energy to Na+,K+-ATPase to generate ion gradients across the cellular 

membrane4. In the kidney the proximal tubule, the loop of Henle, the distal tubule and the 

collecting duct all require active transport to reabsorb ions4. This is in contrast to 

glomerular filtration, which is a passive process that is dependent on maintaining 

hydrostatic pressure in the glomeruli. Proximal tubules contain the most ATP-dependent 

ion transporters in the kidney since that reabsorb 80% of the filtrate and as such, they 

contain more mitochondria than any other structure in the kidney. The ability of 

mitochondria to sense and respond to changes in nutrient availability and energy demand 

by maintaining mitochondrial homeostasis is critical to the proper functioning of the 

proximal tubule.   

 

Mitochondrial Biology 

 

 

Mitochondria are a network of plastic organelles that together maintain a variety of 

cellular functions and processes, such as the level of reactive oxygen species, cytosolic 

calcium and apoptosis5. Most importantly, mitochondria produce ATP, thereby supplying 

the energy source for basal cell functions as well as cellular repair and regeneration. To 

accomplish this feat, a population of healthy and functional mitochondria is vital.  

 

[H2] ATP production  

 

Aerobic respiration is the consumption of oxygen to produce ATP, water and carbon 

dioxide. Most of the ATP generated by aerobic respiration is produced by the flux of 

electrons through the electron transport chain (ETC) in a process called oxidative 
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phosphorylation (FIG. 1.1a). Aerobic respiration begins with the production of pyruvate 

from glucose via glycolysis6. Pyruvate is converted to acetyl CoA (via pyruvate 

dehydrogenase in the mitochondrial matrix), which fuels the tricarboxylic acid (TCA) 

cycle to produce six reduced nicotinamide adenine dinucleotide (NADH), four flavin 

adenine dinucleotide (FADH2), and six CO2 per molecule of glucose6. Electrons from 

NADH and FADH2 are transferred to complex I and complex II, respectively, of the ETC 

in the mitochondrial inner membrane. Electrons travel through the ETC to complex IV, in 

which they are accepted by oxygen. Note that the haemeprotein Cytochrome c, which is 

located in the mitochondrial inner membrane, facilitates the transfer of electrons from 

complex III to complex IV. Ultimately protons, which are actively pumped into the 

intermembrane space as electrons move through complexes I, III, and IV, flow through 

ATP synthase (also known as complex V) to drive the conversion of ADP to ATP6.  
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Figure 1.1: ATP production in the kidney 

The electron transport chain (ETC). A functioning ETC transforms reducing equivalents from NADH and 

FADH2 to produce NAD+ and FAD+, respectively. The electrons (e−)that are produced travel through the 

complexes of the ETC and are ultimately accepted by oxygen at complex IV. As electrons are transferred 

from complex to complex, protons (H+) are actively pumped out from complexes I, III, and IV into the 

intermembrane space, maintaining the membrane potential and driving the production of ATP by ATP 

synthase (also known as complex V). b | Fatty acid transport and activation in renal proximal tubule cells. 

Proximal tubules require large amounts of ATP to drive ion transport and therefore rely on aerobic 

respiration, the most efficient mechanism for producing ATP. Fatty acids are a main source of energy for 

proximal tubules because more ATP can be produced from one molecule of palmitate than from one 

molecule of glucose18. Fatty acids bound to fatty acid-binding proteins (FABP) are transported into the 

proximal tubule cell via platelet glycoprotein 4 (also known as CD36) and activated by the addition of 

acetyl-CoA in the cytosol via acyl-CoA synthetase. Activated fatty acids are transported into mitochondria 

via carnitine O-palmitoyltransferase 1 (CPT1), which exchanges their acyl-CoA group for L-carnitine, 

whereupon they undergo β-oxidation to produce ATP. CoQ, coenzyme Q; Cyt C, cytochrome c; MIM, 

mitochondrial inner membrane; MOM, mitochondrial outer membrane; Pi, inorganic phosphate. 
From: Bhargava, P. & Schnellmann, R. G. (2017) Mitochondrial energetics in the kidney 
Nat. Rev. Nephrol. doi:10.1038/nrneph.2017.107 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5965678/#R18
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In general, all cell types in the kidney need ATP to maintain cellular functions; however, 

the mechanism by which ATP is produced is cell type dependent. For example, in the 

renal cortex, proximal tubules depend on the efficiency of oxidative phosphorylation to 

produce ATP that drives active transport of glucose, ions, and nutrients.7 In contrast, 

glomerular cells including podocytes, endothelial cells, and mesengial cells have lower 

oxidative capacity because their function is to filter blood, removing small molecules 

(glucose, urea, water, and salts) while retaining large proteins such as hemoglobin.8 This 

passive process does not directly require ATP and therefore glomerular cells have the 

ability to perform aerobic and anaerobic respiration to produce ATP for basal cell 

processes.9-12 Anaerobic respiration also begins with glycolysis like aerobic respiration, 

producing pyruvate from glucose, but is characterized by the production of lactate from 

pyruvate13. This is important as cell types other than proximal tubules perform glycolysis 

more often and are able to utilize other energy sources such as amino acids in the absence 

of glucose14,15. For example, pyruvate can be generated via the oxidation of amino acids 

fueling both anaerobic and aerobic mechanisms for ATP production.  

 

Due to the high energy demand of proximal tubules, aerobic respiration is the primary 

mechanism for ATP production. Proximal tubules utilize non-esterified fatty acids, such 

as palmitate, via β-oxidation for maximal ATP production.  A single molecule of 

palmitate produces 106 molecules of ATP whereas the oxidation of glucose only yields 

36 molecules of ATP16,17. Fatty acids are taken up by proximal tubule cells via transport 

proteins, such as platelet glycoprotein 4 (also known as CD36), or synthesized in the 

cytoplasm where they are activated by coenzyme A prior to transport into mitochondria 
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through the carnitine shuttle (FIG. 1.1b)18. Specifically, carnitine O-palmitoyltransferase 

1 (CPT1) exchanges the coenzyme A group on fatty acids with L-carnitine, allowing the 

transfer of fatty acids across the mitochondrial inner membrane space through the 

carnitine shuttle. Fatty acids are then broken down for energy via β-oxidation in the 

mitochondrial matrix. While β-oxidation is the most efficient mechanism for maximal 

ATP production for proximal tubules, it is important to note that due to the high 

consumption of oxygen by proximal tubules, they are more susceptible to changes in 

oxygen levels.19,20 A decrease in oxygen levels can ultimately lead to the impairment of 

β-oxidation and the reduction of ATP production (discussed below). 

 

 

A balance of catabolic and anabolic nutrient sensing pathways regulates the optimal 

concentration of fatty acids in a cell (see below). Disease states and different metabolic 

conditions in the kidney alter this balance and can adversely affect mitochondrial 

energetics. For example, the accumulation of fatty acids in AKI and DN can negatively 

impact ATP production by decreasing β-oxidation in the mitochondria and increasing the 

formation of lipid droplets inside the cell17. An inverse correlation exists between 

lipogenesis that is induced by the accumulation of fatty acids and the transcription of 

genes, the protein products of which are involved in fatty acid oxidation21,22. Fatty acids 

can also trigger apoptosis and more importantly, create a toxic environment inside the 

cell that hinders mitochondrial function23,24. Fatty acid metabolism in disease states such 

as AKI and DN will be discussed below.  
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[H2] Antioxidant Defenses  

 

As discussed, mitochondria produce ATP via the ETC. At steady state, when electrons 

are passed through the ETC to molecular oxygen, - a low concentration of superoxide 

anions are generated from complex I and complex III. Although a low level of reactive 

oxygen species (ROS) such as these is important for cell function, high concentrations are 

toxic to mitochondria and the cell (FIG. 1.2)25-27. For example, under oxidative stress, 

increased levels of ROS can cause breaks in mitochondrial DNA (mtDNA) that cause 

mutations in the next generation of mitochondria, negatively affecting the efficiency of 

the ETC causing a decrease in ATP production, and damage proteins and lipids28. ROS 

can also trigger apoptosis in the cell by causing the release of cytochrome c and leading 

to mitochondrial dysfunction28. Therefore, mitochondria have antioxidant defense 

systems to counteract the excessive formation of additional ROS. Superoxide dismutase 2 

(SOD2), which converts superoxide anions to hydrogen peroxide and oxygen, is specific 

for mitochondria29. Moreover, the transcription of genes encoding antioxidant enzymes 

such as SOD2, catalase, and glutathione peroxidase is activated by nuclear factor 

erythroid 2-related factor 2 (NRF2), in response to oxidative stress, providing a 

mechanism to prevent excessive ROS production 30. The importance of these antioxidant 

systems is to maintain optimal ATP production and sustain mitochondrial function.  
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Figure 1.2: Oxidative Stress and the Antioxidant Defence System 

Insults can increase the production of reactive oxygen species (ROS) in the cytosol and mitochondria. 

NADPH oxidase 2 (NOX2) and NOX4 can also contribute to the production of ROS222. The production of 

ROS can cause breaks in mitochondrial DNA (mtDNA) and damage lipids and proteins. Damaged mtDNA 

can produce aberrant mitochondrial proteins and prevent mitochondrial protein synthesis, whereas damaged 

lipids and proteins result in impaired mitochondrial function, leading to further increases in mitochondrial 

ROS. ROS also activate nuclear factor erythroid 2-related factor 2 (NRF2), which translocates to the 

nucleus and binds to antioxidant-responsive elements (AREs) to activate the transcription of genes 

encoding oxidant-neutralizing enzymes, such as mitochondrial superoxide dismutase 2 (SOD2), glutathione 

peroxidase (GPX) and catalase. SOD2 reduces superoxide anions to hydrogen peroxide (H2O2) and oxygen 

(O2). Catalase, found in the cytoplasm, and GPX, located in the cytoplasm and mitochondria, reduce 

H2O2 to water (H2O)223. GPX also oxidizes glutathione (GSH), resulting in glutathione disulfide (GSSG) as 

a byproduct of reducing hydrogen peroxide to water. GSSG in mitochondria (mGSSG) is converted back to 

GSH by glutathione reductase (GR) in a process that requires the presence of NADPH. The activity of the 

mitochondrial uncoupling protein 2 (UCP2) is increased, dissipating the proton motive force and 

decreasing ROS production. mGSH, mitochondrial GSH. The electron transport chain complexes I–V are 

indicated as I, II, III, IV and V. From: Bhargava, P. & Schnellmann, R. G. (2017) Mitochondrial energetics 

in the kidney Nat. Rev. Nephrol. doi:10.1038/nrneph.2017.107 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5965678/#R222
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5965678/#R223
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Another important antioxidant defense mechanism involves glutathione. Glutathione is a 

tripeptide (γ-glutamyl-cysteinal-glycine) nucleophile that can exist in a reduced form 

(GSH), or in the oxidized form as glutathione disulfide (GSSG). Mitochondria contain 

their own pool of glutathione, mGSH, which not only helps to decrease excessive ROS 

levels but also to prevent the release of cytochrome c from the inner membrane. mGSH 

directly interacts with superoxide anions and becomes oxidized to GSSG31. Glutathione 

peroxidase (GPx) is located in both the cytoplasm and the mitochondria, and uses GSH to 

reduce hydrogen peroxide to water, resulting in GSSG as a by-product32 . GSSG cannot 

exit the mitochondria and is converted back to mGSH, by glutathione reductase, for use 

again or eliminated from the mitochondria31. The conversion of GSSG to mGSH requires 

nicotinamide adenine dinucleotide phosphate (NADPH), allowing crosstalk between the 

mechanism that maintains mGSH levels and the pentose phosphate pathway that 

produces NADPH. Taken together, these mechanisms play a major role in preventing 

excessive levels of ROS to sustain mitochondrial function. 

 

Uncoupling proteins are a family of mitochondrial transport proteins located in the 

mitochondrial inner membrane33,34. They transport protons across the inner membrane to 

the mitochondrial matrix. Mitochondrial uncoupling protein 2 (UCP2) is expressed in the 

kidney and it is activated by mitochondrial ROS and other stimuli. An increase in ROS 

formation in the mitochondria activates UCP2, dissipating the proton motive force as heat 

and, as a result, reducing ROS production34,35. As ROS production contributes to 

mitochondrial dysfunction in AKI and diabetic nephropathy, UCP2 has been explored in 

the kidney and in these disease states36. Studies investigating the role of UCP2 gene 
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polymorphisms in the kidney that exacerbate disease in patients with diabetic 

nephropathy reveal that UCP2 is a potential target for treatment37. It was also reported 

that a lack of UCP2 worsened tubular injury after AKI in mice36. These studies show the 

importance of UCP2 in the kidney as well as its role in attenuating excessive ROS 

production.  

 

There are also mechanisms that sustain mitochondrial function under hypoxic conditions. 

The lack of oxygen under hypoxic conditions decreases ATP production and causes cell 

death. In normoxic conditions, hypoxia-inducible factor-1α (HIF-1α) is degraded in the 

presence of oxygen and α-ketoglutarate, an intermediate of the TCA cycle38. However, 

under hypoxic conditions HIF-1α heterodimerizes with HIF-1β to form a transcription 

factor that binds to a hypoxia response element (HRE) that is present in genes encoding 

glycolytic enzymes and glucose transporters in the kidney39. Hypoxic conditions also 

alter the composition of complex IV of the ETC in which, at physiological conditions, 

regulatory subunit 1 predominates in the ETC; during hypoxia regulatory subunit 2 

predominates in Complex IV, which increases the efficiency of the ETC40. Several 

studies have shown that increasing the efficiency of the ETC increases the production of 

mitochondrial ROS under hypoxic conditions, although this mechanism is still unclear41-

43. The effects of oxidative stress and hypoxia on mitochondrial morphology and 

energetics are discussed below.  
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Maintaining mitochondrial homeostasis 

 

Nutrient-sensing pathways in the kidney 

 

Nutrient-sensing pathways can directly affect mitochondrial energetics in response to 

external stimuli such as hypoxia, oxidative stress and energy depletion. Two signalling 

pathways in particular have been extensively explored in the kidney, namely the 

mechanistic target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) 

signalling pathways44,45. Both signalling pathways also have a role in regulating 

mitochondrial biogenesis (MB) — that is, the production of new and functional 

mitochondria — to help maintain a healthy population of mitochondria (FIG. 1.3).  
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Figure 1.3: Crosstalk between two nutrient-sensing pathways 

Mechanistic target of rapamycin complex 1 (mTORC1) and AMP-activated protein kinase (AMPK) have 

key roles in regulating mitochondrial biogenesis and mitophagy. mTORC1 is responsible for triggering 

anabolic pathways, such as the synthesis of proteins, nucleotides and lipids, as well as mitochondrial 

biogenesis. AMPK activates catabolic pathways, including autophagy, mitophagy, fatty acid oxidation and 

glycolysis. AMPK can stimulate mitochondrial biogenesis (dotted arrow). However, in response to stimuli 

such as nutrient deprivation, AMPK can inhibit mTORC1 (dotted inhibitory line) and phosphorylate ULK1 

to activate mitophagy (dashed arrow). Together these two signalling pathways maintain cell function and 

sustain mitochondrial energetics in response to stimuli such as hypoxia, oxidative stress and energy 

depletion. From: Bhargava, P. & Schnellmann, R. G. (2017) Mitochondrial energetics in the kidney Nat. 

Rev. Nephrol. doi:10.1038/nrneph.2017.107 
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mTOR is a serine/threonine kinase that is made up of a complex of proteins. There are 

two distinct complexes of mTOR, mechanistic target of rapamycin complex 1 (mTORC1) 

and mTORC2, each of which contain their own unique subunits and substrates. 

mTORC1, a complex of mTOR, regulatory-associated protein of mTOR (Raptor) and 

several other proteins, regulates cell growth and proliferation and inhibits autophagy by 

stimulating anabolic processes. mTORC2, which is a complex of mTOR, rapamycin-

insensitive companion of mTOR (Rictor) and several other proteins, is thought to 

regulate potassium and sodium levels in the kidney46,47. mTORC1 is considered a nutrient 

sensor because it can be activated by growth factors, nutrients such as amino acids and 

glucose, and oxidative stress, triggering pathways that lead to protein synthesis, 

nucleotide synthesis, lipid synthesis, and MB by activating the transcriptional repressor 

yin-yang 1, (YY-1)44,48. In the case of MB, YY-1 acts as a transcription factor and 

coactivator of the master regulator of MB- the transcriptional coactivator peroxisome 

proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) - resulting in the 

transcription of mitochondrial genes.48 mTORC1-decficiency specifically in renal 

proximal tubules of mice decreased the protein levels of PGC-1α , in vivo.49 Of note, the 

mTOR pathway can be inhibited by hypoxia and AMPK. 

  

AMPK is another nutrient sensor in the kidney that stimulates catabolic processes. When 

the AMP:ATP ratio in the cell is high in the presence of low oxygen levels, AMPK is 

activated. AMPK targets a number of proteins, the phosphorylation of which leads to the 

production of antioxidant enzymes, the induction of MB, and an increase in glycolytic 

flux, fatty acid oxidation and glucose transport; all of these events contribute to cell 
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growth and an increase in cellular metabolism50. AMPK can induce MB by stimulating 

the transcription of the gene encoding PGC-1α and by phosphorylating PGC-1α at 

threonine 177 and serine 539 to increase its activity51. AMPK stimulates the production 

of energy and inhibits energy-consuming pathways by inhibiting mTORC1. Under 

conditions of nutrient deprivation, crosstalk exists between mTORC1 and AMPK (FIG. 

3) so that AMPK can inhibit mTORC1 while activating autophagy by phosphorylating 

the serine/threonine-protein kinase ULK152. Due to its high number of targets in kidney 

cells, AMPK is a novel drug target for several diseases in the kidney (see below).  

 

Mitochondrial homeostasis is a balance between MB, fission and fusion, and mitophagy, 

the selective removal of non-functional and damaged mitochondria from cells by 

autophagy. All of these processes work in concert to maintain mitochondrial energetics, 

that is, the optimal production of ATP in normoxic conditions and in altered metabolic 

condition.    

 

Mitochondrial Biogenesis 

 

Mitochondrial biogenesis (MB), which produces new and functional mitochondria, 

increases ATP production in response to increasing energy demands. MB is regulated by 

an array of transcriptional coactivators and corepressors53,54. PGC-1α. was shown to be a 

prominent regulator, at the transcriptional level, of oxidative phosphorylation, the TCA 

cycle and fatty acid metabolism in the kidney55. The investigators performed gene 

expression profiling of kidneys from control mice and nephron-specific inducible PGC-
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1α knockout (NiPKO) mice that had been fed a chow diet or high fat diet (HFD). Using 

the Kyoto Encyclopedia of Genes and Genomes (KEGG) database,[link to: 

http://www.genome.jp/kegg/] they analyzed transcripts from all four groups of mice. 

Interestingly, a decrease in transcripts related to oxidative phosphorylation, TCA cycle, 

and glycolysis was detected in chow-fed NiPKO mice and in HFD-fed NiPKO mice. This 

finding supports the idea that inactivation of PGC-1α in the kidney significantly reduces 

mitochondrial function and metabolism and subsequently decreases MB. 

 

It has also been shown that the overexpression of PGC-1α can mitigate mitochondrial 

dysfunction in vitro after oxidant exposure, further supporting a role for MB in 

mitochondrial homeostasis56. The activation of peroxisome proliferator-activated 

receptors (PPARs) and estrogen-related receptors (ERRs) also contributes to the 

regulation of MB, sometimes by directly interacting with PGC-1α57(FIG. 1.4). PPARs 

and ERRs are nuclear receptors that can be activated by fatty acids and steroid hormones 

such as estrogen, and they elicit a response by binding to specific DNA response 

elements through their DNA-binding domains58. PGC-1α can directly bind to these 

nuclear receptors and coactivate the transcription of genes for oxidative phosphorylation 

and fatty acid oxidation59,60. PGC-1α activation results in its translocation from the 

cytoplasm to the nucleus, allowing it to upregulate the transcription of genes, the protein 

products of which are important for mitochondrial homeostasis and ATP production61. 

Transcription programmes downstream of PGC-1α include nuclear and mitochondrial 

genes, as well as those involved in signalling pathways that regulate MB (reviewed 

elsewhere)62-64.  
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Figure 1.4: A complex network of pathways regulate mitochondrial biogenesis. Activation of 

peroxisome proliferator-activated receptor-γ co-activator 1α (PGC1α) in the cytosol causes its translocation 

to the nucleus and the transcription of genes (including that encoding mitochondrial transcription factor A 

(TFAM)), the protein products of which are needed for oxidative phosphorylation (oxphos), the 

tricarboxylic acid (TCA) cycle and mitochondrial biogenesis. TFAM aids in the transcription of genes that 

are encoded by mitochondrial DNA224,225,226. The activation of G protein-coupled receptors (GPCRs), 

such as the β2adrenergic receptors (β2AR) and 5-hydroxytryptamine receptor 1F (5-HT1F), leads to the 

dissociation of heterotrimeric G proteins composed of Gα, Gβ and Gγ subunits and the subsequent 

activation of protein kinase A and endothelial nitric oxide synthase (eNOS)66. The pathway from GPCRs 

to eNOS is still under investigation, as indicated by the dashed line. eNOS stimulates soluble guanylyl 

cyclase (sGC) to form cyclic guanosine monophosphate (cGMP), which in turn activates PGC1α. A 

number of compounds can activate nuclear receptors such as peroxisome proliferator-activated receptors 

(PPARs) and oestrogen- related receptors (ERRs) and induce mitochondrial biogenesis. Once activated, 

these nuclear receptors can act as transcriptional co-activators (labelled in the figure as nuclear receptor 

transcription factors (NRTFs)), with PGC1α to stimulate mitochondrial biogenesis. Other transcription 

factors, including nuclear respiratory factor 1 (NRF1) and NRF2, can also directly bind to PGC1α to induce 

mitochondrial biogenesis227. Stimuli, such as caloric restriction, can activate eNOS, increasing the 

production of cGMP and leading to the activation of PGC1α. The activity of sirtuin 1 (SIRT1) is increased 

in the presence of a high ratio of NAD+ to NADH concentrations, leading to the activation of PGC1α. High 

AMP:ATP ratios also activate AMP-activated protein kinase (AMPK), activating PGC1α by 

phosphorylation. In all of these cases, the activation of PGC1α stimulates mitochondrial biogenesis. Ac, 

acetyl; PDE5, cGMP-specific 3′,5′-cyclic phosphodiesterase; PKA, protein kinase A; sGC, soluble guanylyl 

cyclase. From: Bhargava, P. & Schnellmann, R. G. (2017) Mitochondrial energetics in the kidney Nat. Rev. 

Nephrol. doi:10.1038/nrneph.2017.107 

 

https://www.nature.com/articles/nrneph.2017.107#ref224
https://www.nature.com/articles/nrneph.2017.107#ref225
https://www.nature.com/articles/nrneph.2017.107#ref226
https://www.nature.com/articles/nrneph.2017.107#ref66
https://www.nature.com/articles/nrneph.2017.107#ref227
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As the activation or suppression of PGC-1α is regulated by external stimuli and post-

translational modifications it can be considered to be a nutrient sensor in the kidney.  

PGC-1α protein expression in the kidney and its role is still being explored. However, 

much of what is known has been discovered in diseased states in the kidney caused by 

different insults such as DN, ischaemia/reperfusion injury (IRI), sepsis, cisplatin-induced 

AKI, and others. Findings in the diseased states support a role for the importance of 

PGC-1α in the recovery phase from these diseases and for restoring mitochondrial 

function, highlighting PGC-1α as a therapeutic target. Exercise and insulin stimulates an 

increase in PGC-1α gene expression  in skeletal muscle and in the heart, whereas fasting 

will increase PGC-1α gene expression in the liver 62,65. In brown fat and muscle cells, 

cold exposure activates PGC-1α 62. In cases of oxidative stress or nutrient depletion, the 

activation of MB helps rescue mitochondria from apoptosis66,67. In general, if the cell is 

in need of more energy PGC-1α is activated by deacetylation; it is inactivated by 

acetylation when energy levels are high62.  

 

In addition to AMPK and mTOR, other energy sensing pathways that stimulate MB 

include those involving sirtuins, cyclic adenosine monophosphate (cAMP), and cyclic 

guanosine monophosphate (cGMP) (FIG. 1.4). NAD-dependent protein deacetylase 

sirtuin-1 (also known as SIRT1) and SIRT3 are protein deacetylases that play a role in a 

variety of mitochondrial processes, including the ETC, TCA cycle, fatty acid oxidation, 

redox homeostasis, and MB 68. SIRT1 is activated by NAD+, and it can then activate 

downstream targets such as PGC-1α61. SIRT3 is a mitochondria-specific sirtuin and it can 
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be activated to stimulate MB 69. The stimulation of adenylate cyclase results in an 

increase in cAMP, which activates protein kinase A (PKA) and, in turn, phosphorylates 

cyclic AMP-responsive element-binding protein (CREB)62,70. CREB is also a 

transcriptional activator of PGC-1α and therefore can also stimulate MB. Finally, 

increased levels of cGMP induced by caloric restriction and the inhibition of 

phosphodiesterase can stimulate PGC-1α activation and MB in vivo71-73. Several of these 

pathways are being targeted to increase MB to correct mitochondrial defects. 

 

Mitochondrial dynamics and energetics 

 

Mitochondrial morphology must be retained for maximal ATP production. The processes 

of fission, fusion and mitophagy drive mitochondrial dynamics as they directly impact  

mitochondrial structure and morphology. Fission and fusion complement each other 

under different metabolic conditions to maintain mitochondrial morphology, and 

mitophagy removes damaged mitochondria from the network74. Sustaining mitochondrial 

dynamics is important for retaining mitochondrial energetics.  

 

 

[H3] Fission and fusion.  

 

Fission, the splitting of mitochondria into two, and fusion, the combining of two 

mitochondria, are complementary processes necessary for mitochondrial homeostasis. At 

steady state there is a balance between these processes (FIG. 1.5). The genetic deletion of 
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genes, the protein products of which are involved in fission or fusion, causes human 

disease. For example, dominant optic atrophy is characterized by loss of visual acuity due 

to mutations in the gene encoding the fusion protein dynamin-like 120 kDa protein (also 

known as OPA1), and mutations in the gene encoding the fission protein dynamin-1-like 

protein (DRP1) are lethal 75-80. Although there are exceptions, in general, studies have 

shown that there is an increase in oxidative phosphorylation in fusion and a decrease in 

oxidative phosphorylation in fission to match the energy demands of the cells81,82. 

Excessive fusion, like excessive fission, can also be associated with diseased states as 

seen in neurodegenerative diseases83. There are certain cell types that do not adhere to 

this trend such as adult cardiomyocytes and senescent cells. Mitochondria in adult 

cardiomyocytes have fragmented morphology and still maintain oxidative capacity 

whereas mitochondria in senescent cells remain elongated, characteristic of increased 

fusion84. Senescent cells in this elongated state show decreased bioenergetic capacity85,86.  

 

 

 

 

 



 22 

 

Figure 1.5: Mitochondrial dynamics: fission, fusion and mitophagy 

Mitochondria are dynamic organelles that need to maintain their morphology for the optimal production of 

ATP under different metabolic conditions and as part of a healthy network of mitochondria. Fission and 

fusion are two processes that are necessary for the maintenance of mitochondria morphology. Mitochondria 

fuse together via mitofusin 1 (MFN1) and MFN2 (outer membrane fusion) and the activation of dynamin-

like 120 kDa (OPA1) (inner membrane fusion). Fusion can occur to maintain ATP production or to 

redistribute mitochondrial proteins. Fission can isolate depolarized mitochondrion that might not contribute 

to the healthy network of mitochondria. The activation of fission causes the oligomerization of dynamin 1-

like protein (DRP1) on the mitochondrial outer membrane, where it is bound to receptors (namely 

mitochondrial fission 1 (FIS1) and mitochondrial fission factor (MFF)), forming a ring-like structure that 

mediates the separation of mitochondria. The network also isolates dysfunctional mitochondria for 

degradation by mitophagy via a well-studied PTEN-induced putative kinase 1 (PINK1)–PARKIN 

mechanism. Under adverse conditions such as hypoxia, however, mitochondria will be removed by a 

FUN14 domain-containing protein 1 (FUNDC1) or BCL2/adenovirus E1B 19 kDa protein-interacting 

protein 3 (BNIP3) and NIP3-like protein (NIX)-dependent mechanism of mitophagy. LC3, microtubule-

associated protein 1 light chain 3; Ub, ubiquitin. From: Bhargava, P. & Schnellmann, R. G. (2017) 

Mitochondrial energetics in the kidney Nat. Rev. Nephrol. doi:10.1038/nrneph.2017.107 
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Fusion is a two-part process that involves fusing the outer mitochondrial membrane, and 

subsequently the inner mitochondrial membrane, of two mitochondria. GTPases of the 

dynamin superfamily — Mitofusin-1 (MFN1), MFN2, and OPA1 — are key players in 

fusion. MFN1 and MFN2 are located on the outer mitochondrial membrane and 

necessary for outer membrane fusion, whereas OPA1 resides in the inner membrane and 

is important for inner membrane fusion. Fusion leads to elongation of mitochondria under 

physiological conditions, which can help to maintain oxidative phosphorylation87. These 

GTPases can play a role in mitochondrial energetics. For example, the deletion of MFN2 

in mice causes a deficiency in coenzyme Q, an electron carrier in Complex III, which 

causes a deficiency in the ETC and a decrease in ATP production88. Activation of these 

mitofusins and the cleavage of Opa1 can be regulated by changes in metabolism (see 

below).  

 

Mitochondrial outer membranes are tethered by MFN1 and MFN2 dimerization and 

external stimuli such as oxidative stress can enhance outer membrane fusion89. The 

activation of inner membrane fusion can be regulated by changes in metabolism at the 

sites of proteolytic cleavage of OPA190. OPA1 usually exists in a soluble long form and it 

can be cleaved by the ATP-dependent zinc metalloprotease YME1L or by the 

metalloendopeptidase OMA1, which is activated in response to a loss in membrane 

potential, to yield a soluble short form82. The soluble long and short forms are necessary 

for fusion to occur. During steady state, both can coexist to impart minor structural 

remodeling of mitochondria91,92 The activation of cleaved OPA1 requires the presence of 
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GTP and the availability of GTP to activate OPA1 correlates with ATP levels in the 

cell93,94. The exact mechanism by which outer membrane and inner membrane fusion 

events are coordinated is still under investigation.  

 

Fission is necessary to isolate damaged mitochondria from the network. The resulting 

daughter mitochondria may be unbalanced and the depolarized daughter mitochondrion is 

targeted for mitophagy95 to sustain a population of healthy mitochondria (see below). 

However, excessive fission, as seen in diseases such as DN and AKI, can have harmful 

effects on mitochondrial homeostasis long term96. In vitro studies have been conducted to 

elucidate the mechanisms that trigger mitochondrial fission. Cells exposed to an excess of 

nutrients or oxidative stress have fragmented mitochondria96. Fission is induced by the 

translocation of DRP1 from the cytosol to the mitochondrial outer membrane as a result 

of a loss in mitochondrial membrane potential. If the membrane potential is not restored, 

mitochondria will be degraded via mitophagy96. DRP1 oligomerizes on the outer 

membrane to form a ring like structure around the mitochondria that can cause scission of 

the membrane97. DRP1 can bind to several different receptors, such as mitochondrial 

fission 1 (FIS1), mitochondrial dynamics proteins MID49 and MID51, and mitochondrial 

fission factor (MFF) that reside on the outer membrane78. DRP1 accumulates on the outer 

mitochondrial membrane by binding to these receptors and mediates the scission of 

mitochondria, a GTP dependent process98. MID51 contains a cytosolic domain with 

affinity for ADP and GDP, and can therefore act as a metabolic sensor99,100. DRP1 

activity can be regulated by post-translational modifications such as phosphorylation, 

ubiquitylation, and sumoylation101, and several  signalling pathways have been shown to 



 25 

regulate the phosphorylation of DRP1102. For example, phosphorylation of DRP1 at 

Ser637 by PKA inhibits its GTPase activity and, thus, inactivates fission78,103. By 

contrast, dephosphorylation of DRP1 at Ser637 by calcium and calmodulin dependent 

serine/threonine-protein phosphatase 2B catalytic subunit alpha isoform or calcineurin 

(CaN) activates DRP1 and promotes fission104,105. The balance between fission and fusion 

to maintain a functional population of mitochondria is an intricate process and is still 

under investigation. However mitochondria, such as damaged mitochondria, that disrupt 

this balance between fission and fusion are removed from the network via mitophagy. 

 

 

[H3] Mitophagy. 

 

Mitophagy in most cell types is regulated by the PTEN-induced putative kinase 1 

(PINK1)–PARKIN mechanism that tags mitochondria for degradation106. PINK1, a 

kinase that is located in the mitochondria, is imported into the mitochondria and then 

degraded under physiological conditions107. As protein import is dependent on the 

mitochondrial membrane potential, mitochondrial depolarization results in the 

accumulation of PINK1 on the outer membrane; the PINK1-mediated phosphorylation of 

certain proteins here mediates the recruitment of the E3 ligase PARKIN108-111 to the outer 

membrane. PARKIN attaches ubiquitin to lysine residues in the N termini of 

mitochondrial outer membrane proteins, such as MFN1 and MFN2, which targets the 

mitochondria for degradation by autophagosomes112-116.  
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Several pathways regulate mitophagy (FIG. 1.5). Proteins that are important for 

autophagy, such as ULK1 and ULK2, can mediate mitophagy under different stimuli117. 

For example, when nutrients are sufficient, AMPK is inhibited and mTOR inhibits 

ULK1, suppressing mitophagy118. During nutrient deprivation, AMPK is activated and 

inhibits mTOR, allowing for ULK1 activation and mitophagy117 (FIG. 3). Under 

oxidative stress, AMPK can be activated and inhibit mTOR, again activating 

mitophagy52,118. A more direct role for AMPK in the activation of mitophagy has also 

been suggested119. The authors of this study proposed that AMPK directly phosphorylates 

MFF on Ser155 and Ser172, triggering fission and, subsequently, mitophagy120. 

However, external stimuli that trigger this pathway are unknown and more research is 

needed.  

 

Other stimuli, such as hypoxia, cause the serine/threonine-protein phosphatase PGAM5 

to dephosphorylate its substrate, the mitophagy receptor, FUN14 domain-containing 

protein 1 (FUNDC1)121. FUNDC1 then interacts with microtubule-associated protein 1 

light chain 3 (LC3), which mediates the formation of an autophagic membrane121,122. 

Alternatively, hypoxia can induce mitophagy through the actions of BCL2/adenovirus 

E1B 19 kDa protein-interacting protein 3 (BNIP3) and BCL2/adenovirus E1B 19 kDa 

protein-interacting protein 3-like - (NIX) via a mechanism that involves HIF-1α123,124. 

HIF-1α can directly induce the transcription of BNIP3 and NIX by binding to the 

promoter of the gene encoding BNIP3 and by recruiting other coactivator proteins to the 

gene encoding NIX. NIX and BNIP3 are transmembrane proteins located in the 

mitochondrial outer membrane and they can activate mitophagy by dissipating the 
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mitochondrial membrane potential and interacting with LC3 to deliver mitochondria to 

the autophagosome124-127. BNIP3 and NIX are also apoptotic regulators that can induce 

cell death or autophagy by increasing the production of ROS, binding to pro-apoptotic 

proteins of the BCL2 family, or by inhibiting the GTP-binding protein RHEB, an 

upstream activator of mTOR128-130. Previous studies suggest that crosstalk exists between 

both of the mechanisms that can regulate mitophagy124,131,132, although the mechanisms of 

this proposed crosstalk are unclear and additional studies are needed to determine the 

mechanisms that regulate mitophagy in renal diseases.  

 

 

[H1] Mitochondria and renal diseases  

 

Diseases such as Acute Kidney Injury (AKI) and Diabetic Nephropathy (DN) can cause 

an imbalance in mitochondrial homeostasis, negatively impacting mitochondrial 

energetics or the production of ATP. Much research has recently supported the role for 

mitochondrial dysfunction in a number of renal diseases such as CKD, diabetes, and 

glomerular diseases133. Although this dissertation will focus on AKI, we include both 

AKI and DN as examples of how mitochondrial dysfunction can negatively impact 

mitochondrial energetics to contribute to disease progression.  

 

 

[H2] Acute kidney injury 
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The outcome of AKI is renal dysfunction, as indicated by an increase in blood urea 

nitrogen (BUN) and serum creatinine, and/or reduced urinary output 134. However in the 

last two decades the criteria for identifying renal dysfunction caused by AKI has been 

continuously reassessed beginning with establishment of the risk, injury, failure, loss, and 

end-stage renal disease (RIFLE) criteria in 2004135. The AKI network (AKIN) included 

the absolute change in serum creatinine and modified the RIFLE criteria136. In recent 

years, both sets of criteria were combined to establish the 2012 Kidney Disease: 

Improving Global Outcomes (KDIGO) as shown in Figure 1.6137. This criterion describes 

three stages of AKI based on serum creatinine and urinary output. Although this criteria 

may prove to be more useful compared to those used in the past, ultimately, the treatment 

of AKI depends on its pathogenesis, cause of onset, and efficient early detection methods.  

 

The pathogenesis is complicated and the onset is multifactorial138,139. Over the years, the 

incidence of AKI has increased and the mortality rate for patients that require renal 

replacement therapy is over 60%134,140-143. Ultimately, unresolved AKI can cause long 

term damage to the kidney, increasing the risk of chronic kidney disease (CKD)144. The 

etiology of AKI can be categorized as prerenal, postrenal, and intrinsic AKI139. Prerenal 

AKI is reversible and a cause of dysfunctional blood flow and glomerular hydrostatic 

pressure resulting in decreased filtration capacity145. Post renal AKI is a direct result of 

an obstruction of urinary flow and requires an ultrasound or equivalent methods to 

identify the obstruction of one or both ureters145,146. The pathophysiology of intrinsic AKI 

can result from sepsis, ischaemia–reperfusion injury (IRI), exposure to nephrotoxic 

reagents and trauma147. AKI can also result as a secondary insult in response to decreased 
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cardiovascular function148,149. One of the main sites of injury in AKI is the proximal 

tubules, which is characterized by disrupted brush borders and tight junctions, cell 

sloughing, apoptosis, necrosis, and the subsequent backleak of filtrate across injured 

proximal tubular cells150.  

 

Current detection methods, although are useful, are not efficient or accurate for detecting 

AKI in its early stages, prior to when KDIGO standards are applied. Current methods 

include testing for Kidney Injury Marker-1, KIM-1, and neutrophil gelatinase-associated 

lipocalin (NGAL). Both proteins are released from proximal tubules whereas NGAL can 

also be released from the distal tubule and both can be measured in the urine. Expression 

for NGAL can be detected 3 hours after injury whereas KIM-1 can be measured up until 

24 hours after insult145. The release of KIM-1 and NGAL suggests that both proteins play 

a role in activating the immune system after injury145. KIM-1 triggers pathways necessary 

for the clearance of dead cells and remodeling of injured cells whereas NGAL can 

activate protective enzymes that prevent further damage to already injured cells151,152.  
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Class  GFR  UO  

Risk  ↑ SCr × 1.5 or ↓ GFR >25%  

<0.5 mL/kg/h × 6 

h  

Injury  ↑ SCr × 2 or ↓ GFR >50%  

<0.5 mL/kg/h × 12 

h  

Failure  

↑ SCr × 3 or ↓ GFR >75% or if baseline SCr 

≥353.6 μmol/L(≥4 mg/dL) ↑ SCr >44.2 

μmol/L(>0.5 mg/dL)  

<0.3 mL/kg/h × 24 

h or anuria × 12 h  

Loss of kidney 

function  Complete loss of kidney function >4 weeks    

End-stage 

kidney 

disease  Complete loss of kidney function >3 months    

aGFR, glomerular filtration rate; UO, urine output; SCr, serum creatinine. 

 

Figure 1.6: Risk, Injury, Failure, Loss of kidney function and End-stage kidney disease 

(RIFLE) classification. From: Hertzberg, D., Rydén, L., Pickering, J. W., Sartipy, U. & 

Holzmann, M. J. Acute kidney injury-an overview of diagnostic methods and clinical 

management. Clinical kidney journal 10, 323-331, doi:10.1093/ckj/sfx003 (2017). 
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Much research has been conducted on mitochondrial dysfunction as an initiator and 

contributor of renal injury and as a therapeutic target153,154 (Figure 1.7). Histologically, 

mitochondrial swelling and fragmentation are observed after diverse insults to the 

kidney154. A decrease in ATP production, an increase in ROS production, the release of 

cytochrome c, and the disruption of mitochondrial cristae are also observed, supporting a 

role for mitochondria in AKI 154. A decrease in ATP production and mitochondrial 

dysfunction has been documented in many animal models of AKI, including sepsis, and 

these outcomes result from the loss of mitochondrial respiratory proteins in proximal 

tubules 155-157. Furthermore, the loss of ETC proteins is persistent in the damaged kidney 

and this may contribute to the slow recovery of renal function after AKI155. 

 

In the ischemic kidney, a number of factors disrupt the oxidation and transport of fatty 

acids, causing an accumulation of fatty acids in the cytoplasm and, subsequently, 

contributing to the decrease in ATP production and mitochondrial 

energetics158,17,154,159,160. For example, cofactors such as NAD+ are necessary for fatty 

acid oxidation but a dysfunctional ETC is not able to regenerate NAD+ 161. IRI also 

decreases the activity of CPT117,162, the rate-limiting enzyme in the carnitine shuttle that 

transports fatty acids from the cytoplasm into the mitochondria162. This decreases the 

transport of fatty acids into the mitochondria and reduces β-oxidation162.  
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Figure 1.7: Mitochondrial injury and recovery during acute kidney injury (AKI) 

From: Emma, F., Montini, G., Parikh, S. M. & Salviati, L. Mitochondrial dysfunction in 

inherited renal disease and acute kidney injury. Nat Rev Nephrol 12, 267-280, 

doi:10.1038/nrneph.2015.214 (2016). 
 

 

 

 

 

 



 33 

After IRI increased levels of lactate and pyruvate and of hexokinase activity in the kidney 

were reported, suggesting that there is an increase in glycolysis after injury163,164. 

Increased levels of glycolytic enzymes were also detected in injured renal tubules after 

IRI165,166. Thus, the kidney can respond to injury by altering its metabolic substrates to 

maintain function167. Further studies are needed to explore how this increase in glycolysis 

affects mitochondrial function in the kidney and if this change in metabolism contributes 

to recovery following IRI long term.  

 

Another major contributor to the decrease in mitochondrial energetics seen in AKI are 

changes in mitochondrial dynamics168 (FIG. 1.8). The translocation of DRP1 into the 

mitochondrial outer membrane occurs shortly after kidney injury155,169. Activation of 

DRP1 in ischemic kidneys promotes mitochondrial fragmentation and apoptosis170. Loss 

of cristae structure is also observed in AKI, dissipating the mitochondrial membrane 

potential and halting ATP production154. Administration of a pharmacological inhibitor of 

DRP1, mdivi-1, protected kidneys from AKI by inhibiting mitochondrial fragmentation, 

supporting a role for altered mitochondrial dynamics in AKI169.  

 

Mitophagy is also activated after ischemic AKI. In mice where autophagy regulator 

autophagy-related (ATG) 7 and ATG5 were specifically knocked out in renal proximal 

tubules, mitochondrial dysfunction was greater in renal proximal tubules in response to 

IRI, as characterized by severe morphological changes, increased ROS production and 

apoptosis171-173. The activation of NIX and BNIP3 causes the release of ROS and of the 

pro-apoptotic proteins BAX and BAK, in hypoxic conditions113,174. Deletion of BAX and 
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BAK in mouse kidneys not only protected mice from ischemic AKI but also suppressed 

the release of Cytochrome c and mitochondrial fragmentation, preserving mitochondrial 

integrity175. The lack of ATG7, also exacerbated cisplatin-induced AKI in mice131,171. 

These studies suggest that there is crosstalk between the mechanisms of cell death and 

autophagy in the activation of mitophagy.  

 

The role of SIRT3 in cisplatin-induced AKI has also been explored. SIRT3 is a 

mitochondrial specific protein deacetylase with an active role in mitochondrial function 

and integrity176. An in vitro study using cisplatin-injured human renal proximal tubules 

showed that the overexpression of SIRT3 decreased the translocation of DRP1 from the 

cytosol to the mitochondrial outer membrane and thus, mitochondrial fission, providing a 

role for SIRT3 in regulating mitochondrial dynamics after AKI176. The deletion of SIRT3 

exacerbates injury in a cisplatin-induced AKI mouse model, supporting its role in the 

recovery from this disease176.  

 

In mouse models of AKI, the transcription and protein expression of PGC-1α are 

suppressed persistently but are eventually restored to basal levels in models of AKI 

recovery155. As PGC-1α can regulate the transcription of mitochondrial proteins, the level 

of these proteins is also decreased after AKI155,177.. In a model of septic AKI, global 

PGC-1α knockout mice showed a greater increase in BUN and creatinine levels than 

wild-type mice156. Renal specific PGC-1α knockout mice exhibited persistent AKI156. In 

contrast, the overexpression of PGC-1α in renal proximal tubule cells attenuates oxidant 
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injury in vitro 56. Together, these studies show that PGC-1α is necessary for the recovery 

of renal function in AKI.  

 

Investigations into the mechanisms by which PGC-1α regulates the recovery from AKI 

revealed a role for PGC-1α in NAD biosynthesis. Levels of nicotinamide, a precursor for 

NAD, were decreased after AKI in PGC-1α knockout mice and supplementation with 

nicotinamide reversed ischemic AKI178. We have reported that drugs/chemicals can 

upregulate MB by increasing PGC-1α protein expression in the recovery phase following 

IRI through two classes of G-protein coupled receptors (GPCRs): the β2 adrenergic 

receptors and the 5-hydroxytryptamine 1F receptor179,180   (see below). 
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Figure 1.8: Changes in mitochondrial morphology lead to tubular damage in acute kidney injury 

A healthy proximal tubule consists of an intact brush border with tight junctions and contains a network of 

mitochondria to maintain its function. After ischaemia–reperfusion injury (IRI), changes in mitochondrial 

function and morphology lead to mitochondrial dysfunction, and eventually to injured proximal tubules. In 

the early stages of acute kidney injury (AKI), a number of events may happen concurrently to cause a 

decrease in ATP production. These events include a decrease in the expression of carnitine O-

palmitoyltransferase 1 (CPT1) (causing fatty acid accumulation and decreasing β-oxidation for ATP 

production), a decrease in the expression of peroxisome proliferator-activated receptor-γ co-activator 1α 

(PGC1α) and an increase in the production of reactive oxygen species (ROS) (bidirectional arrows). 

Together, these events can trigger the activation and accumulation of dynamin 1-like protein (DRP1) on the 

mitochondrial outer membrane, promoting mitochondrial fragmentation and eventually cell death. The 

release of cytochrome c and mitochondrial DNA (mtDNA) from dysfunctional mitochondria causes an 

increase in mitophagy. Mitochondrial dysfunction can induce cell death in injured proximal tubules, 

resulting in the loss of nuclei and tight junctions and in disrupted brush borders. Apoptotic or necrotic 

tubules can lead to cell sloughing, as seen in the centre of the tubule. From: Bhargava, P. & Schnellmann, 

R. G. (2017) Mitochondrial energetics in the kidney Nat. Rev. Nephrol. doi:10.1038/nrneph.2017.107 
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 [H2] Diabetic nephropathy 

 

DN is the leading cause of end-stage renal disease (ESRD) in the United States181,182. It is 

characterized by an increase in hyperglycemia, albuminuria, the accumulation of 

extracellular matrix proteins and glomerular and tubular epithelial hypertrophy, as well as 

a reduced glomerular filtration rate (GFR)183. Mitochondrial energetics are altered in DN 

due to a combination of increased ROS and hyperglycemia184, both of which induce 

changes in the ETC that cause a decrease in ATP production and an increase in 

apoptosis184. In line with these observations, increased fission, mitochondrial 

fragmentation, and reduced levels of PGC-1α are all observed in the early stages of 

diabetes185,186. Structural changes in mitochondria correlate with the changes seen in 

energetics186.  

 

Hyperglycemia is the main contributing factor of DN (FIG. 1.9). Hyperglycemia 

increases the production of NADH and FADH2 by the TCA cycle, fueling the ETC. ROS 

released from the ETC can damage mtDNA, hindering the production of mitochondrial 

proteins187. Originally it was thought that the excess glucose in hyperglycemia creates 

hyperpolarized mitochondria that produce more ATP and release superoxide from 

complexes I and III, causing mitochondrial dysfunction184,188,189. However, administering 

antioxidants such as vitamin E and vitamin A did not attenuate the complications seen in 

patients with diabetes, suggesting that mitochondrial ROS may not be the primary 

mediator of mitochondrial dysfunction in DN190. Hyperglycemia can also increase the 

level of advanced glycation end (AGE) precursors, the activity of the protein kinase C 
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(PKC) and hexosamine pathways, which can contribute to mitochondrial dysfunction191. 

All three events cause deleterious effects that include increased fibrosis, thrombosis, 

oxidative damage, and abnormalities in vasculature and blood flow191.  

 

Hyperglycemia also causes the conversion of glucose to fructose via the polyol pathway 

in proximal tubules, leading to ATP depletion192. A role for endogenous fructose 

metabolism in the regulation of DN was suggested by a study showing that knocking out 

the gene encoding fructokinase (KHK-/- mice), the enzyme responsible for the conversion 

of fructose to fructose-1-phosphate, in mice, protected them from DN induced by 

streptozotocin193. Proximal tubules are a major site of fructokinase expression192,194 and 

ATP levels were increased and tubular morphology was improved in KHK-/- diabetic 

mice compared to wild type mice, suggesting a role for fructose metabolism in the 

pathogenesis of DN193.  

 

Mitochondrial fragmentation has been observed in proximal tubules in the early stages of 

diabetes 185, although the mechanisms that drive changes in mitochondrial dynamics in 

diabetes are still not clear. Fission dissipates the mitochondrial membrane potential, 

decreasing the production of ATP and promoting apoptosis195. Several studies have 

suggested a role for Rho-associated protein kinase 1 (ROCK1) signalling in activating 

fission in the diabetic kidney196. ROCK1 promotes the translocation of DRP1 to the 

mitochondria and triggers fission by phosphorylating DRP1196. Deletion of ROCK1 in 

streptozotocin-induced diabetes prevents fission, attenuates the increase in ROS 

production and restores bioenergetic function in the kidney196.  



 39 

 

 

In patients with diabetes, reduced levels of the fusion protein MFN2 were discovered197. 

In line with this finding, in kidneys from rats with streptozotocin-induced diabetes, the 

overexpression of MFN2 has a protective role in DN197. MFN2 overexpression decreased 

ROS production, decreased kidney volume and attenuated the pathological changes seen 

in the diabetic kidney197. Another protein that plays a role in fusion is called induced-in-

high glucose 1 (IHG-1). Studies have reported that IHG-1 is a regulator of mitochondrial 

dynamics and biogenesis in the diabetic kidney198. IHG-1 can enhance the ability of 

MFN2 to bind to GTP and it directly interacts with MFN2 to mediate fusion198. Inhibition 

of IHG-1 reduces ATP production and hinders fusion in vitro198. IHG-1 has also been 

found to stabilize PGC-1α activation199.  

 

Reduced levels of PGC-1α were also observed in diabetic rat kidneys200. The 

overexpression of PGC-1α in mesangial cells in vitro attenuated the pathophysiological 

changes induced by hyperglycemic conditions200. The decrease in  MB in diabetic rat 

kidneys is consistent with the translocation of DRP1 to the mitochondrial outer 

membrane and an increase in mitochondrial fragmentation200. It was also shown that the 

levels of PGC-1α mRNA and protein were reduced in podocytes cultured in 

hyperglycemic conditions compared to in podocytes cultured under normal glucose 

conditions, indicating a decrease in MB201.  
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Another study recently reported the importance of pyruvate kinase M2 in DN. In diabetic 

patients that have not developed DN, pyruvate kinase M2 (Pkm2) expression and activity 

is upregulated but not in DN patients202. Investigators observed a decrease in PGC-1α 

mRNA and mitochondrial mass in Pkm2-knockdown podocytes202. Activation of Pkm2 

attenuated the decrease in mitochondrial function and glycolytic flux in podocytes in 

vitro. In vivo studies showed that the activation of Pkm2 in mice attenuated the decrease 

in PGC-1α mRNA and increased the expression of OPA1, increasing fusion202. As such, 

activation of Pkm2 can reverse mitochondrial dysfunction and therefore renal 

abnormalities delaying the progression to DN. These studies show the need for more 

research, as targeting the balance between MB and dynamics could be a potential 

therapeutic target for DN.  

 

Mitochondrial dysfunction is a major contributor to the progression of renal disease, in 

particular AKI and DN, as described above and shows promise as a potential target for 

the treatment of renal disease.   
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Fig 1.9: Factors contributing to mitochondrial dysfunction in diabetic nephropathy Hyperglycaemia is 

the primary contributing factor to mitochondrial dysfunction in diabetic nephropathy. An increase in 

glucose level results in an increase in glycolysis, in turn activating the advanced glycation end product 

(AGE) pathway, the protein kinase C (PKC) pathway and the hexosamine pathway, which results in a 

decrease in ATP levels. Hyperglycaemia also activates the polyol pathway, which increases fructose levels 

and, consequently, decreases ATP levels. Mitochondrial fragmentation and swelling is observed in early 

diabetic nephropathy, leading to an increase in fission and the production of reactive oxygen species 

(ROS). The correlations between increased mitochondrial fragmentation and decreased ATP, and between 

ROS production and decreased ATP, are interdependent. Whether one causes the other is unclear, as 

depicted by the bidirectional arrows. Decreases in the levels of mitofusin 2 (MFN2) and peroxisome 

proliferator-activated receptor-γ co-activator 1α (PGC1α) correlate with, and might contribute to, the 

increase in mitochondrial fission observed in diabetic nephropathy, as indicated by the larger arrows 

pointing towards increased mitochondrial fission. Decreases in mitochondrial energetics that are caused by 

changes in mitochondrial morphology and hyperglycaemia lead to apoptosis in diabetic nephropathy. F6P, 

fructose-6-phosphate; G6P, glucose-6-phosphate; G3P, glyceraldehyde-3-phosphate. From: Bhargava, P. & 

Schnellmann, R. G. (2017) Mitochondrial energetics in the kidney Nat. Rev. Nephrol. 

doi:10.1038/nrneph.2017.107 
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[H1] Mitochondrial energetics and therapy  

 

[H2] Targeting AMPK signaling 

 

AMPK signalling has been implicated as a target for correcting metabolism and 

mitochondrial function, especially in the kidney. As mentioned before, AMPK is a 

metabolic sensor for ATP in the cell. High AMP/ATP activate AMPK to stimulate cell 

growth and cellular metabolism. The AMPK activator 5-aminoimidazole-4-carboxamide-

1-β-d-riboside (AICAR), prevents glomerulopathy and tubulointerstitial fibrosis in mice 

by stimulating fatty acid oxidation (FIG 1.10)203. AICAR also has a therapeutic effect in 

mouse renal IRI and can improve glucose utilization in obese, insulin-resistant rats204,205. 

The activation of AMPK by AICAR increased the level of PGC-1α levels and of 

mitochondrial proteins while reducing ROS production in a diabetic mouse model206.  

 

Several studies have suggested that there is crosstalk between AMPK activation and 

SIRT3 signalling 207,208. SIRT1 and SIRT3 are activated by NAD+. In cisplatin treated 

mice, SIRT3 gene and protein expression were decreased, tubular damage was increased, 

and the level of phosphorylated AMPK was decreased compared to control mice treated 

with saline.209. The administration of AICAR, to cisplatin treated mice attenuated the 

decrease in SIRT3 protein and gene expression, the level of phosphorylated AMPK, and 

tubular damage209. These studies provide a therapeutic role for targeting AMPK 

signalling in the kidney for improved outcomes in AKI and DN.  
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[H2] Targeting PPARs 

 

As PPARs can regulate cellular metabolism, mitochondrial function, MB, fatty acid 

oxidation and glucose homeostasis, targeting them for treatment for renal diseases could 

be beneficial.  

 

The activation of PPARs can play a role in ameliorating ischemic AKI210-212. As 

discussed previously, an accumulation of fatty acids and increased ROS production can 

decrease the efficiency of the ETC. Defects in fatty acid oxidation were attributed to the 

down regulation of PPARs during renal ischemia17. Fenofibrate, a drug used for treating 

dyslipidemia, activates PPARα (Figure 1.10)213. The downstream effect of targeting 

PPARα is the activation of lipoprotein lipase, which hydrolyzes triglycerides into 

glycerol and free fatty acids for metabolism213. PPARs can also stimulate MB; for 

example, compounds such as bardoxolone increase the level of PPARγ and NRF2 

mRNA, leading to MB214. However, the use of bardoxolone in clinical trials for type 2 

diabetes and stage 4 CKD showed adverse effects in patients including an increase in 

heart failure events and led to the termination of the trial215.  

 

PPARs agonists also show promise as treatment for DN based on their efficacy in animal 

models. Previously, studies treating db/db diabetic mice with fenofibrate showed that it 

decreased hyperglycemia and insulin resistance, potentially by correcting glucose 

homeostasis.216 Studies have also shown a decrease in fatty acids in the kidney upon 

treatment of a diabetic mouse model with fenofibrate, supporting its potential as a 
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therapeutic for DN217-219. These in vivo studies provide evidence that fenofibrate might be 

suitable to treat patients with DN. Indeed, fenofibrate decreased dyslipidemia and 

albuminuria in patients with type II diabetes and reduced further cardiovascular events220. 

Taken together, these studies confirm that PPARs have a role in DN and are a therapeutic 

target.  

 

[H2] Targeting G protein-coupled receptors 

 

Although a wide variety of GPCRs are expressed in the kidney, few studies correlate 

GPCRs with mitochondrial function in the kidney and other organs. We proposed that 

compounds that target two different classes of GPCRs — β-2 adrenergic receptors 

(β2AR) and 5-hydroxytryptamine receptor 1F (5-HT1F) receptors— can induce MB, 

restore mitochondrial function and stimulate the recovery of renal function following IRI. 

Formoterol, a β2AR agonist used to treat asthma and chronic obstructive pulmonary 

disease, stimulates MB and the expression of PGC-1α in renal proximal tubular cells  and 

in mice221. The administration of formoterol in a model of IRI AKI following renal injury 

accelerated the recovery of mitochondrial and renal function by six days221. LY344864 is 

a potent agonist for 5-HT1F  receptors and it induced MB in naïve mice and accelerated 

the recovery of MB and renal function in the same AKI model180. There are currently 

several agonists of GPCRs in clinical trials for the treatment of DN, such as atrasentan; 

however, whether they act by influencing mitochondrial energetics is unknown and 

requires further research. These studies provide a foundation for pursuing the targeting of 
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GPCRs, particularly β2AR and 5-HT1F, as a treatment for mitochondrial dysfunction in 

renal diseases.  

 

[H2] Using mitochondrial peptides 

 

Recently a family of peptides called Szeto-Schiller peptides (SS peptides) were found to 

specifically target cytochrome c activity in the ETC, enhancing its efficiency and 

increasing ‘state 3 respiration’ — that is, ATP production in the presence of excess 

substrates and ADP222. SS peptides are highly polar, water soluble tetrapeptides that can 

cross the blood–brain barrier and specifically target the inner mitochondrial membrane. 

The SS peptides do not cause mitochondrial depolarization upon entry, making these 

compounds highly promising for treatment. SS peptides prevent the peroxidation of 

cardiolipin, a phospholipid important for maintaining cristae formation, by cytochrome 

c222. Cytochrome c binds and oxidizes cardiolipin, disrupting cristae formation and 

detaching cytochrome c from the inner mitochondrial membrane223,224. The SS-31 peptide 

has been shown, in a variety of animal disease models, especially in AKI, to promote 

ATP recovery and cristae formation222. Pre-treatment of rats with SS-31 in vivo 

maintained cristae formation and prevented mitochondrial swelling of renal tubular 

epithelial cells222. Due to the success in animal models, SS-31, which is also known as 

Bendavia, is currently in clinical trials for the treatment of AKI (Figure 1.10)225. 
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Figure 1.10: Approaches to correct abnormal mitochondrial function in AKI and 

diabetic nephropathy 

From: Bhargava, P. & Schnellmann, R. G. (2017) Mitochondrial energetics in the kidney 

Nat. Rev. Nephrol. doi:10.1038/nrneph.2017.107 
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Soluble Guanylyl Cyclase  

 

Nitric oxide, NO, is a small gaseous, nonpolar molecule that has been studied since the 

1980’s. Robert Furchgott discovered that the relaxation of blood vessels needs 

endothelial cells and that smooth muscles cells alone could not exhibit these effects226. 

Furchgott proposed that endothelial cells are secreting endothelial derived relaxing factor, 

EDRF, which is necessary for blood vessel relaxation226. Meanwhile, while elucidating 

the mechanism of action of nitroglycerin, Ferid Murad discovered that nitroglycerin 

causes the release of NO and that this causes the relaxation of smooth muscle cells227. 

Ignarro showed that EDRF and NO are the same molecule, piecing together the work of 

Murad and Furchgott228. Simultaneous work by these scientists resulted in a Nobel Peace 

Prize in physiology in 1998.  

 

NO is produced by nitric oxide synthase (NOS). There are three types of NOS: 

endothelial (eNOS), neuronal (nNOS), and inducible (iNOS). NO is produced by 

oxidizing L-arginine to L-citrulline and requires Ca2+ as a cofactor, tetrahydrobiopterin 

(BH4), and NADPH to accomplish this task229. The main receptor for NO is Guanylyl 

Cyclase (GC). There are two forms of GC, soluble GC (sGC) and membrane bound 

particulate GC (pGC). sGC is found in the cytosol of most cell types and is the primary 

receptor for NO. The family of pGCs contain up to six identified isoforms termed as GC-

A to GC-F230. Although both sGC and pGC have the same function in terms of 

converting GTP to cGMP, for the remainder of this dissertation, the focus will be on 

sGC.  
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sGC is a 150kD heterodimer consisting of the alpha and beta subunits. There are two 

types for each subunit. Depending on the cell type, different combinations of sGC 

heterodimers may exist as α1β1, α1β2, and α2β1
231,232. The α1β1 heterodimer is found in 

most mammalian tissues including the heart and kidney. The sGC heterodimer consists of 

the heme-nitric oxide oxygen domain (H-NOX), PAS domain, coiled-coil domain, and 

cyclase domain, Figure 1.11233. The β1-subunit is the catalytic subunit of sGC and 

contains the heme moiety bound to the residue, Histidine-105, located in the H-NOX 

domain at the N terminus of the β1-subunit234. NO binds to the heme moiety in the β1-

subunit causing a conformational change in the enzyme resulting in a pentacoordinated 

Fe-NO complex235. This conformational change causes a break between Histidine-105 

and the heme moiety activating the enzyme and causing the conversion of GTP to 

cGMP236.  
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Figure 1.11: sGC domain structure. Shown are the approximate boundaries for each domain in sGC. 

Numbering is for the α1 and β1 subunits of human sGC. sGC, soluble guanylyl/guanylate cyclase. From : 
Montfort, W. R., Wales, J. A. & Weichsel, A. Structure and Activation of Soluble Guanylyl Cyclase, the 

Nitric Oxide Sensor. Antioxid. Redox Signal. 26, 107-121, doi:10.1089/ars.2016.6693 (2017) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 50 

NO-independent signaling 

 

NO-dependent mechanisms operate primarily through sGC and pGC as described above 

and they involve cGMP to elicit most their effects. However, NO-independent 

mechanisms also exist and play a prominent role in disease. The function and activity of 

many proteins can be regulated by post-translational modification. The presence of NO 

can modify many proteins thereby regulating their function. NO can modify free thiols on 

cysteine residues in a process called S-nitrosation/nitrosylation237,238. As shown in the 

Figure 1.12, proteins can undergo S-nitrosation or S-nitrosylation as well as be 

denitrosylated, or removal of the NO group on the thiol239. Glutathione and thioredoxin 

systems are necessary for these processes. S-nitrosoglutathione (GSNO) reductase 

(GSNOR) denitrosylates proteins240,241. GSNOR may potentially play a role in regulating 

blood pressure. Inhibitors of GSNOR cause vasodilation and deletion of GSNOR causes 

an overall decrease in vascular resistance242-244. Although S-nitrosation occurs in normal 

physiological conditions, excessive oxidative or nitrosative stress can cause s-nitrosation 

of sGC. For example, treatment with nitroglycerin, in vivo, was shown to induce S-

nitrosation of sGC245. This can decrease activity of sGC and desensitize sGC to 

surrounding NO. S-nitrosation of sGC can serve as a negative feedback loop and 

therefore decrease cGMP production246. On the other hand studies have shown that S-

nitrosation may occur on cGMP phosphodiesterases, enzymes that degrade cGMP, and 

inhibit its activity therefore increasing cGMP levels239.  
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Figure 1.12: The roles of cGMP and S-nitrosylation in NO-based signaling (A) and enzymatic protein 

denitrosylation mediated by the S-nitrosoglutathione reductase (GSNOR) and thioredoxin (Trx) systems 

(B). (A) NO synthase (NOS) synthesizes NO, which may activate soluble guanylyl cyclase and thereby 

enhance production of cGMP (left) or subserve protein S-nitrosylation (right). The cGMP-dependent 

pathway is deactivated by cGMP-phosphodiesterase (PDE), which hydrolyzes cGMP to GMP (PDE may 

also be activated allosterically by cGMP). The SNO-based mechanisms are dynamically regulated via S-

nitrosylation and denitrosylation of a multitude of cysteine-containing proteins. In contrast to the multiple 

elements regulated by S-nitrosylation, the cGMP-based signaling system relies primarily on the cGMP-

dependent protein kinase, PKG. (B) Proteins undergo reversible S-nitrosylation and denitrosylation 

(center). Denitrosylation mediated by GSNOR is depicted on the left. Transnitrosylation of glutathione 

(GSH) by S-nitrosylated proteins generates GSNO and native protein. GSNO undergoes NADH-dependent 

reduction by GSNOR to generate glutathione S-hydroxysulfenamide (GSNHOH), which can undergo 

further reaction with GSH to generate oxidized glutathione (GSSG). The redox cycle is completed by 

reduction of GSSG to GSH via GSSG reductase. Denitrosylation mediated by the thioredoxin (Trx) system 

is depicted on the right. The active site dithiol motif (CXXC) of Trx1 (cytoplasmic) or Trx2 

(mitochondrial) undergoes oxidation coupled to denitrosylation of SNO substrate. Oxidized Trx is reduced 

by the selenoprotein thioredoxin reductase (TrxR), which employs the reducing power of NADPH to 

regenerate active Trx. From: Lima, B., Forrester, M. T., Hess, D. T. & Stamler, J. S. S-nitrosylation in 

cardiovascular signaling. Circ. Res. 106, 633-646, doi:10.1161/circresaha.109.207381 (2010). 
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sGC and the Heart 

 

Dysfunction in the eNOS/sGC/PKG pathway has been discovered and investigated as the 

cause in many diseases such as acute heart failure (HF), DN, ischemic diseases, 5/6 

nephrectomy, anti-thy1 glomerulonephritis and others247-249. The amount of NO in the 

microenvironment of these diseases has pushed investigators to design and investigate 

compounds that can efficiently target sGC and maintain cGMP production. In the case of 

HF, there is an increase in oxidative stress that can affect the redox state of sGC250. The 

increase in ROS creates a toxic environment in the endothelium by scavenging for 

surrounding NO and forming peroxynitrite (ONOO-)251. The resulting ONOO- 

production occurs at faster rate than the rate for GPx to neutralize ONOO- levels, leaving 

the endothelium damaged252. ONOO- can damage DNA and modify proteins inhibiting 

their function, as well as deplete GSH levels needed for GPx function252. Originally, NO 

donors such as nitroglycerin were administered to combat the decrease in NO 

bioavailability and hopefully still stimulate cGMP production and therefore 

vasorelaxation of blood vessels253. However, administering nitroglycerin increased 

ONOO- levels and decreased downstream PKG signaling subsequently decreasing 

vasorelaxation254.  

 

To target cGMP production in environment with low NO bioavailability, investigators 

discovered the first sGC modulator, YC-1255. YC-1 could increase cGMP production 

efficiently and was used as a lead compound for the design of other modulators256. There 

are two classes of sGC modulators, sGC stimulators and activators. sGC stimulators such 

as Riociguat, target the NO-sensitive/reduced state of sGC sensitizing sGC to endogenous 
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levels of NO that may still be produced in the toxic environment. sGC activators such as 

Cinaciguat, target two forms of sGC: the NO-independent/oxidized state of sGC and 

hemeless sGC.  The balance between reduced and oxidized sGC is complex and can shift 

towards oxidized sGC in these diseases. Excessive ROS in the endothelium can oxidize 

the heme moeity in sGC from its ferrous state to ferric and possibly remove the heme 

from the catalytic subunit completely250,257,258. The hemeless state of sGC can then be 

targeted for degradation259.  Several investigators have studied the role of both riociguat 

and cinaciguat in cardiovascular diseases260,261. As a result, currently riociguat is in 

clinical trials for pulmonary arterial hypertension (PAH) as ADEMPAS and cinaciguat 

for HF262,263. Both drugs have also shown to play a role in renal diseases such as CKD 

and those results are summarized in several reviews264,265.  
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cGMP Targets 

cGMP phosphodiesterases 

 

Figure 1.13, shows a detailed diagram with cGMP and its three classes of targets. Both 

cGMP and cAMP compete for the allosteric binding sites on phosphodiesterases (PDEs). 

There are a total of 12 types of PDEs where certain PDEs such as PDE5, PDE6, and 

PDE9 have a higher affinity for cGMP than cAMP266. The lack of cGMP production in 

certain diseased states has raised the question for the role in PDE inhibition267. Sildenafil 

is a PDE5 inhibitor that has shown to play a role in recovery in renal I/R and to elicit 

cardioprotective effects in cardiac I/R73,268.  
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Figure 1.13: cGMP-PKG signaling pathway 

From: Kyoto Encyclopedia of Genes and Genome (KEGG)  04022 02/15/17, copyright from Kanehisa 

Laboratories, https://www.genome.jp/kegg-bin/show_pathway?oas04022.  
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cGMP-Gated ion channels 

 

The second class of targets is cyclic nucleotide gated ion channels (CNGs). CNGs can by 

targeted by cGMP and cAMP, however their distributions varies and are commonly 

associated with sensory signal transduction. There are at least three classes of CNGs: 

CNG-1, CNG-2, and CNG-3. Although CNGs are primarily associated with 

photoreceptors and olfactory neurons, they are expressed in a wide variety of organs such 

as the brain, heart, colon, pancreas, lung, and kidney269. CNG-1 and CNG-3 expression 

exists in the kidney269. CNGs found in rod and cone channels are activated by cGMP 

whereas olfactory channels are activated by both cGMP and cAMP269. CNGs expressed 

in other organs play a role in regulating permeability to calcium and monovalent ions 

such as Na+ and K+.  

 

CNGs are non-selective ion channels that allow for the passage for both monovalent and 

divalent ions270. Their activity can be partly regulated by post-translational modifications 

such as phosphorylation and by the Ca2+ binding protein, calmodulin270,271. CNGs are not 

constitutively active and depend on the concentration of cGMP in the cell to stabilize a 

response270. CNGs in the kidney were found to contain characteristics in terms of 

activity, similar to CNGs in photoreceptors272,273. Upon further investigation, it was 

discovered that the cDNA for both types of CNGs share 99% nucleotide sequence 

identity and whatever minimal differences observed in cDNA, resulted in differences in 

function273.  
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Specific examples of CNGs in the kidney include epithelial sodium channels (ENaC) and 

Na+K+ATPase pumps274. ENaCs are responsible for Na+ reabsorption where upon 

binding cGMP can mediate effects of natriuresis, the excretion of sodium, and diuresis, 

the process of increasing urine volume182,275,276. Another CNG commonly expressed in 

the kidney as well as other organs is called Aquaporin-1 (AQP1), an osmotic water 

channel277. cGMP directly binds to the C-terminus of AQP1 and subsequently activating 

it and increasing water uptake277.  

 

Protein Kinase G 

 

The third class of cGMP targets is called protein kinase G (PKG), a 

serine/threonine kinase. There are two types of PKG: PKGI and PKGII. PKGI can be 

further characterized into two isoforms, PKG1a and PKG1b. Both isoforms are produced 

as a result of alternative splicing of the PKG1 (prkg1) gene and differ in the N-terminal 

amino acids278-281. Both isoforms exist in a variety of tissues however the proportion of 

expression of both, is cell type dependent281-283. PKG1a has a higher affinity for cGMP 

than PKG1b by 10 fold282,284,285. Many studies have suggested both isoforms sharing 

substrates however, this depends on the basal level of cGMP produced in the cell. If high 

amounts of cGMP are available in the cell and PKG1a is activated, PKG1b 

phosphotransferase activity can be activated as well. PKG1a will be the focus of this 

dissertation regarding PKG266.  
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PKG1 consists of a catalytic domain and a regulatory domain. The catalytic domain of 

PKG contains a subdomain that binds to Mg2+ and ATP as well as another subdomain that 

binds to substrates. cGMP binds to two allosteric sites in the regulatory domain and 

increases catalytic activity of PKG from 3 to 10-fold280,281,284,286,287. The regulatory 

domain contains an autoinhibitory domain and an extended leucine zipper region 

(ZZZZZ).  In the autoinhibitory subdomain, catalytic residues directly bind to residues in 

the autoinhibitory domain, suppressing catalytic activity in the absence of cGMP279,288. 

The autoinhibitory domain contains an amino acid sequence that is phosphorylated by the 

catalytic domain, although this residue cannot be phosphorylated266. This sequence, 

59TRQAIS63, is called a pseudosubstrate sequence, and the pseudo phosphorylation 

occurs on alanine266. Also in the catalytic domain, the leucine zipper region allows for 

dimerization of the PKG monomers and allows for specific targeting of certain proteins 

called cGMP-dependent protein kinase-interacting proteins (GKIPs)266. These 

interactions between PKG1 and GKIPs can help localize PKG to different parts of the 

cell and bind to its substrates266. Several examples of possible substrates of PKG1 include 

ATP-sensitive K+ channel289, MEKK1290, RhoA291-293, and Vasodilator-stimulated 

phosphoprotein (VASP)294,295. An updated list of potential substrates can be found in in-

depth reviews266,280.  

 

Although there are many substrates that are directly phosphorylated by PKG, there are 

several important proteins that can be considered as downstream targets that are 

associated with PKG. Much of the literature has shown a correlation between PKG and 

these associated downstream targets. These downstream targets include: AKT, ERK1/2, 
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Glycogen Synthase Kinase 3 β (GSK3β), and p38266,268,296-299. The following chapters 

will discuss the effect of ERK1/2 and p38 in detail.  
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[H1] Conclusions 

 

Mitochondrial homeostasis involves a network of cellular processes that regulate ATP 

production and the disruption of any of these processes can result in mitochondrial 

dysfunction and organ damage. Although much is known about mitophagy, fission, 

fusion, and MB, the precise role of these processes in renal disease remains to be 

determined. However, it is clear that mitochondrial dysfunction is common and occurs 

early in AKI and DN. Furthermore, the absence of recovery of mitochondrial function 

after diverse insults may lead to the continued impairment of renal function that leads to 

chronic renal disease. Because renal cell repair and the recovery of renal function is 

dependent on ability of mitochondria to produce ATP, restoring mitochondrial function 

might reverse cellular injury and restore renal function. Collectively, these studies 

corroborate the need to target mitochondrial homeostasis to reverse the state of disease, 

restore mitochondrial function and stimulate organ repair or prevent further decreases in 

organ function.  

 

Nisoli and group first suggested the role of NO in inducing mitochondrial biogenesis 

(MB)71. Moreover, this induction was also cGMP-dependent. Since this finding, there 

have been numerous studies in many different cell types regarding the cGMP-dependent 

pathway of inducing MB.  In the kidney specifically, although many correlations have 

been made between cGMP and MB, the pathway is still undefined. Here, we will 

elucidate how sGC/cGMP signaling regulates MB in the renal proximal tubule cells and 

in renal I/R.   
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Chapter Two: Characterization of Soluble Guanylyl Cyclase Signaling in the 

suppression of Mitochondrial Biogenesis in Ischemia/Reperfusion-Induced Acute 

Kidney Injury 
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Introduction 

 

Soluble Guanylyl Cyclase (sGC) is the most common receptor for nitric oxide (NO) 

converting GTP to cyclic GMP (cGMP). sGC is a 150 kD heterodimer consisting of the 

alpha 1 and beta 1 subunits where the beta 1 subunit is the catalytic subunit and contains 

the heme moiety bound to Histidine 105234. The heme moiety predominantly exists in its 

reduced or ferrous form, Fe2+. Historically, sGC signaling begins with the generation of 

nitric oxide (NO) by one of three nitric oxide synthases (NOS): inducible, endothelial, 

and neuronal. The generation of NO by NOS occurs by oxidizing L-arginine to L-

citrulline300. NO binds to the heme moiety, inducing a conformational change in the 

enzyme and creating a pentacoordinated Fe-NO complex235. This conformational change 

induces a break between Histidine 105 and the bound heme moiety, subsequently 

activating the enzyme for the conversion of GTP to cGMP236. Although picomolar 

amounts of NO can activate sGC, in the presence of excessive NO sGC activity can 

increase by 100-fold301. The resulting production of cGMP can activate cGMP-gated ion 

channels, phosphodiesterases (PDEs), and protein kinase G (PKG). Commonly discussed 

effects of sGC signaling include vasodilation, vascular smooth muscle relaxation, and 

platelet aggregation, and potentially regulating mitochondrial biogenesis (MB)71.  

 

Conditions such as oxidative stress can negatively affect sGC signaling by introducing 

reactive oxygen species (ROS) that can scavenge for NO causing decreased downstream 

signaling. Conditions of excessive ROS can cause the oxidation of the ferrous heme in 

sGC, to ferric (Fe3+), allowing for inefficient production of cGMP. If conditions of 

excessive ROS persist, sGC can lose the heme moiety from its catalytic site creating the 
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heme-free state and rendering sGC completely inactive and vulnerable to degradation281. 

ROS can also target eNOS by inhibiting their function and decreasing overall NO 

bioavailability302,303. As a result, two classes of drugs were designed to 

pharmacologically target the reduced form of sGC or heme-dependent state and the 

oxidized form or heme-independent state. sGC stimulators, such as riociguat, target the 

reduced state of sGC by further sensitizing sGC and synergistically acting with 

endogenous NO to increase sGC activity304. sGC activators, such as cinaciguat, bind to 

the heme pocket and provide an additive effect to NO by replicating the NO-heme 

complex needed for activation259. Decreased NO bioavailability and perturbed sGC 

signaling has been discovered in many diseases such as cardiovascular disease, heart 

failure, ischemia and reperfusion injury (I/R), stroke, and pulmonary and systemic 

hypertension261,305-308.  In the kidney specifically, a role for sGC signaling has been 

suggested and shown in models of chronic kidney disease, anti-thy1 glomerulonephritis, 

5/6 nephrectomy, type-1 and type-2 diabetes, and I/R-induced AKI.  

 

Many studies, have shown and supported the role for mitochondrial dysfunction in the 

pathogenesis of I/R-induced AKI61,133,154,309,310. Moreover, some studies have suggested 

that cGMP can regulate MB71,72,311. There are two ways of directly sustaining cGMP 

production. The first is to activate sGC and the second is to inhibit the degradation of 

cGMP by targeting PDEs. PDE5, PDE6, and PDE9 have a higher affinity for targeting 

cGMP than cAMP for degradation266. We have previously shown in vivo, that targeting 

cGMP production by administering a PDE5 inhibitor, Sildenafil, attenuated renal 

dysfunction and the decrease in MB73. However, the role of sGC in regulating MB after 
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I/R is still under investigation. Here we characterize sGC signaling in the early phase of 

I/R in vivo by focusing on the first 24 hours of injury, the peak of maximal renal 

dysfunction.   
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Material and Methods 

Naïve mice studies 

Mice were sacrificed at 8 weeks of age and tissues were harvested and immediately flash 

frozen. 

 

Ischemia-reperfusion (I/R)-induced AKI mouse model 

Mice were subjected to bilateral ischemia where both renal pedicles were clamped for 18 

min at 37°C and then removed to reintroduce blood flow as previously described.155 

Sham mice were operated on in the same manner except for no clamping. Mice were 

sacrificed 24 h after injury and blood was collected via retro-orbital bleed. All tissues 

were flash frozen immediately.  

 

In vivo sGC activity 

When sacrificing mice, approximately half of the renal cortex is immediately isolated and 

put in 1mL of ice cold PBS and vortexed for 1 minute. The cold PBS is removed and the 

tissue is submerged in 500uL of lysis buffer including 50mM Tris-HCl, 1mM EDTA, 

1mM dithiothrietol and 2 mM phenylmethyl sulphonyl fluoride (PMSF) at pH 7.6. Tissue 

was homogenized using a dounce homogenizer and the mixture was centrifuged at 

20,000g for 20 min at 4C. Supernatants were collected and protein was measured. 

Reaction was prepared as previously described.250 Briefly, 50ug of protein was incubated 

with 100uL of reaction mixture containing 50mM Tris-HCl at pH:7.5, 7.5mM creatine 

phosphate, 0.2 mg/mL creatine phosphokinase, 1mM GTP,  4 mM MgCl2, 0.5 mM 

IBMX, and 1mM L-NAME with either 10uM riociguat, 10uM cinaciguat, 200nM mahma 
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nonoate at 37C. The reaction was terminated with the addition of 400uL of .05M of HCl.  

Products were flash frozen and stored at -80C until ready to measure cGMP by cGMP 

Elisa kit from Cayman Chemical.  

 

qRT-PCR 

RNA was isolated from renal cortical tissue using Trizol (Life Technologies). cDNA was 

produced using the iSCRIPT Advanced cDNA Synthesis Kit (Biorad) according to the 

manufacturer’s protocol. SsoAdvanced Universal SYBR Green Supermix reagent 

(BioRad) was used with the generated cDNA according to manufacturer’s protocol. 

mRNA expression was determined using a 2-triangle triangle CT method where mouse 

actin RNA was used for normalization.  

 

Immunoblot Analysis 

Half of frozen renal cortical tissue was isolated and put in RIPA buffer containing 50 mM 

Tris-HCl, 150 mM NaCl, 0.1% SDS, 0.5% sodium deoxycholate, 1% Triton X-100, pH 

7.4 with phosphatase inhibitors (1:100), 1mM sodium orthovanadate, and 1 mM sodium 

fluoride. Tissue was pulverized using a hand held homogenizer and sonicated for 

approximately 10 seconds. Tissue was centrifuged at 14,000 g for 15 min at 4C. 

Supernatants were removed and protein was measured using a BCA assay.  

 

Equal protein was loaded onto 4-15% SDS page gels and separated by gel 

electrophoresis. Protein was transferred onto nitrocellulose membranes and blocked in 

5% milk or 5% bovine serum albumin dissolved in TBST. Membranes were submerged 
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in primary antibodies overnight with rotation. The next day membranes were washed in 

TBST 3 times for 5 minutes each and were rotated in appropriate horseradish peroxidase–

conjugated secondary antibody. Membranes were visualized using enhanced 

chemiluminescence (Thermo Scientific) and the GE ImageQuant LAS4000 (GE Life 

Sciences). Optical density was determined using the ImageJ software from NIH.  

Measuring tissue cGMP 

Renal Cortical tissue was isolated from one whole kidney and cGMP was measured 

according to manufacturer’s protocol (Cayman Chemical).  
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Results 

sGC activity in naïve mice 

We sought to examine sGC activity in the kidneys of naïve mice.  We measured sGC 

activity in fresh renal cortex homogenates as previously described250 and determined 

linearity of the reaction in terms of homogenate protein content and reaction time. Frozen 

homogenates exhibited a marked reduction in sGC activity (data not shown). The NOS 

inhibitor L-NAME (1mM) was included in all to assays to prevent NO formation. cGMP 

formation was linear between 0.5 and 2 μg/μl and between 5 and 15 min (Fig. 2.1A).  

Using a homogenate protein concentration of 1 μg/μl and a 5 min reaction time, we added 

the NO donor, mahma nonoate (200nM) and observed a 3.4 fold increase in sGC activity 

compared to vehicle control (Figure 2.1B).  

 

To determine the effects of sGC activators and stimulators on sGC activity, we added 

riociguat (10 μM) or cinaciguat (10 μM), and observed 12-fold and 18-fold increases 

respectively (Figure 2.1B). We expected to see a robust increase in sGC activity with the 

addition of riociguat, because the reduced form of sGC predominates in naïve mice. 

Alternatively, cinaciguat targets only the oxidized/hemeless state of sGC, a small pool of 

oxidized sGC that exists in naïve mice312. Taken together, these results validate our assay 

for measuring sGC activity in the renal cortex and reveals marked increases in cGMP in 

responses to riociguat and cinaciguat.   
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Figure 2.1: sGC activity in naïve mice. Naïve mice at 8-10 weeks were sacrificed and 

renal cortical tissue was immediately isolated for determination of sGC activity. A) sGC 

activity determined in naïve mice on a protein and time dependent scale. B) sGC activity 

in naïve mice. Homogenates are dosed with 200nM mahma nonoate, 10uM riociguat, and 

10uM cinaciguat. N=11-12. * represents significance compared to L-NAME 1mM 

(p<0.05)  
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sGC expression after I/R 

To confirm that mice subjected to I/R exhibited renal dysfunction at 24 h, serum 

creatinine was determined. Serum creatinine increased 11-fold to 1.8 mg/dL in I/R mice 

compared to Sham mice and renal cortical protein expression of kidney injury marker-1 

(KIM-1) and NGAL was observed in I/R mice (Figure 2.2A). 

 

To begin characterizing sGC signaling after I/R, we measured renal cortical protein and 

mRNA expression of the alpha 1 and beta 1 subunits 24 h after injury. There were no 

significant changes in protein expression of the alpha 1 and beta 1 subunits between sham 

and I/R mice (Figure 2.2C,E). Only mRNA expression for the alpha 1 subunit was 

significantly decreased in I/R mice compared to sham mice (Figure 2.2B).  
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Figure 2.2: sGC expression after I/R A) Serum Creatinine of I/R mice compared to 

Sham in mg/dL. Representative blot of KIM-1 and NGAL. B and D) mRNA expression 

of Alpha 1 and Beta 1 subunits following I/R. C and E) densitometry analysis of alpha 1 

and beta 1 subunits following I/R. Data are represented as mean S.E., N=6-7. * represents 

significance compared to Sham (p<0.05)  
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NO-responsive/reduced sGC decreases after I/R 

We then detected sGC activity in the renal cortex 24h after I/R in the presence of 

riociguat and cinaciguat (Figure 2.3A). We found that basal sGC activity in I/R 

homogenates (I/R+LN) was significantly increased by 1.4 fold compared to Sham 

homogenates (Sham+LN). Responses to riociguat and cinaciguat were all significant 

compared to Sham+LN.  

We wanted to examine this data in a different manner to assess the individual 

changes between mice. sGC activity in Sham and I/R homogenates treated with riociguat 

and cinaciguat were normalized to their respective basal activities (Figure 2.3B). For 

example the value for I/R+cinaciguat was normalized back to the I/R+LN value for that 

mouse. sGC activity in Sham homogenates dosed with riociguat and cinaciguat were 

increased 18.3-fold and 21.1-fold compared to Sham+LN, respectively. However, sGC 

activity in I/R homogenates also dosed with riociguat and cinaciguat, showed a 9.5-fold 

and 17-fold increase compared to I/R+LN respectively. Using this approach, we observed 

a significant decrease in sGC activity in I/R+riociguat compared to Sham+riociguat. 

There was no difference between Sham+cinaciguat and I/R+cinaciguat groups. This 

indicates a decreased presence of the NO-responsive/reduced sGC after I/R. 

Although we have found an increase in sGC activity after I/R, we measured 

cGMP in the renal cortex of sham and I/R mice (Figure 2.3D). We observed a significant 

decrease in cGMP 24 h after I/R compared to Sham. The decrease in the reduced state of 

sGC is consistent with the decrease in renal cGMP. Oxidized sGC retains basal activity, 

however, it does not respond to NO resulting in a decrease in renal cGMP, as we have 

shown.  
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Figure 2.3: NO-responsive/reduced sGC decreases after I/R A) sGC activity 24hr 

after I/R. B) Normalization of sGC activity to their respective L-NAME controls. * 

represents significance compared to Sham+riociguat C) Renal cortical cGMP 24h after 

I/R. Data are represented as mean S.E., N=6-12. * represents significance compared to 

Sham+LN/Sham for 3a (p<0.05)  
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PKG activation increases after I/R  

An increase in cGMP production can activate cGMP-gated ion channels, protein kinase G 

(PKG), and phosphodiesterases. At 24 h after I/R, PKG1α protein and mRNA were not 

affected (Figure 2.4C-D). Here we show that an increase in sGC activity activates PKG, 

24 h after I/R (Figure 2.4A-B). We determined the activation of PKG by measuring the 

phosphorylation of vasodilator-stimulated-phosphoprotein, VASP, a target of PKG295.  

We found an increase in the phosphorylation of VASP and in total VASP after I/R as 

shown in Figure 2.4A-B.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 75 

 

 
Figure 2.4: PKG activation increases after I/R A) Representative blot of PKG-1a, p-

VASP, Total VASP, and Actin showing Sham and I/R.  B) Densitometry analysis of p-

VASP. C) Densitometry analysis of PKG-1a. D) mRNA expression of PKG-1a following 

I/R. Data are represented as mean S.E., N=6-7. * represents significance compared to 

Sham for (p<0.05).  
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PKG-associated downstream targets increase after I/R 

Numerous studies have shown a trend between PKG activation and an increase in p38 

and/or ERK1/2 depending on the cell type299. We measured phosphorylation of p38 and 

found that it was increased by 2.2-fold in I/R compared to Sham mice (Figure 2.5A-B). 

We measured ERK1/2 phosphorylation and found a 3-fold increase in I/R compared to 

Sham (Figure 2.5A and C).  

 

Previous reports from this lab have elucidated the role of ERK1/2 phosphorylation in our 

model of I/R-induced AKI313,314. We reported that 3 h after I/R, ERK1/2 phosphorylation 

increases, subsequently increasing FOXO1 phosphorylation, a direct target of ERK1/2. 

Interestingly, phosphorylated p38 also targets FOXO1315. We measured FOXO1 

phosphorylation and found a significant decrease in p-FOXO1 at 24hr after I/R (Figure 

2.5D).   
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Figure 2.5: PKG-associated downstream targets increase after I/R A) Representative 

blot of p-ERK, Total ERK, p-P38, Total P38, pFOXO1, Total FOXO1, Actin. B) 

Densitometry analysis of p-P38 following I/R. C) Densitometry analysis of pERK 

following I/R. D) Densitometry analysis of p-FOXO1 following I/R. Data are represented 

as mean S.E., N=6-7. * represents significance compared to Sham for (p<0.05). 
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MB is decreased 24 h after I/R 

We previously reported observing a decrease in MB 24 h after I/R. mRNA and protein 

expression of mitochondrial proteins such as NDUFB8, COX1, and ATP Synthase β 

were decreased after 24 h after I/R155. We confirmed the decrease in MB in our model by 

measuring PGC-1α. We found a significant decrease in mRNA expression (Figure 2.6a) 

and protein expression of PGC-1α after I/R (Figure 2.6b).  
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Figure 2.6: MB is decreased 24 h after I/R A) Representative blot of PGC-1α and 

Actin. B) Densitometry analysis of PGC-1α following I/R. C) mRNA expression of P 

PGC-1α. Data are represented as mean S.E., N=6-7. * represents significance compared 

to Sham for (p<0.05). 
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The effect of Trametinib on sGC/cGMP/PKG pathway in I/R   

Based on our previous studies concerning the role of ERK1/2 in the early phase of I/R 

and as a potential mediator between PKG activation and decreased MB, we explored the 

effect of ERK1/2 inhibition on sGC signaling. To inhibit ERK1/2, we administered an 

inhibitor targeting a protein upstream of ERK1/2 called MEK1/2. Our previous studies 

show that administration of trametinib, a MEK1/2 inhibitor, effectively attenuated renal 

dysfunction by attenuating serum creatinine levels as well as MB at 3 h. We focused on 3 

h after injury, as events at this point play a major role in the resulting maximal 

dysfunction at 24 h. We measured the phosphorylation of eNOS and PKG activation at 3 

h with and without trametinib in Figure 2.7. We found a significant increase in 

phosphorylation of eNOS at ser1177 at 3 h after I/R and trametinib attenuated this 

increase (Figure 2.7A). At 3 h, phosphorylation of VASP is trending upwards and 

trametinib did not have a significant effect on PKG activation (Figure 2.7B).  
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Figure 2.7: The effect of Trametinib on sGC/cGMP/PKG pathway in I/R  A) 

Densitometry of p-eNOS following 3 h after I/R. B) Densitometry of p-VASP following 

3 h after I/R. Data are represented as mean S.E., N=3-4. * represents significance as 

determined by one-way ANOVA (p<0.05). 
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Discussion  

Previously in our laboratory, we have shown a persistent decline in mitochondrial 

function after I/R. PGC-1α, the master regulator of mitochondrial biogenesis (MB) is 

decreased 24 h after I/R as well as other mitochondrial proteins such as NDUFB8, ATP 

synthase B, and cytochrome c oxidase subunit 1 (COX1)155. Although we have identified 

several mechanisms that play a role in attenuating MB after I/R, the role of sGC is still 

under investigation.  

 

In naïve mice, sGC is predominantly in its reduced state, meaning the heme moiety is in 

its ferrous form. The ferrous form allows for proper binding of NO and subsequent 

cGMP production. To be able to measure the reduced form of sGC, we optimized an sGC 

enzyme assay from Thoonen et al, for the kidney250. After we showed linearity of our 

sGC assay at a protein and time dependent scale, in Figure 2.1b we show a robust 

response with mahma nonoate, the NO donor, and riociguat, the sGC stimulator that 

targets the reduced heme in sGC. The oxidation of the ferrous heme to ferric renders sGC 

less active unless treated with cinaciguat, the sGC activator that binds to the heme pocket 

sGC. However, oxidized sGC with no pharmacological administration still retains a 

certain level of basal sGC activity250,316. Studies have shown the presence of oxidized 

sGC in primary cultures of ovine fetal PASMCs (pulmonary arterial smooth muscle cells) 

by treating them with cinaciguat316. Thoonen et al, also showed the presence of sGC 

activity in apo-sGC mice compared to control mice250. The apo-sGC mice carry a H105F 

point mutation in the catalytic site of the beta 1 subunit, allowing for improper ligation of 

the heme moiety in the catalytic site. With this mutation, although the homogenates from 
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apo-sGC mice did not respond to an NO donor, these homogenates still had basal level 

sGC activity250. These studies support the existence for basal level activity of 

oxidized/heme-free sGC. Here in Figure 2.1b, we show a robust response in sGC activity 

when homogenates from naïve mice are dosed with cinaciguat. Our results are consistent 

with previous literature regarding the presence of oxidized sGC in naïve mice.   

 

In terms of I/R, other models of organ dysfunction such as cardiac I/R have shown that 

sGC can become oxidized and potentially heme free subjecting sGC for 

degradation257,317,318. In Figure 2.2, we found no change in the protein expression of the 

sGC subunits and therefore sought to measure sGC activity. In Figure 2.3, we show a 

decreasing presence of the reduced form of sGC after I/R, consistent with other models of 

I/R. The decrease in renal cortical tissue cGMP could be a result of the reduced form of 

sGC after I/R. The increase in basal sGC activity is not enough to be reflected at the 

tissue level, however seems sufficient enough to activate PKG, as shown in Figure 2.4. 

Although phosphorylation of VASP at ser239, a marker for cGMP specific activation of 

PKG, increases after I/R, interestingly we also found an increase in total VASP. This 

increase in total VASP could be due to the severity of renal injury, shown in Figure 2.2a. 

VASP is associated with regulating actin cytoskeleton and migration of certain types of 

cells, including renal cell types319,320. VASP is also associated with endothelial cell 

integrity in the kidney. Recent studies have also suggested an important role for VASP in 

renal injury321. VASP deficient mice subjected to I/R, show decreased long-term 

progression of nephrotoxic nephritis compared to wild type322. The increase in total 
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VASP can be a marker for injury and endothelial dysfunction therefore showing that the 

increase in PKG activation certainly plays a role in renal dysfunction after I/R321.  

 

The signaling pathway from increased PKG activation to decreased MB in I/R is still 

under investigation. p38 MAP Kinase and ERK1/2 MAP kinase are two regulators of 

PGC-1α in the kidney. Previous studies in our lab have elucidated the role for ERK1/2 in 

the regulation of MB after I/R313,314. We have also shown the importance of p38 in renal 

proximal tubular epithelial cell proliferation323. Both p38 and ERK1/2 also happen to be 

PKG-associated downstream targets. There is an abundance of literature regarding the 

correlation between PKG activation and downstream regulation of p38 and ERK1/2 in 

other models of I/R as well as the kidney266,268,299,324,325. We sought to explore the role of 

p38 and ERK1/2 as potential mediators between PKG activation and the down regulation 

of MB.   

 

We found an increase in the phosphorylation of p38 and ERK1/2 as shown in Figure 2.5. 

Previously we have shown that ERK1/2 can regulate PGC-1a transcription and 

subsequently MB, by phosphorylation of FOXO1, a transcription factor and a target of 

p38 as well315. Phosphorylation of ERK1/2 causes a phosphorylation of FOXO1, 

inhibiting the translocation of FOXO1 inside the nucleus. This causes a decrease in PGC-

1α mRNA and therefore MB. We sought to explore if ERK1/2/FOXO1 signaling was a 

mediator between PKG activation and PGC-1α mRNA. We measured the 

phosphorylation of FOXO1 and found that it was significantly decreased (Figure 2.5E). 

The phosphorylation of FOXO1 by ERK1/2 may not be necessary at 24 h since PGC-1α 
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protein and mRNA expression is decreased by this time point (Figure 2.6). These data 

show that ERK1/2 is not regulating MB through the phosphorylation of FOXO1 and this 

finding is unrelated to PKG activation.  

 

However, since the phosphorylation of FOXO1 may not be necessary for regulating 

PGC-1α transcription at 24 h, the role of ERK1/2 could still be a mediator between PKG 

activation and decreased MB. Therefore, we explored the effect of trametinib, a MEK 1/2 

inhibitor, on sGC signaling at 3 h in Figure 2.7. We focused on this time point because 

previous studies have shown that pretreatment with trametinib before I/R can attenuate 

serum creatinine within 3 h after I/R. Trametinib attenuated the increase in 

phosphorylated eNOS. The increase in phosphorylated eNOS could be producing nitric 

oxide that is toxic therefore sustaining injury. Trametinib did not attenuate the increase in 

PKG activation suggesting that trametinib may play a role in PKG activation independent 

of I/R.  

 

It is possible that p38 may play a role in suppressing MB however, we need to do further 

in vivo studies to elucidate the role and necessity of p38 after I/R. This study provides 

another perspective to the role of sGC in I/R. Further investigation is needed to determine 

if ERK1/2 is truly a mediator between PKG activation and decreased MB. Thus far, we 

have provided sufficient evidence hinting at ERK1/2 involvement in positively regulating 

sGC signaling and therefore playing a role preventing the suppression of MB 24 h after 

I/R. 
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Chapter Three: Elucidation of cGMP-dependent induction of Mitochondrial 

Biogenesis through Protein Kinase G and p38 MAPK 
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Introduction 

 

Soluble Guanylyl Cyclase (sGC) produces cGMP by converting GTP in the presence of 

nitric oxide (NO). cGMP can bind to cGMP gated ion channels, phosphodiesterases, and 

protein kinase G (PKG). cGMP plays a role in a variety of processes in the cell besides 

vasodilation, platelet aggregation, and smooth muscle vasorelaxation. Nisoli and group 

proposed that nitric oxide induces mitochondrial biogenesis through cGMP71,311. In our 

laboratory, we have shown mitochondrial respiration increase significantly in renal 

proximal tubule cells (RPTC) with 10μM b-Br-cGMP compared to cAMP suggesting that 

cGMP is responsible for inducing MB rather than cAMP73. Moreover, when RPTC are 

dosed with 8-Br-cGMP for 24 h, mRNA for several mitochondrial proteins increases as 

well as the master regulator of MB, PGC-1α increased73.  

 

Here, we have elucidated a pathway from cGMP to this increase in PGC-1α mRNA by 

focusing on events that may occur with in an hour of exposure to 8-Br-cGMP.  Several 

studies have supported the role for PKG involvement in mitochondrial function. PKG is a 

serine/threonine kinase and exists in two forms, PKG1 and PKG2. In renal tubular cells, 

PKG1 activity and expression decreased when exposed to cisplatin324. Increasing PKG1 

activity protected mitochondrial function, preventing cell apoptosis induced by 

cisplatin324. In an in vitro model for diabetes, adipocytes exposed to lipoamide were 

found to also induce MB through PKG providing a therapeutic target326. It was also 

shown in brown adipose tissue, that PKG mediates the effects of cGMP by inducing MB 

and increasing UCP-1327. Based on this literature, we chose to focus on PKG1, as the 

main target of cGMP, after exposing RPTC to 8-Br-cGMP.  
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Although there are many direct targets of PKG, including subunits of a variety of ion 

channels, there are few downstream associated targets such as ERK1/2, GSK3β, Akt, and 

p38328. The exact mechanism from PKG to these targets is unknown and still under 

investigation. We chose to focus on p38 for its role in regulating PGC-1α expression at 

the transcriptional and posttranslational level. Moreover, nitric oxide donors can induce 

p38 activation268,325,329. In brown adipose tissue, naturetic peptides activate Guanylyl 

Cyclase (GC) resulting in activated PKG330,331. Activated PKG leads to the 

phosphorylation of p38330. Phosphorylated p38 can phosphorylate PGC-1α increasing 

PGC-1α transcription. We sought to explore if this mechanism exists in RTPC.  
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Material and Methods 

In vitro Studies: 

Female New Zealand White rabbits (approximately 2Kg) were purchased from Charles 

River (Oakwood, MI/Canada). Renal Proximal tubule cells (RPTC) were isolated from 

kidneys using the iron oxide perfusion method. Cells were plated and grown on 35 mm 

tissue culture dishes in conditions that are similar to physiological conditions in vivo, as 

described previously332. The culture medium consisted of a 1:1 mixture of Dulbecco’s 

modified Eagle’s medium/F-12 (without glucose, phenol red, or sodium pyruvate) with 

15mM HEPES buffer, 2.5 mM L-glutamine, 1 uM pyridoxine HCl, 15 mM sodium 

bicarbonate, and 6 mM lactate. Hydrocortisone (50 nM), selenium (5 ng/ml), human 

transferrin (5 ug/ml), bovine insulin (10 nM), and L-ascorbic acid-2-phosphate (50 uM) 

were added to fresh culture medium. Only confluent RPTC were dosed with either 

compound or DMSO. The vehicle control for the inhibitor studies were dosed separately 

when dosing with inhibitors of PKG and p38.  

 

Subcellular Fractionation: 

Cells were harvested in 300uL of sucrose isolation (ISO) buffer containing 250 mM 

sucrose, 1 mM EGTA, 10 mM HEPES, and 1 mg/ml fatty acid free BSA at a pH of 7.4. 

Cells were homogenized using a dounce homogenizer and were then spun at 700 g for 5 

min. The supernatant is the cytosolic fraction was stored in another centrifuge tube with 

phosphatase inhibitors (1:100), 1mM sodium orthovanadate, and 1 mM sodium fluoride 

and concentrated Triton X-100 and SDS at 4%. The pellet was washed twice in ISO 

buffer and spun down at 1,000 g for 5 min each time. The pellet was then re-suspended in 
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200uL of RIPA buffer, phosphatase inhibitors (1:100), 1mM sodium orthovanadate, and 

1 mM sodium fluoride.  

 

Immunoblot Analysis 

RTPC were harvested in 200uL RIPA buffer containing 50 mM Tris-HCl, 150 mM NaCl, 

0.1% SDS, 0.5% sodium deoxycholate, 1% Triton X-100, pH 7.4 with phosphatase 

inhibitors (1:100), 1mM sodium orthovanadate, and 1 mM sodium fluoride. Cells were 

sonicated for approximately 10 seconds. Cells were centrifuged at 7,500 g for 5 min at 

4C. Supernatants were removed and protein was measured using a BCA assay.  

Equal protein was loaded onto 4-15% SDS page gels and separated by gel 

electrophoresis. Protein was transferred onto nitrocellulose membranes and blocked in 

5% milk or 5% bovine serum albumin dissolved in TBST. Membranes were submerged 

in primary antibodies overnight with rotation. The next day membranes were washed in 

TBST 3 times for 5 minutes each and were rotated in appropriate horseradish peroxidase–

conjugated secondary antibody. Membranes were visualized using enhanced 

chemiluminescence (Thermo Scientific) and the GE ImageQuant LAS4000 (GE Life 

Sciences). Optical density was determined using the ImageJ software from NIH.  

 

qRT-PCR 

Cells were harvested in 400uL of Trizol (Life Technologies). cDNA was produced using 

the iSCRIPT Advanced cDNA Synthesis Kit (Biorad) according to the manufacturer’s 

protocol. SsoAdvanced Universal SYBR Green Supermix reagent (BioRad) was used 

with the generated cDNA according to manufacturer’s protocol. mRNA expression was 
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determined using a 2-triangle triangle CT method where rabbit tubulin RNA was used for 

normalization. 
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Results 

8-Br-cGMP activates PKG but does not affect PGC-1α protein expression 

To begin elucidating the pathway from cGMP production to PGC-1α expression, RTPC 

were treated with a cGMP analog, 8-Br-cGMP (10μM) for 1 h. Several studies have 

suggested that Protein Kinase G, PKG, could play a role in the regulation of 

mitochondrial biogenesis. Here we measured PKG activation by measuring the 

phosphorylation of vasodilator-stimulated phosphoprotein (VASP) at site serine 239 

(Figure 3.1A, 3.1C). We found a 1.9-fold increase in the phosphorylation of VASP 

compared to vehicle control (Figure 3.1C). We also treated RPTC with 10μM riociguat, 

an sGC stimulator that specifically targets the reduced in sGC. We found a 1.2-fold 

increase in the phosphorylation of VASP compared to control.  

 

We pretreated RPTC with 100nM KT5823 (KT), a PKG inhibitor, for 30 min and then 

treated with DMSO vehicle, 10μM 8-Br-cGMP, or 10μM riociguat for 1 h. These 

particular sets of experiments have their own vehicle control to take into account of 

additional DMSO due to pretreatment and to eliminate any effect caused by DMSO. 

Phosphorylation of VASP was decreased 30% in the KT+V treated group. In the 

KT+cGMP treated group, phosphorylation of VASP also decreased however, this 

decrease is not significant if compared to 8-Br-cGMP. KT did not affect the 

phosphorylation of VASP after the addition of riociguat.  At 1 h, we then measured PGC-

1α protein expression in all treatment groups (Figure 3.1B). We found no change in 

protein expression of RPTC dosed with 8-Br-cGMP, riociguat, KT+V, KT+cGMP, and 

KT+riociguat compared to vehicle control.  



 93 

 
 
Figure 3.1: 8-Br-cGMP activates PKG but does not affect PGC-1α protein 

expression A) Representative blot for PGC-1α, pVASP, and Tubulin after treatment. B) 

Densitometry analysis for PGC-1α protein. C) Densitometry analysis for pVASP protein. 

Data are represented as mean S.E., N=7-8. * represents significance compared to Vehicle 

(p<0.05). 
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PGC-1α is phosphorylated and is located in the nucleus in the presence of 8-Br-

cGMP 

Since we detected no change in PGC-1α protein expression at 1 h, we sought to measure 

the phosphorylation of PGC-1α, an event that may be possible within 1 h of dosing. 

Moreover, we were interested in knowing the location of phosphorylated PGC-1α. 

Phosphorylation of PGC-1α at serine and threonine sites by p38 can increase the stability 

of PGC-1α and sustain transcription of PGC-1α62. We treated RPTC with 8-Br-cGMP, 

riociguat, and KT, similar to the dosing regimen in Figure 3.1. We first subjected RPTC 

to subcellular fractionation and tested for purity of nuclear and cytosolic fractions by 

measuring alpha tubulin, a cytosolic marker, and Lamin B, a nuclear marker (Figure 

3.2A). Secondly, we immunoprecipitated PGC-1α and blotted for phosphorylated serine 

and threonine residues in both the nuclear and cytosolic fractions (Figure 3.2B-C). We 

found a significant increase in phosphorylated PGC-1α in the nuclear fraction when 

dosed with 8-Br-cGMP by 1.64 fold (Figure 3.2D). We found that treatment with KT 

inhibited phosphorylation of PGC-1α in the nucleus. We did not find any significant 

changes in the phosphorylation of PGC-1α in the cytosolic fraction compared to vehicle 

control, although it seems phosphorylation of PGC-1α is trending upwards when RPTC 

are pretreated with KT (Figure 3.2E).  
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Figure 3.2: PGC-1α is phosphorylated and is located in the nucleus in the presence 

of 8-Br-cGMP A) Representative blot of Tubulin and Lamin B showing purity of 

Cytosol and Nuclear fractions. B and C) phosphorylated serine and threonine residues 

were measured following immunoprecipitation of PGC-1α by immunoblot analysis after 

30 min treatment with DMSO or 100nM KT5823 followed by exposure to DMSO, 8-Br-

cGMP, and Riociguat in cytosol and nuclear fractions. Total PGC-1α expression was 

measured after immunoprecipitation. D and E) Densitometry analysis for phosphorylated 

serine and threonine residue in the cytosol and nuclear fractions. Data are represented as 

mean S.E., N=3-4. * represents significance compared to Vehicle control (p<0.05). 
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KT5823 inhibits p38 phosphorylation 

Due to our results in Figure 3.2, we hypothesized that p38 is the mediator between PKG 

activation and phosphorylation of PGC-1α. Many studies have suggested a role for p38 in 

the regulation of MB when NO donors are administered in vitro. Previously in this 

laboratory we have also shown that p38 is necessary for RPTC proliferation and that p38 

may play a role in recovery of RPTC when exposed to oxidant injury323,333. p38 can also 

phosphorylate PGC-1α at Threonine 298, Threonine 262, and Serine 265 as mentioned 

above and can increase the stability of PGC-1α in brown adipose tissue62. To elucidate 

this signaling, we measured p38 phosphorylation (p-p38) in the presence and absence of 

100nM KT (Figure 3.3). We that found that 8-Br-cGMP increased p-p38 by 1.5 fold. 

Riociguat also significantly increased p-p38. KT inhibited the phosphorylation of p38 

when dosed with vehicle, 8-Br-cGMP and riociguat.  
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Figure 3.3: KT5823 inhibits P38 phosphorylation A) Representative blot for p-P38, 

p38 total, and Tubulin. B) Densitometry analysis for p-p38 protein. Data are represented 

as mean S.E., N=7-8. * represents significance compared to Vehicle (p<0.05). 
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Inhibition of p38, inhibits PGC-1α phosphorylation at serine and threonine sites 

Although p38 is downstream of PKG activation based on our results, we sought to 

explore whether p38 is phosphorylating PGC-1α. We pretreated RPTC, similar to the 

KT5823 experiments, for 30 min with an inhibitor of p38, L-skepinone, at 100nM and 

then treated with vehicle, 10μM 8-Br-cGMP, and 10μM riociguat for 1 h and 2 h. We 

wanted to first validate inhibition of the phosphorylation of p38 at 1 h and at 2 h (Figure 

3.4A-B). We found that administration of 100nM of L-skepinone (LS) successfully 

inhibited the phosphorylation of p38 when dosed with 8-Br-cGMP and riociguat at both 1 

h and 2 h (Figure 3.4C-D).  We then measured phosphorylation of PGC-1α with L-

skepinone (Figure 3.4E-F). We found no significant change between L-Skepinone (LS) 

treated groups (LS+Vehicle, LS+cGMP, LS+riociguat) and vehicle. This indicates that L-

Skepinone inhibited the phosphorylation of PGC-1α.  
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Figure 3.4: Inhibition of p38, inhibits PGC-1α phosphorylation at serine and 

threonine sites A and C) Representative blot for p-p38, p38 total, and tubulin after 

treatment with 30 min treatment with DMSO or 100nM L-Skepinone followed by 

exposure to DMSO, 8-Br-cGMP, and riociguat for 1 h and 2h. B and D) Densitometry 

analysis of p-p38 after 1h and 2h treatment respectively. E) Representative blot of 

phosphorylated serine and threonine residues following immunoprecipitation of PGC-1α 

by immunoblot analysis after 30 min treatment with DMSO or 100nM L-Skepinone 

followed by exposure to DMSO, 8-Br-cGMP, and riociguat in nuclear fractions. Total 

PGC-1α expression was measured after immunoprecipitation. F) Densitometry analysis 

for phosphorylated serine and threonine residue in the nuclear fractions. Data are 

represented as mean S.E., N=7-8 for A-D, N=4-5 for E-F. * represents significance 

compared to Vehicle (p<0.05).  
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PGC-1α mRNA increases at 4 h with 8-Br-cGMP 

Phosphorylation of PGC-1α at Threonine 298, Threonine 262, and Serine 265 by p38 can 

increase the half-life of PGC-1α and therefore increase transcription of PGC-1α as well62. 

We have previously shown an increase in PGC-1α transcription at 24 h with 8-Br-cGMP 

however, the mechanism behind this increase is unknown73. Based on our results, we 

found an increase in the phosphorylation of PGC-1α at 1 h with 8-Br-cGMP. We wanted 

to see if there would be a rise in PGC-1α mRNA after this phosphorylation event. We 

measured PGC-1α mRNA in RPTC dosed with vehicle, 10μM 8-Br-cGMP, and 10μM 

riociguat. We found a 1.5-fold increase in PGC-1α mRNA (Figure 3.5).  
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Figure 3.5: PGC-1a mRNA increases at 4 h with 8-Br-cGMP PGC-1α mRNA was 

measured after RTPC were dosed with DMSO, 10uM 8-Br-cGMP, and10uM Riociguat 

for 4 h. Data are represented as mean S.E., N=5 * represents significance compared to 

Vehicle (p<0.05).  
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Discussion 

Previous studies from our lab have shown that cGMP can induce MB in RPTC73. We 

dosed with 10μM 8-Br-cGMP for 24 h and found an increase in PGC-1α mRNA as well 

as the mRNA for other mitochondrial proteins73. However, the mechanisms for how 

cGMP can induce MB is unknown and still under investigation for different cell types. 

Here we have elucidated the pathway between cGMP and PGC-1α in renal proximal 

tubule cells (RPTC).  

 

We treated RPTC for 1 h with DMSO, 10μM 8-Br-cGMP and 10μM riociguat, an sGC 

stimulator that targets the reduced/heme-dependent form. The reduced form predominates 

in naïve cells and therefore, we included riociguat in all of our experiments for 

comparison. We measured PKG activation by measuring the phosphorylation of VASP 

(pVASP) at serine 239 and we measured PGC-1α protein in Figure 3.1. The increase in 

pVASP proved that our dosing of 8-Br-cGMP was effective since PKG is a direct target 

of cGMP. We expected to see no change in PGC-1α protein or mRNA (data not shown) 

since the dosing was only for an 1 h and this time point is too short. The half-life of PGC-

1α is approximately 31 min and therefore phosphorylation of PGC-1α is a possible event 

that may occur within an hour of dosing334. Phosphorylation of PGC-1α by p38 at 

specific sites such as Threonine 298, Threonine 262, Serine 265 increases the stability of 

PGC-1α335. In Figure 3.2, we show that PGC-1α is phosphorylated at serine and threonine 

residues and is located in the nucleus when RPTC are dosed with 8-Br-cGMP. Another 

important finding in Figure 3.2, is that KT5823, the PKG inhibitor, inhibits 

phosphorylation of PGC-1α. We hypothesized that activated p38 phosphorylates PGC-1α 
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at Threonine 298, Threonine 262, Serine 265 in the cytosol then translocates to the 

nucleus to sustain PGC-1α transcription. 

 

p38 is a downstream-associated target of PKG. Several studies have shown a correlation 

between both proteins329. Isolated cardiomyocytes dosed with sodium nitroprusside 

(SNP), an NO donor, activated p38 through a cGMP-dependent mechanism336. 

Lipopolysaccharide (LPS)-stimulated human neutrophils produced NO and cGMP 

leading to the activation of p38 through PKG337. Although other studies may suggest that 

p38 regulation by NO can be cGMP-independent, here we show that p38 phosphorylation 

is downstream of PKG and its activation is inhibited by KT5823 in Figure 3.3. Moreover, 

p38 inhibition also inhibited phosphorylation of PGC-1α at serine and threonine residues 

as we showed in Figure 3.4.  

 

The effect of riociguat on cGMP signaling in RPTC is not clear. We found a slight 

increase in pVASP, although not significant, in the presence of riociguat. Regulation of 

sGC activity or expression of its subunits in naïve RPTC are unknown and therefore it is 

possible that longer exposure to riociguat is required to see a robust effect of riociguat on 

this pathway. An hour treatment may have proved to be insufficient. Targeting sGC is 

upstream of cGMP production and therefore may prove to be more difficult to elucidate 

signaling since the amount of cGMP produced in the presence of riociguat may not be 

equivalent to the effect of 10μM 8-Br-cGMP.  
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Here we propose a pathway between cGMP and PGC-1α in RPTC mediated by PKG and 

p38. Further investigation is required to validate this pathway for other cell types.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 105 

Chapter 4: Conclusions and Future Directions to the Role of Soluble Guanylyl 

Cyclase Signaling in Mitochondrial Biogenesis and Renal Injury 
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Conclusions: 

Here we have presented a study discussing the role of sGC in regulating mitochondrial 

biogenesis (MB) in renal proximal tubule cells (RPTC) and in renal injury. We proposed 

opposing roles of sGC. In chapter two, we proposed that sGC plays a role in suppressing 

MB in the early phase of I/R. On the other hand, in chapter three, we elucidated a 

signaling pathway from cGMP production to PGC-1α transcription and translation in 

RPTC. 

 

In chapter two, we showed that sGC activity is slightly increased after I/R. However, the 

redox state of sGC is altered after injury. We utilized the pharmacological differences 

between riociguat and cinaciguat to target two different redox states of sGC. We 

discovered that after I/R, the reduced form of sGC decreases. Interestingly, renal cortical 

tissue cGMP also decreased and this finding is consistent with the decreased presence of 

the reduced state of sGC. If the heme moiety in sGC is oxidized cGMP production will 

be compromised. However, PKG was activated 24 h after I/R suggesting that cGMP 

production after I/R was sufficient enough, even though these levels are decreased at the 

tissue level. One plausible explanation of this increase in sGC activity after I/R, can be 

found at 3 h after I/R. At 3 h after I/R, Akt phosphorylation is increased. Endothelial 

NOS is a target of Akt if phosphorylated at serine 1177 and is increased at 3 h after 

I/R338. The reactive oxygen species introduced with I/R injury as well as the increased 

production of NO can increase sGC activity after I/R.  
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After discovering that PKG is activated I/R, we explored potential downstream targets of 

PKG such as ERK1/2 and p38, both of which were increased after I/R. Phosphorylation 

of FOXO1, the downstream target of ERK1/2, decreased at 24 h after I/R suggesting that 

ERK1/2 is not regulating FOXO1 at this time point. This data also showed that the 

resulting FOXO1 signaling is independent of PKG.  

 

It is not certain, whether ERK1/2 or p38 is the mediator between PKG activation and 

decreased MB. To explore the role of protein in this process, we utilized trametinib, a 

MEK1/2 inhibitor that successfully inhibits the phosphorylation of ERK1/2. Surprisingly, 

we discovered that pretreatment with trametinib attenuated the phosphorylation of eNOS 

at 3 h after I/R. Moreover, PKG activation seemed to be trending upwards at 3 h after I/R 

and trametinib had no effect. However, knowing that ERK1/2 inhibition attenuates renal 

injury, this ERK1/2 induced PKG activation may have a renoprotective effect. Although 

this piece of data may hint at ERK1/2 involvement in sGC suppression of MB, further 

investigation is necessary. 

 

In chapter three, in our in vitro studies we show that 8-Br-cGMP, a cGMP analog, 

activates PKG. We verified this activation by measuring the phosphorylation of VASP, 

vasodilator stimulated phosphoprotein. Moreover, we show that there is also an increase 

in p38 MAPK activation. If PKG activation is inhibited, p38 activation is also inhibited. 

This finding shows that p38 is a downstream target of PKG, although is not directly 

phosphorylated by PKG. Further studies are needed to elucidate this PKG/p38 

connection. Interestingly, p38 can directly phosphorylate PGC-1α on Threonine 262, 
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Threonine 298, and Serine 265 therefore increasing the half-life of PGC-1α and 

increasing its transcription62. We show an increase in the phosphorylation of PGC-1α at 

serine and threonine sites in the presence of 8-Br-cGMP. Surprisingly, inhibiting PKG 

also inhibited the phosphorylation of PGC-1α. Finally, to prove that p38 is the mediator 

between PKG and the phosphorylation of PGC-1α, we used a p38 inhibitor, L-Skepinone. 

Pre-treatment with L-Skepinone attenuated the increase in the phosphorylation status of 

PGC-1α proving that p38 is indeed the mediator.  

 

These findings are novel in that this particular mechanism exists in RPTC. These 

experiments included riociguat, an sGC stimulator. Although riociguat slightly increased 

phosphorylation of VASP and increased p38 activation at 1 h, it is not certain whether 

riociguat increased the phosphorylation of PGC-1α. It is possible that this event may not 

occur within an hour of exposure. Here in chapter two, we show a positive role for sGC 

in inducing MB in RPTC.  

 

Remaining Questions 

 

Although in both chapters we have provided proof for a role for sGC in regulating MB, 

there are several unanswered questions that should be addressed to better elucidate sGC 

signaling in RPTC and in renal injury.  

 

In terms of renal injury, the first question regards the importance of sGC in renal injury. 

The function and activity of sGC is a complex process and depends on the 
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microenvironment of the enzyme. Different types of insults can trigger different signaling 

pathways that begin with the activation of sGC. To answer this question, apo-sGC mice 

can be useful in elucidating sGC signaling. Apo-sGC mice contain a point mutation in the 

beta 1 subunit, the catalytic subunit of sGC, where the heme moiety is attached to the 

amino acid, phenylalanine instead of histidine250. This allows for improper ligation of 

heme moiety. As discussed in detail in chapter two, sGC activity in apo-sGC mice is 

decreased in the presence of nitric oxide donors250. It would be worthwhile to measure 

PGC-1α mRNA and protein as well as mitochondrial DNA copy number. Other 

mitochondrial proteins should be measured as well. If sGC plays a vital role in regulating 

MB, our hypothesis is that MB would be decreased in these mice. Secondly, to determine 

if sGC is absolutely necessary in the recovery or prevention of renal injury, apo-sGC 

mice should undergo I/R. It is possible that these mice may not even survive the surgery 

since cGMP production is dysfunctional and cGMP is necessary for vasodilation. 

However, if the apo-sGC mice do survive the surgery, markers of MB should be 

measured.   

 

The second unanswered question revolves around sGC function and activity. Post-

translational modifications of sGC include S-nitrosation and phosphorylation although, 

phosphorylation is an event that occurs rarely and is still under investigation. S-

nitrosation of sGC can occur under conditions of oxidative and nitrosative stress. In 

conditions of I/R, S-nitrosation of sGC can decrease cGMP production245,339. Measuring 

S-nitrosation of sGC, although difficult, would give more insight into the 

microenvironment of sGC after I/R.  
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sGC function can depend on the presence of other proteins such as Hsp90340. Hsp90 is a 

chaperone heat shock protein that is associated with sGC341,342. Hsp90 can assist with 

inserting the heme moiety in the catalytic subunit of sGC343. Successful heme insertion 

allows for proper ligation and stabilizes the sGC heterodimer344. Hsp90 dissociates from 

the mature dimer allowing for NO to bind340. In conditions of oxidative stress or when the 

heme is oxidized, Hsp90 will re-associate with the beta 1 subunit as shown in Figure 4.1. 

It would be interesting to investigate the role of Hsp90 after I/R and if it is bound to sGC. 

Based on our results thus far, we would hypothesize Hsp90 association to sGC since we 

detected a decrease in the reduced state of sGC after I/R. Exploring the role of Hsp90 

would provide insight into sGC function in our model of I/R.   
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Figure 4.1: sGC NO response, maturation, and exclusive interaction of sGC-β1 with hsp90 versus 

sGC-α1. An equilibrium exists in cells between an hsp90-bound apo-sGC-β1 and a heme-replete sGC-β1 

that is associated with sGC-α1. NO can rapidly shift this equilibrium to the right when cell heme levels are 

sufficient and hsp90 is active. NO can then bind to the heme in the sGC heterodimer and activate catalysis 

(lower right). Further NO exposure may cause S-nitrosation of sGC-β1 and heme oxidation/loss and 

thereby desensitize sGC toward NO and promote its hsp90 reassociation. Binding of the heme-independent 

activator, BAY 60-2770 (blue), to the apo-sGC-hsp90 species can occur independent of active hsp90 and 

cellular heme, and this triggers the same changes in sGC-β1 structure and protein interactions that are 

needed to activate its catalysis. From: Ghosh, A. & Stuehr, D. J. Regulation of sGC via hsp90, Cellular 

Heme, sGC Agonists, and NO: New Pathways and Clinical Perspectives. Antioxid. Redox Signal. 26, 182-

190, doi:10.1089/ars.2016.6690 (2017) 
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The final question that will be discussed here is the pathway between PKG and 

mitochondrial biogenesis. As mentioned above in chapter two, we provide evidence for 

possible ERK1/2 involvement. However, there is a possibility that other mediators can 

play a role in the pathway. First, we will address p38 as a potential mediator. To properly 

address this, we would administer a p38 inhibitor, SB203580, at two doses 10 mg/kg and 

3 mg/kg 1 h before I/R. It is not certain whether the increase in the phosphorylation of 

p38 is part of activating the inflammatory response therefore possibly playing a 

detrimental role or if it is necessary for the recovery from I/R. At either dose, SB203580 

should inhibit the phosphorylation observed 24 h after I/R. If p38 plays a role in 

regulating MB, then we hypothesize that either dose of SB203580 should attenuate renal 

injury and prevent the decrease in MB. It is well known that p38 can regulate the 

inflammatory response by triggering the transcription of pro-inflammatory cytokines 

such as IL-6, TNF-a, and IL-8345-347. It is possible that inhibiting p38 may primarily 

inhibit this inflammatory response and have no effect on MB.  

 

It is not clear how PKG may be involved in the phosphorylation of p38. Several studies 

have shown that PKG can directly phosphorylate MEKK1 in its N-terminal domain290. 

MEKK1 is an upstream target of MAPK proteins such as JNK and p38348. Although it’s 

mostly associated with the JNK pathway, crosstalk exists between both the JNK and p38 

pathways (Figure 4.2)349. MEKK1 can directly activate an upstream targets of p38349,350. 

It would be worthwhile to measure MEKK1 24 h after I/R, as well in the in vitro studies 

we discussed in chapter three. In the case of our in vitro studies, although we showed 
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inhibition of p38 by inhibiting PKG activation, measuring MEKK1 activation in these 

experiments would better elucidate our proposed pathway.  
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Figure 4.2: Overview of mammalian mitogen-activated protein kinase (MAPK) signaling cascades 

From: Takekawa, M. & Kubota, Y. in Protein Modifications in Pathogenic Dysregulation of Signaling   

(eds Jun-ichiro Inoue & Mutsuhiro Takekawa)  211-231 (Springer Japan, 2015) 
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Although elucidating the role of MEKK1 may provide better insight especially in our in 

vitro studies, it does not address how phosphorylated p38 or ERK1/2 contribute to 

decreased MB at 24 h in our in vivo studies. Therefore, we thought about targets of PKG 

that play a role in maintaining mitochondria function. In the early phase of I/R, several 

groups have observed mitochondrial swelling and fragmentation and cell death169,351-354. 

There is an increase in calcium levels inside the mitochondria and ATP levels are 

decreased355,356. These events trigger the opening of the mitochondrial permeability 

transition pore (MPTP)356. In recent years, the role of a mitochondrial potassium channel 

(mitoKATP) that is located in the inner membrane, has gained attention in cardiac I/R. 

Ischemic preconditioning in the heart can open mitoKATP, releasing ROS from the 

mitochondria and reducing damage. Opening of these channels has shown to prevent the 

opening of MPTP, thereby providing a cardioprotective role for mitoKATP
357,358. PKG can 

target mitoKATP leading to a release in ROS and subsequent activation of ERK1/2 (Figure 

4.3)268,359,360. The interaction between PKG and mitoKATP is still under investigation. 

Some groups suggest that PKG transmits this cardioprotective signal to PKCe that is 

bound to the mitochondrial inner membrane361,362. PKCε is activated and directly 

phosphorylates mitoKATP causing it to open361,363. This pathway was demonstrated in 

cardiomyocytes however, it is still unknown if this protective effect exists in renal I/R.  

 

Our previous studies regarding ERK1/2 in renal I/R prove that inhibiting ERK1/2 is 

renoprotective313,314. The mechanism described above in the case of cardiac I/R shows 

that phosphorylation of ERK is important to elicit cardioprotective effects. It seems that 

the importance of phosphorylated ERK1/2 is contradictory in terms of PKG-dependent 
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effects. Therefore, it would be beneficial to explore the role of PKG-dependent activation 

of mitoKATP and whether this compensatory mechanism is activated during I/R and if 

ERK1/2 does help elicit downstream effects. Taken together, the pathway from PKG to 

decreased MB needs further investigation as simultaneous events up until 24 h after I/R 

may contribute to sustained suppression of MB.  
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Figure 4.3: Proposed signaling pathways of PKG-dependent cardioprotection by sildenafil against 

myocardial ischemia-reperfusion injury. From: Das, A., Xi, L. & Kukreja, R. C. Protein kinase G-

dependent cardioprotective mechanism of phosphodiesterase-5 inhibition involves phosphorylation of ERK 

and GSK3beta. J. Biol. Chem. 283, 29572-29585, doi:10.1074/jbc.M801547200 (2008). 
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Appendix: M2 Phenotype Predominates in the Recovery Phase, 144 h after 

Ischemia-Reperfusion-Induced Acute Kidney Injury. 
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Introduction 

In renal ischemia and reperfusion injury (I/R), events that take place from the early phase 

of I/R to the late phase are intricate and complex.  Within the first 24 h after I/R, there is 

an influx of reactive oxygen species (ROS) and a significant increase in the release of 

proinflammatory damage-assocated molecular patterns (DAMPs), hypoxia-inducible 

factors (HIFs) and adhesion molecules from the injured tubular epithelium364,365. Pro-

inflammatory cytokines and the release of these molecules facilitate the recruitment of 

many types of immune cells such as neutrophils, monocytes, dendritic cells, B cells, T 

cells, and NK cells365. A few studies have shown that preventing the influx of certain 

immune cells such as neutrophils can reduce the amount of renal damage and accelerates 

recovery366.  

 

Resident immune cells in the kidney such as macrophages increase in number after 

I/R367,368. The microenvironment created by proinflammatory cytokines, DAMPS, and 

HIFs activate resident macrophages as well as infiltrating monocytes to adopt a 

proinflammatory phenotype367. These proinflammatory macrophages produce NO, 

adding to the ROS already present and inflict further tubular injury. Studies have beeen 

conducted showing that although macrophage depletion in the early phase of injury may 

be beneficial, macrophage depletion in the recovery phase decreases renal repair369-373. 

These studies imply that macrophages have a wide variety of characteristics that adapt to 

the microenvironment from the early phase of I/R to the late recovery phase. 

Macrophages can be defined in terms of a M1/M2 phenotype, where M1 macrophages 

are proinflammatory and M2 macrophages exhibit anti-inflammatory properties as shown 
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in Figure A1.1. The characteristics defining the M1/M2 phenotype are not absolute, 

rather they are complex and can be overlapping.    
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 M1 phenotype M2 phenotype 

Use of Arginine  Oxidize L-Arginine to 

Citrulline and nitric 

oxide (inducible 

NOS)374 

Hydrolyze Arginine to 

Ornithine and Urea 

(Arginase 1) 

Cytokine 

production 

Pro-inflammatory: 

TNF-α, IL-6, IL-23, 

IL-12375 

Anti-inflammatory: 

IL-10, IL-1ra, TGF-β 

Transcription 

factors 

STAT1, IRF5376,377 STAT6, IRF4, KLF-

4378 

Macrophage 

Marker 

expression 

CD86, CD80, IL-1R, 

TLR4 

CD163, CD206 

(Mannose Receptor), 

Msr1 (Macrophage 

Scavenger Receptor 1) 

 

Figure A1.1: Comparison between M1 and M2 macrophage phenotype 
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Here we attempted to characterize the M1/M2 phenotype in our model of I/R. The M1 

phenotype generally releases iNOS, or inducible NOS, and are activated by IFN-y and/or 

LPS367. They secrete proinflammatory cytokines such IL-6, IL-12, and TNF-a. M2 

macrophages, alternatively, express mannose receptor (MR), arginase 1 (Arg1), and 

macrophage scavenger receptor-1 (Msr1)367,379. The driving force behind the M1 or M2 

phenotype is macrophage colony-stimulating factor (M-CSF/Csf1) and granulocyte 

macrophage colony-stimulating factor (GM-CSF/Csf2). It seems the both are necessary 

for macrophages to adopt an M2 phenotype380,381. Inhibition of Csf2 before I/R, 

suppresses tubular repair while Csf1 can inhibit tubular apoptosis and facilitate tubular 

repair381,382.  

 

In this study we measured Csf1, Csf2, MR, Msr1 and Arg1 in our model of I/R. We 

focused on the early phase of injury, 24 h after I/R, and the recovery phase, 144 h after 

I/R.  
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Material and Methods 

 

Ischemia-reperfusion (I/R)-induced AKI mouse model 

Mice were subjected to bilateral ischemia where both renal pedicles were clamped for 18 

min at 37°C and then removed to reintroduce blood flow as previously described.155 

Sham mice were operated on in the same manner except for no clamping. Mice were 

sacrificed either 24 h or 144 h after injury depending on the experiment and blood was 

collected via retro-orbital bleed. All tissues were flash frozen immediately.  

 

For LY344864 administration, mice were injected with 2 mg/kg intraperitoneally once 

daily, starting 24 h after I/R. Mice were sacrificed 144 h after I/R. All tissues were flash 

frozen immediately.  

 

Serum Creatinine Measurement 

Blood was collected via retro-orbital bleed. Blood was spun down at 10,000xg at 10 min. 

The supernatant was collected and immediately stored in the -80C. Serum creatinine was 

measured using the Diazyme kits per manufacturer’s protocol.  

 

qRT-PCR 

RNA was isolated from renal cortical tissue using Trizol (Life Technologies). cDNA was 

produced using the iSCRIPT Advanced cDNA Synthesis Kit (Biorad) according to the 

manufacturer’s protocol. SsoAdvanced Universal SYBR Green Supermix reagent 

(BioRad) was used with the generated cDNA according to manufacturer’s protocol. 
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mRNA expression was determined using a 2-triangle triangle CT method where mouse 

actin RNA was used for normalization.  
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Results 

 

Csf1, Csf2, Msr1, MR, and Arg1 mRNA expression is increased 144 h after I/R 

We measured mRNA expression of all markers at 24 h after I/R. We found a significant 

increase in Csf1 mRNA expression in the renal cortex at 24 h (Figure A1.2a). However 

mRNA expression of the other markers such as Csf2, Msr1, and MR did not increase at 

24 h after I/R (Figure A1.2b-e). Arginase 1 mRNA expression decreased after I/R 

although this comparison to sham mice was not significant (Figure A1.2d).  

 

In the midsection (total) of the kidney, we found no change in the mRNA expression of 

Csf2, Msr1, Arg1, and MR 24 h after I/R (Figure A1.2b-e). However, we found a 

significant increase in Csf1 mRNA expression 24 h after I/R (Figure A1.2a).  

 

We measured all five markers at 144 h after I/R and found a significant increase in the 

mRNA expression in the renal cortex and in the total kidney (Figure A1.2).  
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Figure A1.2: Csf1, Csf2, Msr1, MR, and Arg1 mRNA expression is increased 144 h after I/R mRNA 

expression of Csf1, Csf2, Msr1, MR, and Arg1 subunits following 24 and 144 h I/R. Data are represented 

as mean S.E., N=6-11. b represents significance compared to Sham, c represents significance compared to 

both sham and 24 h after I/R (p<0.05) 
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Csf1 mRNA expression positively correlated with delta serum Creatinine and serum 

creatinine at 144 h after I/R 

We sought to investigate if a correlation existed between Csf1 mRNA expression and 

serum creatinine after I/R. We found two correlations significant for Csf1 mRNA 

expression. First, we measured serum creatinine at 144 h after I/R injury in all mice, 

including sham mice. We found a positive correlation in that as serum creatinine at this 

time point was attenuated near sham levels, Csf1 mRNA expression increased in both the 

renal cortex and in the total kidney shown in Figure A1.3a. Secondly, we measured delta 

serum creatinine for each animal subtracting serum creatinine measured at 144 h from 

serum creatinine measured at 24 h after I/R. The increase in delta serum creatinine 

indicates recovery from I/R. We found that as delta serum creatinine increased, so did 

Csf1 mRNA expression in both the renal cortex and in the total kidney as shown in 

Figure A1.3b.   
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Figure A1.3: Csf1 mRNA expression positively correlated with delta serum 

Creatinine and serum creatinine at 144 h after I/R mRNA expression of Csf1 at 144 h 

I/R in the renal cortex and total kidney correlated with serum creatinine at 144hr and 

delta serum creatinine. Significance is represented with a R2 value.  
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As delta serum creatinine increased, so the did the mRNA expression for Arg1, MR, 

Msr1, and Csf2 

Similar to Figure A1.4, we made two correlations between serum creatinine and mRNA 

expression of all markers as shown in Figure A1.3. As serum creatinine at 144 h after 

injury decreased, mRNA expression for MR, Msr1, and Csf2 increased. Secondly, as 

delta serum creatinine increased, mRNA expression for all markers also increased.   
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Figure A1.4: As delta serum creatinine increased, so the did the mRNA expression for Arg1, MR, 

Msr1, and Csf2 mRNA expression of Arg1, MR, Msr1, and Csf2 at 144 h I/R in the renal cortex and total 

kidney correlated with serum creatinine at 144hr and delta serum creatinine. Significance is represented 

with a R2 value.  



 131 

 

LY344864 decreases Arginase 1 mRNA expression 144 h after I/R 

Previously in our lab, we have shown accelerated renal recovery in our model of I/R, 

after administration of LY344864, once daily starting at 24 h after I/R, for 144 h. We also 

showed recovery of mitochondrial biogenesis. Therefore, we were curious to see the 

effect of LY344864, a 5-HT1F agonist, on the mRNA expression of these markers. 

LY344864 had no effect on the mRNA expression of all of the markers except arginase 1. 

We found a significant decrease in arginase 1 after treatment with LY344864 at 144 h 

after I/R in the renal cortex, but not in the total kidney (Figure A1.5).  
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Figure A1.5: LY344864 decreases Arginase 1 mRNA expression 144 h after I/R 

mRNA expression of Arg1 at 24 and 144 h I/R in the renal cortex and total kidney.  

mRNA expression of Arg1 at 144 h with LY344864 treatment.  Data are represented as 

mean S.E., N=6-11. b represents significance compared to Sham, c represents 

significance compared to both sham, 24 h after I/R, and 144 h after I/R (p<0.05) 
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Discussion 

 

In this study, we wanted to characterize the M1/M2 phenotype in our model of I/R. We 

focused on the early phase of injury, which is 24 h after I/R and is also the peak of 

maximal renal dysfunction. We also focused on the recovery phase of I/R, which in our 

model occurs at 144 h after I/R.  

 

We found a significant increase in all markers at 144 h after injury in the renal cortex and 

in the total kidney (Figure A1.2). These increases are consistent with other studies that 

have shown that expression of arginase 1 and mannose receptor by M2 macrophages 

predominate in the recovery phase and their expression should be decreased in the early 

phase of injury. We compared the serum creatinine at 144 h as well as the delta serum 

creatinine with the mRNA expression of all these markers (Figure A1.3 and A1.4). Our 

results are consistent with other studies in that the recovery of each animal, as determine 

by increased delta serum creatinine, is associated with an increase in all five of these 

markers.  

 

Interestingly, Csf1 expression is increased in the renal cortex at 24 h after I/R although 

not significant. At 144 h after I/R, Csf1 mRNA expression is further increased in the 

renal cortex and in the total kidney. Csf1 is a cytokine that mediates crosstalk between 

macrophages and tubular cells383,384. Although further investigation is needed to elucidate 

this signaling, our data support theories regarding positive crosstalk between 

macrophages and tubular cells for renal repair384. The role of Csf2 is still unclear 

however, it is known that its expression is necessary for renal repair after I/R.  
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Previously in our lab, we have shown the attenuation of renal function and recovery of 

mitochondrial biogenesis, MB, with the treatment of LY344864, a 5-HT1F agonist180. In 

Figure A1.5, we were curious to see the effect of LY344864 on our markers. Except for 

Arginase 1, LY344864 did not have any effect on our other markers (data not shown). 

The decrease in arginase 1 mRNA expression due to LY344864 treatment is surprising. 

In cardiac I/R the prolonged presence of arginase 1 is not favorable for recovery385. Since 

we have shown previously that LY344864 attenuates renal function compared to sham 

mice, it is possible that one of the effects of LY344864 is decreasing arginase 1, 

providing a new insight into the importance of arginase 1 in the recovery phase of renal 

I/R. The mechanism behind LY344864 induced MB was elucidated in renal proximal 

tubule cells where the involvement of endothelial NOS was important386. A balance 

exists between eNOS expression and arginase 1 expression where both enzymes use L-

arginine to function. Moving forward, it would be worthwhile to investigate this balance 

between eNOS and arginase 1 expression in the presence of LY344864 144 h after I/R.   

Here, we have provided consistent evidence for the M2 phenotype 144 h after I/R in the 

recovery phase and have introduced an interesting effect of LY344864, that still needs to 

be elucidated.  
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