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KENNETH D. CHAVIN) 

Abstract 

Hepatic steatosis is the hepatic manifestation of metabolic syndrome which is 

increasingly becoming a health problem worldwide, especially in the western hemisphere. 

Hepatic steatosis is benign, but long standing hepatic steatosis can lead to non-alcoholic 

steatohepatitis (NASH).  NASH is a form of nonalcoholic fatty liver disease where 

excessive fat accumulation in the liver leads to chronic inflammation of a patient without 

any history of alcohol abuse.  However, the mechanism underlying the progression of 

hepatic steatosis to NASH is unclear.  Role of gut microbiota in metabolic syndrome has 

long been reported.  Here, we hypothesized that gut microbiota plays an important role in 

the modulation of NASH through the involvement of lipopolysaccharide (LPS)-toll-like 

receptor-4 (TLR-4) pathway in dietary fat mediated hepatic steatosis.  To test this 

hypothesis, germ free or broad-spectrum antibiotics-treated mice were fed high fat diet, 

which resulted in decreased level of inflammation in their fatty liver compared to the 

specific pathogen free control mice.  This result demonstrated the involvement of gut 

microbiota in mediating NASH.  To address the role of LPS-TLR-4 pathway, broad 

spectrum antibiotics-treated mice fed high fat diet were injected i.p. with low dose LPS, 

resulting in an increased level of inflammation in the liver which was decreased upon the 

co-treatment with TAK-242, an inhibitor of TLR-4.  To investigate the role of TLR-4-

expressing kupffer cells in mediating NASH, wild-type kupffer cells in the liver of wild-type 

mice were replaced with TLR-4 KO kupffer cells by bone marrow transplantation, which 
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resulted in a decreased level of inflammation in liver upon NASH induction.  It was also 

investigated whether the peroxisomal anti-oxidative function is altered in the livers of mice 

fed high fat diet in a TLR-4 dependent manner.   Indeed, the level and function of catalase, 

the principal antioxidative enzyme in peroxisomes, was decreased in mice fed high fat 

diet, which was reversed in TLR-4 KO mice fed high fat diet.  This individual piece of data 

demonstrated the role of TLR-4 pathway in modulating NASH through the alteration of 

peroxisomal anti-oxidative function.  In conclusion, this project established the role of gut 

microbiota in modulating NASH which is dependent on LPS-TLR-4 pathway.  
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Chapter 1 
An Overview of Nonalcoholic Steatohepatitis and Gut Microbiota 
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Nonalcoholic fatty liver disease (NAFLD) is defined as a condition with excessive 

fat accumulation and related complications in the liver of patients without any record of 

alcoholism [1].  Fat accumulation in the liver can also result from alcohol abuse which is 

called alcoholic fatty liver disease (AFLD) [2, 3].  NAFLD is an umbrella term which 

encompasses simple steatosis to nonalcoholic steatohepatitis (NASH) [4].  Hepatic 

steatosis refers to the normal accumulation of fat in the liver without or with minor 

inflammation.  Hepatic steatosis is benign, but long standing steatosis can lead to the 

development of NASH which is the advanced stage of NAFLD showing clear indication 

of chronic inflammation in the fatty liver [5, 6].    

Epidemiology of NAFLD and NASH 

NAFLD is a rapidly expanding health problem throughout the world. Currently, its 

global incidence is approximately 25% [7].  Variations in the incidence rate for NAFLD 

vary across the globe; the prevalence rate in Asia ranges from 5% to 18% and in Western 

countries from 20% to 30% [8].  Of the individuals with NAFLD, approximately  7% to 30% 

meet the clinical criteria for NASH [9].  Here in the USA, the prevalence rate for NAFLD 

is 30%, with 25% of them satisfying the clinical definition of NASH.  Thus, an overall 

incidence rate for NASH within the US population is approximately 3-8% [10-13]. 

Risk of progression of NASH to end stage liver diseases 

A major concern for individuals with NASH is the likelihood of their progression to 

end stage liver diseases, that will ultimately require transplantation [14].  The potential of 

NASH to progress into fibrosis and hepatocellular carcinoma is recognized.  Alarmingly, 

it has been projected that NASH is going to become the leading cause of liver related 
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morbidity and mortality [15-18].  Although the patients with NASH are at greater risk, 

individuals with simple steatosis and mild inflammation can also progress to fibrosis and 

hepatocellular carcinoma [4, 5, 19-21].  Hepatic fibrosis is defined as an excessive 

deposition of extracellular matrices, especially collagen, within the liver.  While hepatic 

fibrosis results in only minor clinical complications and/or hepatocyte dysfunction, it is 

considered a predictor that the patient has a greater risk of developing cirrhosis [22]. 

Hepatocellular carcinoma is considered the fifth most common cancer and third leading 

cause of cancer-related death in the United States [23].  Hepatitis C virus, alcohol-related 

liver diseases, and hepatitis B virus have been implicated as the three leading causes of 

hepatocellular carcinoma in the western world [24].  A role for NASH in this demographic 

has been underestimated.  However, an increasing prevalence of NASH-related 

hepatocellular carcinoma predicts that NASH is going to become the leading cause of 

hepatocellular carcinoma in the Western countries in near future [10, 24].  Given the 

epidemiological data with respect to NASH and its role in end stage liver diseases, 

approaches to curb the transition from NAFLD to NASH is paramount if we wish to 

improve the morbidity and mortality of patients afflicted with a steatotic liver. 

From metabolic syndrome to NASH 

The etiology of NASH is closely associated with metabolic syndrome [1, 4].  

According to the World Health Organization, metabolic syndrome is a condition 

characterized by multiple metabolic abnormalities including obesity, insulin resistance 

and type-2 diabetes mellitus [25].  Diet and a sedentary life style have been implicated in 

the development of metabolic syndrome.  In the latter half of the 20th century with the 

emergence of a sedentary ‘corporate professional life-style’ and ‘fast food culture’ 
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(containing high fat, carbohydrate, and calories), Westerners  are now considered to have 

a greater risk for developing metabolic syndrome than the people in developing countries 

where manual labor is still the norm for the bulk of the population [26-28].   

Obesity is strongly associated with an increased risk of developing NAFLD.  

Prevalence rate of NAFLD increases with an increase in body mass index [29, 30].  

Incident rates of hepatic steatosis and NASH have been observed to occur respectively 

at 95% and 20% in obese patients [9].  Fat deposition in the liver is directly correlated 

with the accumulation of visceral adipose tissue. Mesenteric fat, a specific type of visceral 

adipose tissue, is drained into the liver through portal circulation, leading to the deposition 

of fat droplets causing hepatic steatosis [31, 32].  

Insulin resistance is a common condition observed in individuals with metabolic 

syndrome. Insulin resistance results in impaired glucose uptake and disposal, an increase 

in de novo synthesis of fatty acids, and an inadequate level of free fatty acid oxidation 

[33, 34].  Therefore, insulin resistance leads to the increased level of free fatty acids, 

adding to the accumulation of fat in the liver [35].  

As a mechanism, insulin action on the liver is coordinated between hepatocytes 

and adipose tissue.  In hepatocytes under a normal condition, insulin signaling pathways 

result in a decreased expression of gluconeogenic enzymes, an inactivation of glycogen 

synthase kinase 3β resulting in an activation of glycogen synthase, and improved rates 

of glycolysis and mitochondrial oxidative phosphorylation.  A decrease in the expression 

of gluconeogenic enzymes and activation of glycogen synthase results in reduced free 

glucose formation.  Reduced level of free glucose indirectly inhibits the de novo synthesis 

of fat by limiting the availability of precursor compounds [36, 37].  
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In adipose tissues under a normal condition, insulin signaling suppresses lipolysis 

which in turn decreases the supply of free fatty acids and glycerol into the liver resulting 

in a reduced formation of fat droplets.  A reduced supply of glycerol into the liver inhibits 

gluconeogenesis through the reduced conversion of glycerol to glucose [38-40].   

In contrast to the insulin signaling in a normal condition, insulin resistance 

constrains hepatic glycogen synthesis leading to an excess of free glucose.  Insulin 

resistance in adipose tissue impedes insulin-mediated suppression of lipolysis leading to 

increased delivery of free fatty acids and glycerol into the liver [36, 41-45].  Insulin 

resistance in the liver leads to an elevated level of free glucose. Elevated level of free 

glucose is correlated with altered adipose lipid metabolism resulting in an increased 

supply of free fatty acids and glycerol [46-50].  Therefore, insulin resistance mediates a 

complex, reciprocal form of feedback between adipose tissue and the liver leading to 

hepatic steatosis.  

Type-2 diabetes mellitus (T2DM) is the most studied metabolic disorder with an 

occurrence of insulin resistance and inability of pancreatic beta cells to produce sufficient 

insulin to address the phenomenon of insulin resistance, [51].  The prevalence of NAFLD 

has been linked to T2DM.  In one study, it was reported that the prevalence of NAFLD in 

obese patients with T2DM was 70% higher than in obese patients without T2DM [52].    

These data taken collectively suggest that a close association exists between metabolic 

syndrome and NAFLD [53].  Obesity, insulin resistance and T2DM are interrelated in 

causing NAFLD, while insulin resistance plays the pivotal role in this inter-connection (Fig. 

1.1).  
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Figure 1.1. Role of metabolic syndrome in the development of nonalcoholic fatty liver disease.  
Excessive consumption of fat in concert with a sedentary lifestyle result in metabolic syndrome as 
manifested by obesity, insulin resistance and type-2 diabetes mellitus. Insulin resistance plays the 
pivotal role of metabolic syndrome in causing an increased level of free fatty acids in the liver through 
their de novo synthesis in hepatocytes and enhanced adipose lipolysis resulting in nonalcoholic fatty 
liver disease. 
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A ‘Two-hit hypothesis’ to explain the pathogenesis of NASH 

The pathogenesis of NASH has yet to be fully elucidated.  Currently, it is explained 

by a  ‘two-hit hypothesis’ originally proposed by Day and James [54].  According to this 

hypothesis, the first hit results from the accumulation of excessive fat leading to ‘hepatic 

steatosis’.  A liver is considered steatotic if it contains more than 5% to 10% fat [55].  

Hepatic steatosis is phenotypically unremarkable, but a long-term steatosis can result in 

the second hit caused by oxidative stress, dyslipidemia, mitochondrial dysfunction, an 

altered cytokine milieu, immune infiltrations, and endoplasmic reticulum stress [56].  

Subsequent to the second hit, the transition of the steatotic liver occurs from being 

pathologically benign to a state where the organ is chronically inflamed [56]. 

Pro-inflammatory mediators of NASH 

Oxidative stress, endoplasmic reticulum stress and hepatocyte apoptosis are 

considered key pro-inflammatory mediators of NASH [56].  The concentration of free fatty 

acids within hepatocytes is low in the normal condition.  An increased influx of free fatty 

acids into the hepatocytes initiates chronic inflammation within the liver.  This increased 

influx of free fatty acids can result from 1) the consumption of a diet rich in carbohydrates 

or fat, 2) the lipolysis of stored fat, or 3) the de novo synthesis of fatty acids [56-58].  Such 

an increase in the availability of free fatty acids within the hepatocytes results in an 

increased fatty acid oxidation in mitochondrial and extra-mitochondrial sites leading to the 

over-production of reactive oxygen species (ROS).  An excess production of ROS creates 

an imbalance with antioxidants, which in turn leads to oxidative stress and mitochondrial 

dysfunction [59, 60] (Fig. 1.2).  
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Figure 1.2. Role of free fatty acids in the production of reactive oxygen species. Free fatty acids 
can be directly transported into the liver from diet via chylomicrons. Free fatty acids can also be 
delivered from the lipolysis of adipose tissues. They can also be synthesized de novo from diet-derived 
carbohydrates. Free fatty acids are incorporated into triglycerides which are then accumulated into 
lipid droplets leading to hepatic steatosis. Excess free fatty acids undergo fatty acid oxidation in 
mitochondrial and extra-mitochondrial sites especially peroxisomes. Increased fatty acid oxidation in 
hepatocytes leads to the elevated level of reactive oxygen species resulting in oxidative stress which 
is the key initiator of steatohepatitis.   
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The presence of excess free fatty acids within hepatocytes can also lead to an 

overload of lipids in the endoplasmic reticulum (ER), resulting in ER dysfunction. ER 

dysfunction results in the accumulation of unfolded and/or misfolded proteins manifested 

as ER stress [61].  Mitochondrial dysfunction and ER stress culminate in the apoptosis of 

hepatocytes, leading to the activation of hepatic innate cells and pro-inflammatory 

immune infiltrates [59-62].  

Gut microbiota and their contribution to human health 

In addition to the consequences associated with free fatty acid-mediated oxidative 

and ER stress, the role of other endogenous and exogenous mediators of NASH are of 

interest.  One area receiving significant attention is the role that gut microbiota plays in 

the onset of NASH, but further investigation is required to have a better picture on the 

mechanistic role of gut microbiota in mediating NASH.  Bacterial cells living inside and 

outside the human body outnumber the host eukaryotic cells [63].  The majority of these 

microbes reside within the gastrointestinal tract due to favorable growth conditions and 

the continuous influx of nutrients.  It has been estimated that the total number of microbes 

harbored in the gastrointestinal tract collectively make up to 100 trillion microbes which is 

ten-fold higher than the human cells [64].  The unique gastro-intestinal niche confers 

increased fitness and stability to the microbes through their continuous communication 

and interactions with the host [65]. A tremendous number of studies have suggested that 

the gut microbiota plays a critical role in the control and onset of human health and 

disease.  For instance, gut microbiota has an essential role in energy homeostasis and 

nutrient recovery from ingested diets.  The microbial genes from the collective microbial 

community provide unique enzymes required for specific biochemical pathways [66, 67].  
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These enzymes have essential roles in the metabolism of xenobiotics, undigested 

carbohydrates and the biosynthesis of vitamins and cofactors essential to the host [67, 

68].  Significantly, the gut microbiota generates short chain fatty acids that are used as 

an energy source by the gut epithelial cells.  These short chain fatty acids have an 

important role in regulating gut motility and inflammation [69-71].  The gut microbiota also 

serve an important role in providing a barrier to pathogens through competitive exclusion 

and production of antimicrobial substances [67, 72-74].  

Additionally, the gut microbiota has an essential role in the development of the 

immune system of the host. It has been reported that there are an abnormal number of 

immune cells and perturbations to the cytokine milieu in the lymphoid organs of germ free 

mice [67, 75].  Depletion of gut microbiota in mice has been shown to result in the 

depression of immunity and an abnormally reduced immune infiltrates in the gut [76].  Due 

to a direct communication between the liver and gut, it is assumed that gut microbiota 

may be responsible for the maintenance of intestinal health, which in turn may have an 

impact on the overall function of the liver. 

Dynamic composition of gut microbiota and metabolic syndrome 

Compositional changes to the gut microbiota have been observed secondary to 

environmental, immunological, dietary and/or nutritional alteration experienced by the 

host.  Such compositional changes have been associated with various host pathologies, 

including metabolic syndrome [77-83].  Our understanding of the factors affecting the 

composition of gut microbial community and how such changes can alter the risk of 

metabolic disease in mammals was first attributed to studies conducted by Jeffrey Gordon 
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and his group [84-86].  They showed that changes to the gut microbiota are secondary to 

diet-induced obesity in mice.  These changes significantly influence energy harvest from 

diet, its utilization, and storage [86-88].  Apart from these studies in animal models, 

changes to the gut microbiota in obese humans have been reported by Ley and 

colleagues [89].  They showed that the proportions of Bacteroidetes to Firmicutes was 

decreased in the gut of obese patients as compared to the lean controls.  In concert with 

obesity, dysbiosis was also observed in the metabolic syndrome manifested by T2D.  

Reduced proportions of the phylum Firmicutes and class Clostridia in concert with higher 

proportions of beta-proteobacteria were observed in patients with T2D compared to 

healthy individuals [79].  Positive correlations have occurred with the concentration of 

glucose observed in human plasma and the ratio of Bacteroidetes to Firmicutes as well 

as the ratio of Bacteroides-Prevotella group to Clostridium coccoides-Eubactereium 

rectale group [79].  These data suggest a potential association of T2D with compositional 

changes to the microbial community within the human gut.  Due to the close relationship 

between metabolic syndrome and NASH, similar changes to the composition of gut 

microbiota are anticipated in patients with NASH. 

Gut microbiota bridges gut-liver axis 

The term ‘gut-liver axis’ was first proposed by Volta and colleagues in 1978 [90]. 

Since then, a substantial number of studies have evaluated the association between the 

gut and liver  in concert with human health and diseases [91].  In a healthy state, the gut 

epithelial layer selectively allows the entry of nutrients, ions and water across the gut 

epithelial boundary while simultaneously excluding deleterious compounds and microbes.  

The gut microbiota serves to protect the epithelial layer from pathogens through 
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competitive exclusion and production of pathogen specific antimicrobials. In addition to 

providing a protective layer to exclude pathogens, the gut microbiota serves an important 

role in maintaining a healthy epithelial barrier.  The gut microbiota generates acetate, 

propionate and butyrate which contribute to maintain a tight epithelial barrier [92-94].   

Consequently, any change to the gut microbiota that alters the delicate balance to 

epithelial nutrients may potentially compromise epithelial integrity, resulting in a condition 

termed leaky gut [95].  During this abnormal circumstance, the gut epithelial layer will 

demonstrate an impaired ability to regulate the entry of waste and other toxic components 

into the circulation.  A leaky gut has been observed in patients with NAFLD [95, 96]. All 

gut-derived components crossing the epithelial barrier are drained into the liver through 

portal circulation.  Therefore, a leaky gut poses a potential threat to the liver by increasing 

the supply of pro-inflammatory gut microbes-derived compounds into an organ that is 

already susceptible to inflammation secondary to an excessive accumulation of fat [97, 

98]. 

Gut microbiota induces pro-inflammatory pathways through the interaction with 

toll-like receptors  

Toll-like receptors are pattern recognition molecules expressed by a variety of 

professional and non-professional immune cells.  Toll receptor was originally identified in 

Drosophila melanogaster as a molecule essential to determine the dorsal-ventral axis 

orientation during embryogenesis [99].  Subsequently, human homologues were 

discovered and named Toll-like receptors (TLRs) [100, 101].  The intracellular domains 

of TLRs have similarity to the interleukin-1-receptor (IL-1R) known as Toll/Interleukin-1 
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receptor (TIR) domain.  The function of TIR domain is to recruit adaptor molecules that in 

turn pass the signal upon the binding of ligands to the TLRs.  

TLRs recognize microbe associated molecular patterns (MAMPs) and are 

responsible for the induction of pro-inflammatory responses.  In addition to microbial 

components, TLRs can also recognize endogenous ligands known as danger associated 

molecular patterns released from damaged tissue, infected tissue or dead cells.  Upon 

the binding of ligand to the extracellular domain of TLRs, adaptor molecules are recruited 

to the cytoplasmic TIR domain resulting in a sequential activation of intracellular signaling 

molecules called signal transduction.  The consequence of signal transduction is the 

activation of transcription factor nuclear factor kappa-light-chain-enhancer of activated B 

cells (NF-κB), which results in an expression of pro-inflammatory mediators such as 

cytokines and chemokines.  In addition to activating the NF-κB pathway, mitogen 

activated protein kinase cascades are also activated by the TLR-ligand interaction [100, 

102, 103].  TLRs were initially considered only to induce anti-pathogen inflammatory 

responses, but growing body of evidence indicates that activated TLRs are the underlying 

cause for a number chronic inflammatory diseases (Table 1) [100, 103-112]. 

Potential role of low grade chronic endotoxemia in metabolic syndrome 

The gut microbiota contains both Gram-positive and Gram-negative bacteria. 

Lipopolysaccharide (LPS), also known as endotoxin, is a major outer membrane 

constituent of Gram-negative bacteria.  LPS is continuously produced and shed from  
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TLRs Microbe-derived ligands Nonmicrobial ligands Diseases 

 Ligands Sources   

 TLR-1/2/6 Triacyl lipopeptides Bacteria Fatty acids Atherosclerosis 

 Peptidoglycans  Gram-positive bacteria Hyaluronan fragments Inflammatory 
bowel disease 

 Phenol soluble modulin Staphylococcus aureus HMGB-1 Asthma 

 Glycolipids Treponema maltophilum HSPs Rheumatoid 
arthritis 

 Atypical LPS Non-entero bacteria   

 Phospholipomannan Candida albicans   

 LPG Leishmania major   

 Tc52 Trypanosoma cruzi   

 Diacyl lipopeptides Mycoplasma   

 Lipoteichoic acid Gram-positive bacteria   

 Zymosan Saccharomyces cerevisiae   

 GPI anchor Trypanosoma cruzi   

 Envelope protein Measles virus   

  Human cytomegalovirus   

  herpes simplex virus type I   

TLR-3 dsRNA Viral dsRNA Synthetic dsRNA 
(Poly(I:C) 

Type 1 diabetes 

    Rheumatoid 
arthritis 

TLR-4 LPS Gram-negative bacteria Fatty acids Atherosclerosis 

 Mannan Saccharomyces cerevisiae Hyaluronan fragments Multiple sclerosis 

  Candida albicans HMGB-1 Asthma 

 Glucuronoxylomannan Cryptococcus neoformans HSPs Rheumatoid 
arthritis 

 F protein Respiratory syncytial virus Fibronectin fragments  

 Envelope protein Mouse mammary tumor virus   

 

Table 1. List of Toll-like receptors and their microbial/non-microbial ligands 
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TLR-5 Flagellin Flagellated bacteria  Inflammatory bowel 
disease 

TLR-7/8 ssRNA  Synthetic imidazoquinoline 
derivatives 

Systemic lupus 
erythematosus 

    Type 1 diabetes 

TLR-9 CpG DNA  Bacteria Immune complexes/dsDNA Systemic lupus 
erythematosus 

  Virus  HMGB-1 Type 1 diabetes 

 Genomic DNA Babesia bovis  Multiple sclerosis 

  Trypanosoma cruzi  Inflammatory bowel 
disease 

  Trypanosoma brucei  Rheumatoid arthritis 

 Hemozoin Plasmodium falciparum   

TLR-11 Not determined Uropathogenic bacteria   

 Profilin-like protein  Trypanosoma gondii   

 CpG DNA Virus   
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bacteria either through their lysis or growth [113, 114].  Although the presence of LPS is 

restricted to the intestinal lumen [115], small amounts of LPS can pass through the 

epithelial barrier and enter the circulation in healthy individuals [116].  While the presence 

of LPS in circulation is normal, an increased concentration can result in chronic 

endotoxemia.  Thus, the role of an increased concentration of gut-derived LPS in blood 

circulation is an important topic of investigation in relation to chronic inflammatory 

diseases, in particular, the metabolic syndrome. 

Inflammatory responses associated with acute endotoxemia, secondary to sepsis, 

have revealed alterations to lipid metabolism [117, 118].  A lethal or sub-lethal dose of 

endotoxin in mice leads to increased adipose lipolysis resulting in an elevated 

concentration of circulating free fatty acids [119-121].  Despite an increased level of 

circulating free fatty acids, fat accumulation in the liver is prevented due to the autophagy 

induced by a lethal dose of endotoxin [120].  In contrast to acute endotoxemia, our 

understanding of the pro-inflammatory consequences associated with a low 

concentration of circulating LPS and its impact on lipid metabolism is still unclear.  

Recently, Cani and colleagues have observed that a low concentration of endotoxin is 

increased in obese (ob/ob) mice and in lean mice fed a high fat diet.  They have shown 

that a chronic elevation to the concentration of endotoxin through the infusion of low grade 

LPS results in fat deposition in adipose tissue, which is in direct conflict to observations 

associated with the animals exposed to acute endotoxemia [122, 123].  Moreover, plasma 

levels of LPS have been reported to increase in patients with abdominal obesity 

compared to the healthy controls, which is in line with the observations associated with 

mice exposed to chronic endotoxemia [124].  
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TLR-4 pathway is essential in the modulation of metabolic syndrome 

LPS interacts with TLR-4 upon binding to CD14 to induce inflammation [125].  Cani 

and colleagues have shown that CD14 knockout mice are partially protected from a high 

fat diet-induced increase in adipose tissue and body weight [122, 123].  This study 

suggested a role for the TLR-4 pathway in metabolic derangements in high fat diet-

mediated obesity in mice [123].  The TLR-4 pathway has also been linked to metabolic 

syndrome in human patients.  Creely et al. have shown that the expression level of TLR-

4 is higher in obese and in type-2 diabetes patients compared to healthy individuals [126].  

Potential role of LPS-TLR-4 axis in NASH 

In human, the liver is the first organ to encounter LPS delivered from the gut 

microbial community. TLR-4 expressing Kupffer cells are a major and well characterized 

target of LPS in the liver to execute the subsequent pro-inflammatory events [127, 128].  

In comparison to healthy individuals, a slightly elevated level of serum endotoxin was 

reported in NASH patients which led to investigations examining the potential role of low 

dose LPS in driving inflammation in NASH in experimental models [129-132].  Indeed, 

injection of subclinical dose of LPS in mice fed high fat diet or obese mice (ob/ob) resulted 

in exacerbated hepatic inflammation indicating the role of chronic endotoxemia in causing 

NASH [133].  Based on these reports, a comprehensive study to investigate the role of 

LPS-TLR-4 axis in causing chronic inflammation in the fatty liver is needed.  Therefore, 

in this project, we attempted to establish the role of gut-derived LPS-TLR-4 pathway as 

an actual risk factor to sustain a chronic inflammation during the pathogenesis of NASH. 

We also attempted to employ the LPS-TLR-4 pathway as a potential target for therapeutic 

intervention to stop the progression of NASH.  
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Chapter 2 
Materials and Methods 
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Our initial objective was to investigate the global involvement of gut microbiota in 

causing NASH.  This objective was experimentally addressed by using specific pathogen 

free and germ free mice.  We also conducted gut microbiota reconstitution 

(conventionalization) experiment to test whether the restoration of gut microbiota in germ 

free mice through fecal transfer from normal mice could impact the level of NASH.  We 

then intended to assess the role of LPS-TLR-4 pathway in mediating NASH by using wild-

type and TLR-4 KO mice individually treated with broad-spectrum antibiotics, LPS, or 

TLR-4 inhibitor.  Bone marrow transplantation experiment was performed to investigate 

the role of TLR-4-expressing kupffer cells in the modulation of NASH.  Following 

euthanization, tissue samples were collected for subsequent analyses.  In this chapter, 

different experimental steps and methods used in this project have been described with 

detailed information in a reproducible manner. 

Animal experiments 

Six-week-old male wild-type C57BL/6 mice were purchased from Jackson 

Laboratories and maintained under specific pathogen free conditions.  Six-week-old germ 

free male C57BL/6 mice were bred and housed in flexible plastic gnotobiotic isolators 

following a strict 12 h light cycle at the gnotobiotic animal research facility of the Medical 

University of South Carolina.  Six-week-old toll-like receptor knock out (TLR-4 KO) 

C57BL/6 male mice were purchased from Jackson Laboratories and maintained under 

specific pathogen free conditions.  After two weeks of equilibration on normal chow, the 

now eight-week-old mice were placed either on an isocaloric control diet ((CD), TD.08810, 

10% kcal from fat), a lard-based high fat diet ((LD), TD.06414, 60% kcal from fat, 63% 

unsaturated) or a milk-based high fat diet ((MD), TD.09766, 60% kcal from fat, 61% 
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saturated), purchased from Harlan Laboratories (IN, USA).  Mice were housed at 22 °C 

with 12 h light/dark cycle, fed special diets for 8, 16 or 32 weeks ad libitum and weighed 

each week.   After 8, 16, or 32-weeks of feeding, they were euthanized whereupon the 

liver were harvested and blood samples were collected.  Whole livers were weighed with 

portions of them processed for the isolation of total RNA and subsequent analysis for 

specific proteins.  The remaining fraction of the liver was fixed in 10% neutral buffered 

formalin (Starplex Scientific Inc., Ontario, Canada) for 24 h at room temperature, with its 

subsequent embedding into paraffin, sectioning, and histological/immunohistochemical 

staining.  All of the animal studies were reviewed and approved by the Medical University 

of South Carolina’s Institutional Animal Care and Use Committee (IACUC).  

For conventionalization (restoration of normal gut flora) experiment, gut microbiota 

was reconstituted in six-week old germ free mice fed CD or MD by fecal transplantation 

from specific pathogen free wild-type donor mice.  Stool from donor mice were diluted in 

saline (0.1g/mL) and gavaged into germ free animals on a weekly basis for a period of 16 

weeks (200 µL per animal).  The remaining stool solution was placed on the fur of the 

animals.  Part of soiled bedding was collected from the cages of stool donors and placed 

into the cages of the conventionalized/recipient animals on the same weekly schedule.   

Partial hepatectomy 

Partial hepatectomy experiment was performed to investigate the role of dietary 

fat-mediated NASH on hepatic regeneration.  After 16 weeks of continuous feeding with 

CD, LD or MD, C57BL/6 mice were anesthetized with isoflurane and subjected to a mid-

ventral laparotomy with approximately 70% of liver resection (left lateral and median lobes 

hereafter referred to as resected lobes) [134].  Animals from individual diet interventional 
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and control group were sacrificed 2 or 7 days post-hepatectomy.  One hour prior to 

sacrifice, a single dose of 5-bromo-2'-deoxyuridine (BrdU, Sigma-Aldrich, MO, USA) was 

injected intraperitoneally at a dose of 50 mg/kg animal weight using a vehicle of 0.2% 

pyrogen free phosphate buffered saline (Fig. 2.1).  At the time of sacrifice, animals were 

anesthetized with isoflurane and total blood was harvested from the right ventricle of the 

heart.  The remaining lobes of the liver, hereafter referred to as regenerated lobes, were 

harvested.  Both of the resected and regenerated lobes of the livers were weighed and 

were processed for RNA, protein and histological analyses. 

Treatment with broad-spectrum antibiotic, LPS and TLR-4 inhibitor 

It was intended to investigate the role of LPS in causing NASH as a sole gut-

derived molecule present in the circulation.  To ensure that chronic inflammation was not 

induced by any gut-derived component other than LPS, gut microbiota was diminished by 

the treatment of broad spectrum antibiotics followed by the chronic administration of low 

dose LPS.  Broad spectrum antibiotics-treated and LPS-injected mice were administered 

with TLR-4 inhibitor to demonstrate the role of TLR-4 pathway in causing NASH.  To 

accomplish this experiment, specific pathogen free, C57BL/6 mice fed CD or MD for 16 

weeks were treated with ampicillin (1 g/l: Sigma-Aldrich, USA), neomycin sulfate (1 g/l: 

Sigma-Aldrich, USA), metronidazole (1 g/l: Sigma-Aldrich, USA) and vancomycin (500 

mg/l: Sigma Aldrich, USA) ad libitum through the drinking water.  During the last four 

weeks of antibiotic treatment, the mice were injected intraperitoneally daily with 0.25 

mg/kg body weight LPS (O55:B5, Sigma Aldrich, USA) or vehicle (0.9% saline).  During 

LPS injection, mice were also injected intraperitoneally three times per week with 3 mg/kg 

body weight TAK-242 (Sigma Aldrich, USA) or vehicle (1% DMSO (Sigma Aldrich, USA)).   
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Figure 2.1. Diagrammatic representation of hepatic regeneration experiment.  Mice fed control diet or milk-
based high fat diet for 16 weeks were subjected to partial hepatectomy. After 2 or 7-days of partial hepatectomy, 
mice were injected with BrdU one hour prior euthanization. CD and MD indicate control diet and milk-based high 
fat diet, respectively. 
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TLR-4 KO mice fed CD or MD were injected with LPS using same protocol as mentioned 

above (Figure 2.2A).  

Bone marrow transplantation and depletion of kupffer cells  

To investigate the role of TLR-4-expressing kupffer cells in mediating NASH, an 

experiment was designed where kupffer cells in the livers of wild-type mice were 

reconstituted with TLR-4 KO cells and kupffer cells in the livers of TLR-4 KO mice were 

reconstituted with wild-type cells.  To accomplish this experiment, 8x106 bone marrow 

cells, obtained from wild-type or TLR-4 KO mice, were injected into tail vein of lethally 

irradiated (11 Gy) TLR-4 KO or wild-type mice respectively.  After 2 weeks of bone marrow 

transplantation, mice were injected intravenously just once with 200 µl of 5 mg/mL of 

liposomal chlodronate (Encapsula NanoSciences, USA). Injection of chlodronate 

depleted the former kupffer cells resident in the liver and served to create an available 

niche for the transplanted bone marrow-derived monocytes to settle as new kupffer cells.  

After 10 weeks of chlodronate injection (during this 10 weeks mice were on regular chow 

provided by the animal facility), both the wild-type and TLR-4 KO mice were fed CD or 

MD for 16 weeks (Figure 2.2B) [135].   

A question was raised whether the engrafted hematopoietic cells-derived 

monocytes were actually settled as kupffer cells in the livers. Following experiment was 

performed to answer this question using CD45.1 (donor) and CD45.2 (recipient) congenic 

mice.  8x106 bone marrow cells isolated from CD45.1 donor mice were intravenously 

injected into lethally irradiated (11 Gy) congenic CD45.2 recipient mice.  Following 2 

weeks after bone marrow cell injection, mice were injected intravenously just once with  
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Figure 2.2. Diagrammatic representation of (A) antibiotic/LPS/TAK-242 treatment and (B) kupffer cell 
reconstitution experiment. (A) Broad spectrum antibiotics-treated mice fed CD or MD for 16 weeks were injected with 
LPS or administered with TAK-242 for last 4 weeks of experiment. (B) Lethally irradiated TLR-4 KO or wild-type mice 
were transplanted with bone marrow isolated from wild-type or TLR-4 KO mice. After 2 weeks of bone marrow 
transplantation, mice were injected with liposomal chlodronate. Following 10 weeks of liposomal chlodronate injection, 
mice were fed control diet or milk-based high fat diet for 16 weeks. CD and MD indicate control diet and milk-based high 
fat diet, respectively. 
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chlodronate (200 µl of 5 mg/mL).  After 10 weeks of chlodronate injection, non-

parenchymal cells were isolated from the livers of chimeric and control mice and used for 

flow cytometric analyses. 

ALT and AST assays 

 Presence of alanine aminotransferase (ALT) and aspartate aminotransferase 

(AST) in the serum was determined as an indicator of NASH.  After the collection of whole 

blood through heart puncture, it was allowed to clot by leaving undisturbed at room 

temperature for 15–30 min.  The clot was removed by centrifuging at 1,000–2,000x g for 

10 minutes at 4°C.  Following centrifugation, the transparent yellowish liquid component 

(serum) was immediately transferred into a clean polypropylene microcentrifuge tube and 

stored at -20 °C [136].  Serum was assessed for the presence of ALT and AST using 

standard kit protocols provided by the manufacturer (BioVision Inc., USA).  

Endotoxin assays  

In order to assess the concentration of circulating endotoxin, serum was collected 

from the portal blood following the protocol used for serum collection from the whole blood 

[136].  Portal serum was used to determine the concentration of LPS using the Pierce 

Limulus Amebocyte Lysate (LAL) chromogenic endotoxin assay kit following standard 

protocol provided by the manufacturer (Thermo Scientific, USA).  

In order to assess the concentration of endotoxin resident in the fecal material of 

the animals, 20 mg of fecal matter was collected from the cecum of each animal 

whereupon it was placed into 50 mL PBS within a pyrogen-free tube.  The material was 

then sonicated at 20 KHz for 1 h on ice.  Subsequent to sonication, the resulting material 
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was centrifuged at 400 × g for 15 min.  The upper 30 mL of the sonicate was collected, 

sterilized by filtration through a 0.45-μm filter, re-filtered through a 0.22-μm filter, and 

inactivated for 10 min at 70°C [137].  The LPS concentration present in the  filtered 

sonicate was determined using  the Pierce Limulus Amebocyte Lysate (LAL) chromogenic 

endotoxin assay kit following standard protocol provided by the manufacturer 

(ThermoFisher Scientific, USA). 

Liver histology and immunohistochemical staining 

In order to assess the histopathological status of NAFLD, formalin fixed and 

paraffin-embedded (FFPE) tissues were evaluated.  The 5 µm FFPE sections were 

stained with Hematoxylin and Eosin (Richard-Allan Scientific® Histology/Cytology 

Reagents, ThermoFisher Scientific, USA) using the standard protocol provided by the 

manufacturer.  Slides were assessed for the extent to which each liver sample met the 

criteria for NAFLD.  This evaluation was performed by an experienced liver pathologist 

using an established semi-quantitative schema [138-140].  In brief, NAFLD activity was 

determined from the sum of the total steatosis observed, the extent with which lobular 

inflammation was present and the level of hepatocellular ballooning.  Levels of steatosis 

were scored as a percent area of the field occupied by the empty spots secondary to the 

release of fat droplets as a consequence of ethanol wash during the paraffin embedding.  

Lobular inflammation was scored from the level of cellular infiltration and hepatocellular 

ballooning was scored from the number of enlarged hepatocytes with rarefied cytoplasm 

that achieved a size greater than 1.5 to 2 times the diameter of a normal cell [138-140].  

In order to visualize the deposition of fat within the liver, liver tissues were 

embedded in optimal cutting temperature (O.C.T) compound. The 5 µm O.C.T sections 
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were stained with oil red O (Sigma-Aldrich, USA) using the standard protocol provided by 

the manufacturer [141].  Oil red O-stained O.C.T sections were visualized and imaged 

using ZEISS Axiovert 200M inverted microscope equipped with a digital camera (20x 

magnification). 

In order to assess the level of collagen accumulation, 5 µm FFPE liver sections 

were stained with picrosirius red.  Briefly, FFPE sections were deparaffinized in xylene, 

whereupon they were rehydrated by serially soaking in 100%, 95%, 90% and 0% ethanol 

and then incubated in a solution of 0.1% Sirius red (Direct red 80, Sigma-Aldrich, USA) 

and 1.3% saturated picric acid (Sigma-Aldrich, USA) for 1 hour. Subsequent to staining, 

the sections were washed using a 0.5% acetic acid solution, whereupon they were 

dehydrated by serially soaking in 0%, 90%, 95% and 100% ethanol and xylene.  

Picrosirius red-stained sections were imaged using ZEISS Axiovert 200M inverted 

microscope equipped with a digital camera (20x magnification). 

Hepatocyte nuclear staining for BrdU was performed by using BrdU 

immunohistochemistry kit essentially as described by the manufacturer (abcam, USA).  

BrdU-incorporated hepatocytes were counted in high-power field of light microscope 

using 20x magnification and expressed as a percentage of total hepatocytes (both BrdU 

stained and non-stained). 

The number of neutrophils present in each FFPE section was determined by 

staining the sections with Leder stain (Napthol AS-D chloroacetate esterase, Sigma-

Aldrich, USA).  The number of infiltrating neutrophils was determined by counting the 

number of Leder-positive cells encountered in each high-power field (20x magnification) 

from each section evaluated.   
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The number of macrophages present in each FFPE section was determined by 

immunostaining for F-4/80.  FFPE sections were incubated in 0.3% H2O2 for 30 min to 

quench the activity of endogenous peroxidase followed by an incubation with primary 

antibody (rat anti-mouse F4/80, clone BM8, Biolegend, USA) and secondary antibody 

using Vectastain ABC kit (Vector Laboratories, USA) following the standard protocols 

provided by the manufacturers. The percentage of macrophage infiltration was 

determined as the number of positively stained macrophages against the total number of 

cells present in each high power field (20x magnification) per section [142]. 

In order to do fluorescence immunohistochemistry, FFPE sections were boiled in 

sodium citrate buffer (10 mM sodium citrate, 0.05% Tween 20, pH 6.0) for 30 min for 

antigen retrieval followed by the blocking with 5% BAS for 30 min at room temperature, 

overnight incubation with the primary antibody at 4°C, 1.5 hour incubation with secondary 

antibody, and DAPI staining following standard protocol (abcam, USA).    

Quantitative real time reverse transcriptase polymerase chain reaction (RT-PCR)  

Expression levels of different NASH-indicative genes were determined by using 

RT-PCR.  Total RNA was isolated from 20-50 mg liver tissue using Trizol (Ambion, USA) 

according to the manufacturer’s instructions.  The concentration of RNA recovered was 

determined by Nanodrop Spectrophotometer (ThermoFisher Scientific, USA).  The quality 

of RNA was assured by determining the ratio of absorbance at 260 nm and 280 nm.  A 

ratio of absorbance at 260 nm and 280 nm higher than 2.0 confirmed the purity of RNA 

samples [143].  The concentrations of RNA between samples were equalized through 

dilution using sterile, RNase free water.  
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RT-PCR was accomplished by taking 500 ng of RNA, subjecting it to reverse 

transcription with subsequent amplification of the DNA template using LightCycler 480 

instrument (Roche, USA) using the TaqMan Fast Virus 1-step PCR master mix (Applied 

Biosystems, USA) and TaqMan-FAM-MGB primers/probes (Applied Biosystems, USA) in 

a final reaction volume of 20 µL using the following thermocycling profile.  1) Reverse 

transcription at 50°C for 5 min; 2) inactivation of the reverse transcriptase by exposing the 

reaction to 95°C for 20 sec;  and 3) amplification of newly transcribed DNA template with 

40 successive cycles at 60°C for 30 seconds followed by denaturation at 95°C.  Gene-

specific probe information are provided in Table 2.1.  The expression level of a given gene 

was calculated as a fold difference in relative to the normalized expression level 

housekeeping gene HPRT1 using the comparative ∆∆Ct method [144]. 

Western blot analysis 

Differences in the expression level of different NASH-associated proteins in the 

liver were assessed by using Western blot analysis.  In order to prepare tissue 

homogenate, 50 mg of liver tissue was homogenized in 200 µL of RIPA buffer (25 mM 

Tris-HCl, 150 mM NaCl, 1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS and 5% 

mammalian proteinase inhibitor) (Sigma-Aldrich, USA) [145].  Protein concentration in the 

tissue homogenate was determined by following the instruction of BCA assay kit (Pierce, 

USA).  Then, 5 µg of protein samples were run on 4-12% NuPage polyacrylamide gels 

(Life Technologies, USA) and transferred to nitrocellulose membrane (ThermoFisher 

Scientific, USA).   After blocking with TBS-T (Sigma-Aldrich, USA) containing 5% milk for 

30 min, blots were incubated overnight at 4°C with the primary antibody diluted in TBS-T 

containing 5% milk [146].  The blots were then washed with TBS-T, incubated with 
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peroxidase-conjugated secondary antibody diluted in TBS-T containing 5% milk for 1.5 hr 

at room temperature (information about the antibodies used in Western blot analysis are 

provided in Table 2.2).  After 3×5 min washing with TBS-T, blots were  

 

 

 

Probe  Gene bank address Company 

HPRT Mm00446968_m1 
 

ThermoFisher 
 

TNF-α Mm00443258_m1 
 

ThermoFisher 
 

IL-1β Mm00434228_m1 
 

ThermoFisher 
 

CCL-2 Mm00441242_m1 
 

ThermoFisher 
 

TGF-β Mm00441724_m1 
 

ThermoFisher 
 

α-SMA Mm01546133_m1 ThermoFisher 
 

Col-1a Mm00801666_g1 
 

ThermoFisher 
 

Table 2.1. List of probes used for RT-PCR

Antibody Dilution Company Clone/RRID  

Rabbit anti-PARP Ab 1:1000 Cell Signaling 46D11  

Goat anti-rabbit HRP-linked secondary Ab 1:2000 Cell Signaling 7074S  

Mouse anti-catalase monoclonal Ab 
 

1:4000 ThermoFisher 
 

12C2DB9 
 

 

Mouse anti-GAPDH Ab 
 

1:4000 Ambion 6C5 
 

 

Goat anti-mouse HRP-liked secondary Ab 
 

1:4000 ThermoFisher 
 

AB_2533947  

Alexa Fluor 488 Goat anti-Rabbit IgG 1:1000 Invirogen AB_143165  

Rabbit polyclonal to Catalase 1:500 abcam ab16731 
 

 

Rabbit polyclonal to PMP70 1:500 abacm ab3421 
 

 

 

Table 2.2. List of antibodies used for immunoblot and immunofluorescence staining 
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incubated with freshly prepared SuperSignal West Femto Maximum Sensitivity Substrate 

(Thermo Scientific, USA) for 1-5 min and imaged using luminescent image analyzer 

(Image Quant LAS 4000, GE Healthcare Life Sciences, PA, USA).  Densitometry 

analyses were performed using Image J software (National Institutes of Health, USA).  

Catalase activity assay  

Catalase activity present in liver homogenates was assessed in order to provide 

an approximation of the alteration to peroxisomal anti-oxidative function.  50 mg tissue 

homogenates were prepared and used for catalase activity assay using standard protocol 

of catalase activity colorimetric/fluorometric assay kit (BioVison Inc., USA). 

16S rRNA analyses 

To investigate the impact of change of diet on gut microbiota, diet-conversion 

experiment was performed.  In this experiment, six-week-old mice were fed milk diet (MD) 

for 16 weeks. Then, the diet was switched from MD to control diet (CD) for another 16 

weeks.  Following euthanization, mice abdomen was opened and stool pellets were 

collected from the severed distal ilium using blade and tweezers.  Collected stool was 

snap frozen and stored at -80°C.  Analysis of the 16S bacterial DNA from was carried out 

at the Microbiome Core Facility of the University of North Carolina. DNA was extracted 

from samples using the Epicentre® MasterPure Complete DNA Purification Kit (Illumina, 

Inc.) and bacterial DNA was amplified and sequenced by the Illumina MiSeq system. 16S 

rDNA amplicons was purified and quantified on an Invitrogen Qubit system and assessed 

on an Agilent Bioanalyzer.  Following quality filtering, sequences was de-multiplexed and 

trimmed using QIIME open source software (http://qiime.org).  Downstream alignment of 
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QIIME processed sequences; identification of open taxonomic units (OTUs), clustering, 

and phylogenetic analysis was conducted using the Phylosift open source software 

package (http://phylosift.wordpress.com).  Statistical analyses of community diversity 

within and amongst experimental groups included Principal Components Analysis, 

Squash Clustering, and Kantorovich-Rubinstein distance (akin to weighed UniFrac).  

Isolation of kupffer cells and flow cytometric analyses 

In order to do the flow cytometric analysis, kupffer cells were isolated from the liver 

using the following protocol [147, 148].  Livers were perfused with 5 ml Hank’s balanced 

salt solution (HBSS), followed by 12 ml digestion buffer (HBSS containing 0.5 mg/ml type 

VI collagenase (Sigma-Aldrich) and 10 mg/ml DNase I (Roche)).  The livers were 

removed, minced and incubated in digestion buffer at 37°C for 20 min with subsequent 

passage through a 40 mm cell strainer.  Parenchymal cells were removed by low speed 

centrifugation at 50xg for 2 min.  The supernatant enriched in non-parenchymal cells was 

centrifuged at 800xg for 30 min through a 25% (v/v) percoll gradient at room temperature 

with no brake.  The pellets of the gradient containing kupffer cells were washed and used 

for flow cytometric staining. 0.5–5 × 106 cells in 200 µl stain buffer plus Fc blocker (1:50) 

in FACS tubes were incubated on ice for 20 min.  Then, surface marker-specific 

conjugated antibodies or unconjugated primary antibodies (5 µl/106 cells) (Table 2.3) were 

added and incubated for 30 min on ice in the dark.  Then, cells were washed and 

incubated with conjugated secondary antibodies (5 µl/106 cells) for 30 min on ice in the 

dark.  After incubation, cells were again washed and treated with propidium Iodide at the 

concentration of 1 µg/ml.  Then, the cells were run through LSR II flow cytometer (BD, 

Bioscience) and analyzed using FlowJo software (FlowJo LLC). 
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Statistical analyses 

All values were expressed as mean ± standard error of the mean.  Statistical 

significance was chosen a priori as α ≤ 0.05.  Two groups of data were analyzed using 

non-parametric statistics employing the Mann-Whitney U test to analyze single, unpaired 

comparisons of normally distributed data sets.   Multiple groups of data were analyzed 

using nonparametric one way ANOVA. Statistical analyses were performed using 

GraphPad PRISM version 7.  

 

 

Antibodies Target cells Company Clone  

Ly6G BV650 Granulocytes, Neutrophil, 
Eosinophil 

BD Biosciences 1A8  
 

SiglecF BV650 Granulocytes, Neutrophil, 
Eosinophil 

BD Biosciences E50-2440 
 

Ly6C BV421 Monocytes BD Biosciences AL-21 
 

F4/80-Biotin Kupffer cells Biolegend BM8 

CD45.1 PECy7 Donor cells BD Biosciences A20 
 

CD45.2 PerCP-Cy5.5 Recipient cells BD Biosciences 104 
 

Streptavidin-QDot650 Kupffer cells ThermoFisher - 

Fc blocker Fc receptor blocker BD Biosciences 2.4G2   
 

Propidium iodide Dead cells ThermoFisher - 

Table 2.3. List of antibodies used for flow cytometric analyses 
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Chapter 3 
Dietary Model of NASH: Pathology of NASH Develops at a Higher 

Level in Animals Fed a Diet Rich in Saturated Fats 
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Summary  

In order to study NASH, it is essential to have an animal model that faithfully mimics 

the pathology and symptoms of the disease observed in humans.  Of the different NASH 

models available, those employing a high fat diet to facilitate the development of NASH 

better represent the symptoms and pathological indicators of NASH than those relying on 

genetic perturbation or other forms of dietary intervention.  Both unsaturated and 

saturated fats result in hepatic steatosis followed by the development of NASH.  However, 

their comparative role in triggering inflammation in the fatty liver is still unclear.  Reports 

state that saturated fatty acids are more toxic than unsaturated fatty acids.  Therefore, we 

hypothesized that mice fed a saturated high fat diet would manifest higher level of 

inflammation in the liver compared to mice fed an unsaturated high fat diet.  To test this 

hypothesis, 6-8 week-old mice were fed three distinct diets: a low fat control diet ((CD), 

10% calories from fat), a lard-based unsaturated high fat diet ((LD), 60% calories from 

unsaturated fat), and a milk-based saturated high fat diet ((MD), 60% calories from 

saturated fat).  The mice were fed for a period of 8, 16 or 32 weeks in order to assess the 

time at which NASH was clinically more apparent.  Serum and liver tissues were 

examined for inflammation-indicative markers, which demonstrated an elevated level of 

NASH in mice fed LD or MD compared to the mice fed CD at week 16 and 32.  At week 

8, none of the mice fed LD or MD developed significant level of NASH as compared to 

the mice fed CD.  As a comparison between LD and MD, mice fed MD exhibited a higher 

trend of NASH than the mice fed LD at week 16 and 32.  In conclusion, while both types 

of high fat diets can induce NASH in mice after 16 or 32 weeks of feeding, saturated high 

fat diet is more efficient in inducing inflammation than unsaturated high fat diet. 
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Introduction 

In order to develop a strategy for the successful management of NASH, we first 

need to understand the pathogenesis of the disease.  To this end, it is essential to be able 

to follow the progression of disease in human patients or experimental models [149].  

Although human patients are the first choice for studying NASH, it is subjected to some 

major limitations. Because of the long period of time, sometimes even decades, required 

to develop NASH in humans, and given the ethical restrictions of administering drugs to 

and collecting liver tissues from NASH patients, it is extremely important to have an 

experimental model faithfully mimicking NASH [150].  A suitable animal model of NASH 

can help researchers understand the pathology of NASH and test the effects of different 

therapeutic products [150, 151].  An appropriate animal model of NASH should correctly 

reflect the histological lesions (fat accumulation, immune infiltration, fibrosis) and 

pathophysiological indicators observed in human patients [151].  Currently both genetic 

and dietary models of NASH are available.  Because none of these models perfectly 

mimics the histopathology or pathophysiology of NASH in humans, they are only useful 

for investigating certain aspects of the disease.  Available genetic models of NASH are 

sterol regulatory element binding protein (SREBP)-1c transgenic mice, leptin deficient 

ob/ob mice, leptin receptor deficient db/db mice, phosphatase and tensin homologue 

deleted on chromosome 10 (PTEN) null mice, agouti gene mice, peroxisome proliferator-

activated receptor-α (PPAR-α) knockout mice, acyl-coenzyme A oxidase (AOX) null mice 

and methionine adenosyltransferase-1A (MAT-1A) null mice [53, 150, 151].  One major 

limitation of these genetic models of NASH is that none of the genetic perturbations are 

present in the human patients.  Moreover, some of these models (ob/ob mice, db/db mice 
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and agouti mice) do not progress from steatosis to steatohepatitis spontaneously.  They 

require an additional insult ( e.g. feeding with special diet) to induce steatohepatitis [150].  

As compared to the genetic models, dietary models have a higher relevance to NASH in 

humans, because they develop the disease only through the consumption of special diets 

without the need for genetic alterations. Currently available such special diets are 

methionine choline deficient diet, diet containing cholesterol and cholate, fructose 

enriched diet, and high fat diet [150, 151].  An important limitation of these dietary models 

is that none of these diets represents regular human diet.  A Combination of genetic 

perturbation and dietary challenge can also develop the histopathological and 

pathophysiological features of NASH [152-156].  Of these available genetic and dietary 

models, high fat diet-mediated NASH is clinically more relevant due to its similarity to the 

‘western diet’ in having high fat content.  

A typical ‘Western diet’ contains calories from both unsaturated and saturated fats 

[157].  A Pro-inflammatory role for saturated fats has been demonstrated in different 

diseases [158-163].  Diets containing high amount of saturated fats have been linked with 

coronary heart disease, insulin resistance, metabolic syndrome and diabetes [158].  

Saturated high fat diet causes higher incidence of colitis in genetically susceptible mice 

compared to the polyunsaturated high fat diet [159].  Role of saturated fats in the 

progression of NAFLD has also been shown in numerous reports [160-163].  Saturated 

fats mediate NAFLD through the accumulation of elevated level of reactive oxygen 

species, endoplasmic reticulum stress and lipotoxicity [164].  Due to these pro-

inflammatory roles of saturated fat over unsaturated fat, it was investigated in this study 

whether a milk-based saturated high fat diet (MD) is more efficient in inducing NASH 
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compared to the lard-based unsaturated high fat diet (LD).  It was reported that feeding 

of mice with high fat diet for 8-12 weeks could induce NASH [133, 142], but no previous 

study had demonstrated the impact of different feeding periods on NASH development.  

Therefore, an important aspect of this study was to identify an optimum time (8, 16 or 32 

weeks) for feeding mice so that the maximum level of inflammation in the fatty liver is 

ensured.  
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Results 

Both LD and MD led to the development of hepatic steatosis at week 16 and 32, 

while MD showed a non-significant higher trend than LD  

Both of the mice fed LD or MD led to the development of hepatic steatosis at week 

16 and 32 (Figure 3.1).  Representative images of H&E and ORO stained liver sections 

clearly displayed massive fat accumulation in the livers of mice fed LD or MD at week 16 

(Figure 3.1A).  Clinical scores of steatosis reflected higher levels of fat accumulation in 

the livers of mice fed LD or MD compared to the mice fed CD both at week 16 and 32 

(Figure 3.1B).  At week 8, there was only a higher trend of fat accumulation in the livers 

of mice LD or MD compared to the mice fed CD. When compared between LD and MD, 

mice fed MD showed higher trends of steatosis score compared to the mice fed LD at 

week 16 and 32.  

Both LD and MD led to the development of chronic inflammation in the fatty liver, 

while MD displayed a non-significant higher trend than LD at week 16 and 32 

Both of the mice fed LD or MD showed higher expression of TNF-α, IL-1β and 

CCL-2 , higher levels of NAFLD score, higher infiltration of neutrophils and macrophages, 

and elevated serum activities of ALT and AST compared to the mice fed CD at week 16 

and 32 (Figure 3.2A-H).  At week 8, both of the mice fed LD or MD showed only higher 

trend of NASH indicators compared to the mice fed CD.  When compared between LD 

and MD, mice fed MD showed higher trend of these NASH-indicative parameters 

compared to the mice fed LD at week 16 or 32. 
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A 

 

B Steatosis score

Figure 3.1. Consumption of unsaturated or saturated high fat diet led to hepatic steatosis both at week 16 and 
32. Mice fed either a lard-based unsaturated or milk-based saturated high fat diet for 16 or 32 weeks responded with fat 
accumulation in their livers as shown by the representative images of (A) H&E and ORO stained liver sections (at 16 
weeks) and (B) clinical score of steatosis. CD, LD, and MD denote control diet, lard-based unsaturated and milk-based 
saturated high fat diet, respectively. # indicates significant difference between CD and LD when P<0.05, $ indicates 
significant difference between CD and MD when P<0.05; data are expressed as mean±SEM; n=6-8 (Man-Whitney test). 
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ALT  AST G  H 

Figure 3.2. Feeding with unsaturated or saturated high fat diet led to the development of NASH both at week 
16 and 32. Mice fed either a lard-based unsaturated or milk-based saturated high fat diet for 16 or 32 weeks resulted 
in the development of NASH as indicated by the higher expression of (A) TNF-α, (B) IL-1β and (C) CCL-2, (D) 
higher levels of NAFLD score, higher infiltration of (E) neutrophil and (F) macrophages and higher serum activities 
of (G) ALT and (H) AST. CD, LD, and MD denote control diet, lard-based unsaturated and milk-based saturated 
high fat diet, respectively. # indicates significant difference between CD and LD when P<0.05, $ indicates significant 
difference between CD and MD when P<0.05, * indicates significant difference between LD and MD when P<0.05; 
data are expressed as mean±SEM; n=6-8 (Man-Whitney test). 
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Mice fed LD or MD both showed the indication of fibrosis in the fatty liver, yet 

feeding with MD showed a higher level of expression of TGF-β than feeding with 

LD 

Mice fed LD or MD both showed higher levels of indicators of fibrosis in their livers 

compared to the mice fed CD.  Representative images of picrosirius red stained liver 

sections of mice fed LD or MD at week 16 displayed higher levels of collagen 

accumulation compared to the mice fed CD (Figure 3.3A).  Mice fed LD or MD showed 

higher levels of expression Col-1a and TGF-β in their livers compared to the mice fed CD 

at week 16 and 32 (Figure 3.3B-C).  Mice fed MD showed significantly higher level of 

expression of TGF-β compared to the mice fed LD at week 16 (Figure 3.3B-C). 
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Figure 3.3. Mice fed unsaturated or saturated high fat diet showed the indication of fibrosis both at week 16 
and 32. Mice fed either a lard-based unsaturated or milk-based saturated high fat diet for 16 or 32 weeks resulted in 
the accumulation of collagen in their livers as shown by the representative images of (A) picrosirius red stained liver 
sections (at 16 weeks) and higher levels of expression of (B) col-1a and (C) TGF-β. CD, LD, and MD denote control 
diet, lard-based unsaturated and milk-based saturated high fat diet, respectively. # indicates significant difference 
between CD and LD when P<0.05, $ indicates significant difference between CD and MD when P<0.05, * indicates 
significant difference, between LD and MD when P<0.05; data are expressed as mean±SEM; n=6-8 (Man-Whitney 
test). 
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Discussion 

To investigate the pathogenesis of NASH, it is essential to have a model 

appropriately mimicking the disease in human.  In compared to the genetic models, 

induction of NASH in obesogenic high fat diet-fed mice does not associate any genetic 

defects or pathological feature not observed in clinical paradigm of NASH [150, 165, 166].  

Therefore, a high fat diet model is considered as the clinically most relevant model of 

NASH.  Although high fat diets are widely used for NASH research, different pathological 

aspects of NASH in humans are poorly reflected in this model.  For instance, fibrosis is a 

very common phenomenon in patients with NASH.  Around 40% of NASH patients have 

advanced stages of fibrosis in their livers [167].  However, mice fed a high fat diet develop 

a very poor level of fibrosis, which is a major obstacle to study fibrosis in NASH using this 

model [168].  In the current study, mice fed a high fat diet for 16 or 32 weeks resulted in 

increased expression of col-1a and a pro-fibrotic cytokine TGF-β, and higher 

accumulation of collagen indicating an a progression to fibrosis.  Other indicators of 

NASH, e.g. higher expression of pro-inflammatory cytokines, immune infiltrations, and 

hepatocyte damage as reflected in higher serum ALT/AST level, were clearly manifested 

in mice fed either an unsaturated or saturated high fat diet.   

When compared the mice fed LD and MD, we detected a higher trend (although 

statistically non-significant) of NASH-indicative markers in mice fed MD compared to the 

mice fed LD at week 16.  Notably, differences between the mice fed LD and MD became 

less prominent at week 32.  This might be due to the maximum impacts of either types of 

diets on NASH, resulting in a level of saturation.  The higher level of inflammation in the 

livers of mice fed MD compared to the mice fed LD could be attributed to the higher 
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amount of saturated fatty acids in MD [164, 169].  Pro-inflammatory mechanisms of 

saturated fatty acids have been explained in different reports.  Excess free fatty acids, 

released from the lipolysis of subcutaneous and visceral adipose tissues, enter the liver.  

Upon entering the liver, free fatty acids are disposed through β-oxidation, triglyceride, and 

phospholipid synthesis.  Mitochondrial β-oxidation leads to the gradual break down of the 

fatty acids into two-carbon acetyl-coA which enters the tricarboxylic acid cycle.  Excess 

free fatty acids can also be disposed by esterification into triglycerides and phospholipids.  

In the case of excess level of saturated free fatty acids, higher amounts of saturated fatty 

acids are channeled to the esterification of phospholipids than to the esterification of 

triglycerides or β-oxidation.  Abnormal saturation of phospholipids can compromise the 

membrane fluidity of endoplasmic reticulum leading to impaired protein folding and 

trafficking which eventually results in endoplasmic reticulum stress through unfolded 

protein signaling pathway [164, 170-172].   

In compared to unsaturated fatty acids, saturated fatty acids are used for the 

synthesis of toxic molecules.  For instance, condensation of palmitate (16:0 saturated 

fatty acid) and serine leads to the synthesis of ceramide, a toxic lipid molecule [173, 174].  

Accumulation of ceramides in mitochondrial membrane results in an increased 

permeability resulting in cytochrome c release, that eventually induces apoptosis [175].  

Increased accumulation of ceramides in sphingolipid-rich lipid rafts of plasma membrane 

drives the coalescence of lipid rafts into larger platforms, which facilitate the apoptotic 

signaling by clustering membrane receptors and signaling molecules [176-179].  

Saturated fatty acid-derived ceramide can also directly interact with the pro-enzyme 

cathepsin D and induce its autolytic cleavage releasing the active components of 
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cathepsin D, which mediates the cleavage and activation of pro-apoptotic Bcl-2 family 

member Bid [180, 181].   

Another important difference between unsaturated and saturated fatty acids is that 

saturated fatty acids can induce inflammation through the direct interaction with, and 

activation of TLR-4 [182-184]. Saturated fatty acids are essential component of 

endotoxins. Human TLR-4 can sense only the endotoxins containing lipid-A portion 

accylated with six saturated fatty acids (usually 12-16 carbons in length).  It has been 

shown that replacement of these saturated fatty acids with monounsaturated or 

polyunsaturated fatty acids halts the pro-inflammatory effects of lipopolysaccharides [184, 

185].  From the inflammatory point of view, saturated fatty acids can also induce the 

expression of cyclooxygenase-2 through an NF-κB-dependent activation of macrophages 

[183]. Cyclooxygenase enzymes catalyze the synthesis of prostaglandins and 

thromboxanes, which are important mediators of different aspects of inflammation, e.g. 

vasodilation, leukocyte migration etc. [184, 186-188].  Therefore, it is possible that 

saturated fatty acids leads to the production of these mediators inducing pro-inflammatory 

immune infiltration in the fatty liver. 

Both LD and MD contain unsaturated and saturated fatty acids of different lengths 

and saturation types/levels, but the levels of saturated fatty acids, particularly the toxic 

ones like palmitic, stearic, and lauric acids, are higher in MD compared to LD [184, 189-

191]. Because of the higher pro-inflammatory roles of saturated fatty acids over 

unsaturated fatty acids, as reflected in the higher trends of NASH-indicative markers in 

mice fed MD versus the mice fed LD, we chose MD to induce NASH in mice for the 

experiments reported herein. 
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Chapter 4 
High Fat Diet-mediated Nonalcoholic Steatohepatitis Impairs Hepatic 

Regeneration Following Partial Hepatectomy 
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Summary 

Although surgical resection of part of the liver (partial hepatectomy) is a well-

recognized treatment option for hepatocellular carcinoma, pre-existing pathological 

abnormalities originating from fat-rich diet mediated steatosis can alter the postoperative 

outcomes.  Despite the well-established effect of NASH in liver, little is known about the 

impact of fat-rich diet on the ability of the liver to regenerate. In this study, we investigated 

the impact of both saturated and unsaturated fat-rich diet on liver regeneration following 

partial hepatectomy in C57BL/6 mice.  Six week-old mice were fed control diet (CD), Lard-

based unsaturated fat-rich diet (LD) or milk-based saturated fat-rich diet (MD) for 16 

weeks.  Partial hepatectomy (70% of the liver) was carried out at 16 weeks.  At day 2 and 

at day 7 post partial hepatectomy, mice were injected with 5-bromo-2'-deoxyuridine 

(BrdU) i.p., one hour prior to euthanization to analyze hepatic regeneration.  Samples 

were collected from the resected and regenerated liver and examined for inflammation-

indicative markers and histological analyses.  Mice fed LD or MD exhibited higher 

nonalcoholic fatty liver disease (NAFLD) score, levels of inflammatory cytokines, and 

infiltration of neutrophil and macrophage in both resected and regenerated livers 

compared to mice fed CD. Mice fed LD or MD resulted in decreased BrdU incorporation 

in their resected and regenerated livers compared to the mice fed CD. Our study 

demonstrated the impaired hepatic regeneration post partial hepatectomy of mice fed LD 

or MD compared to that of mice fed CD.  Importantly, mice fed MD demonstrated reduced 

regeneration compared to the mice fed LD.  Collectively, this study illustrates the 

significance of fat and type of fat type in impairing hepatic regeneration following partial 

hepatectomy. 
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Introduction 

The liver has a unique ability to regenerate, even when mature, following a toxic 

insult or partial hepatectomy (PHx) [192, 193].  In spite of its substantial metabolic role, 

the liver is a quiescent organ in terms of hepatocyte proliferation.  Although hepatocytes 

undergo a very low rate of proliferation under normal conditions, they can reach a 

dramatically high proliferation rate within the acinar architecture of the remnant liver 

following a surgical resection leading to total recovery of the organ within 2-6 weeks [194].  

As a result of this ability to regenerate, surgical resection is often considered a viable 

treatment option for end stage liver diseases including liver cirrhosis or hepatocellular 

carcinoma [195, 196].  Although surgical resection of part of the liver (PHx) is considered 

a viable treatment option for patients with end-stage liver diseases, post-resection 

regeneration capacity is of major concern. Therefore, it is important to have a clear 

understanding of the effect that pre-existing steatosis or NASH have on the hepatic 

regeneration following PHx.  

Although the role of a high fat diet in causing an impairment of hepatic regeneration 

following PHx in mice has been reported [142], it is still not clear how differently NASH, 

induced by either unsaturated or saturated high fat diet, may impact hepatic regeneration 

following PHx.  This study assessed the ability of a lard-based unsaturated high fat diet 

(LD) and a milk-based, saturated fat rich diet (MD) in conferring an impairment to the 

livers of mice to regenerate following a PHx.  The findings here may influence the decision 

to perform and/or post-operative management of patients being considered for PHx 

surgery. 
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Results 

Mice fed LD or MD led to the development of NASH in both resected and 

regenerated livers 

Levels of expression of TNF-α, IL-1β, TGF-β, and CCL-2 were increased in both 

of the resected and regenerated livers of mice fed either LD or MD compared to the mice 

fed CD (Figure 4.1A-D).  Hepatic infiltrations of neutrophils and F4/80+ macrophages were 

increased in both of the resected and regenerated livers of mice fed either LD or MD 

compared to the mice fed CD (Figure 4.1E-F).  Each of these NASH indicators clearly 

demonstrated the development of NASH in the resected and regenerated livers of mice 

fed LD or MD.   Noticeably, resected and regenerated livers of mice fed the MD trended 

to exhibit higher levels of expression of inflammatory cytokines (Figure 4.1A-D) and 

infiltration of neutrophils and macrophages (Figure 4.1E-F) compared to the levels 

observed in mice fed the LD.   

Both LD and MD caused damage in resected and regenerated livers 

Both of the resected and regenerated liver sections from mice fed either LD or MD 

displayed higher NAFLD scores compared to the mice fed CD (Figure 4.2A).  Liver 

sections from the mice fed MD trended to have higher NAFLD scores compared to the 

mice fed LD (Figure 4.2A).   Sera from mice fed LD or MD showed increased levels of 

ALT (Figure 4.2B) and AST (Figure 4.2C) both on day-2 or day-7 compared to the mice 

fed CD. This indicated higher levels of liver damage in the mice fed unsaturated or 

saturated high fat diets.   When compared between the mice fed LD and MD, sera from  
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Figure 4.1. Unsaturated or saturated high fat diet led to the development of NASH in both resected and 
regenerated livers.  Both of the lard-based unsaturated and milk-based saturated high fat diet resulted in the 
development of NASH as evidenced by increased expression of pro-inflammatory cytokines: (A) TNF-α, (B) IL-
1β, (C) TGF-β and (D) CCL-2; increased infiltration of (E) neutrophils and (F) macrophages. CD, LD, and MD 
denote control diet, lard-based unsaturated and milk-based saturated high fat diet, respectively. *P<0.05, 
**P<0.01, ***P<0.001 (Man-Whitney test); data are expressed as mean±SEM; n=6-8. 
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Figure 4.2. Unsaturated or saturated high fat diet resulted in liver damage in both resected and regenerated livers. 
Unsaturated or saturated high fat diet resulted in (A) higher NAFLD scores and elevated level of serum (B) ALT and (C) 
AST. (D) Western blot images demonstrated higher level of cleavage of poly ADP-ribose polymerase (PARP) in the livers 
of mice fed unsaturated or saturated high fat diet ( shown regenerated day-2) (E) Densitometry analyses of immunoblots 
exhibited increased level of cleavage of PARP in resected and regenerated livers of mice fed unsaturated or saturated high 
fat diet. CD, LD, and MD denote control diet, lard-based unsaturated and milk-based saturated high fat diet, respectively. 
*P<0.05, **P<0.01, ***P<0.001 (Man-Whitney test); data are expressed as mean±SEM; n=6-8. 

PARP cleavage 
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the mice fed MD showed a higher trend of ALT and AST levels both on day-2 and day-7 

compared to the mice fed LD. 

Apoptosis resulting from the NASH-mediated hepatic tissue injury was determined 

by comparing the level of cleaved poly ADP-ribose polymerase (PARP).  Both resected 

and regenerated tissues on day-2 or day-7 from the mice fed MD showed an increased 

level of cleaved PARP compared to the mice fed CD (Figure 4.2D-E).  Mice fed LD 

showed an increased level of cleaved PARP in the tissues from the resected and 

regenerated day-2 livers compared to the mice fed CD (Figure 4.2E).  However, mice fed 

MD displayed a higher trend of PARP cleavage compared to the mice fed LD in both 

resected and regenerated livers on day-2 and day-7 (Figure 4.2E). 

NASH-affected livers of mice fed MD or LD demonstrated impaired regeneration 

following partial hepatectomy (PHx) 

Percentage of BrdU-incorporated hepatocytes was determined in regenerated liver 

sections on day-2 and day-7 in order to assess the effect of NASH on hepatic 

regeneration following partial hepatectomy.  The percentage of BrdU-incorporated 

hepatocytes was 2.2 and 5.2 fold lower in the regenerated liver sections of mice fed LD 

or MD respectively compared to that of the regenerated liver sections of mice fed CD on 

day-2 (Figure 4.3A).  These data demonstrate the impaired hepatic regeneration in mice 

fed fat-rich diet of either types compared to the mice fed control diet. Of note, percentage 

of BrdU-incorporated hepatocytes was 2.3-fold lower in mice fed MD compared to the 

mice fed LD.   This observation was consistent with the higher trending indicators of NASH 

(Figure 2.1), hepatic damage (Figure 4.2A-C) and apoptosis (Figure 4.3D-E) in the livers 

of the mice fed MD when compared to the livers of mice fed LD. Because hepatic 



55 
 

regeneration following PHx reached the level of saturation by day-7 [197], no significant 

difference in BrdU incorporation was observed at day-7.  However, the percentage of 

BrdU-incorporated hepatocutes trended to be lower in the livers of mice fed LD or MD 

compared to that incorporated into the livers of mice fed CD. 

Regenerated liver output was measured as the ratio of regenerated liver-to-total 

body weight (Figure 4.3B) or regenerated liver-to-resected liver weight (Figure 4.3C).  In 

either cases, ratios were lower in mice fed LD or MD compared to those of mice fed CD 

on day-7.   Regenerated livers from the mice fed LD or MD showed a 1.3 and 1.2-fold 

reductions to regenerated liver-to-body weight ratios, respectively compared to the mice 

fed CD (Figure 4.3B).   Regenerated livers from the mice fed LD or MD were found to 

have 1.7 and 1.6 fold reduction in their regenerated liver-to-resected liver weight ratio 

respectively compared to the mice fed control diet (Figure 4.3C).  These data again 

corroborated the impaired regeneration of NASH-affected livers following PHx.  
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Figure 4.3. Hepatic regeneration following partial hepatectomy was impaired in mice fed unsaturated or 
saturated high fat diet. NASH induced through the consumption of high fat diets resulted in impaired regeneration of 
partially resected livers as evidenced by (A) reduced rates of BrdU incorporation in hepatocytes, decreased (B) 
regenerated liver/body ratio and (C) regenerated liver/resected liver ratio. CD, LD, and MD denote control diet, lard-
based unsaturated and milk-based saturated high fat diet, respectively. *P<0.05, **P<0.01 (Man-Whitney test); data are 
expressed as mean±SEM; n=6-8.  
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Discussion  

NASH is presently the third most common cause of end stage liver diseases necessitating 

transplantation.  If current trends continue, NASH is anticipated to surpass hepatitis C as 

the dominant cause of liver failure and will likely increase the rate of hepatocellular 

carcinoma (HCC) [23, 198].  Although liver transplantation has opened a new avenue for 

the treatment of HCC, the benefit of this treatment is limited mainly by shortage of 

available grafts and also long-term complications such as immunosuppression-related 

infections, risk of tumor progression etc.  Therefore, PHx is still considered as the most 

viable treatment for HCC [199].  Because of the co-existence of NASH and HCC in a large 

number of patients [200, 201], it is important to investigate how the presence of NASH 

would affect hepatic regeneration in these patients following PHx. Absence of an 

appropriate animal model that effectively mimics the genesis of human NASH represents 

a barrier in being able to appreciate the consequences that NASH has on hepatic 

regeneration following surgical resection.  However, amongst the currently available 

genetic and dietary models, dietary fat induced NASH is clinically more relevant. 

Previously, we have shown how employing a model requiring significant exposure to a 

fat-rich diet was sufficient to induce and then mimic the complex behavior associated with 

NASH that closely reflects what occurs in humans [163].  Our current data primarily 

demonstrates that long-standing hepatic steatosis in mice fed high fat diet leads to NASH 

and impairs hepatic regeneration following PHx.  Comparison between the impacts of 

unsaturated and saturated dietary fat on hepatic regeneration was an additional aspect 

of this study.  The data collected provided evidence for a trend towards higher levels of 

expression of pro-inflammatory cytokines, increases in NAFLD score, collagen 
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accumulation, serum ALT/AST levels and apoptosis in the livers of mice fed MD 

compared to the mice fed LD indicating an exacerbating role of a diet high in saturated 

fats in causing NASH.   An exacerbation of impairment of hepatic regeneration following 

PHx in the fatty livers of mice fed MD was consistent with a higher trend of hepatic 

inflammation and hepatocyte damage compared to the mice fed LD.  Such a higher trend 

of hepatic inflammation can be attributed to aggravated oxidative stress, lipotoxicity, and 

endoplasmic reticulum stress mediated by the saturated fat [164, 169].  In our study, 

concentration of serum endotoxin was found to trend higher in mice fed MD compared to 

the mice fed CD and LD (Chapter 5).  Therefore, chronic endotoxemia might also be 

plausible in offering an explanation for higher inflammation in mice fed MD.  Several 

NASH drugs are now under phase 3 clinical trials. Therefore, it would also be important 

to test if the treatment of mice with a drug that reverses NASH could improve hepatic 

regeneration post PHx.  Treatment with such drug that suppresses NASH could make the 

surgical resection a more viable treatment option for end stage liver diseases.  

 

 

 

 

 

 

 



59 
 

Chapter 5 
Gut Microbiota Plays a Critical Role in Nonalcoholic Steatohepatitis 
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Summary 

Apart from fat accumulation, additional pro-inflammatory insults to the steatotic 

liver play an important role in the modulation of NASH.  The role of gut microbiota has 

been reported in metabolic syndrome. As NAFLD is the hepatic manifestation of 

metabolic syndrome, it is important to investigate the role of gut microbiota in the 

progression of disease from the benign hepatic steatosis to the stage with chronic 

inflammation.  Therefore, this part of our study investigated whether gut microbiota has 

any influence on the development of NASH.  Three specific experiments were 

accomplished:  First, individual groups of specific pathogen free (SPF) mice and germ 

free (GF) mice were fed a control diet (CD) or a milk based, saturated high fat diet (MD) 

for 8, 16 or 32 weeks.  The resulting decrease in the levels of NASH-indicative markers 

in GF mice fed MD compared to the SPF mice fed MD indicated the role of gut microbiota 

in mediating NASH.  Second, it was tested if the diminishing of gut microbiota could 

reduce the level of inflammation in the fatty livers of mice fed MD.  In order to do that, 

individual groups of SPF mice fed CD or MD were treated with broad spectrum antibiotics 

through drinking water for 16 weeks.  Treatment of mice fed MD with broad spectrum 

antibiotics resulted in a reduced level of NASH-indicative markers in their livers indicating 

the role of gut microbiota in modulating the dietary fat-mediated NASH.  Third, 

conventionalization of GF mice fed MD by fecal transfer from SPF mice resulted in an 

increased level of inflammation. These three experiments clearly showed the generalized 

role of gut microbiota in causing NASH.  In addition, 16S rRNA analysis resulted in 

alteration of relative abundance of specific phyla in mice fed MD, indicating their plausible 

role in mediating NASH. 
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Introduction  

Gut microbiota that dwell in the gastrointestinal tract consists of 100 trillion 

bacterial cells that weigh 1-2 kg in mass and possess 100-fold more unique genes than 

human genome [114, 202].  Gut microbiota play a crucial role in maintaining the normal 

human physiology and nutrition [65, 203]. Changes in gut microbiota have been shown 

to be associated with different metabolic and physiological disorders [86, 89, 122, 202, 

204, 205].  The evidence supporting the contribution of gut-liver axis to the development 

of NASH has accumulated over the last twenty years [206]. NASH was first encountered 

as a complication of jejuno-ileal bypass surgery used for the treatment of morbid obesity 

[207, 208].  Furthermore, NASH was also reported in case of jejunal diverticulosis and 

intestinal bacterial overgrowth in human [209, 210].  Experimental evidence about the 

role of gut microbiota in mediating NASH in animal models is also growing.  Initial clues 

came from the studies of Backhead and colleagues [85, 88].  They showed that germ free 

(GF) mice fed high fat diet gained less weight compared to the specific pathogen free 

(SPF) mice fed high fat diet.  Conventionalization of GF mice through fecal transfer from 

SPF mice resulted in an increase in body fat content [88].  Other studies have shown that 

GF mice fed high fat diet are resistant to hepatic steatosis [211, 212].  One study reported 

that transfer of gut microbiota from steatotic mice to GF mice can promote the 

development of high fat diet-induced steatosis [211].  The  pathogenic role of intestinal 

bacteria in causing NASH was also supported by the observation that administration of 

antibiotics can improve NASH in rat and human [213].  All of these studies suggested the 

role of gut microbiota in the pathogenesis of NASH. Therefore, in this chapter, 

comprehensive experiments were designed to demonstrate an obvious involvement of 
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gut microbiota in mediating high fat diet-induced NASH using both GF and broad 

spectrum antibiotics-treated mice.  The role of gut microbiota in causing NASH was also 

investigated through the restoration of gut microbiota in GF mice fed milk-based high fat 

diet (MD).  Any change to the population composition of gut microbes in mice fed high fat 

diet may reveal a taxa-specific role of gut microbiota in mediating NASH.  Therefore, 16S 

rRNA analysis was performed to elucidate a plausible change in the composition of gut 

microbial community in mice fed MD. 
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Results 

GF mice developed less steatosis in their livers compared to the SPF mice 

After feeding with MD, GF mice showed less body weight and percent of body 

weight increase compared to the SPF mice at week 8, 16 and 32 (Fig. 5.1A-B).  GF mice 

fed MD showed reduced liver weight and liver-to-body weight ratio compared to the SPF 

mice fed MD at week 32 (Fig. 5.1C-D).  H&E staining of the liver sections (Fig. 5.1E) and 

clinical scores of steatosis (Fig. 5.1F) displayed a lower trend of fat accumulation in the 

livers of GF mice fed MD compared to the SPF mice fed MD at week 16 and 32.  These 

data indicate the role of gut microbiota in mediating hepatic steatosis.  

Steatotic livers in GF mice were resistant to NASH 

To investigate the development of inflammation in steatotic livers, levels of different 

NASH-indicative markers were analyzed. Expression levels of TNF-α, IL-1β, CCL-2 and 

TGF-β (Fig. 5.2A-D) and infiltration of neutrophils and macrophages (Fig. 5.2E-F) in the 

livers of GF mice fed MD failed to show any increase compared to the GF mice fed CD 

at any time point.  On the other hand, SPF mice fed MD showed significant increases of 

expression of TNF-α, IL-1β, CCL-2 and TGF-β (Fig. 5.2A-D) and infiltration of neutrophils 

and macrophages (Fig. 5.2E-F) compared to the GF mice fed MD at week 16 and 32.  

Although there was an increase of NAFLD score in GF mice fed MD compared to the GF 

mice fed CD at week 16 and 32 (Fig. 5.2G), it was significantly lower (approximately 1.3 

to 2-fold) than the SPF mice fed MD.  These data demonstrate that the steatotic livers in 

GF mice fed MD are protected from NASH, thus indicating the role of gut microbiota in 

the progression of NASH from the normal steatosis to an inflammatory stage.  
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Figure 5.1.  Germ free mice fed high fat diet developed less hepatic steatosis compared to the specific pathogen 
free mice.  Feeding with high fat diet resulted in less (A) body weight, (B) body weight change, (C) livers weight and (D) 
liver-to-body weight ratio in germ free mice compared to the specific pathogen free mice.  Less steatosis was observed 
in the livers of germ free mice fed high fat diet compared to the specific pathogen free mice fed high fat diet as shown by 
the (E) representative images of H&E stained liver sections (at 16 weeks) and (F) steatosis score. GF, SPF, CD and MD 
denote germ free mice, specific pathogen free mice, control diet and milk-based high fat diet, respectively.  *P<0.05, 
**P<0.01, ***P<0.001 (Man-Whitney test); data are expressed as mean±SEM; n=6-8. 
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Figure 5.2.  Germ free mice fed high fat diet showed lower levels of NASH-indicative markers in their livers 
compared to the specific pathogen free mice fed high fat diet.  Germ mice fed high fat diet showed lower levels 
of (A-D) expression of TNF-α. IL-1β, CCL-2 and TGF-β, (E-F) infiltration of neutrophils and macrophages, and (G) 
NAFLD score in their livers compared to the specific pathogen free mice fed high fat diet.  GF, SPF, CD and MD 
denote germ free mice, specific pathogen free mice, control diet and milk-based high fat diet, respectively.  *P<0.05, 
**P<0.01, ***P<0.001 (Man-Whitney test); data are expressed as mean±SEM; n=6-8. 
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GF mice fed MD had decreased level of collagen accumulation in their livers 

compared to the SPF mice fed MD 

Collagen accumulation, a sign of hepatic fibrosis, is very common in chronic inflammation 

in fatty liver [140]. Therefore, the level of collagen accumulation was determined as a 

strong indicator of NASH. Reduced level of collagen accumulation was observed in 

picrosirius red-stained liver sections of GF mice fed MD compared to the SPF mice fed 

MD at week 16 and 32 (data shown at 16 week, Fig. 5.3A). Reduced level of collagen 

accumulation was reflected in the decreased expression of Col-1 and α-SMA, two 

important pro-fibrotic proteins [214, 215], in the livers of GF mice fed MD compared to the 

SPF mice fed MD (Fig. 5.3B-C). 
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Figure 5.3.  Germ free mice fed high fat diet showed decreased level of collagen accumulation in their livers 
compared to the specific pathogen free mice.  Feeding high fat diet resulted in decreased level of collagen 
accumulation in the livers of germ free mice compared to the specific pathogen free mice as shown by the (A) 
representative images of picrosirius red stained liver sections (at 16 weeks) and expression of (B) Col-1a and (C) α-
SMA. GF, SPF, CD and MD denote germ free mice, specific pathogen free mice, control diet and milk-based high fat 
diet, respectively.  *P<0.05, **P<0.01, ***P<0.001 (Man-Whitney test); data are expressed as mean±SEM; n=6-8. 
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Broad spectrum antibiotics-treated mice fed MD showed similar levels of steatosis, 

but had a decreased level of NASH compared to the control mice fed MD 

The treatment of mice fed MD with broad spectrum antibiotics failed to make any 

difference in the level of steatosis in their livers compared to the control mice fed MD (Fig. 

5.4A).  Similar clinical scores of steatosis were observed in the livers of broad spectrum 

antibiotic-treated mice and control mice (Fig. 5.4B).  Although the treatment of mice fed 

MD with broad spectrum antibiotic did not result in any difference in the level of hepatic 

steatosis, it resulted in decreased levels of NASH-indicative markers in the livers of 

antibiotic-treated mice fed MD compared to the control mice fed MD (Fig. 5.5).  Broad 

spectrum antibiotic-treated mice fed MD showed decreased expression of TNF-α, IL-1β, 

CCL-2 and TGF-β, reduced infiltration of neutrophils and macrophages, and lower trends 

of serum activities of ALT and AST and NAFLD scores when compared to the control 

mice fed MD (Fig. 5.5A-I).  Decreased level of NASH in the livers of broad spectrum 

antibiotic-treated mice fed MD resulted in improved liver health as demonstrated by 

significantly higher liver-to-body weight ratio compared to the control mice fed MD (Fig. 

5.5J).  Picrosirius red stained liver sections demonstrated that broad spectrum antibiotic-

treated mice fed MD had decreased accumulation of collagen in their livers when 

compared to the control mice fed MD (Fig. 5.6A).  Broad spectrum antibiotic-treated mice 

fed MD showed a lower trend of expression of pro-fibrotic Col-1 and α-SMA in their livers, 

(Fig. 5.6A) which corroborates the reduced accumulation of collagen. Collectively,  

decreased levels of NASH-indicative and pro-fibrotic markers in the livers of broad 

spectrum antibiotic-treated mice fed MD, when compared to the control mice fed MD, 

suggesting the role of gut microbiota in mediating chronic inflammation in steatotic liver.  
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Figure 5.4.  Broad spectrum antibiotic-treated mice fed high fat diet developed similar level of hepatic 
steatosis compared to the control mice.  Feeding with high fat diet resulted in similar steatosis in the livers of broad 
spectrum antibiotic-treated mice compared to the control mice as shown by the (A) representative images of H&E 
stained liver sections and (B) steatosis score.  CD and MD denote control diet and milk-based high fat diet, 
respectively.  Data are expressed as mean±SEM; n=6-8. 
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Figure 5.5.  Broad spectrum antibiotic-treated mice fed high fat diet showed decreased levels 
of NASH-indicative markers compared to the control mice fed high fat diet.  Broad spectrum 
antibiotic-treated mice fed high fat diet showed lower levels of (A-D) expression of TNF-α, IL-1β, CCL-
2 and TGF-β, (E-F) infiltration of neutrophils and macrophages, (G-H) serum activities of ALT and AST, 
and (I) NAFLD scores in their livers compared to the control mice fed high fat diet.  (J) Decreased level 
of NASH resulted in better liver health as demonstrated by higher liver-to-body weight ratio in broad 
spectrum antibiotic-treated mice fed MD compared to the control mice fed MD.  CD and MD denote 
control diet and milk-based high fat diet, respectively.  *P<0.05, **P<0.01, ***P<0.001 (Man-Whitney 
test); data are expressed as mean±SEM; n=6-8.  
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Figure 5.6.  Broad spectrum antibiotic-treated mice fed high fat diet showed decreased level of collagen 
accumulation in their livers compared to the control mice fed high fat diet.  Broad spectrum antibiotic-
treated mice fed high fat diet displayed a lower trend of collagen accumulation in their livers compared to the 
control mice fed high fat diet as shown by the (A) representative images of picrosirius red stained liver sections 
and expression of (B-C) Col-1a and α-SMA.  CD and MD denote control diet and milk-based high fat diet, 
respectively.  (Man-Whitney test); data are expressed as mean±SEM; n=6-8. 
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Conventionalization of GF mice fed MD resulted in increased level of NASH  

To gain further evidence for the role of gut microbiota in mediating NASH, GF mice 

fed MD were conventionalized through the re-constitution of gut microbiota by fecal 

transplantation from SPF mice fed MD.  Re-constitution of gut microbiota in GF mice fed 

MD did not result in any difference in the level of steatosis in their livers as compared to 

the GF mice fed MD.  H&E staining of liver sections and their clinical scores for steatosis 

displayed a level of steatosis in the livers of gut microbiota re-constituted mice fed MD, 

that was similar to the steatosis observed in the livers of GF and control SPF mice fed 

MD (Fig. 5.7A-B).  Although the level of steatosis remained unchanged, the levels of 

different NASH-indicative markers significantly increased in the livers of gut microbiota 

re-constituted mice when compared to the GF mice (Fig. 5.8A-G).  Expression of TNF-α, 

IL-1β, CCL-2 and TGF-β (Fig. 5.8A-D) and infiltration of neutrophils and macrophages 

(Fig. 5.8E-F) were increased in the livers of gut microbiota reconstituted mice fed MD as 

compared to the GF mice fed MD.  Increased levels of these inflammatory markers 

resulted in a higher trend of NAFLD score in gut microbiota re-constituted mice as 

compared to the GF mice (Fig. 5.8G).  Re-constitution of gut microbiota in GF free mice 

fed MD also resulted in an increased accumulation of collagen as demonstrated by 

picrosirius red staining of liver sections (Fig. 5.9A).  This increase in collagen 

accumulation was also reflected in increased expression of Col-1 and α-SMA in the livers 

of gut microbiota re-constituted mice fed MD compared to the GF mice fed MD (Fig. 5.9B-

C).  These data clearly demonstrated the role of gut microbiota in causing NASH. 
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Figure 5.7.  Reconstitution of gut microbiota in germ free mice fed high fat diet did not make any 
difference in the hepatic steatosis.  Feeding with high fat diet resulted in similar steatosis in the livers of 
conventionalized (gut microbiota re-constituted) mice compared to the germ free mice as shown by the (A) 
representative images of H&E stained liver sections and (B) steatosis score.  GF, GMR, SPF and MD denote 
germ free mice, gut microbiota re-constituted mice, specific pathogen free mice and milk-based high fat diet, 
respectively.  Data are expressed as mean±SEM; n=6-8. 
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Figure 5.8.  Reconstitution of gut microbiota in germ free mice fed high fat diet showed elevated levels of 
NASH-indicative markers in their steatotic livers.  Reconstitution of gut microbiota in germ free mice fed high fat 
diet resulted in increased levels of (A-D) expression of TNF-α, IL-1β, CCL-2 and TGF-β, (E-F) infiltration of neutrophils 
and macrophages, and (G) NAFLD scores in their livers compared to the germ free mice.  GF, GMR, SPF and MD 
denote germ free mice, gut microbiota re-constituted mice, specific pathogen free mice and milk-based high fat diet, 
respectively.  *P<0.05, **P<0.01, ***P<0.001 (Man-Whitney test); data are expressed as mean±SEM; n=6-8.  
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Figure 5.9.   Reconstitution of gut microbiota in germ free mice fed high fat diet resulted in increased 
collagen accumulation in their steatotic livers.   Reconstitution of gut microbiota in germ free mice fed high fat 
diet displayed an increase in collagen accumulation in their livers compared to the germ free mice fed high fat diet 
as shown by the (A) representative images of picrosirius red stained liver sections and expression of (B-C) Col-1a 
and α-SMA.   GF, GMR, SPF and MD denote germ free mice, gut microbiota re-constituted mice, specific pathogen 
free mice and milk-based high fat diet, respectively.  *P<0.05 (Man-Whitney test); data are expressed as mean±SEM; 
n=6-8. 
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Composition of gut microbial community was altered in mice fed MD 

To determine whether a high fat diet could bring about a change in the structure of 

gut microbial community, which might better explain the observed role of gut microbiota 

in mediating NASH in the livers of mice fed MD, the composition of cecal microbiota was 

determined at phylum level using 16s rRNA analysis.  Indeed, the composition of gut 

microbial community was changed in mice fed MD.  Stacked bar diagram of gut microbial 

community revealed a shift in phylum level in mice fed MD as compared to the mice fed 

CD (Fig. 5.10A).  Structure of gut microbial community in mice fed MD became similar to 

mice fed CD when the diet was switched from MD to CD.  Relative abundances of 

Bacteroidetes, Actinobacteria, and Tenericutes were significantly decreased in mice fed 

MD as compared to the mice fed CD.  On the other hand, relative abundances of 

Proteobacteria, Verrucobacteria, and Firmicutes were significantly increased in mice fed 

MD as compared to the mice fed CD (Fig. 5.10B-G).  When the diet was switched from 

MD to CD, relative abundances of these six gut microbial phyla became similar to the 

mice fed CD.  Within the phylum Firmicutes, relative abundance of genus Clostridium 

trended to be higher in mice fed MD which became similar to the mice fed CD upon the 

change of diet from MD to CD (Fig. 5.10H).  Principal component analysis was performed 

based on the composition of gut microbiota in order to assess whether the mice fed MD 

were clustered differently than the mice fed CD.  Likewise, as we anticipated mice fed MD 

clustered differently versus the mice fed CD (Fig. 5.11A-B).  However, mice fed MD 

clustered similarly to the mice fed CD when the diet was changed from MD to CD, 

demonstrating that the composition of gut microbial community differs in mice fed MD 

versus mice fed CD. 
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Figure 5.10.  Composition of gut microbiota changed in mice fed high fat diet.  Feeding of mice with high fat diet for 
16 weeks resulted in alteration of composition of gut microbial community which became similar to that of mice fed control 
diet upon the switch of diet from control diet to high fat diet as represented by (A) stacked bar diagram at phylum level and 
changes in relative abundances of (B) Bacteroidetes, (C) Proteobacteria, (D) Verrucobacteria, (E) Firmicutes, (F) 
Actinobacteria, (G) Tenericutes, and (H) Clostridium.  CD, MD and MD>CD denote control diet, milk-based high fat diet and 
switched diet, respectively.   *P<0.05 (Man-Whitney test); data are expressed as mean±SEM; n=4-8. 
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Figure 5.11.  Principal component analysis resulted in different clustering of mice fed high fat diet. 
Principal component analysis based on the relative abundances of gut microbes at phylum level resulted in 
different clustering of mice fed high fat diet than mice fed control diet.  When the diet was switched from high 
fat diet to control diet, mice fed high fat diet clustered similar to the mice fed control diet.  CD, MD and MD>CD 
denote control diet, milk-based high fat diet and switched diet, respectively. Dark-filled dots, pink-filled dots 
and open dots indicate the mice fed CD, MD and MD>CD respectively. 
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Discussion 

In order to demonstrate the association of gut microbiota in transferring a steatotic   

liver to one with NASH, three specific experiments were conducted in this study.  First 

experiment was performed using GF mice which showed that GF mice fed MD are 

protected from NASH.  Second experiment was performed by the treatment of SPF mice 

fed MD with broad spectrum antibiotics.  Diminishing of gut microbiota through the 

treatment with broad spectrum antibiotics resulted in decreased levels of NASH-indicative 

markers in SPF mice fed MD.  Data from the experiment with broad spectrum antibiotics 

treatment was in line with the findings of GF mice experiment. Finally, in 

conventionalization experiment, gut microbiota was reconstituted in GF mice fed MD 

through fecal transfer from SPF mice fed MD, which resulted in increased levels of NASH-

indicative markers.   

Although the level of chronic inflammation in steatotic liver was decreased in both 

GF and broad spectrum antibiotics-treated mice as compared to the control mice, GF 

mice demonstrated better protection than broad spectrum antibiotics-treated mice.  

Whereas the GF mice fed MD were completely protected from elevated expression of 

pro-inflammatory cytokines and increased infiltration of innate immune cells, broad 

spectrum antibiotics-treated mice fed MD showed only a partial decrease in these NASH-

indicative markers, perhaps because gut microbes are not completely eliminated  through 

broad spectrum antibiotic treatment [216], while GF mice are free from all microbes.  

Therefore, it is possible that pro-inflammatory components coming from the remaining gut 

microbes of broad spectrum antibiotics-treated mice still have some causative effect on 
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the mediation of NASH.  At the same time, plausible direct therapeutic effect of antibiotics 

on the pathogenesis of NASH cannot be ruled out.   

Although the re-constitution of gut microbiota in GF mice fed MD resulted in an 

increase in the level of immune infiltration in their livers, it did not reach the level of 

immune infiltration in the livers of control SPF mice fed MD.  Perhaps, that occurred due 

to the fact  that gut microbiota-derived metabolites (e.g. short chain fatty acids) play an 

important role in the differentiation of embryonic immune progenitor cells, particularly the 

macrophage progenitor cells [217].  A defective prenatal differentiation of these immune 

progenitor cells may occur in the liver of GF mice due to the deficiency of gut microbiota-

derived metabolites.  Immune cells derived from this progenitor cells are called sessile 

cells.  It is possible that a portion of the sessile immune cells is deficient in the liver of GF 

mice due to the lack of gut microbiota-derived factors.  Postnatal re-constitution of gut 

microbiota in GF mice through fecal transplantation could only facilitate the differentiation 

of bone marrow-derived innate cells in the liver, but not compensate the missing sessile 

cells [218].  Therefore, the level of immune cell count in the liver of conventionalized GF 

mice never reached the level in SPF mice. 

Data from 16s rRNA analysis, as displayed by stacked bar diagram and principal 

component analysis, demonstrated a change in the composition of gut microbiota in mice 

fed MD as compared to the mice fed CD.  Although the relative abundance of 

Bacteroidetes, the major Gram negative phylum in the gut microbiota of mice, decreased, 

the relative abundance of two different Gram negative phyla, Proteobacteria and 

Verrucobacteria, significantly increased in the mice fed MD [219].  The important change 

in the relative abundance of Gram negative bacteria is mainly due to their contribution in 
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producing endotoxin.  It is still unclear how much of a role Proteobacteria or 

Verrucobacteria plays in maintaining the level of circulating endotoxin.  Apart from the 

alteration of gut microbial composition in the phylum level, we also observed a change in 

genus Clostridium in mice fed MD. Clostridium produces ethanol which, importantly, 

contributes to oxidative stress in the liver leading to NASH [220]. It requires further 

investigation to identify specific microbes potentially associated with the production of 

pro-inflammatory molecules or metabolites associated with NASH. In that case, 

application of microbe-specific antibiotics other than broad spectrum antibiotics may 

create a new therapeutic option for NASH.  
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Chapter 6 
Role of Gut Microbiota in Causing NASH is Dependent on LPS-TLR-4-

Kupffer Cell Axis 
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Summary 

Increased level of LPS has been reported both in obese patients and experimental 

models of obesity.  It has also been reported that chronic administration of LPS in mice 

results in increased adipose tissue and body weight in a TLR-4 pathway-dependent 

manner.  In the previous chapter, we demonstrated the obvious role of gut microbiota in 

causing NASH.  LPS is known as a major gut-derived pro-inflammatory component in the 

liver.  Therefore, it demands a comprehensive study to investigate the potential role of 

LPS-TLR-4 pathway in the modulation of NASH by gut microbiota. Treatment of mice fed 

MD with broad spectrum antibiotics resulted in decreased concentration of serum LPS 

and indicators of NASH. Chronic injection of low dose LPS restored the higher level of 

serum LPS in mice fed MD.  The level of NASH was also increased upon injection of LPS 

corroborating the role of LPS in causing NASH. Simultaneous injection of TAK-242, a 

TLR-4 inhibitor, protected the mice fed MD from NASH demonstrating the role of LPS-

TLR-4 pathway in causing the disease.  It was also observed that TLR-4 KO mice fed MD 

had deceased level of NASH.  Chronic injection of LPS in TLR-4 KO mice fed MD failed 

to increase the level of NASH.  This observation further confirmed the involvement of 

LPS-TLR-4 pathway in causing NASH.  Because kupffer cells are the principal member 

of TLR-4-expressing community in the liver, we also attempted to investigate the role of 

kupffer cells in mediating NASH.  It was found that reconstitution of TLR-4 KO kupffer 

cells in the livers of wild-type mice fed MD by bone marrow transplantation resulted in a 

decreased level of NASH.  Conversely, reconstitution of wild-type kupffer cells in the livers 

of TLR-4 KO mice fed MD resulted in an increased level of NASH.  This experiment clearly 

indicated the role of kupffer cells in mediating NASH in a TLR-4 dependent manner. 
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Introduction 

Once the involvement of gut microbiota in causing NASH is demonstrated, the next 

question to resolve is the mechanism how gut microbiota contributes to NASH 

modulation.  One potential mechanism might be the engagement of TLRs and their gut 

microbiota-derived ligands known as microbe-associated molecular patterns.  LPS is a 

major microbe-associated molecular pattern drained into the portal circulation from 

intestine.  The concentration of LPS has been shown to be increased in obese patients 

as well as animal models of obesity [122, 123, 221, 222]. Role of LPS-TLR-4 pathway in 

metabolic syndrome was first studied by Cani et al. They showed that chronic 

endotoxemia created through the infusion of LPS using a subcutaneously implanted 

osmotic mini-pump had resulted in an increased body weight and adipose tissue in mice 

[122]. In the same report, they also showed that interruption of TLR-4 pathway through 

the knockout of CD14 prevents the LPS-infused mice from gaining increased body weight 

and adipose tissue.  These data demonstrated the role of LPS-TLR-4 pathway in obesity. 

In a follow-up report, Cani et al. showed that treatment of mice fed high fat diet with broad 

spectrum antibiotics had resulted in a reduced concentration of serum LPS and 

decreased body weight and adipose tissue, when compared to the control mice fed a high 

fat diet. This result demonstrated that gut microbiota plays a role in controlling obesity 

through metabolic endotoxemia.  Due to the close association of obesity and NAFLD, a 

similar role for the LPS-TLR-4 pathway is postulated in the pathogenesis of NASH.  

Therefore, the current study was designed to investigate the role of a gut-derived low 

grade chronic endotoxemia in causing NASH in mice fed high fat diet in a TLR-4 pathway-

dependent manner.  
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Results 

Diminishing of gut microbiota resulted in reduced concentration of serum 

endotoxin which was restored upon LPS injection 

Diminishing of gut microbiota through the treatment of mice fed CD or MD with 

broad spectrum antibiotics resulted in reduced concentration of endotoxin in portal serum 

and feces (Fig. 6.1A-B).  This indicates that the concentration of serum endotoxin is 

dependent on the normal abundance of gut microbiota.  Injection i.p. of low dose LPS for 

four weeks led to the increase of concentration of endotoxin in portal serum (Fig. 6.1A).  

LPS injection resulted in increased level of NASH in broad spectrum antibiotics-

treated mice that were fed MD 

As discussed in the last chapter, treatment of mice fed MD with broad spectrum 

antibiotics resulted in decreased level of NASH.  This improvement of disease might be 

due to the reduced concentration of gut-derived endotoxin in the circulation of broad 

spectrum antibiotics-treated mice.  This assumption led us to test if the restoration of an 

increased level of serum endotoxin through the injection i.p. of a subclinical dose of 

exogenous LPS in broad spectrum antibiotics-treated mice could increase the severity of 

NASH.  LPS injection in broad spectrum antibiotics-treated mice fed MD, however, did 

not make any difference in fat accumulation and steatosis score (Fig. 6.2A and Fig. 6.2B), 

but that LPS injection did result in increased levels of expression of TNF-α, IL-1β, CCL-1 

and TGF-β, infiltration of neutrophils and macrophages, serum activities of ALT and AST 

and clinical scores of NAFLD as compared to the non-LPS injected/antibiotics-treated 

mice fed MD (Fig. 6.3A-I).  Elevated levels of the aforementioned indicators of NASH  
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Figure 6.1. Diminishing of gut microbiota resulted in reduced concentration of endotoxin in portal serum 
and feces. Treatment of mice fed CD or MD with broad spectrum antibiotics resulted in reduced concentration 
of endotoxin in (A) portal serum and (B) feces. (A) Intraperitoneal injection of low dose LPS restored the serum 
endotoxin level in mice fed MD. CD and MD denote control diet and milk-based high fat diet, respectively. 
***P<0.001 (Man-Whitney test); data are expressed as mean±SEM; n=6-8. 



91 
 

were reflected in exacerbated liver health as shown by the reduced liver-to-body weight 

ratios of LPS-injected/antibiotics-treated mice fed MD, when compared to the only 

antibiotics-treated mice fed MD (Fig. 6.3J).  

LPS injection also resulted in increased collagen accumulation in the fatty livers of 

broad spectrum antibiotics-treated mice fed MD compared to the only antibiotics-treated 

mice fed MD, as demonstrated by elevated levels of picrosirius red staining of collagen 

and expression of col-1 and α-SMA (Fig. 6.4A-C).  These data demonstrated the role of 

the low concentration of gut-derived endotoxin in mediating NASH in the fatty liver.   

Administration of TLR-4 inhibitor (TAK-242) blunted the effect of injection of low 

dose LPS resulting in decreased level of NASH 

Administration of TAK-242 in antibiotics-treated/LPS-injected mice fed MD did not 

make any significant decrease in fat accumulation or steatosis score (Fig. 6.2A and Fig. 

6.2B), but resulted in reduced levels of expression of TNF-α, IL-1β, CCL-1 and TGF-β, 

infiltration of neutrophils and macrophages, serum activities of ALT and AST and clinical 

scores of NAFLD compared to the only antibiotics-treated/LPS-injected mice fed MD (Fig. 

6.3A-I).  Reduced level of NASH was consistent with the improved liver health as shown 

by the increased liver-to-body weight ratios in antibiotics-treated/LPS-injected/TAK-242-

administered mice fed MD, as compared to the only antibiotics-treated/LPS-injected mice 

fed MD (Fig. 6.3J).  

Administration of TAK-242 also resulted in reduced collagen accumulation in the 

fatty livers of broad spectrum antibiotics-treated/LPS-injected mice fed MD compared to 
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Figure 6.2. Injection of LPS or TLR-4 inhibitor in broad spectrum antibiotics-treated mice fed high fat 
diet did not make alter hepatic steatosis. Intraperitoneal injection of low dose LPS or TLR-4 inhibitor (TAK-
242) in mice fed CD or MD did not alter hepatic steatosis as shown by (A) representative images of H&E 
stained liver sections and (B) steatosis score. CD and MD denote control diet and milk-based high fat diet, 
respectively. Data are expressed as mean±SEM; n=6-8. 

Steatosis score 
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Figure 6.3. Injection of low dose LPS in broad spectrum antibiotics-treated mice fed high fat diet resulted 
in increased level of NASH which was reversed upon administration of TLR-4 inhibitor. Injection of low 
dose LPS in broad spectrum antibiotics-treated mice fed MD resulted in increased levels of (A-D) expression of 
TNF-α, IL-1β, CCL-2 and TGF-β, (E-F) infiltration of neutrophils and macrophages, (G-H) serum activities of ALT 
and AST, and (I) NAFLD scores in their livers which was reversed upon administration of TLR-4 inhibitor (TAK-
242). (J) Increased level of NASH in LPS-injected/antibiotics-treated mice fed MD resulted in exacerbated liver 
health as demonstrated by reduced liver-to-body weight ratio which was reversed upon administration of TAK-
242. CD and MD denote control diet and milk-based high fat diet, respectively. *P<0.05, **P<0.01, ***P<0.001 
(Man-Whitney test); data are expressed as mean±SEM; n=6-8.  
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Figure 6.4. Injection of low dose LPS in broad spectrum antibiotics-treated mice fed high fat diet resulted in 
increased accumulation of collagen which was reversed upon administration of TLR-4 inhibitor. Injection of 
low dose LPS in broad spectrum antibiotics-treated mice fed MD displayed an increased level of collagen accumulation 
in their livers which was reversed upon administration of TLR-4 inhibitor (TAK-242) as shown by the (A) representative 
images of picrosirius red stained liver sections and expression of (B-C) Col-1a and α-SMA. CD and MD denote control 
diet and milk-based high fat diet, respectively. *P<0.05, ***P<0.001 (Man-Whitney test); data are expressed as 
mean±SEM; n=6-8. 
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the antibiotics-treated/LPS-injected mice fed MD, as demonstrated by reduced levels of 

picrosirius red staining of collagen and expression of col-1 and α-SMA (Fig. 6.4A-C).  

These results demonstrate that circulating LPS induces inflammation in the fatty liver 

through the interaction with TLR-4 indicating an important role of LPS-TLR-4 axis in 

causing NASH.  

TLR-4 has an obvious role in the modulation of NASH in mice fed MD 

Livers from TLR-4 KO mice fed MD did not show any difference in fat accumulation 

or steatosis score as compared to the wild-type mice fed MD (Fig. 6.7A-B).  Likewise, 

injection of low dose LPS in TLR-4 KO mice fed MD did not cause any difference in fat 

accumulation or steatosis score as compared to the wild-type or TLR-4 KO mice fed MD 

(Fig. 6.7A-B).  These data indicate that TLR-4 does not have a clear role in fat deposition 

in the liver. 

Although TLR-4 did not show any role in fat accumulation in the livers of mice fed 

MD, yet it showed important role in the transitioning of fatty livers to chronic inflammatory 

stage.  TLR-4 KO mice fed MD exhibited reduced levels of expression of TNF-α, IL-1β, 

CCL-1 and TGF-β, infiltration of neutrophils and macrophages, serum activities of ALT 

and AST and clinical scores of NAFLD, as compared to the wild-type mice fed MD (Fig. 

6.8A-I).  Injection of low dose LPS in TLR-4 KO mice did not result in any increase in the 

levels of NASH-indicative markers as compared to the Only TLR-4 KO mice fed MD.  The 

reduced level of NASH was consistent with the improved liver health, as shown by the 

increased liver-to-body weight ratios in TLR-4 KO mice fed MD, when compared to the 

wild-type mice fed MD (Fig. 6.8J).  Injection of low dose LPS in TLR-4 KO mice fed MD  
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Figure 6.7. TLR-4 KO mice fed high fat diet displayed similar level of hepatic steatosis as compared to the 
wild-type mice fed high fat diet. TLR-4 KO and wild-type mice fed MD did not display any difference in hepatic 
steatosis as shown by the (A) representative images of H&E stained liver sections and (B) steatosis score. 
Intraperitoneal injection of low dose LPS in TLR-4 KO mice fed MD did not make any difference in hepatic steatosis 
as compared to the wild-type or TLR-4 KO mice fed MD. CD and MD denote control diet and milk-based high fat diet, 
respectively. Data are expressed as mean±SEM; n=6-8. 
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Figure 6.8. TLR-4 KO mice fed high fat diet exhibited decreased level of NASH which remained unchanged 
upon injection of low dose LPS. TLR-4 KO mice fed MD showed decreased levels of (A-D) expression of TNF-
α, IL-1β, CCL-2 and TGF-β, (E-F) infiltration of neutrophils and macrophages, (G-H) serum activities of ALT and 
AST, and (I) NAFLD scores in their livers as compared to the wild-type mice fed MD which remained unchanged 
upon low dose LPS injection. (J) Decreased level of NASH in TLR-4 KO mice fed MD resulted in improved liver 
health as demonstrated by increased liver-to-body weight ratio which remained unchanged upon low dose LPS 
injection. CD and MD denote control diet and milk-based high fat diet, respectively. *P<0.05, **P<0.01, ***P<0.001 
(Man-Whitney test); data are expressed as mean±SEM; n=6-8.  
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did not result in any significant difference in the levels of NASH-indicative markers as 

compared to the TLR-4 KO mice fed MD with no LPS injection.  

TLR-4 KO mice fed MD exhibited reduced collagen accumulation in their fatty livers 

as compared to the wild-type mice fed MD as demonstrated by reduced levels of 

picrosirius red staining of collagen and expression of col-1 and α-SMA (Fig. 6.9A-C).  

Injection of low dose LPS in TLR-4 KO mice fed MD did not make any increase in collagen 

accumulation in their livers as compared to the TLR-4 KO mice fed MD with no LPS 

injection.  These data demonstrate the role of TLR-4 in mediating NASH in mice fed MD. 

TLR-4-expressing kupffer cells play a crucial role in mediating NASH in mice fed 

MD 

Once the role of LPS-TLR-4 axis in causing NASH is demonstrated, the next 

question naturally rises is the role of kupffer cells, as they are the major TLR-4-expressing 

cells in the liver.  To address this question, wild-type mice fed CD or MD were 

reconstituted with TLR-4 KO kupffer cells, and TLR-4 KO mice fed CD or MD were 

reconstituted with wild-type kupffer cells through bone marrow transplantation.  It was 

observed that the reconstitution of TLR-4 KO kupffer cells in the livers of wild-type mice 

fed MD by bone marrow transplantation resulted in a decreasing trend of fat accumulation 

and steatosis score, as compared to the TLR-4+ kupffer cells-containing wild-type mice 

fed MD.  On the other hand, reconstitution of wild-type kupffer cells in the livers of TLR-4 

KO mice fed MD resulted in an increasing trend of fat accumulation and steatosis score, 

as compared to the TLR-4 KO kupffer cells-containing TLR-4 KO mice fed MD (Fig. 

6.10A-B).  These data indicate that TLR-4-expressing kupffer cells are involved in the 

process of fat accumulation in the livers of mice fed MD. 
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Figure 6.9. TLR-4 KO mice fed high fat diet displayed decreased level of collagen accumulation in their livers 
which remained unchanged upon injection of low dose LPS. TLR-4 KO mice fed MD showed decreased level of 
collagen accumulation in their livers as compared to the wild-type mice fed MD which remained unchanged upon 
injection of low dose LPS as shown by the (A) representative images of picrosirius red stained liver sections and 
expression of (B-C) Col-1a and α-SMA. CD and MD denote control diet and milk-based high fat diet, respectively. 
*P<0.05, ***P<0.001 (Man-Whitney test); data are expressed as mean±SEM; n=6-8. 
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Figure 6.10. TLR-4-expressing kupffer cells are involved in the accumulation of fat in mice fed high fat diet. 
Reconstitution of TLR-4 KO kupffer cells in the livers of wild-type mice fed MD resulted in a decreasing trend of hepatic 
steatosis as compared to the TLR-4+ kupffer cells-containing wild-type mice fed MD; also, reconstitution of wild-type 
kupffer cells in the livers of TLR-4 KO mice fed MD resulted in an increasing trend of hepatic steatosis as compared to 
the TLR-4 KO kupffer cells-containing TLR-4 KO mice fed MD as shown by the (A) representative images of H&E 
stained liver sections and (B) steatosis score. CD and MD denote control diet and milk-based high fat diet, respectively. 
Data are expressed as mean±SEM; n=6-8. 
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Regarding the inflammation in the fatty liver, reconstitution of TLR-4 KO kupffer 

cells in the livers of wild-type mice fed MD by bone marrow transplantation resulted in 

reduced levels of expression of TNF-α, IL-1β, CCL-1 and TGF-β, infiltration of neutrophils 

and macrophages, serum activities of ALT and AST and clinical scores of NAFLD, when 

compared to the TLR-4+ kupffer cells-containing wild-type mice fed MD.  In the same time, 

reconstitution of wild-type kupffer cells in the livers of TLR-4 KO mice fed MD resulted in 

increased levels of expression of TNF-α, IL-1β, CCL-1 and TGF-β, infiltration of 

neutrophils and macrophages, serum activities of ALT and AST and clinical scores of 

NAFLD, when compared to the TLR-4 KO kupffer cells-containing TLR-4 KO mice fed 

MD. (Fig. 6.11A-I).  Decreased level of NASH in the livers of wild-type mice fed MD 

reconstituted with TLR4-KO kupffer cells was reflected in improved liver health, as 

demonstrated by the increased liver-to-body weight ratios.  Increased level of NASH in 

the livers of TLR-4 KO mice fed MD reconstituted with wild-type kupffer cells was reflected 

in exacerbated liver health, as shown by the decreased liver-to-body weight ratios (Fig. 

6.11J).  

Wild-type mice fed MD reconstituted with TLR4-KO kupffer cells exhibited reduced 

collagen accumulation in their livers, when compared to the wild-type mice fed MD 

containing TLR-4+ kupffer cells, as demonstrated by reduced levels of picrosirius red 

staining of collagen and expression of col-1 and α-SMA (Fig. 6.12A-C).  On the other 

hand, reconstitution of wild-type kupffer cells in the livers of TLR-4 KO mice fed MD 

resulted in increased collagen accumulation in their livers, when compared to the TLR-4 

KO mice fed MD containing TLR-4 KO kupffer cells, as shown by increased levels of 

picrosirius red staining of collagen and expression of col-1 and α-SMA (Fig. 6.12A-C). 
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Figure 6.11. TLR-4-expressing kupffer cells play crucial role in mediating NASH in mice fed high fat diet. 
Reconstitution of TLR-4 KO kupffer cells in the livers of wild-type mice fed MD resulted in decreased levels of (A-
D) expression of TNF-α, IL-1β, CCL-2 and TGF-β, (E-F) infiltration of neutrophils and macrophages, (G-H) serum 
activities of ALT and AST, and (I) NAFLD scores as compared to the TLR-4+ kupffer cells-containing wild-type 
mice fed MD. (J) Decreased level of NASH in wild-type mice fed MD reconstituted with TLR-4 KO kupffer cells 
resulted in improved liver health as demonstrated by increased liver-to-body weight ratios. On the other hand, 
Reconstitution of wild-type kupffer cells in the livers of TLR-4 KO mice fed MD resulted in increased levels of (A-
D) expression of TNF-α, IL-1β, CCL-2 and TGF-β, (E-F) infiltration of neutrophils and macrophages, (G-H) serum 
activities of ALT and AST, and (I) NAFLD scores as compared to the TLR-4 KO kupffer cells-containing TLR-4 
KO mice fed MD. (J) Increased level of NASH in TLR-4 KO mice fed MD reconstituted with wild-type kupffer cells 
resulted in exacerbated liver health as demonstrated by decreased liver-to-body weight ratios. CD and MD denote 
control diet and milk-based high fat diet, respectively. *P<0.05, **P<0.01, ***P<0.001 (Man-Whitney test); data 
are expressed as mean±SEM; n=6-8.  
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Figure 6.12. TLR-4-expressing kupffer cells play an important role in collagen accumulation in the livers of 
mice fed high fat diet. Reconstitution of TLR-4 KO kupffer cells in the livers of wild-type mice fed MD resulted in 
decreased level of collagen accumulation in their livers as compared to TLR-4+ kupffer cells-containing wild-type mice 
fed MD as shown by the (A) representative images of picrosirius red stained liver sections and expression of (B-C) 
Col-1a and α-SMA. On the other hand, reconstitution of wild-type kupffer cells in the livers of TLR-4 KO mice fed MD 
resulted in increased level of collagen accumulation in their livers as compared to TLR-4 KO kupffer cells-containing 
TLR-4 KO mice fed MD as shown by the (A) representative images of picrosirius red stained liver sections and 
expression of (B-C) Col-1a and α-SMA. CD and MD denote control diet and milk-based high fat diet, respectively. 
*P<0.05, ***P<0.001 (Man-Whitney test); data are expressed as mean±SEM; n=6-8. 
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Reconstituted kupffer cells were derived from the transplanted bone marrow 

It is an important question whether the kupffer cells can actually be reconstituted 

from the transplanted bone marrow.  To address this question, bone marrow cells isolated 

from CD45.1 mice were transplanted into lethally-irradiated and chlodronate-treated (to 

deplete existing kupffer cells) congenic CD45.2 mice.  Flow cytometric analyses of non-

parenchymal cells isolated from the livers of chimeric mice displayed that 45.9% of the 

Ly6G/SiglecF
low

Ly6C
low

F-4/80
+
 cells were CD45.1

+
. That finding was in line with the 

results for non-parenchymal cells isolated from the livers of donor mice where 38.6% of 

the Ly6G/SiglecF
low

Ly6C
low

F-4/80
+ 

cells were CD45.1
+
. In contrast, 36.5% of the 

Ly6G/SiglecF
low

Ly6C
low

F-4/80
+ 
non-parenchymal cells isolated from the livers of recipient 

mice were CD45.2
+
.  These data demonstrate that bone marrow transplantation in 

lethally-irradiated and chlodronate-treated recipient mice results in the reconstitution of 

kupffer cells in their livers from the transplanted cells (Fig. 6.13).  
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Figure 6.13. Reconstituted kupffer cells in the livers of bone marrow recipient mice are derived from the 
transplanted cells. Representative plots of flow cytometric analyses are showing that most of the live, non-parenchymal 

and Ly6G/SiglecFlowLy6ClowF-4/80+ cells in the livers of (A) donor, (B) recipient and (C) chimeric mice were CD45.1+, 

CD45.2+ and CD45.1+ respectively. 
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Discussion 

In chapter 5, the generalized involvement of gut microbiota in mediating NASH has 

been demonstrated.  Therefore, the next question to address is about the mechanism of 

how gut microbiota contributes to the modulation of chronic inflammation on the grounds 

of a fatty liver.  One important mechanism to associate gut microbiota with the 

pathogenesis of diseases is the production of microbe-associated molecular patterns to 

induce pro-inflammatory pathways through the interaction with pattern recognition 

receptors mostly expressed by the innate cells [223].  

Gut microbiota produces numerous types of microbe-associated molecular 

patterns in the intestine that can enter the systemic circulation and induce inflammatory 

responses through the interaction with their corresponding pattern recognition receptors 

[224, 225].  Therefore, it is not possible to distinguish the pro-inflammatory capability of 

individual microbe-associated molecular patterns when they are present together in the 

system.  In this study, we treated mice with broad spectrum antibiotics to diminish their 

gut microbiota and then injected them with LPS, which allowed us to study the effect 

solely mediated by this pro-inflammatory molecule without being affected by the 

responses mediated by others.  

TAK-242 is a small compound that selectively inhibits TLR-4 signaling through the 

interference with interactions between TLR-4 and its adaptor molecules [226]. 

Therapeutic effect of TAK-242 was shown in mouse models of sepsis and endotoxin-

shock [227, 228].  It was also trialed for the treatment of severe sepsis in human [229].  

To demonstrate the role of TLR-4 in the modulation of low grade LPS-mediated chronic 

inflammation in the fatty liver, broad spectrum antibiotics/LPS-treated mice fed MD were 
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injected with TAK-242 which blunted the inflammation induced by LPS.  The outcome 

from this experiment in mice promises TAK-242 as a potential therapeutic option for 

NASH in human.  Therefore, it could be used for clinical trial as a NASH drug in future. 

Noticeably, administration of TAK-242 in mice fed MD not only blunted the increase 

in levels of pro-inflammatory indicators of NASH in LPS-injected mice fed MD, but also 

reduced their levels lower than non LPS-injected control mice fed MD (Fig. 6.3-6.4).  It 

indicates a possibility that TAK-242 may interfere not only the LPS-TLR-4 pathway, but 

also other pro-inflammatory pathways in NASH.  Therefore, it could be a new topic of 

study to investigate the role of TAK-242 in the inhibition of different pro-inflammatory 

signaling in NASH. 

Besides kupffer cells, other types of cells in the liver e.g. hepatocytes, sinusoidal 

endothelial cells, stellate cells, and hepatic dendritic cells, are also known to express TLR-

4 [230, 231].  Therefore, the sole contribution of TLR-4-expressing kupffer cells in 

mediating NASH had remained unclear.  To address this question, kupffer cells in wild-

type mice were reconstituted by TLR-4 KO kupffer cells and kupffer cells in TLR-4 KO 

mice were reconstituted by wild-type kupffer cells through bone marrow transplantation.  

After induction of NASH, wild-type mice containing TLR-4 KO kupffer cells showed a 

reduced level of NASH as compared to the wild-type mice containing wild-type kupffer 

cells.  On the other hand, TLR-4 KO mice containing wild-type kupffer cells displayed an 

elevated level of NASH as compared to the TLR-4 KO mice containing TLR-4 KO kupffer 

cells.  Thus, our experiment clarified the essential role of TLR-4-expressing kupffer cells 

in mediating NASH. 
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Chapter 7 
Peroxisomal Structure and Anti-oxidative Function is Compromised in 

NASH in a TLR-4 Dependent Manner 
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Summary 

Peroxisomes are one of the major sites for the generation and decomposition of 

reactive oxygen species (ROS), in particular hydrogen peroxide (H2O2).  Catalase is the 

H2O2-decomposing enzyme exclusively localized in peroxisomes. Catalase detoxifies 

H2O2 produced not only in peroxisomes but also in mitochondria through peroxisome-

mitochondria communication. Therefore, a compromised peroxisomal structure and 

function can lead to the accumulation of H2O2 that can exacerbate oxidative stress and 

inflammation. Sublethal dose of endotoxin in rat was reported to induce structural and 

functional alterations in liver peroxisomes which led us to investigate the role of TLR-4 

pathway in mediating any alteration in peroxisomal structure and anti-oxidative function 

in the steatotic livers of mice. Fluorescent Immunohistochemistry of peroxisomal 

membrane protein 70 (PMP70) and catalase in the liver sections of mice fed MD displayed 

a reduced level of immunofluorescence intensity, when compared to the mice fed control 

diet, indicating an altered peroxisomal structure and anti-oxidative function respectively.  

Fluorescence intensity of immuno-stained PMP70 and catalase significantly increased in 

the livers of TLR-4 KO mice fed MD, when compared to the wild-type mice fed MD, 

indicating that alteration of peroxisomal structure and anti-oxidative function in NASH is 

dependent on TLR-4 pathway.  Catalase activity assay using tissue homogenates from 

mice fed MD demonstrated a reduced level of catalase activity, as compared to the mice 

fed CD, which increased in TLR-4 KO mice fed MD.  These data indicated that TLR-4 

pathway mediates an alteration in peroxisomal structure and anti-oxidative function in 

NASH. Thus, our study provides a new insight into the pathophysiological mechanism of 

how TLR-4 pathway contributes to the pathogenesis of NASH.  
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Introduction 

Peroxisomes are essential subcellular organelles which are ubiquitous in 

eukaryotic cells [232].  They have indispensable role in the synthesis of bile acids, myelin 

lipid plasmalogens, and docosahexaenoic acids and catabolism of long-chain fatty acids, 

very-long-chain fatty acids, and branched-chain fatty acids through a set of α and β-

oxidation reactions [232-234].   Apart from lipid catabolism, peroxisomes are also involved 

in degradation of polyamines, glyoxylate, certain amino acids, arachidonic acids, and 

several xenobiotics [234].  In addition, peroxisomes are also involved in generation and 

scavenging of reactive oxygen species (ROS) produced inside and outside this organelle 

[235].  Thus, peroxisomes play an important role in cell metabolism and metabolic 

homeostasis through communication with other organelles especially mitochondria [236]. 

Critical metabolic role of peroxisome is closely associated with the exertion of control over 

inflammatory responses.  Peroxisomes exert control over inflammation in three different 

ways.  First, degradation of pro-inflammatory arachidonic acids; second, synthesis of anti-

inflammatory docosahexaenoic acids; and third, scavenging of ROS.  

One important catabolic function of peroxisome is the degradation of arachidonic 

acid derivatives known as eicosanoids.  Commonly known eicosanoids are 

prostaglandins, thromboxanes, leukotrienes, and prostacyclins which have tremendous 

role in the elicitation of broad ranging inflammatory responses.  Most important pro-

inflammatory activities mediated by these molecules are vasodilation/vasoconstriction, 

leukocyte migration and platelet aggregation [237, 238]. 

Peroxisomes contain enzymes which contribute to the synthesis of 

docosahexaenoic acids.  Docosahexaenoic acids are peroxisomally produced omega-3 
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fatty acids used as precursors for resolvins, maresins and protectins.  These molecules 

possess potent anti-inflammatory and immunoregulatory functions [239-241].  

Peroxisomes play a dual role in generation and detoxification of ROS particularly 

hydrogen peroxide (H2O2).  Peroxisomes contain different oxidases that generate H2O2 

as a byproduct of their oxidation reactions.  These oxidases are co-localized with catalase 

which is exclusively found in peroxisomes.  Catalase decomposes H2O2 into H2O and 

molecular oxygen [242].  Catalase scavenges H2O2 generated not only in peroxisomes 

but also in extra-peroxisomal sites like mitochondria.  Peroxisomes and mitochondria can 

exchange their metabolites including H2O2 through intra-organellar diffusion, vesicular 

traffic or direct physical contact [236].  Therefore, depending on the abundance of 

peroxisomes within the cells and their catalase content, they can efficiently detoxify 

cellular H2O2 generated within the cells during the metabolic reactions [232, 233, 243]. 

Impaired detoxification of H2O2 by peroxisomes due to their structural and functional 

alterations in an inflamed milieu can result in an increased level of oxidative stress and 

thereby exacerbate the inflammation [235]. 

Liver is the key metabolic organ which governs the energy balance of the body 

[244].  Peroxisomes are most abundant in hepatocytes where they constitute round 1-2% 

of the total cell volume [245].  Thus, peroxisomes play the major role in the neutralization 

of bulk amount of H2O2 continuously produced in this metabolically active organ.  Hepatic 

steatosis results in enhanced production of H2O2 making the organ more dependent on 

peroxisomes for safe disposal of H2O2 [246].  Therefore, there is a concern about any 

impairment in peroxisomal function that can potentially exacerbate the oxidative stress in 

the steatotic liver and facilitate the progression of the disease to NASH.   
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Knowledge about an impaired peroxisomal function in NASH first came from the 

observation that homozygous mutation of the peroxisome proliferator-activated receptor-

α gene (PPAR-α), the key regulator of genes involved in peroxisomal proliferation, 

accumulate fat in the liver of mice under a starved condition [247].   Subsequent study 

showed that acyl-coenzyme A oxidase null mice, the rate limiting enzyme for peroxisomal 

β-oxidation, leads to the development of NASH, further indicating the role of impaired 

peroxisomal function in mediating NASH [248].  Therefore, we anticipated that there 

occurs an impairment in peroxisomal structure and antioxidative function in dietary fat 

mediated NASH.  It was reported that intraperitoneal injection of sublethal dose of LPS in 

rat alters the structure, number, and function of peroxisomes [249, 250].  Elevated 

expression of TLR-4 in the steatotic liver has been associated with the increased 

sensitivity to gut-derived LPS resulting in chronic inflammation [251, 252].  Therefore, in 

this current study, we examined the effect of TLR-4 pathway on peroxisomal structure 

and antioxidative function in the modulation of NASH in mice fed MD. 

 

 

 

 

 

 

 



116 
 

Results 

Peroxisomal structure is altered in the livers of mice fed MD in a TLR-4 dependent 

manner 

Fluorescence immunohistochemistry of PMP70, a major component of 

peroxisomal membrane [253], in the liver sections of mice fed MD demonstrated a 

decreased fluorescence intensity as compared to the mice fed CD.  In the same time, 

immunofluorescence-stained liver sections of TLR-4 KO mice fed MD displayed an 

increased level of fluorescence intensity than WT mice fed MD (Fig. 7.1).  This data 

indicated that peroxisomal structure is altered in mice fed MD in a TLR-4-dependent 

manner. 

Catalase level and activity are decreased in the livers of mice fed MD in a TLR-4 

dependent manner 

An alteration in peroxisomal structure led us to investigate the plausible change in 

peroxisomal antioxidative function.  Fluorescence immunohistochemistry of catalase, a 

major antioxidative enzyme exclusively found in peroxisomes, in the liver sections of mice 

fed MD demonstrated a decreased fluorescence intensity as compared to the mice fed 

CD.  In the same time, immunofluorescence-stained liver sections of TLR-4 KO mice fed 

MD displayed an increased level of fluorescence intensity than WT mice fed MD (Fig. 

7.2).  This data indicated that catalase level is altered in mice fed MD in a TLR-4-

dependent manner. 

Western blot analysis demonstrated a decreased level of catalase in the livers of 

wild-type mice fed MD as compared to the wild-type mice fed CD. In the same time, 
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Catalase level was increased in TLR-4 KO mice fed MD (Fig. 7.3A-B).  This data indicated 

that the level of catalase in mice fed MD is decreased in a TLR-4 dependent manner 

which was consistent with the observation in fluorescence immunohistochemistry of 

catalase.  Of note, catalase level was also increased in TLR-4 KO mice fed CD compared 

to the WT mice fed CD.  This indicated the catalase level is very sensitive to the basal 

activity of TLR-4 pathway. 

Catalase activity assay was performed using liver tissue homogenates.  Catalase 

activity was decreased in wild-type mice fed MD as compared to the wild-type mice fed 

CD. Catalase activity significantly increased in TLR-4 KO mice fed MD as compared to 

the wild-type mice fed MD indicating the role of TLR-4 pathway-mediated chronic 

inflammation on catalase activity in NASH (Fig. 7.3C). Catalase activity data was 

consistent with the level of catalase displayed by fluorescence immunohistochemistry and 

Western blot analysis. 
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Figure 7.1. Fluorescence immunohistochemistry of peroxisomal membrane protein 70 in liver sections 
displayed a reduced level of fluorescence intensity in mice fed milk-based high fat diet in a TLR-4 
dependent manner. Immunofluorescence staining of peroxisomal membrane protein 70 in liver sections 
displayed a reduced level of fluorescence intensity in WT mice fed MD as compared to the WT mice fed CD. 
Fluorescence intensity increased in TLR-4 KO mice fed MD as compared to the WT mice fed MD. CD and MD 
denote control diet and milk-based high fat diet, respectively. 
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Figure 7.2. Fluorescence immunohistochemistry of catalase in liver sections displayed a reduced level 
of fluorescence intensity in mice fed milk-based high fat diet in a TLR-4 dependent manner. 
Immunofluorescence staining of catalase in liver sections displayed a reduced level of fluorescence intensity in 
WT mice fed MD as compared to the WT mice fed CD. Fluorescence intensity increased in TLR-4 KO mice fed 
MD as compared to the WT mice fed MD. CD and MD denote control diet and milk-based high fat diet, 
respectively. 
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Figure 7.3. Catalase level and activity are decreased in the livers of mice fed milk-based high fat diet which 
is dependent on TLR-4. Catalase level and activity were decreased in the livers of mice fed MD as compared to the 
mice fed CD in TLR-4 dependent manner as shown by (A) Western blot analysis (B) Image J analysis of the Western 
blot image and (C) catalase activity assay. CD and MD denote control diet and milk-based high fat diet, respectively. 
*P<0.05, **P<0.01 (Man-Whitney test); data are expressed as mean±SEM; n=3-6. 

A 
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Discussion 

Reactive oxygen species (ROS) are endogenously produced as byproducts of 

cellular metabolic processes in mitochondria and peroxisomes [254, 255]. Cellular 

homeostasis mediated by anti-oxidant defense system prevents the accumulation of ROS 

within the cells. When the level of ROS overwhelms the anti-oxidant defense system, 

whether through an excessive production of ROS or a reduction of anti-oxidant defense 

capacity, oxidative stress occurs [256]. A sustained oxidative stress can lead to chronic 

inflammation which can potentially serve as a cause of different advanced stage diseases 

[257, 258].  

Peroxisomes are single membrane-bounded ubiquitous organelles in eukaryotic 

cells [255].  Several metabolic processes, including catalase-mediated detoxification of 

H2O2, exclusively occurr in peroxisomes [259].  The number, morphology, and activity of 

peroxisomes can remarkably vary depending on the tissue, organ, and nutritional and 

metabolic status [236].  Peroxisomes produce different ROS from different metabolic 

pathways that are neutralized by enzymatic and non-enzymatic anti-oxidant defense 

systems.  Catalase is a unique member of peroxisomal anti-oxidant defense system 

which neutralizes H2O2 in a catalytic (2 H2O2 → 2 H2O + O2) or peroxidatic 

(H2O2 + AH2 → A + 2 H2O) manner [259].  Although catalase is localized exclusively 

within peroxisomes, they can decompose H2O2 produced not only in peroxisomes but also 

in extra-peroxisomal sites such as mitochondria through inter-organellar exchange of 

metabolites [236].  Thus, catalase-mediated detoxification of H2O2 in peroxisomes plays 

an indispensable role in preventing the cell from reaching the stage of oxidative stress. 

Besides catalase, peroxisomes are also required for the biosynthesis of plasmalogens. 
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Plasmalogens are ether-phospholipids known to have anti-oxidative function, but it is still 

unclear how much role they play in providing anti-oxidative defense [260].  

Oxidative stress is the key mediator of NASH, which is caused by the increased 

availability of free fatty acids in the steatotic livers [261, 262].  Therefore, NASH-affected 

livers are in increased demand of anti-oxidative mediators.  Impaired detoxification of 

H2O2 in NASH-affected livers due to any alteration in peroxisomal structure and function 

may exacerbate the severity of the disease.  In this study, we have shown that the 

catalase level and activity decrease in the livers of mice model of NASH which are 

reversed in TLR-4 KO mice indicating the role of TLR-4 pathway in the modulation of anti-

oxidative function of catalase.  It may be due to the adverse effect of TLR-4 pathway-

mediated low grade chronic inflammation on the structure and/or function of peroxisomes 

in the fatty liver.  Not only in TLR-4 KO mice fed MD, we have also observed an increase 

in catalase level and activity in the livers of TLR-4 KO mice fed CD as compared to the 

wild-type mice fed CD.  It might be due to the sensitivity of peroxisomal structure and 

function to the basal activation of TLR-4.  

The findings presented in this study are in line with previous reports demonstrating 

the role of endotoxin-induced inflammation in alteration of peroxisomal structure-function 

in the liver [249, 250]. Endotoxin-induced inflammation causes change in lipid 

composition of peroxisomes in the liver [250].  Because the concentration of circulating 

endotoxin is increased in NASH, it is important to know how the lipid composition of 

peroxisomes are affected in NASH.  Besides endotoxin-induced inflammation, increased 

concentration of free fatty acids is also an important contributor to organelle malfunction.  

Increased concentration of free fatty acids alters the lipid composition in mitochondria and 
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endoplasmic reticulum, resulting in their impaired function [263, 264]. Because fat 

accumulation in the liver results in an increased concentration of free fatty acids, it 

demands a comprehensive study to determine the changes in structural composition of 

peroxisomes to have a clearer picture on their impaired anti-oxidative function in NASH.  

TLR-4 pathway-mediated alteration of peroxisomal structure/function in NASH may not 

only reduce their anti-oxidative activity but also impact the peroxisome-mediated 

synthesis of anti-inflammatory and degradation of pro-inflammatory molecules. 

Therefore, it requires a further investigation to study the effect of TLR-4 pathway on the 

peroxisomal metabolism of different pro and anti-inflammatory molecules potentially 

associated with NASH. 
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Chapter 8 
Conclusions and Overall Discussion 
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Because chronic inflammation is the principal reason for the progression of a 

benign fatty liver into an end stage disease, the ultimate goal of all NASH research is to 

stop the inflammation.  To stop the inflammation in the fatty liver, it is urgent to reduce the 

availability of causative agents of inflammation, or therapeutically interfere with their 

signaling pathways.  In this project, gut microbiota has been studied as a potential source 

of pro-inflammatory agents of NASH.  We have comprehensively investigated the role of 

the gut microbiota-derived LPS-TLR-4 pathway as a potential mediator of NASH with 

therapeutic relevance, using an appropriate experimental model. 

Study of NASH in mice fed high fat diet represents a clinically relevant model 

When compared to other genetic and diet-based models of NASH, high fat diets 

are clinically more relevant for some genuine reasons.  First, high fat diets do not contain 

any ingredient that is unusual in the regular human diet.  In fact, high fat diets are prepared 

from sources that are commonly consumed by humans, e.g., vegetable oil, coconut oil, 

milk fat, beef tallow, lard  and other sources [265].  Second, high fat diets mimic western 

diets  in having high fat content [266].  Third, high fat diets induce the development of 

NASH spontaneously without requiring any additional dietary intervention [150].  When 

compared to other dietary models, high fat diets require a longer period of feeding to 

induce NASH.  For instance, a methionine and choline deficient diet induces NASH at 

day 10 of feeding, whereas a high fat diet requires 8-12 weeks [133, 142, 150, 267].  This 

requirement of long-term feeding is  consistent with NASH patients requiring a long period 

of pathogenesis [150].  Finally, high fat diets result in the development of obesity and 

NASH simultaneously, which is a common scenario in the case of NASH patients [150].  
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Therefore, high fat diets offer an opportunity to study NASH within the context of metabolic 

syndrome, which is known to manifest as NAFLD in the liver. 

Both unsaturated and saturated fats are present in regular human diets [157].  The 

role of saturated fats in inducing steatosis and chronic inflammation in the liver has been 

demonstrated in numerous reports [160-163].  In line with those findings, we designed a 

comparisonal study between a milk-based saturated high fat diet and a lard-based 

saturated diet, thus demonstrating the higher efficiency of a milk-based saturated high fat 

diet over a lard-based unsaturated high fat diet in inducing NASH.  We also performed an 

experiment where mice were fed at  three different time points (8, 16 or 32 weeks) 

resulting in a significantly higher level of NASH at weeks 16 and 32, as compared  to 

week 8.  Based on these results, we fed mice with a milk-based saturated high fat diet for 

16 weeks to ensure a maximum level of steatosis and inflammation in the remaining 

experiments of the study. 

To keep our animal study consistent with human patients, it was important to 

evaluate the level of disease with methods similarly used for diagnostic purposes in 

humans.  We used both noninvasive and invasive methods to detect and measure the 

level of NASH in mice.  In the case of human patients, noninvasive methods are of first 

preference.  Imaging techniques, e.g., ultrasonography, computerized tomography, and 

magnetic resonance imaging are widely used noninvasive methods to identify fat 

deposition in the liver.  One major limitation of those imaging methods is that they cannot 

distinguish steatosis from NASH [268-271].  Therefore, imaging methods were of no use 

in our NASH study on animal models.  Assays employed for determining ALT and AST 

activities in serum are also commonly used noninvasive methods of NASH diagnosis.  
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Elevated levels of ALT and AST activity in serum indicates hepatocyte damage 

subsequent to hepatic inflammation.  Those levels can rise up to five fold in NASH 

patients compared to their upper limits in healthy individuals.  Although ALT and AST 

activity in serum cannot give an accurate indication about the degree or severity of liver 

disease, those markers were used as an important indicator of NASH in our study [268, 

272, 273].  Apart from those noninvasive methods, liver biopsy is the most reliable 

invasive technique to diagnose NASH.  Biopsy samples are used for histology that can 

diagnose as well as evaluate the level of disease.  Biopsy sections are evaluated based 

on steatosis, inflammation, hepatocyte ballooning, necrosis, and fibrosis. Yet liver 

histology is a controversial tool to diagnose NASH in humans due to the risks of biopsy 

and the validity of a tiny biopsy for representing NASH in the entire liver [272, 274].  Due 

to the availability of tissue post euthanization, liver histology is an unquestionably useful 

method for disease evaluation in animal models of NASH.  Thus, because of the 

application of different, clinically used noninvasive and invasive indicators of NASH, our 

study outcome has strong clinical relevance.  

Gut microbiota spans gut-liver axis in causing NASH 

In this project, we also studied the role of gut microbiota in mediating NASH.  We 

found a reduced level of dietary fat-mediated chronic inflammation in the livers of mice 

that were germ free or treated with broad spectrum antibiotics, as compared to control 

mice.  Mechanisms explaining the communication between the gut microbiota and NASH 

are still widely investigated.  A large body of evidence from both population and animal 

studies clearly indicates that changes in the composition of gut microbiota are closely 

associated with NASH.  One widely studied mechanism of gut microbiota in inducing 
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NASH is altered production of metabolites.  For instance, changes in gut microbiota of 

NASH patients result in higher abundance of Escherichia and increase the level of 

endogenous alcohol in the circulation, leading to the increased production of ROS in the 

liver [275, 276].  Another important metabolic role of gut microbiota is the production of 

short chain fatty acids, which provide nutrients and energy essential for maintaining gut 

health and integrity.  An altered production of short chain fatty acids results in defective 

gut permeability, leading to an increase of pro-inflammatory microbial elements in the 

portal circulation [277].  Gut microbiota also has an important role in the regulation of 

intestinal lipid absorption mediated by the deconjugation of bile acids in intestine.  

Deconjugation of bile acids is mediated by the removal of polar groups of 

glycine and taurine catalyzed by gut microbial enzymes.  Impaired deconjugation of bile 

acids can lead to increased emulsification and absorption of dietary fat, resulting in 

hepatic steatosis [277, 278].  It is still not clear whether the abundance of microbes 

expressing the enzymes associated with bile acid deconjugation is altered in NASH. 

Apart from their metabolic functions, the supply of pro-inflammatory microbes-

associated molecular patterns into the liver is also a potential mechanism of gut 

microbiota in mediating NASH.  Prominent microbes-associated molecular patterns 

involved in NASH include endotoxin, peptidoglycan, flagellin, and microbial nucleic acids 

[279].  In this comprehensive study, we demonstrated the role of gut-derived LPS in 

mediating NASH through the TLR-4 receptor. 

Gut microbial community gets changed in NASH 

The role of specific microbes has been reported to induce different inflammatory 

diseases in mice fed a high fat diet.  A milk-based saturated fat diet can induce colitis in 
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IL10-/- mice through the expansion of Bilophila wadsworthia [159].  The Enterobacter 

cloacae B29 strain isolated from the gut of an obese human has been shown to induce 

obesity and insulin resistance in germ free C57BL/6J mice fed a high fat diet, whereas  

germ free control mice on a high-fat diet were protected from disease phenotypes [280].  

Our current project revealed an overall change in the structure of gut microbial community 

in mice fed MD, but we could not identify a specific microbe associated with NASH.  

Therefore, it is important to undertake a future investigation to identify microbes whose 

presence could be directly related to the pathogenesis of NASH. 

Feeding mice with a high fat diet has been reported to result in increased 

concentration of circulating endotoxin [122, 123].  Consistent with those reports, we have 

shown a trend of higher concentration of endotoxin in the portal serum of mice fed MD, 

as compared to the mice fed CD.  Those data led us to investigate whether the 

composition of gut microbiota is changes, resulting in an increased abundance of Gram 

negative bacteria in mice fed MD.  However, our 16s rRNA analysis displayed a decrease 

in the relative abundance of Bacteroidetes, the major Gram negative phylum in gut 

microbiota in mice [281].  Yet the relative abundance of Proteobacteria, another important 

Gram negative phylum in the gut microbiota of mice, was significantly increased [282].  

Further investigation is required to determine if the entire phylum of Proteobacteria or any 

specific microbe within the phylum, plays a key role in mediating chronic endotoxemia in 

mice fed MD. 

Altered gut permeability facilitates the elevation of circulating endotoxin level 

The elevated concentration of gut microbiota-derived pro-inflammatory 

components in the circulation of NASH patients, especially endotoxin, is mediated by 
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increased gut permeability [283, 284].  However, a comprehensive assessment in an 

animal model is yet to be performed in order to explain the relationship between gut 

permeability and NASH.  In the case of obesity, an increased level of TNF-α in the serum 

has been associated with inflammation in the intestine leading to gut leakage [285].  In 

our study, a higher level of expression of TNF-α was observed in the livers of NASH-

affected mice.  Therefore, it is possible that an increased production of TNF-α in the 

altered cytokine milieu of NASH eventually leads to the inflammation in intestine.  

Additionally, changes in gut microbiota in NASH may also alter intestinal permeability 

through the pathways driven by bacterial metabolites.  Zhu and colleagues reported that 

expression of alcohol-metabolizing enzymes are up-regulated in NASH livers [276].   In a 

follow-up study, they reported that the abundance of alcohol-producing Escherichia is 

increased in the gut of NASH patients as compared to non-obese and obese non-NASH 

controls, leading to an elevated concentration of alcohol in the blood serum of NASH 

patients [275].  Gut microbiota-produced alcohol is known to have a potential role in 

increasing gut permeability [286] and the generation of reactive oxygen species in the 

liver [287].  Thus, gut permeability and NASH participate in a positive feedback loop in 

causing the disease. In our animal study, Clostridium was the only alcohol-producing 

genus whose abundance was increased in the gut microbiota of NASH.  Further 

investigation is required to determine the extent to which Clostridium contributes to the 

mediation of gut permeability. 

LPS-TLR-4 pathway plays an essential role in mediating NASH 

Using a unique approach, we studied the role of LPS in causing NASH through the 

injection of LPS in mice treated with broad spectrum antibiotics.  The purpose of LPS 
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injection in broad spectrum antibiotics-treated mice was to ensure the presence of LPS 

in the system as the sole pro-inflammatory agent derived from microbes.  Therefore, the 

TLR-4-mediated inflammation in the fatty liver was attributed only to LPS, not to any other 

microbial agents.  Apart from microbes-derived LPS, there are  many endogenous host-

derived ligands of TLR-4 with varying activation potential, e.g., low-molecular weight 

hyaluronic acid, heparin sulfate, saturated fatty acid, fibrinogen, fibronectin, heat shock 

proteins 60 and 70, high mobility group box-1, and degraded matrix [288].  It is still not 

clear what level of TLR-4 activation is contributed by these endogenous ligands.   

The level of TLR-4 pathway activation can vary depending on the types of LPS.  

Acylation of lipid A, the actual site of LPS recognized by TLR-4, can vary in terms of 

number, length, and saturation level of fatty acyl chains [289].  While human TLR-4 can 

sense only hexaacyl lipid A, murine TLR-4 can sense pentaacyl or tetraacyl lipid A [290].  

Furthermore, lipid A attached with saturated fatty acyl chains with lengths of 12 or 14 (or 

occasionally 16)  are better agonists of TLR-4 [291].  In the complex ecology of gut 

microbiota, LPS molecules with different types of lipid A are produced.  Therefore, it is 

important to investigate whether the altered gut microbiota in the mice fed a high fat diet 

produce higher levels of those types of LPS, which are stronger agonists of TLR-4. 

TLR-4 pathway is a promising target for therapeutic intervention against NASH and 

ischemia/reperfusion injury in liver transplantation 

High fat diet-mediated hepatic steatosis in TLR-4 KO mice displayed a reduced 

level of inflammation as compared to the wild-type mice; even the chronic administration 

of low dose LPS could not increase the level of inflammation in the fatty liver of TLR-4 KO 

mice.  Those data demonstrated the prospect of TLR-4 pathway as a therapeutic target 
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for the treatment of NASH.  In our study, we administered TAK-242, an inhibitor of TLR-

4, in LPS-injected mice fed a high fat diet, resulting in a significant decrease in the levels 

of NASH-indicative markers.  TAK-242, a novel synthetic molecule with the chemical 

name resatorvid, suppresses TLR-4 signaling by selectively binding to the TIR domain 

via Cys747 [292-294].  Although several studies have reported the protective role of TAK-

242 against acute inflammation in different disease conditions, it is still not clear how 

efficient TAK-242 may be in inhibiting chronic inflammation.  TAK-242 has demonstrated 

protective effects against Escherichia coli-induced sepsis and acute endotoxemic shock 

in mice [227, 228].  Most importantly, TAK-242 has been tested on a trial   to treat severe 

sepsis in human patients [229].  The findings from studies on TLR-4-miediated acute 

inflammation indicate a plausible role for TAK-242 in inhibiting TLR-4-induced chronic 

inflammation.  Thus, in our study, data on the protective role of TAK-242 against NASH 

in mice offer   therapeutic promise for the treatment of NASH in human patients. 

The TLR-4 pathway has been correlated not only with chronic inflammation in 

NASH, but also with warm ischemia/reperfusion injury in liver transplantation [295].  

Circulating endotoxin is a critical factor in causing injury in the liver following 

ischemia/reperfusion.  Steatotic livers are more sensitive to endotoxin in developing 

ischemia/reperfusion injury compared to their lean counterparts [296].  Our lab has 

reported that the neutralization of endotoxins through  treatment with anti-endotoxin 

monoclonal antibody  dramatically improved survival rate and liver function after 

ischemia/reperfusion injury in mice with hepatic steatosis [297].  We also reported that 

deficiency of TLR4 is protective against ischemia/reperfusion injury in the mouse steatotic 

liver [296].  Therefore, we anticipate that inhibition of the TLR-4 pathway through the 
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treatment with TAK-242 would be protective against ischemia/reperfusion injury in 

steatotic liver. 

Therapeutic interference of LPS-TLR-4 pathway may improve hepatic regeneration 

following partial hepatectomy in steatotic liver 

We have studied the impact of dietary fat mediated NASH in the impairment of 

hepatic regeneration following partial hepatectomy.  No study has yet investigated the 

role of gut microbiota or the role of the LPS-TLR-4 pathway in modulating the impairment 

of hepatic regeneration following partial hepatectomy in the steatotic liver.  Such a study 

could result in a novel drug with therapeutic potential for the treatment of impaired hepatic 

regeneration in NASH.  In this project, we have shown that the TLR-4 inhibitor, TAK-242, 

can suppress chronic inflammation in the fatty liver.  Therefore, treatment of mice with 

TAK-242 before surgical resection is anticipated to inhibit the pro-inflammatory insult on 

the regenerating lobes of the liver and thereby improve impaired regeneration.  It has also 

been demonstrated in this project that diminishing of gut microbiota through treatment 

with broad spectrum antibiotics results in a reduced concentration of serum endotoxin 

and a decreased level of NASH.  Therefore, treatment of mice with broad spectrum 

antibiotics before partial hepatectomy surgery is anticipated to result in an improved 

regeneration outcome. 

 A published study from our lab demonstrated that pre-treatment of obese mice 

(ob/ob) with anti-endotoxin monoclonal antibodies could protect them from subsequent 

hepatic ischemia/reperfusion injury, indicating the role of circulating endotoxin in 

mediating the inflammatory cascade in the steatotic liver [298].  Therefore, pretreatment 

of mice with anti-endotoxin monoclonal antibodies prior to partial hepatectomy could 
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potentially reduce the level of inflammation by sequestering the endotoxins from binding 

to Kupffer cells, thereby ameliorating hepatic regeneration.  

Why peroxisomes are important in controlling oxidative stress 

In mammals, peroxisomes play an indispensable role in numerous metabolic 

pathways including fatty acid α- and β-oxidation.  During those metabolic processes, 

peroxisomes produce a bulk amount of ROS as byproducts of different biochemical 

reactions that are efficiently neutralized, using a set of enzymatic and non-enzymatic 

defense mechanisms [236].  Except for catalase, most of those anti-oxidant defense 

mechanisms are common in other metabolically active organelles, especially 

mitochondria [242].  Catalase is the H2O2-detoxifying enzyme in the cell [299].  Catalase 

is exclusively localized in peroxisomes, but H2O2 is generated in both peroxisomes and 

mitochondria.  In fact, only 35% of H2O2 within the cell is generated by peroxisomes in the 

rat liver [242].  H2O2 generated in mitochondria is also decomposed by peroxisomal 

catalase, which is mediated by peroxisome-mitochondrial communication [236].  

Therefore, peroxisomes play a major role in controlling oxidative stress by preventing the 

accumulation of ROS. 

Peroxisomal anti-oxidative function is impaired in NASH 

Regular peroxisomal function in the healthy liver serves two important beneficial 

roles simultaneously.  One is the degradation of very long chain and branched-chain fatty 

acids, thus preventing them from being accumulated in the liver to induce hepatic 

steatosis; the other is the neutralization of ROS, preventing them from causing oxidative 

stress [246, 300].  Up-regulation of peroxisomal biogenesis leads to a resistance to 
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dietary fat-mediated hepatic steatosis in mice [301].  On the other hand, peroxisome-

deficient mice develop an increased level of hepatic steatosis [302].  Recently,  Park and 

colleagues  have reported that expression of peroxisomal proliferator-activated receptor-

α (PPAR-α), the master regulator of peroxisomal fatty acid oxidation and proliferation, is 

reduced in methionine- and choline-deficient diet-induced NASH in mice [303].  They 

have also shown that statin-mediated inhibition of hepatic steatosis and NASH recovers 

the expression level of PPAR-α.  Those data indicate an impaired peroxisomal function 

in NASH that is consistent with the reduced catalase level and activity demonstrated in 

the livers of mice fed MD in our study.  It is still not clear if the decreased level and activity 

of catalase in NASH is due to the reduced biogenesis or structural alteration of 

peroxisomes. 

Intervention of TLR-4 pathway can improve peroxisomal anti-oxidative function 

In this project, we have demonstrated that the catalase level and function increase 

in TLR-4 KO mice fed MD as compared to the wild-type mice fed MD, indicating an 

important role for the TLR-4 pathway in regulating peroxisomal function in NASH.  The 

impact of the TLR-4 pathway on peroxisomal function might be mediated in two different 

ways: a) alteration of peroxisomal structure as a direct influence of pro-inflammatory 

milieu, and b) cross-talk between the TLR-4 pathway and the biogenesis of peroxisomes, 

leading to their reduced proliferation.   The impact of the TLR-4 pathway in the alteration 

of peroxisomal structure has been indicated in studies by Khan and colleagues [249, 250].  

They have shown that administration of a sub-lethal dose of endotoxin induces changes 

in peroxisomal structure and function in the rat liver. 
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 Possible crosstalk between the TLR-4 pathway and peroxisomal biogenesis has 

been indicated in a study by Necela and colleagues [304].  They have shown that 

activation of the TLR-4 pathway leads to the downregulation of peroxisomal proliferator-

activated receptor-γ (PPAR-γ) through an NF-κB-dependent mechanism in 

macrophages.  They have also shown that knockout of PPAR-γ results in an increased 

expression of pro-inflammatory genes, indicating a regulatory feedback loop between 

TLR-4 pathway and expression of PPAR-γ.  Because PPAR-α and PPAR-γ share 

similarity in their ligands and mechanism of inducing gene expression [305], the existence 

of similar type of regulatory feedback loop between TLR-4 and PPAR-α cannot be ruled 

out.  Because PPAR-α is the key transcription factor in  the PPAR family that regulates 

the expression of genes involved in peroxisomal β-oxidation and proliferation, it is 

important to investigate a potential crosstalk between TLR-4 and PPAR-α. 
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