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Charles Ford Reese III. Characterization of CD45+ Fibroblasts in Interstitial Lung 

Disease. (Under the direction of Stanley Hoffman) 

Abstract 

 The role of cells of the hematopoietic lineage in fibrosis associated with 

interstitial lung disease (ILD) is controversial; whether monocytes solely differentiate 

into macrophages that activate resident fibroblasts, or if they can also differentiate into 

fibrocytes (CD45+/Col I+ cells) that then differentiate into fibroblasts has been debated. 

By using systemic bleomycin to induce fibrosis in a bone marrow transplant and 

transgenic mouse models, as well as using human lung tissue from a patient with 

scleroderma-associated ILD, we studied the contribution of the hematopoietic lineage to 

the fibroblast population using flow cytometry and single cell RNA sequencing. Further, 

our studies revealed reasons why fibrocytes are lost when fibroblast cultures are 

passaged. Finally, we evaluated how treatment of mice with a novel, water-soluble 

version of caveolin scaffolding domain (CSD) called WCSD affects fibrocyte 

accumulation and fibrosis in our animal model. We found that during fibrosis, fibrocytes 

increase in number and in their expression of Col I both in the lung tissue and in the 

bronchiolar lavage fluid (BAL). The appearance of Col I in CD45+ precursors occurs 

after their recruitment into the lung. Interestingly, fibrocytes express higher levels of 

monocyte/macrophage markers (CD45, CD16, CD68, CD206) than do CD45+/Col I- 

cells. In vitro experiments demonstrated that CD45+/Col I+ cells are at first predominant 

in fibroblast cultures, but then are lost progressively during passage. Furthermore, these 

fibrocytes do not appear to grow in vitro in the absence of CD45-/Col I+ fibroblasts. 
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Treating mice with WCSD inhibited fibrocyte accumulation as well as overall collagen I, 

Tenascin C, α-sma, and HSP47 levels and vascular leakage. The decreased fibrocyte 

accumulation may result both from decreased precursor recruitment due at least in part to 

decreased vascular permeability and from decreased differentiation of fibrocytes from 

CD45+/Col I- precursor monocytes. In summary, CD45+ cells accumulate in lung tissue 

during fibrosis and contribute to pathological remodeling by differentiating into 

myofibroblasts that overexpress ECM proteins and myofibroblast markers. Their 

contribution to fibrosis can be inhibited by WCSD which serves as a surrogate for 

caveolin-1, a protein known to be reduced in expression in multiple cell types from 

patients with fibrotic lung disease. 
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Introduction 

Fibrosis is a common underlying factor in many different diseases. In the Western 

world, diseases with a fibrotic component are responsible for nearly 45% of deaths 

(Wynn 2004). Indeed, fibrosis occurs in all the main organ systems, including the heart, 

kidney, lung, liver, and skin (Masuda, Fukumoto et al. 1994, Sunamoto, Kuze et al. 1998, 

Fischer and Du Bois 2012). When an injury or disease occurs, a series of cellular and 

molecular processes begins that ultimately may result in tissue fibrosis. This is an 

adaptive response that helps to close and repair wounds (Xie, Wang et al. 2018), and is 

initially a beneficial process. However, if the fibrotic response occurs for an extended 

period of time, it can become pathogenic and lead to excessive deposition of extra 

cellular matrix (ECM) proteins, scarring, and loss of organ function that can ultimately 

result in organ failure and death. 

The fibrotic response to injury occurs in several stages (Wynn 2004, Rockey, Bell 

et al. 2015). The initiation of fibrosis begins when an injury occurs to the tissue. After 

injury, resident effector cells become activated and drive a series of processes that result 

in the recruitment of various cell types (i.e., monocytes, macrophages, neutrophils, T 

lymphocytes, and B lymphocytes), as well as tissue repair and replacement of damaged 

and injured cells. The recruitment of inflammatory cells into the site of injury activates 

fibroblasts/myofibroblasts to inappropriately deposit high levels of ECM proteins into the 

tissue, ultimately leading to loss of organ function and fibrosis. 

Interstitial lung disease (ILD), also called interstitial lung pneumonias, is a term 

used to represent a large group of fibrotic diseases that occur in the lung. There are a 
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variety of stimuli that can lead to ILD including toxins, radiation, infections, and 

autoimmune disorders (such as in systemic sclerosis/scleroderma (SSc)). ILD can also 

occur idiopathically (Borchers, Chang et al. 2011). These diseases are characterized by 

injury to alveolar epithelial cells, excessive recruitment of inflammatory cells, activation 

and proliferation of fibroblast/myofibroblasts, over production of ECM, and hyperplasia 

of fibroblasts and type II pneumocytes (Selman and Pardo 2002, Wang 2009).  

Two of the more devastating forms of ILD are idiopathic pulmonary fibrosis (IPF) 

and SSc related ILD, both of which are often fatal and carry a worse prognosis than many 

cancers. More specifically, SSc is a systemic autoimmune disease that can involve nearly 

every organ system in the body, and is characterized by dysfunction of endothelial and 

fibroblast cells, small vessel vasculopathy, and the excessive production and deposition 

of ECM proteins. Despite the fact that the disease can involve most organ systems, 

disease progression to the lung is the leading cause of death for patients with SSc 

(Solomon, Olson et al. 2013). Lung involvement can result in both ILD and pulmonary 

hypertension (PH). PH is characterized by high blood pressure in the lung and right side 

of the heart resulting from injuries to the vascular endothelium, and an increased 

inflammatory response leading to ablation and narrowing of pulmonary arteries 

(Solomon, Olson et al. 2013, Vonk Noordegraaf, Groeneveldt et al. 2016). Until recently, 

there were no FDA approved treatments for these diseases. Two drugs, pirfenidone and 

nintedanib, have since gained FDA approval for patients with IPF, and nintedanib was 

approved recently for patients with SSc. Both appear to be modestly effective in slowing 
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disease progression (Daccord and Maher 2016). However, the prognosis for patients is 

still poor. 

To study ILD, a variety of different animal models have been used to try and best 

recreate the features of the disease in humans. Some of these methods include exposure 

to insults such as bleomycin, cigarette smoke, fluorescein isothiocyanate, and silica (Lee, 

Reese et al. 2014). The most commonly used model for ILD is treatment with the 

antitumor antibiotic, bleomycin (Moeller, Ask et al. 2008, Mouratis and Aidinis 2011). 

Originally discovered in 1962, bleomycin received FDA approval in 1973 for the 

treatment of various squamous cell carcinomas, but the drug has been limited in its 

usefulness due to its potential to cause pulmonary fibrosis. Researchers have taken 

advantage of this side effect and deliver bleomycin to rodents to induce pulmonary 

fibrosis by a variety of methods. Administration of bleomycin is done either directly 

(intratracheal or intraoral delivery), or systemically (intravenous, intraperitoneal, 

subcutaneous, or through osmotic pump delivery) (Harrison Jr and Lazo 1987, Moore and 

Hogaboam 2008, Aono, Ledford et al. 2012, Lee, Reese et al. 2014).  

 Historically, the cells that overexpress collagen in many fibrotic diseases, such as 

ILD, were believed to be resident fibroblasts that have been activated through the release 

of various cytokines. Once activated, the fibroblasts become myofibroblasts that 

overexpress collagen and cause fibrosis. However, recent evidence suggests that some 

fibroblast precursors are not resident fibroblasts. Rather, they may originate in the bone 

marrow (BM) and are recruited into damaged tissue, or are derived from endothelial, 

epithelial cells or pericytes present in the tissue that transdifferentiate into 
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myofibroblasts. Other potential sources of myofibroblasts have been reported including 

mesenchymal stem cells (MSCs), perivascular adventitial cells, and smooth muscle cells 

(Di Carlo and Peduto 2018).  

In particular, BM derived monocytes differentiate into cells known as fibrocytes 

that are defined by their expression both of the pan-leukocyte marker CD45 and the 

fibroblast marker collagen I (Col I). Fibrocytes have been shown to be present in the 

target tissues of several fibrotic diseases including the lung and skin in scleroderma (SSc) 

and the heart of patients with cardiac disease (Quan, Cowper et al. 2004, Haudek, Xia et 

al. 2006, Russell, Herzog et al. 2012). Since fibrocytes originate in the bone marrow, 

fibrocytes or fibrocyte precursors must enter the circulation and be recruited to their 

target sites. The recruitment of fibrocytes to their target tissues is presumably mediated 

though the chemotactic action of chemokines via their interaction with cell surface 

chemokine receptors on circulating cells. Previous research from our lab has suggested 

that decreased levels of caveolin-1 in fibrocyte precursors promote the accumulation of 

fibrocyte derived myofibroblasts in fibrotic tissues through: 1) the increased recruitment 

of fibrocytes and/or their precursors (due to the upregulation of chemokine receptors) into 

the tissue, 2) the increased differentiation of precursor monocytes into fibrocytes in the 

tissue, and 3) the increased differentiation of fibrocytes into myofibroblasts that 

overexpress ECM proteins thereby contributing to ECM remodeling (Lee, Perry et al. 

2014, Reese, Perry et al. 2014, Lee, Reese et al. 2015). Besides differentiating into 

myofibroblasts, fibrocytes promote fibrosis by secreting a variety of cytokines and 
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chemokines that activate resident fibroblasts, promote inflammation and angiogenesis, 

and recruit more fibrocytes and other cells to the target site. 

The idea that fibrocytes serve as one of the major contributors to the population of 

myofibroblasts that over overexpress collagen in fibrosis is somewhat controversial 

(Moore-Morris, Guimarães-Camboa et al. 2014). This controversy arises from the use of 

different methods by different investigators. Investigators who oppose the idea that BM-

derived cells contribute to fibroblast lineages may have over depended on Cre drivers for 

lineage specificity and the failure to stain fibrotic tissues for CD45 (Moore-Morris, 

Guimaraes-Camboa et al. 2014), a notoriously difficult protein to detect without proper 

fixation. Previously reported CD45 staining in the lungs of bleomycin-treated mice has 

been largely unconvincing (Inomata, Kamio et al. 2014). 

Another recent study (Kleaveland, Velikoff et al. 2014) has be misinterpreted to 

imply that fibrocytes are not important in lung fibrosis. In fact, this study only showed 

that knocking out the collagen gene in BM-derived cells did not stop these cells from 

becoming collagen+ in fibrotic tissue by IHC. Indeed, this study states that fibrocytes 

normally express collagen mRNA. This study does not rule out the possibility that 

fibrocytes normally serve as fibroblast progenitors or that fibrocytes normally contribute 

to collagen expression during fibrosis. Moreover, in regard to their model, the authors 

state that knocking out Col I in fibrocytes may have no effect on the severity of 

bleomycin-induced disease because “other cell types might be compensating for loss of 

functional fibrocytes”. 
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Supporters of the importance of the monocye-fibrocyte-myofibroblast lineage 

(Mollmann, Nef et al. 2006, Visconti and Markwald 2006, van Amerongen, Bou-Gharios 

et al. 2008, Ruiz-Villalba, Simon et al. 2015) have observed a contribution of 

hematopoietic cells to mesenchymal cell populations in fibrotic tissue using chimeric 

mouse models wherein genetically-tagged (e.g. EGFP) BM cells are used to reconstitute 

the BM of irradiated mice. The integrated, transgenic tag is then used to trace the fate of 

marked cells. In summary, the EGFP genetic tag approach avoids possible problems with 

Cre drivers and the retention of antigenicity during fixation.  

Based on this background, our goal was to refine the methods to determine 

whether fibrocytes (CD45+/Col I+ fibroblastic cells) truly exist, whether fibrocytes in the 

fibrotic lung differ from fibrocytes in control lung tissue, and whether we could 

determine why the fibroblasts that most people study appear to be CD45-. In addition, we 

examined whether a therapeutic peptide, caveolin scaffolding domain (CSD), derived 

from caveolin-1 affects fibrocytes. These studies have made extensive use of elegant 

methods including transgenic mice designed for lineage tracing, flow cytometry, and 

single cell sequencing. 

Materials and Methods 

Bleomycin Treatment of Mice and Harvesting of Tissue 

The following procedures were approved by the MUSC Institutional Animal Care 

& Use Committee. Ten-week old C57BL/6 mice (Charles River Laboratories, Boston, 

MA) were maintained under specific pathogen-free conditions. Osmotic minipumps 
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(ALZET 1007D; DURECT Corporation, Cupertino, CA) containing either 100 μl saline 

vehicle or bleomycin (100 U/kg) designed to deliver their contents at 0.5 μ l/h for 7 days 

were implanted under isofluorane anesthesia under the loose skin on the back of the mice 

slightly caudal to the scapulae. Pumps were removed on day 8-10. 

Mice were sacrificed 21-28 days after the initiation of bleomycin administration. 

Mice were sacrificed by isofluorane overdose, and the rib cage was opened to expose the 

lungs. Mice were systemically perfused via the left ventricle with PBS. The left lobe was 

then removed for flow cytometry, and the right lobes were collected for Western blots 

and histology. Lung lobes that were used for Western blots were minced and 

homogenized using a Tissue Tearor in 2 ml of 25 mM Tris (pH 8.0)-5 mM EDTA-5 mM 

EGTA plus protease inhibitors [N-ethylmaleimide (10 mM), benzamidine (5 mM), and 

phenylmethylsulfonyl fluoride (2 mM)] and phosphatase inhibitors [sodium fluoride (50 

mM), sodium pyrophosphate (5 mM), and sodium orthovanadate (1 mM)]. The 

homogenate was centrifuged for 3 min at 16,000 g. Finally, the supernatant was boiled 

for 3 min in SDS-PAGE sample buffer for use in Western blotting experiments using the 

indicated primary antibodies and appropriate secondary antibodies. If the right lobe was 

used for histology, the left lobe was tied off and cut off. The remaining right lobes were 

perfused with buffered zinc formalin fixative (Z-Fix; Anatech, Battle Creek, MI). Fixed 

lung tissue was then removed and embedded in paraffin. Sections (4 μm) were stained 

with hematoxylin and eosin (H&E) or Masson's trichrome or immunohistochemically. 
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Cell Culture 

 All cell culture experiments were performed using DMEM with 4.5 g/L glucose, 

L-glutamine, and sodium pyruvate containing 10% FBS with antibiotic/antimycotic 

solutions. The cells were maintained at 37°C and 5% CO2. 

Adhesion Assay 

 For the adhesion assay, cells were lifted using accutase for 10 minutes at 37°C. 

The enzyme was inactivated with 10% DMEM/FBS, and the cells were spun for 5 

seconds in the centrifuge to remove clumps. The supernatant was then transferred to a 

new tube, and washed 2 times with DMEM/20 mM HEPES (pH 7.3), before being 

resuspended to 300,000 cells/mL to be plated at 100 µl per well. Prior to plating the cells, 

a non-tissue culture plastic 96-well plate was prepared by coating the wells with 100 µl of 

0.1 M sodium bicarbonate in PBS containing either 0, 1, 3, 10, or 30 µg/mL of 

fibronectin. The wells were then blocked for 1 hour with 200 µl of 10 mg/mL BSA in 0.1 

M sodium bicarbonate. Cells were then added to the plate and incubated for 1 hour at 

37°C and 5% CO2. After 1 hour, the plates were washed by submersion in warm PBS 

two times with gentle shaking. The PBS was poured off and the cells were fixed for 5 

minutes with 10% EtOH, and washed with PBS. The wells were then observed and 

photographed on a fluorescent microscope, and images were quantified using Fiji – 

ImageJ. 
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Bronchoalveolar Lavage (BAL) Collection 

 Mice were sacrificed by isofluorane overdose, and the trachea was exposed. A 

small incision was made in the top half of the trachea to allow the insertion of a blunted 

20-gauge cannula. The cannula was then secured in place by tying a knot around the 

inserted cannula in the trachea using suture thread. A 1 mL TB syringe containing 

approximately 900ul of HBSS with 100 uM EDTA and antibiotic/antimycotic solution 

was connected to the cannula, and used slowly to flush the lungs and recover the solution. 

This process was repeated 4 times. After collection, cells were collected by centrifugation 

(1200 rpm, 10 min, 4°C, Beckman GS-6R centrifuge) and the cell pellets resuspended in 

1 ml ACK red blood cell lysing buffer (LONZA #10-548E) for 5 min to remove red 

blood cells. The cells were then collected by centrifugation, washed, and resuspended in 

the collection buffer.   

EGFP Bone Marrow Transplantation 

Ten to 14-week-old male C57BL6/Ly5.1 mice were prepared for bone marrow 

transplantation using a single dose (9.0 Gy) of total body irradiation. Ten to 12-week-old 

female EGFP/Ly5.2 mice were used as donors (Visconti et al., 2006). These mice express 

EGFP under the control of a chicken beta-actin promoter and cytomegalovirus enhancer, 

and have EGFP fluorescence in all cells, with the exception of erythrocytes and hair. 

Briefly, donor mice were humanely sacrificed by CO2 inhalation. Bone marrow cells 

were flushed from femurs and tibiae and washed in Ca++- and Mg++-free phosphate-

buffered saline containing 0.1% BSA. A monodisperse suspension was prepared by 

gentle trituration and filtering through a 40-μ m filter. Mononuclear cells were isolated by 
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density gradient centrifugation using Lympholyte-M (Cedarlane Labs, Burlingame, NC). 

2.0×105 of these EGFP+ donor bone marrow cells were transplanted into the irradiated 

recipients by tail vein injection. As previously described (Visconti et al., 2006), 

peripheral blood chimerism was assayed at 30 days post-transplantation and multi-lineage 

hematopoietic reconstitution was assayed at 60 days. Mice exhibiting high levels of 

reconstitution were used in subsequent studies. 

Collagen-EGFP Mice 

 These mice were generously donated by Drs. Carole Wilson and Lynn Schnapp 

(while they were at the Medical University of South Carolina, now at University of 

Wisconsin-Madison. Briefly, these transgenic C57BL/6 mice express EGFP under the 

control of the Col1a1 promoter, allowing for the monitoring of type I collagen producing 

cells based on EGFP fluorescence without requiring the use of antibodies (Yata, Scanga 

et al. 2003). 

Vav1-Cre;mTmG Mice 

 The Vav1-Cre;mTmG mice for this study were generated from two types of 

commercially available mice from Jackson Labs, Vav1-Cre mice (B6.Cg-Tg(Vav1-

icre)A2Kio/J, stock #008610) and two-color fluorescent Cre reporter mice (B6.129(Cg)-

Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP/Luo/J, stock #007676), abbreviated ROSA-mTmG. 

Vav1-Cre mice were obtained as hemizygotes (Vav1-Cre/+) whereas the ROSA-mTmG 

mice were available as homozygotes (mTmG/mTmG). Both of these mice strains are 

made on a C57BL/6 background. For use in the experiments, mice with the Vav1-
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Cre/+;mTmG/+ and Vav1-Cre/+;mTmG/mTmG were used. Under this genotype, 

hematopoietic or BM derived cells (Vav1) will express the membrane targeted green 

fluorescent protein (mG) via Cre mediated excision, while all other cells will express 

membrane targeted tandem dimer Tomato (mT) (Figure 1) (Muzumdar, Tasic et al. 

2007).

 

Figure 1. Vav1-Cre+/mTmG Diagram. Schematic representation showing Cre 
mediated excision of the GFP protein in Vav1 expressing cells, while all other cells will 
express the RFP, tdTomato. 

CSD Treatment of Mice 

 Vav1-Cre+/mTmG mice were treated with either saline or bleomycin as described 

above. Seven days after bleomycin administration, mice that received bleomycin began 

receiving daily intraperitoneal (IP) injections of either vehicle or water soluble CSD 

(WCSD) (concentration). Injection sites were alternated daily to minimize stress and 

irritation to the abdomen of the mice. Mice were sacrificed 21 days after the 

administration of bleomycin, and BAL, lung, and skin specimens were collected as 

described above. 
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Flow Cytometry 

Lung tissue from mice was washed in cold DMEM and minced into small pieces 

using fine surgical scissors. The tissue from each mouse was resuspended in 5 ml of 

collagenase (1 mg/ml, Roche #10103578001) and shaken at low speed for 45 min at 

37°C. Digestion was stopped by addition of 10 ml of DMEM/10% FBS. The sample was 

passed through a 40 μm cell strainer to prepare a monodisperse cell suspension. Cells 

were collected by centrifugation (1200 rpm, 10 min, 4°C, Beckman GS-6R centrifuge) 

and the cell pellets resuspended in 1 ml ACK lysing buffer (LONZA #10-548E) for 5 min 

to remove red blood cells. Lung cells were then collected by centrifugation, washed with 

PBS, collected, and fixed and permeabilized for 20 min at 4°C in 1 ml Cytofix/Cytoperm 

(BD #554722). Finally, cells were washed in FACS buffer containing Fetal Bovine 

Serum (FBS) and saponin (BD Perm/Wash Buffer 554723) and resuspended in an 

appropriate volume of FACS buffer prior to staining. 

All incubations with antibody were done for 30 min at 4°C on a rocker at low 

speed, all washes were done with FACS buffer, and all resuspensions were with FACS 

buffer. Following washing, the immunolabeled cell suspension was analyzed by FACS 

using a MoFlo Astrios (Beckman Coulter) or a Guava easyCyte 8HT (Millipore). At least 

5,000 events were recorded per sample. 

Single Cell RNA Sequencing 

 Experimental procedures followed established techniques using the Chromium 

Single Cell 3’ Library v3 Kit (10x Genomics; 
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https://assets.ctfassets.net/an68im79xiti/40xc58fJNcCWipI1YIdXoS/a87092c1c1faa0f31

6c552a97229a268/CG000185_ChromiumSingleCell3_v3_FeatureBarcoding_CellSurface

Protein_UG_Rev_D.pdf). Briefly, cultured cells in single-cell suspension were labeled 

with TotalSeq™-B anti-mouse Hashtag antibodies (Biolegend) and pooled in equal 

proportions prior to loading onto a 10X Genomics Next GEM Chip B and emulsified 

with Single Cell 3’ GEM beads using a Chromium™ Controller (10x Genomics). From 

the barcoded cDNAs, gene expression (GEX) libraries were constructed using 

Chromium™ Single Cell 3ʹ GEM Library Kit and hashtag oligo (HTO) libraries were 

constructed using Chromium™ Single Cell 3ʹ Feature Barcode Library Kit (both from 

10X Genomics) at the Translational Science Laboratory (Medical University of South 

Carolina). RNA sequencing was performed on each sample (approximately 50,000 

reads/cell for GEX libraries and 5000 reads/cell for HTO libraries) using a NovaSeq S4 

flow cell (Illumina) at the VANTAGE facility (Vanderbilt University Medical Center). 

For this study, lung cells were isolated from saline (n=3) and bleomycin (n=3) 

treated Vav1-Cre+/mTmG mice and cultured in 10% DMEM and grown until near 

confluence. Cells were lifted with accutase, washed, counted, and 50,000 cells from each 

sample were incubated with mouse Tru-Stain FcX (Biolegend) for 10 minutes on ice (in 

PBS + 1% BSA), then incubated with 1 ug anti-mouse Hashtag antibody for 30 minutes 

on ice (in PBS +1% BSA) at a final concentration of 500 cells/µL. Labeled cells were 

then washed three times with 1.5 mL of PBS + 1% BSA, resuspended in 50 µL of PBS + 

0.04% BSA, and counted (Cellometer K2, Nexcelom Biosciences) before pooling. RNA 
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sequencing was the performed on each of the 2 pools (bleomycin and saline) containing 

approximately 17,400 cells each. 

Statistical Analyses  

All numerical data are expressed as average ± standard deviation and were 

analyzed using the Student’s t-test to evaluate statistical significance using GraphPad 

Prism 7. In all figures, statistical significance is expressed as *p < 0.05, **p < 0.01, and 

***p < 0.001. 

Results 

CD45+/Col I+ Cells are Increased in the Bleomycin Lung 

 To assess whether CD45+/Col I+ cells were elevated in fibrotic lungs, mice were 

treated with either saline (n=11) or bleomycin (n=17) using the Pump Model (Lee, Reese 

et al. 2014), and sacrificed at day 28. Total lung cells were isolated and double labeled 

using antibodies for CD45 and an antibody against collagen Ia1 C-terminal propeptide 

(Col I), and examined by flow cytometry. To establish the gating strategy for both CD45 

and Col I, a fluorescence minus one (fmo) approach was used in which total lung cells 

were incubated with CD45 only, or pro-collagen only antibodies (data not shown). For 

this analysis using the MoFlo Astrios flow cytometer, the data from the 2D scatter plots 

was split into four regions: Region I (CD45high/Col I+), Region II (CD45+/Col I+), 

Region III (CD45+/Col I-), and Region IV (CD45-). Using this strategy, bleomycin 

treated mice showed a significant increase in both Regions I (p < 0.001) and II (p < 0.01) 
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(Figure 2). Interestingly. the saline treated mice contained almost no cells in Region I 

(CD45high/Col I+). 

 To further examine the accumulation of CD45+/Col I+ cells in the lung, a time 

course experiment was performed using the same parameters discussed above looking at 

Days 3, 10, and 28 post-pump implantations (Figure 2). Saline treated mice (n=3) showed 

low numbers of Region I (CD45high/Col I+) cells throughout the whole-time course 

experiment, while bleomycin treated mice (n=3) showed a drastic increase in the number 

of cells in Region I (CD45high/Col I+) that was significantly different than saline treated 

mice at Day 28 (p < 0.001). In Region I (CD45+/Col I+), there was a significant increase 

(p < 0.01) in the percentage of cells in both saline and bleomycin mice observed at Day 3 

that was not seen at Days 10 and 28. Additionally, naïve mice were examined, and there 

were no more than 4% of positive cells in Region I (CD45+/Col I+) (data not shown). 

This increase in Region I (CD45+/Col I+) cells at Day 3, observed in both saline and 

bleomycin, dropped after 10 days, and indicates the implantation of the pump as the 

cause for this increase, rather than the contents of the pump. By Day 28, the percentage 

of positive cells in the saline mice remained unchanged in Region I (CD45high/Col I+), 

and stayed at the same percentage observed at Day 10 for Region I (CD45+/Col I+). For 

the bleomycin treated mice there was a statistically significant (p < 0.05) increase in the 

percentage of positive cells between the 10-day level and 28-day levels in Region I 

(CD45high/Col I+) (not marked), that was also significantly different from the 

percentages in saline mice. For Region I (CD45+/Col I+), the percentage of positive cells 

followed the same pattern as the saline mice and stayed relatively unchanged from Day 
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10 to 28. These experiments indicate that there is always a population of CD45+/Col I+ 

cells in the lungs, and there is a significant increase in both CD45high/Col I+ and 

CD45+/Col I+ cells in the bleomycin treated mouse lung that accumulates over time. 

 

Figure 2. Quantification of Fibrocytes in the Lung Over Time (A) Total lung cells 
from both saline and bleomycin-treated mice were labeled with antibodies for CD45 and 
Col I. Two-dimensional scatter plots are represented with CD45 on the y-axis and Col I 
on the x-axis. The 2D plots were split into Regions I-IV and used throughout this 
experiment. (B) The percent of total lung cells in Region I (CD45high/Col I+) and II 
(CD45+/Col I+) are shown in terms of average ± SD of the 11 saline and 17 bleomycin-
treated mice sacrificed 28 days after the initiation of treatment. The percent of total lung 
cells in Region I (CD45high/Col I+) (C) or II (D) 3, 10, or 28 days after saline or 
bleomycin treatment is shown as the average ± SD for the following number of mice in 
each category: 3-day saline, n=3; 3-day bleomycin, n=3; 10-day saline, n=3; 10-day 
bleomycin, n=3; 28-day saline, n=11; 28-day bleomycin, n=17. Since there were no 
differences observed in the percent of cells in Region I (CD45+/Col I+) between saline 
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and bleomycin lung at day 3 and day 10, saline and bleomycin data were pooled before 
determining the statistical significance in the decrease in percent of cells in Region I 
(CD45+/Col I+) between day 3 and day 20. **p < 0.01, ***p <0.001. 

HSP47 Levels are Increased in the Bleomycin Lung 

 The collagen chaperone, HSP47, has been found to be upregulated in the fibrotic 

tissues of the heart, liver, and lung in humans as well as in experimental models of 

fibrosis in mice. HSP47 plays an important role in the processing of procollagen, and can 

serve as a surrogate marker for collagen expression (Lee, Reese et al. 2014, Otsuka, 

Shiratori et al. 2017, Khalil, Kanisicak et al. 2019, Miyamura, Sakamoto et al. 2020). As 

stated above, mice were sacrificed 28 days after the administration of either bleomycin or 

saline, and total lung cells were isolated by collagenase digestion. The lung cells were 

then stained with antibodies for CD45, Col I, and HSP47 (Figure 3). Regions I and II 

examined using the gating strategy from (Figure 2) showed higher levels of staining for 

HSP47 in the mice that had received bleomycin (Figure 3). There was a statistically 

significant difference in HSP47 expression in both Regions I and II, where CD45+/Col I+ 

cells are located. Region I (CD45+/Col I-), containing CD45+/Col I- cells showed very 

low expression of HSP47. Cells from both saline and bleomycin treated mice showed 

expression of HSP47 in Region IV, where CD45- cells are located. Of note, in cells from 

the bleomycin treated mice, there was a larger population of cells in Region 4 (CD45- 

cells) with very high mean fluorescent intensity (MFI), than was present in the cells 

isolated from the saline mice (Figure 3). 
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Figure 3. Collagen Chaperone HSP47 in Regions I-IV. (A) Total lung cells were 
labeled with antibodies for CD45, Col I, and HSP47 28 days after the treatment with 
saline or bleomycin. Regions I-IV are shown in terms of average ± SD of the MFI of each 
of 11 saline and 17 bleomycin treated mice. (B) Cells from Region I+II (CD45+/Col I+), 
Region III (CD45+/Col I-), and Region IV (CD45-) were selected and the MFI of HSP47 
in these cells was plotted. The bar at 1 x 102 represents that maximum MFI for unstained 
cells. Note the increased MFI values observed in Regions I+II and Region I (CD45-) for 
bleomycin treated mice. **p < 0.01 

Circulating Fibrocytes 

 To determie if fibrocytes could be found in the blood, blood was collected at 3, 

10, and 28 days after the administration of bleomycin or saline. Mice were sacrificed and 

peripheral blood mononuclear cells (PBMCs) were isolated from blood collected by 

cardiac puncture (Figure 4). Using the same gating strategy from above (Figure 3), 

virtually no cells were detected in Region I (CD45high/Col I+) at any time point studied, 

and very small numbers of cells were found in Region I (CD45+/Col I+). For both saline 

and bleomycin-treated mice, there was a large difference in the number of cells found in 

Region I (CD45+/Col I+) at day 3 versus the other two time points. However, there were 

no real differences observed between saline and bleomycin at any of the individual time 

points that were studied. This increase seen in the number of cells in Region I 
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(CD45high/Col I+) and II at day 3 was also observed in the total lung cells (Figure 2). 

These observations strongly suggest that after the implantation of the pump, cells from 

the bone marrow are recruited into circulation in response to the inflammation caused by 

the surgery. This is further reinforced by the observation that by day 10 and 28, it is very 

difficult to detect cells in Regions I and II. These observations suggest that CD45+/Col I+ 

cells found in both Regions I and II are either recruited from the circulation at an early 

time point, or that these cells do not fully differentiate into CD45+/Col I+ cells found in 

Regions I and II until after they enter the lung.

 

Figure 4. Circulating Fibrocytes. (A) PBMCs were collected from both saline and 
bleomycin-treated mice 28 days after pump implantation, and stained with antibodies for 
CD45 and Col I. A 2D-plot from a bleomycin-treated mouse is shown with CD45 on the 
y-axis and Col I on the x-axis (saline not shown). Note that there are almost no cells 
present in Region I (CD45high/Col I+) and few cells in Region I (CD45+/Col I+), this 
distribution of cells was observed in both saline and bleomycin-treated mice. (B) Percent 
of PBMCs found in Region I+II expressed as the average ± SD for 3 saline and 3 
bleomycin-treated mice at days 3, 10, and 28. Note the significant decrease in percent of 
Region I+II from day 3 to 10 observed in both saline and bleomycin PBMCs. *p < 0.05 

EGFP-BM Transplanted Mice Confirm that CD45+/Col I+ Cells are BM Derived

 To confirm that the cells found in Regions I and II in the above experiments 
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(Figure 2) were BM derived, a mouse model in which mice were first irradiated, and then 

transplanted with the BM from an EGFP-mouse was used (Figure 5). Similar to the 

experiments outlined above, saline (n=3) and bleomycin-treated (n=3) mice reconstituted 

with BM from EGFP-mice were sacrificed after 28 days, and total lung cells were 

isolated. The cells were then labeled with antibodies for CD45 and Col I and analyzed by 

flow cytometry. A similar 2D profile was observed, and the cells were grouped into three 

Regions: Region I containing all CD45+/Col I+ cells (Regions I+II from Figure), Region 

II containing CD45+/Col I- cells, and Region 3 containing all CD45- cells (Figure 5). 

Cells found both in Regions I and II (Regions I-III from below) were 100% EGFP+, 

while cells found in Region III contained mostly EGFP- cells and only about 10% 

EGFP+. These observations support the idea that BM derived cells can contain collagen, 

and that this pattern of EGFP expression mirrors the expression of CD45, a hematopoietic 

cell marker expressed on all BM derived cells. 

 

Figure 5. CD45+/Col I+ Cells are BM derived. (A) To confirm that the cells in Regions 
I and II (CD45+) where BM derived, total lung cells were isolated from saline (n=3) and 
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bleomycin (n=3) mice reconstituted with bone marrow expressing EGFP, and stained 
with CD45 and Col I. Bleoymcin-treated lung cells are shown. (B) Cells in the defined 
regions 1-3 are shown in 1D plots of MFI for GFP. Nearly 100% of cells in Regions 1-2 
were positive for GFP, while cells in Region 3 were only 10% positive for GFP. 

 Additionally, lung tissue was collected for IHC analysis from bleomycin and 

saline-treated mice 28 days after pump implantation, and was stained with antibodies for 

Col I and EGFP (Figure 6). Both saline and bleomycin treated mice had EGFP positive 

cells in their lungs, but the bleomycin mouse lung had considerably more EGFP positive 

cells and this staining overlapped with the increased collagen staining seen in the 

bleomycin lung. This observation supports the idea that many EGFP-positive cells from 

transplanted BM end up in the fibrotic lung as collagen positive cells. 

 

Figure 6. BM-GFP+ Cells are Col I+ in the Lung Tissue. Lung tissue was stained with 
antibodies for Col I (red) and GFP (green) for immunofluorescent analysis. Staining 
revealed an increase in Col I expression in the bleomycin-treated mouse, and many of 
these cells also expressed GFP indicating their hematopoietic origin. 
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Collagen-EGFP Mice 

 To further characterize CD45+/Col I+ cells by flow cytometry, mice that express 

EGFP under the collagen promoter were used to allow for further examination of cells 

that were CD45+/Col_EGFP+ without relying on the use of an anti-collagen antibody. 

Ten to 12-week old collagen-EGFP mice were treated with bleomycin (n=3) or saline 

(n=3) using the pump model and sacrificed after 21 days. Total lung cells from these 

mice were double labeled with antibodies for CD45, and various monocyte/macrophage 

markers, and examined by flow cytometry (Figure 7). A significant increase in the 

number of CD45+/Col_EGFP+ cells was observed in the bleomycin-treated mouse 

compared to the saline mouse. This result was similar to the data we obtained using lung 

cells from both C57BL/6 mice (Figure 2), and EGFP-BM transplanted mice (Figure 6).

 

Figure 7. CD45+ Cells from Bleomycin-Treated Mice Express Col I at Enhanced 
Levels. (A) Total lung cells were isolated from Col_EGFP mice 28 days after bleomycin 
or saline-treatment by osmotic mini pump, and labeled with CD45 antibody. Scatter plots 
are presented with CD45 on the y-axis and Col_EGFP on the x-axis. (B) Fibrocytes 
(CD45+/Col_EGFP+) are shown in terms percent positive ± SD showing a statistically 
significant increase in the number of CD45+/Col_EGFP+ cells in the bleomycin lung. 
***p < 0.001. 
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 Additionally, the cell populations that were CD45+/Col_EGFP- and 

CD45+/Col_EGFP+ were examined for their expression of the monocyte/macrophage 

markers CD16, CD68, and CD206. While similar low expression levels of CD16, CD68, 

and CD206 was observed on CD45+/Col_EGFP- in cells from both saline and bleomycin 

that were little more than unstained levels, they were present at much higher levels on 

CD45+/Col_EGFP+ cells from the bleomycin-treated lung compared to the saline-treated 

lung (Figure 8). These data further support the idea that CD45+/Col I+ cells increase in 

the fibrotic lung and that they not only express the fibrosis markers Col I and HSP47, 

they also express higher levels of monocyte/macrophage markers than CD45+/Col I- 

cells. Moreover, the levels of these markers are higher in CD45+/Col I+ cells from bleo 

than saline.  

 

Figure 8. CD45+/Col_EGFP+ Cells Contain High Levels of Monocyte/Macrophage 
Markers. To examine the expression level of monocyte/macrophage markers on 
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CD45+/Col_EGFP+ cells, 1D plots were generated gated on CD45+/Col_EGFP- (blue) 
and CD45+/Col_EGFP (red) based on the regions defined in Figure 7. Similar expression 
levels of CD16, CD68, and CD206 were observed on CD45+/Col_EGFP- cells from both 
saline and bleomycin-treated mice, while expression of these markers was much higher in 
CD45+/Col_EGFP+ cells from bleomycin-treated mice than from saline. Interestingly, 
expression levels for all markers examined was higher in CD45+/Col_EGP+ than 
CD45+/Col_EGFP- cells.  

Vav1-Cre;mTmG Mice Show the Hematopoietic Contribution to Myofibroblasts 

 To provide further evidence that hematopoietic cells can contribute to the 

population of myofibroblasts found in the lung, transgenic mice containing hematopoietic 

or BM derived cells (Vav1+) that express membrane targeted GFP via Cre mediated 

excision were used. All other cells in this model will express membrane targeted 

tdTomato. These mice were treated with either bleomycin (n=4) or saline (n=4) using the 

pump model (Lee, Reese et al. 2014), and sacrificed at 21 days past pump implantation. 

Both BAL and total lung cells were isolated from the mice, and double labeled with 

antibodies for CD45 and Col I as well as various other monocyte/macrophage and 

fibrosis related antibodies. The cells were then analyzed by flow cytometry (Figure 9 and 

10). To establish a gating strategy for the analysis, both BAL and lung cells were run 

through the flow cytometer without any primary antibody and are shown in Figures 9 and 

10. 
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Figure 9. Vav1-Cre+;EGFP+/Col I+ Cells are Increased in the Bleomycin Lung. 
Total lung cells were isolated from saline (n=4) and bleomycin-treated (n=4) mice 21 
days after pump implantation, and labeled with Col I antibody. The gating strategy was 
established by using unstained cells for both saline and bleomycin mice seen in the top 
two panels. A significant increase in the number of Vav1+/Col I+ cells was seen in the 
bleomycin mouse lung, with no apparent change in Vav1-/Col I+ cells as seen in 
previously reported experiments using other models. These experiments offer further 
support that hematopoietic cells express collagen in increased numbers in fibrosis. 
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Figure 10. Vav1-Cre+;EGFP+/Col I+ Cells are Increased in the BAL from 
Bleomycin-Treated Mice. Cells were isolated from the BAL of saline (n=4) and 
bleomycin-treated (n=4) mice 21 days after pump implantation, and labeled with Col I 
antibody. The gating strategy was established by using unstained cells for both saline and 
bleomycin mice seen in the top two panels. A significant increase in the number of Vav1-
Cre+;EGFP++/Col I+ cells was seen in the BAL cells from the bleomycin mouse lung 
compared to saline BAL. This observation was similar to the results obtained when 
looking at total lung cells. 

Examination of the data from the bleomycin and saline-treated mice showed a 

significant increase in the number of Vav1-Cre+;EGFP++/Col I+ cells from both the 

bleomycin BAL and lung as compared to the saline BAL and lung. This same 

observation was observed when CD45 replaced Vav1-Cre+;EGFP+ on the Y-axis (Figure 

11). These observations provide even further proof that hematopoietic cells can express 

collagen and contribute to the myofibroblast population in fibrotic tissues. Additionally, 
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the BAL and lung cells were further analyzed for their expression of 

monocyte/macrophage markers, as well as selected fibrosis markers by gating on Vav1-

Cre+;EGFP++ (similar results were obtained by gating on CD45+ and are not shown). 

Histograms showing representative MFI values for these cells are shown in Figure 12. 

The analysis of Vav1-Cre+;EGFP+ cells from the total lung revealed a significant 

increase in collagen. Additionally, there was a major increase in the number of cells 

expressing the monocyte and macrophage markers CD11b, CD16, and CD68 in the 

bleomycin-treated mice compared to the saline-treated mice (similar to the results in 

Figures 7 and 8). Quantification of this analysis is shown in Figure 13. 

 In the analysis of the BAL cells, it was found that the number of cells expressing 

the monocyte and macrophage markers, CD11b and CD16, was significantly increased in 

bleomycin-treated mice compared to saline-treated mice. Similar to the Vav1-

Cre+;EGFP+ cells from the total lung, the number of cells expressing collagen was 

significantly increased in the BAL of bleomycin-treated mouse. 

 

Figure 11. CD45 and Vav1-Cre+;EGFP+ Show Similar Profiles When Labeled with 
Col I. To examine if CD45 and Vav1-Cre+;EGFP+ are labeling the same cell 
populations, total lung cells isolated from bleomycin-treated mice were labeled with 
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CD45 and Col I antibodies, and 2D Scatter plots were made. (A) Scatter plot showing 
CD45 on the y-axis and Col I on the x-axis. (B) Scatter plot showing Vav1-Cre+;EGFP+ 
on the y-axis and Col I on the x-axis. These scatter plots show that both CD45 and Vav1-
Cre+;EGFP+ give similar results when labeling fibrocytes. Similar results were also 
obtained with saline-treated samples. 

 

 
Figure 12. 1D Plots of Vav1+ Cells in Total Lung Cells. To visualize the differences in 
monocyte/macrophage and fibrosis markers between saline (blue) and bleomycin-treated 
(red) mice, 1D plots of Vav1+ cells are shown for (A) unstained, (B) 
monocyte/macrophage markers, and (C) fibrosis related markers. Note the higher MFI 
values in Vav1+ cells from bleomycin-treated (red) mice compared to saline (blue) 
particularly for CD11b, CD16, CD68, CD206, and both collagens. 
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Figure 13. Characterization of Vav1+ cells from BAL and Total Lung. (A) Cells 
isolated from the lungs of saline (n=4) and bleomycin-treated (n=4) mice 21 days post 
pump implantation were gated on Vav1-Cre+;EGFP+ expression and analyzed for 
monocyte/macrophage markers and various fibrosis markers. CD11b and CD16 cells 
were increased in the BAL of bleomycin-treated mice when compared to saline-treated 
mice. Cells expressing both pro and telo-collagen were also significantly increased in the 
bleomycin BAL. (B) Total lung cells from the same experiment were also analyzed for 
the same markers 21 days post pump implantation, revealing significant increase in the 
number of CD11b, CD16, and CD68 cells in the lung tissue. Both pro and telo-collagen 
were also significantly increased in the total lung tissue of bleomycin-treated mice. *p < 
0.05, **p < 0.01 

 

Growth of Fibroblast from Vav1-Cre;mTmG Mice 

 As many researchers define fibroblasts as CD45- cells, it was important to 

determine the fate of CD45+ (Vav1-Cre+;EGFP+) cells in standard fibroblast cultures. 

Therefore, an experiment was performed where total lung cells were isolated from Vav1-

Cre;mTmG mice (n=3) and cultured under established fibroblast growth conditions. 

Briefly, cells from total lung tissue were dissociated using collagenase, and were seeded 

using DMEM+10% FBS in either T-25 flasks at a standard seeding density of 0.7 x 106 or 

in 6 wells plates at a standard seeding density of 0.3 x 106, allowed to attach overnight, 

and then non-adherent cells were washed off the next day. Cells were cultured and 
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examined under a fluorescent microscope by assessing 3 randomly selected high-power 

fields (HPF) from the plates at each time point. Passaging of cells was done with 

Trypsin/EDTA. Cells that had not undergone any passages (P0), contained significantly 

higher numbers of Vav1-Cre+;EGFP+ cells, than those that had been passaged once (P1) 

(Figure 14). The number of Vav1-Cre+;EGFP+ cells at P0 remained constant throughout 

the time points examined, and only appeared to decrease with passage. The same 

statistically significant relationship was observed between cells that had been passaged 

once versus cells that had been passaged twice (P2) showing that P1 cultures contained 

higher numbers of Vav1-Cre+;EGFP+ per HPF than cells that had been passaged twice. 

As was seen in P0, the number of Vav1-Cre+;EGFP+ cells remained fairly constant 

within passage, and only decreased after passaging. Additionally, when viewed under the 

fluorescent microscope, most of the Vav1-Cre+;EGFP+ cells have the spindle-like 

appearance traditionally associated with fibroblasts. Of note, when observing the cultures 

under fluorescent microscopy, Vav1-EGFP- cells (red) are difficult to count, and appear 

very spread and nearly confluent, despite having a fairly standard shape under phase 

microscopy.  

To further examine the relationship between Vav1-Cre+;EGFP+ cells and 

passaging in fibroblast growth conditions, a flow cytometric analysis of these cells was 

performed at the indicated passages to examine if the same trend could be observed 

(Figure 15). Indeed, at P0 high levels of Vav1-Cre+;EGFP+ cells were detected in 

fibroblast cultures, while similar results were obtained using CD45 instead of Vav1-

EGFP. The percentage of Vav1-Cre+;EGFP+ cells or CD45+ cells significantly 
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decreased from P0 to P1. This same trend in Vav1-Cre+;EGFP+ cells or CD45+ cells was 

seen between P1 to P2, with almost no Vav1-Cre+;EGFP+/CD45+ cells observed by flow 

cytometry. These observations suggest that Vav1-EGFP- “resident” fibroblast may be 

more effective and efficient at establishing a presence on tissue culture plastic after 

isolation from lung tissue potentially through an enhanced ability to spread on TC plastic 

(see Figure 14, P1 and P2). The fibroblast cultures were additionally stained for Col I and 

examined at P0, P1, and P2 to see if Col I levels were affected by the presence or absence 

of Vav1-Cre+;EGFP+/CD45+ cells in cultures. No differences were observed between 

any of the passages examined, indicating that Vav1-Cre+;EGFP+/CD45+ cells contribute 

to the same level of collagen as do “resident” fibroblasts. These data demonstrate that 

cells from the hematopoietic lineage can grow under typical fibroblast culture conditions, 

but their numbers significantly decrease with passage. This observation may be one 

explanation for why the contribution of hematopoietic cells to fibroblast populations 

historically has been overlooked. 

 To evaluate the growth of Vav1+ cells in the absence of Vav1- cells, an additional 

experiment was performed in which total lung cells isolated from bleomycin and saline-

treated mice were incubated with anti- CD45 magnetic microbeads (MACS Miltenyi 

Biotec), and positively selected using a magnet. The positively selected CD45+ 

populations were then plated under standard fibroblast conditions as described above. 

Neither saline nor bleomycin cultures had any meaningful growth by 10 days, and the 

experiment was stopped (data not shown). These experiments suggest that fibrocytes 

(CD45+/Col I+) need some type of stimulation from resident cells.   



32 
 

Low Seeding Densities Yield Fibroblast Cultures of Primarily Vav1-Cre+;EGFP+ 

Cells 

 To assess whether reducing the competition for space between Vav1-

Cre+;EGFP+ cells and resident fibroblasts allowed for improved growth of Vav1-

Cre+;EGFP+ fibroblasts, experiments were performed using low seeding densities. Total 

lung cells isolated from saline and bleomycin-treated mice were seeded in either T-25 

flasks at 0.35 x 106 or in 6 well plates at a concentration of 0.15 x 106
, and allowed to 

attach overnight, while non-adherent cells were washed off the following day. The cell 

cultures were examined and photographed daily for growth under the fluorescent 

microscope, and selected time points are shown in Figure 16. Both saline and bleomycin-

treated cells exhibited a similar pattern of growth. By seeding the cells at lower densities, 

fibroblast cultures that were primarily EGFP+ were observed, and this phenotype was 

maintained until confluency. A phase contrast photo of the cultures at day 14 was 

included to show that the EGFP+ cells exhibited a typical spindle-like fibroblast shape. 

These data further suggest that cells from the hematopoietic lineage can differentiate into 

fibroblasts, and that previous studies may have overlooked their contributions to the 

fibroblast/myofibroblast populations due to the use of traditional fibroblast culture 

protocols.  
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Figure 14. Vav1-EGFP Fibroblasts decrease with passage. To assess if cells with a 
hematopoietic lineage can be grown and contribute to the fibroblast population, total lung 
cells were isolated from Vav1-Cre;mTmG mice and grown under typical fibroblast 
conditions. (10% FBS+DMEM, 37°C, and 5% CO2) (A) Using a fluorescent microscope, 
photographs of the fibroblasts were taken at various time points, and a representative 
HPF was chosen showing a decrease in the number of Vav1-Cre+;EGFP+ cells with 
passage. (B) A quantification of the 3 randomly selected HPFs at the indicated time 
points, revealing a significant decrease in the number of Vav1-Cre+;EGFP+ between P0 
to P1 (p < 0.01), and between P1 to P2 (p < 0.01).  
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Figure 15. Vav1-EGFP and CD45 Levels Decrease at the Same Rate With Passage. 
To further validate the observation seen in Figure 14, fibroblast cultures isolated from 
Vav1-Cre;mTmG mice as described above, were collected by accutase, washed, and then 
labeled with an antibody for CD45 and Col I. This was done during P0, P1, and P2. At 
P0, high levels of Vav1-Cre+;EGFP+ and CD45+ cells were observed in similar 
numbers. After one passage, there was a significant decrease in both the levels of Vav1-
Cre+;EGFP+ and CD45+ cells as seen by the shift in the peak from the right to the left. 
By the second passage, almost no EGFP+ and CD45+ cells were found in the fibroblast 
cultures. Col I staining at all three passages shows that Col I levels were similarly high at 
P0 when the cultures were heavily Vav1-Cre+;EGFP+/CD45+, and at later passages 
when Vav-EGFP+/CD45+ levels had fallen. This experiment further validates the 
observations that Vav1 and CD45 label the same cell populations, that these Vav1-
Cre+;EGFP+/CD45+ fibrocytes express Col I at levels similar to Vav1-EGFP-/CD45- 
resident fibroblasts, and that these cells while initially dominant in fibroblast cultures, 
decrease over time.  

Growth of Vav1-Cre+;EGFP+ Fibroblasts from BAL 

  Because CD45+/Col I+ cells were also observed in the BAL collected from 

bleomycin and saline-treated mice (Figure 10), experiments was performed to see if cells 

from the BAL could be grown into typical fibroblast cultures. BAL fluid was collected 
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from both bleomycin and saline-treated mice and plated at 0.2 x 106 cells per well in a 6 

well plate, after overnight culture, unbound cells were removed by washing. The BAL 

cells were cultured in three different growth conditions: 1. standard fibroblast growth 

conditions (DMEM+10% FBS) 2. fibroblast conditioned medium (DMEM+10% FBS 

from overnight fibroblast cultures) 3. co-cultured on pre-existing attached Vav1-EGFP- 

(red) fibroblasts at about 60-70% confluency. The BAL cultures were observed and 

photographed daily using a fluorescent microscope to monitor for growth. In the control 

or standard growth conditions, there was little to no growth throughout all the time points 

analyzed (Figure 17). The BAL cells grown in conditioned medium, 

 

Figure 16. Low Seeding Density Yields Primarily Vav1-EGP+ Fibroblast Cultures. 

Total lung cells from both saline and bleomycin-treated mice were isolated 21 days post 
pump implantation, and plated at low seeding densities to reduce competition for space 
and allowed to grow. For 6-well plates, a seeding density of 0.15 x 106 was used, and for 
T-25 flasks, a seeding density of 0.35 x 106 was used. The fibroblast cultures were 
photographed daily using a fluorescent microscope and the growth of Vav1-EGP+ cells 
was monitored, similar results were obtained for cultures from both saline and 
bleomycin-treated populations. By Day 14, both the plates and flasks had reached near 
confluency and were composed of mostly Vav1-EGP+ cells. These cells also exhibited 
long spindle like shapes typical of fibroblast cultures, and is shown in the Day 14/Phase 
photo.  
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Figure 17. Growth of Vav1-Cre+;EGFP+ Cells from BAL in Control Conditions. 
BAL was isolated from saline and bleomycin-treated mice 21 days post pump 
implantation, and were plated at 0.2 x 106 cells per well in a 6 well plate using standard 
fibroblast growth conditions (10% FBS+DMEM, 37°C, and 5% CO2). Cells were 
observed and photographed daily using a fluorescent microscope, and no growth of cells 
was observed through all the time points checked. 

showed some growth throughout the course of the experiment, but they ultimately failed 

to fully expand and differentiate into fibroblast-like cells (Figure 18). The BAL cells that 

were co-cultured on Vav1-EGFP- fibroblasts were able to expand and differentiate into 

spindle-shaped fibroblast like cells (Figure 19). Both saline and bleomycin-treated BAL 

cells gave the same results in culture, the only difference observed was in the total 

number of cells harvested from BAL, with bleomycin-treated BAL containing 3x as 

many cells as BAL from saline-treated mice. These experiments highlight the idea that 

while cells from the hematopoietic lineage can differentiate into fibroblasts, they need 

additional stimulation from resident cells to grow and differentiate. While secreted 

growth factors may aid in the CD45+ fibroblasts ability to grow, it appears that secreted 
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factors may be insufficient on their own, and that CD45+ fibroblasts require some type of 

cell to cell contact for enhanced growth and differentiation. 

 

Figure 18. Growth of Vav1-Cre+;EGFP+ Cells from BAL in Conditioned Medium. 
BAL was isolated from saline and bleomycin-treated mice 21 days post pump 
implantation, and were plated at 0.2 x 106 cells per well in a 6 well plate using 
conditioned fibroblast growth media (10% FBS+DMEM, 37°C, and 5% CO2 collected 
from fibroblast cultures after overnight culture). Cells were observed and photographed 
daily using a fluorescent microscope, cells from both saline and bleomycin-treated mice 
exhibited some growth and expansion by day 7, but ultimately failed to expand and were 
dying out by day 10. 

 

Figure 19. Growth of Vav1-Cre+;EGFP+ Cells from BAL in Co-Culture Growth 
Conditions. BAL was isolated from saline and bleomycin-treated mice 21 days post 
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pump implantation, and were plated at 0.2 x 106 cells per well in a 6 well plate containing 
Vav1-EGFP- fibroblasts (red only) at 60-70% confluency, using standard fibroblast 
growth media (10% FBS+DMEM, 37°C, and 5% CO2). Cells were observed and 
photographed daily using a fluorescent microscope, cells from both saline and 
bleomycin-treated mice had higher rates of attachment seen on day 1 than in either 
control or conditioned medium. Furthermore, Vav1-Cre+;EGFP+ cells from both saline 
and bleomycin-treated were able to expand and differentiate into spindle-shaped 
fibroblast like cells. 

Comparing the Adhesion Ability of Vav1-EGP+ Cells with Vav1-EGP- Cells 

 To compare the adhesion ability of Vav1-Cre+;EGFP+ cells to Vav1-EGFP- cells, 

a series of experiments was performed using P0 fibroblasts isolated from Vav1-

Cre;mTmG mice (n=3). To perform these experiments, cells were first lifted using 

accutase, washed, resuspended in DMEM/HEPES, and plated into 96-well plates that 

were pre-coated with fibronectin at either 0, 1, 3, 10, and 30 µg/ml (Figure 20A). The 

cells were then incubated for 1 hour at 37°C, before being fixed and washed for 

observation on a fluorescent microscope. The images were quantified using ImageJ and 

results are reported as Percent Area (Figure 20C). At 0 µg/ml, non-specific attachment in 

the absence of fibronectin for both populations was low. Adhesion of the Vav1-

Cre+;EGFP+ (green) cells to fibronectin coated wells was nearly maximal at 1 µg/ml. In 

contrast, Vav1-EGPF- (red) cell adhesion continued to increase up to the highest 

fibronectin concentration of 30 µg/ml. Put another way, the Vav1-Cre+;EGFP+ (green) 

cell adhesion was 90% as much at 1 µg/ml fibronectin compared to 30 µg/ml, while 

Vav1-EGFP- (red) was only 20% as much. These data support the idea that 

hematopoietic lineage derived fibroblasts are highly responsive to ECM proteins like 

fibronectin that promote cell adhesion, growth, and differentiation (Klecker and Nair 

2017).   
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Suppression of Fibrosis in vivo by a Novel Version of CSD 

 The caveolin-1 derived peptide, CSD, has been shown to be effective at inhibiting 

fibrosis in several studies (Tourkina, Richard et al. 2008, Lee, Perry et al. 2014, Reese, 

Perry et al. 2014). Recently, we have developed a version of CSD better suited for drug 

development because it is water-soluble. Here we studied how water-soluble CSD 

(WCSD) would affect hematopoietic lineage derived fibroblast accumulation and fibrosis 

progression in bleomycin treated mice. As described in the methods, mice were treated 

with vehicle or bleomycin delivered over seven days by subcutaneously implanted 

osmotic minipumps. There were three groups of mice: saline treated mice (n=4), 

bleomycin-treated mice that received vehicle for two weeks starting on day 8 (n=4), and 

bleomycin-treated mice that received WCSD for two weeks starting on day 8 (n=4). Mice 

were sacrificed after 21 days, and BAL, lung, and skin tissues were collected. To assess 

whether WCSD had an effect on fibrocyte accumulation in the lung, total lung cells were 

isolated and stained with antibodies for CD45 and Col I, and flow cytometry was 

performed using the Guava easyCyte 8HT. The saline treated mice showed a low amount 

of fibrocyte accumulation in their lung as expected. Bleomycin-treated mice that received 

WCSD showed >80% reduction of fibrocyte accumulation compared to mice that 

received vehicle injections (Figure 21AB). Nevertheless, WCSD had little or no effect on 

fibrocyte phenotype in terms of other monocyte/macrophage (CD11b, CD68, CD206) 

and fibrosis markers (α-sma, HSP47, Col I) (not shown). The BAL from these mice was 

also assessed for fibrocyte accumulation, but no differences were found in the percent 

fibrocytes between vehicle and WCSD-treated mice (not shown). However, there was a 
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slight reduction ~(15%) in the total number of cells collected from BAL of WCSD-

treated mice compared to the vehicle-treated mice. These data suggest that WCSD is an  

  

Figure 20. Adhesion to Fibronectin of Vav1-EGFP- and Vav1-Cre+;EGFP+ 
Fibroblasts. (A) Unpassaged fibroblasts from Vav1-Cre;mTmG mice (n=3) were 
collected using accutase to preserve cell surface receptors, before being plated in 96-well 
plates that were precoated with fibronectin at concentrations of 0, 1, 3, 10, and 30 µg/ml. 
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After a 1 hour incubation at 37°C, the cells were fixed and gently washed before being 
observed and photographed on a fluorescent microscope. Representative photos at 2.5x 
and 10x magnification are shown, (B) with a phase contrast image to demonstrate cell 
shape. (C) Quantification of the Percent Area occupied of Vav1-Cre+;EGFP+ (green) 
and Vav1-EGFP- (red) cells using ImageJ software. Percent area is shown in terms of the 
average ± SD of each of 3 saline and 3 bleomycin samples.  

effective inhibitor of the accumulation of fibrocytes in the lung tissue, though there was 

no effect of WCSD on the percent of fibrocytes in the BAL except in the reduction of the 

total number of BAL cells collected. 

 In histological studies, lung tissue from vehicle showed very high levels of 

collagen deposition and inflammatory cell infiltration, while lung tissue from WCSD 

treated mice were close in appearance to saline-treated mice. Skin tissue from 

bleomycin/vehicle treated mice showed increased dermal thickening and a near total loss 

of fat, while skin tissue from WCSD treated mice showed reduced dermal thickening 

compared to vehicle treated mice, as well as preservation of the fat layer. Overall, the 

skin from WCSD treated mice had an intermediate phenotype between saline and 

bleomycin/vehicle treatments. These data indicate that WCSD is effective at mitigating 

the profibrotic effects of bleomycin in multiple tissues in our mouse model.  

To examine the effect of WCSD on the production of proteins associated with 

fibrosis and with vascular leakage in the lungs of the mice from this experiment, identical 

lobes were collected from each mouse, homogenized, and extracts were made for 

Western blot analysis (Figure 22). Prior to analysis, samples were normalized using β-

actin to standardize protein loading. For Col I, bleo+veh treated mice had over a three-

fold increase in collagen expression compared to saline treated mice, and WCSD 

treatment reduced collagen expression by about 50%. Bleo+veh treated mice showed a 
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two and half-fold increase in expression of the myofibroblast marker, alpha-smooth 

muscle actin (α-sma), compared to samples from saline, and WCSD treatment reduced α-

sma expression by 50% in the lungs. Next, tenascin, a protein that is highly expressed 

during injury and disease was compared between the samples. Bleo+veh saw a six-fold 

increase in expression of tenascin compared to saline, and WCSD treatment reduced this 

increase by 50%. HSP47 expression was also examined in these samples due to its 

importance in collagen production, and as a surrogate marker for myofibroblasts. HSP47 

 

Figure 21. WCSD Inhibits Fibrocyte Accumulation and Fibrosis in the Bleomycin 
Mouse. (A) Total lung cells from saline, bleomycin+vehicle, and bleomycin+WCSD 
treated mice sacrificed 21 days post pump implantation, and were stained with antibodies 
for CD45 and Col I. Scatter plots are presented with Vav1 on the y-axis and Col I on the 
x-axis, CD45 was also analyzed replacing Vav1 on the y-axis and similar results were 
obtained. (B) Perecent fibrocytes (Vav1+/Col I+) are shown as the average ± SD for each 
of the 4 saline, 4 bleomycin+vehicle, and 4 bleoymycin+WCSD sacrificed 21 days post 
pump implantation. WCSD significantly inhibited the accumulation of fibrocytes in the 
lung of bleomycin-treated mice compared to the mice that received vehicle. (C) 
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Representative images from Masson’s sections of the lung and skin from saline, 
bleomycin+vehicle, and bleomycin+WCSD mice. Collagen accumulation was inhibited 
in the mice that received WCSD compared to the mice that received vehicle in both the 
lung and skin. WCSD prevented the complete loss of the fat layer in the skin that was 
seen in the vehicle-treated mouse. *p < 0.05 

had a seven-fold increase in expression in bleo+veh treated mice compared to saline, and 

WCSD treatment reduced HSP47 expression by nearly 90%. Lastly, vascular leakage, a 

hallmark of fibrotic diseases, was examined by looking for IgG leakage into the tissue. 

The bleo+veh treated lung showed a three-fold increase in the amount of IgG leakage into 

the tissue compared to saline, and treatment with WCSD reduced this increase by over 

100%. Interestingly, the bleo+WCSD was even lower than saline indicating that WCSD 

treatment is an extremely effective way to prevent vascular leakage. Together these data 

suggest that WCSD is an effective antifibrotic peptide that both reduces the production of 

ECM proteins and myofibroblast markers, as well as preventing the accumulation of 

fibrocytes and other inflammatory cells into the tissue possibly by inhibiting vascular 

leakage. It is noteworthy that the inhibition by WCSD of fibrocyte accumulation (Figure 

21) and the levels of ECM proteins, myofibroblast markers, and vascular leakage were all 

>50%. 

Human SSc Lung Fibrocytes 

 To evaluate if CD45+/Col I+ cells could be found in human lung tissue, a lung 

tissue sample from a patient diagnosed with SSc was obtained and processed for flow 

cytometry by using the methods described above. Briefly, the lung tissue was digested 

with collagenase and a single cell suspension was stained with antibodies for CD45, as 

well as several other antibodies for monocyte/macrophages and fibrosis. Unstained cells 
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and CD45+ only labeled cells were used to establish the gating strategy (Figure 23a). A 

cut-off of 1 x 102 marks the maximum value of fluorescence intensity detected for 

unstained cells. The addition of CD45 antibody did not change the 1 x 102 cut-off for the 

fluorescent channel (AF647) of the monocyte/macrophage and fibrosis markers used in  

 

Figure 22. WCSD Inhibits Fibrosis and Vascular Leakage in the Lung of 
Bleomcyin-Treated Mice. (A) Lung tissue from saline, bleomycin+vehicle, and 
bleomycin+WCSD mice was collected and proteins were extracted for Western Blotting, 
and then stained with antibodies for fibrosis (Col I, α-sma, Tenascin, HSP47) and for 
vascular leakage (mouse IgG). Results are shown as a densitometric quantification 
(average ± SD) normalized against β-actin. Densitometric quantification was done using 
imageJ software. (B) Western blot data is shown for all antibodies used. For comparisons 
of saline vs bleo+veh, ^p < 0.05, ^^p < 0.01, ^^^p < 0.001. For comparisons of bleo+veh 
vs bleo+WCSD, *p < 0.05, **p < 0.01, ***p < 0.001.  

this experiment. As expected CD45+ cells were positive for CD68 and Cd206, while 

CD45- cells were negative for these monocyte markers. In strong support of our 
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hypothesis that fibrocytes play an important role in fibrotic disease, the levels of Col I, α-

sma, and HSP47 were at least as high in CD45+ cells as in CD45- cells. The data from 

this experiment supports the idea that fibrocytes can be found in the lung tissue of 

patients with SSc, that the levels of fibrosis markers are as high or higher in CD45+ cells 

than in Cd45- cells, and these human fibrocytes express similar phenotypes to the 

fibrocytes detected in the bleomycin-induced fibrosis model for mice. 

 

Figure 23. Human Lung Tissue from SSc Patient Contains Fibrocytes. (A) Total lung 
cells from a patient with SSc were left unstained or immunolabeled for CD45 to setup the 
gating strategy for further characterization with antibodies labeled with AF647. A cut-off 
of 1 x 102 marks the maximum value of fluorescent intensity for CD45 (y-axis) and 
AF647 (x-axis). Scatter plots of unstained and CD45 only are shown to validate the 
gating strategy. (B) Total lung cells were labeled with antibodies for CD45, for fibrosis 
(Col I, α-sma, HSP47), and for additional monocyte/macrophage lineage markers (CD68, 
CD206) and plotted for MFI positivity. Plots from unstained cells are shown as blue, 
while 1D plots from the referenced antibodies are shown as green for CD45- cells, and 
red for CD45+ cells. CD45+ cells from the lung of an SSc patient contained high levels 
of expression for Col I, α-sma, HSP47, CD68, and CD206, compared to CD45- cells.    
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Single-Cell RNA Sequencing of Primary Adherent Cells from Saline- and 

Bleomycin-Treated Lungs   

 To demonstrate by yet another independent method that cells can co-express 

monocyte markers and fibrosis markers, we performed single-cell RNA sequencing. 

Unpassaged fibroblast cultures isolated from saline (n=3) and bleomycin-treated (n=3) 

Vav1-Cre;mTmG mice were allowed to grow to near confluency before being collected 

with accutase and prepared for single-cell sequencing as described in the methods. Using 

Partek software, doublets and unlabeled cells were filtered out of the analysis, and the 

remaining single cell populations from bleomycin and saline fibroblast cultures were 

processed. By applying dimension reduction to the data through the use of principle 

component analysis (PCA) and then uniform manifold approximation and projection 

(UMAP), the data were segregated into 4 distinct clusters shown in Figure 24. By looking 

at the gene expression profiles of the 4 clusters, we were able to further characterize these 

clusters and define the groups as: Cluster 1, contained high GFP (monocyte marker) 

expression and modest Col I expression; Cluster 2, contained moderately high GFP 

(monocyte marker) expression and high Col I expression; Cluster 3 contained modest 

GFP (monocyte marker) expression and high Col I; and Cluster 4 contained modest GFP 

(monocyte marker) expression, modest Col I expression and high levels of endothelial 

markers (Table 1). Interestingly, as summarized in Table 1, almost all genes that are 

related to fibroblast activation (vimentin, s1000a4 (FSP1), ACTA2 (α-SMA), Col1a1, 

Tagln, Tagln2, and Fn1) were expressed in a high percentage of the cells in all 4 clusters. 

Additionally, certain genes characteristic of monocytes/macrophages were found in 
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similarly high levels in all 4 clusters, (LGALS3(Mac-3) and LAMP2(Mac-2)). These 

observations demonstrate the prevalence of cells that express both fibrosis markers and 

monocyte markers in our cultures.  

 Cluster 4 was of interest because almost all cells in this cluster when derived from 

control, saline-treated mice, contained high levels of three endothelial markers (PECAM, 

Claudin5, LYVE-1). Interestingly, when derived from bleomycin-treated mice, the 

percentage of cells in this cluster increased 3-fold, PECAM continued to be express at 

high levels, but the percentage of Cluadin5- and LYVE-1-positive cells decreased 

drastically. These observations suggest that endothelial-mesenchymal transformation is 

associated with fibrosis and that this transformation involves the loss of certain 

endothelial markers. In particular the loss of the tight junction protein claudin5 is likely 

to result in the enhanced vascular leakage that we observed in bleomycin-treated mice. 

 While most genes were expressed at similar levels in cells from saline- and 

bleomycin-treated mice, we noted some other interesting counter-examples besides 

Claudin5. MMP9 was greatly decreased in expression in cells from bleomycin-treated 

mice, raising the possibility that the increased level of collagen in fibrotic disease may 

result in part from decreased degradation. Contrary to expectations based on protein 

levels, caveolin-1 message is present at increased levels in cells from bleomycin-treated 

mice. This may be due to cells trying to compensate for low caveolin-1 protein levels by 

expressing increased levels of message. In any case, it remains to be demonstrated 

whether this effect occurs in vivo or only in culture. 
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Figure 24. UMAP Analysis of Fibroblasts Isolated from Bleomycin and Saline-
Treated Mice. The UMAP projection of the fibroblasts isolated from both bleomycin 
and saline-treated mice is shown. The cells were grouped into 4 clusters using Partek 
software to apply dimension reduction to data. The clusters are defined as, Cluster 1 
(blue), Cluster 2 (red), Cluster 3 (orange), and Cluster 4 (green). 
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Table 1. Summary of Single Cell RNA Sequencing Data. In this table, data are shown 
as the percentage of cells positive for fibroblast activation, monocyte, endothelial, and 
selected markers of interest gene expression. Genes expressed in ≥26% in all clusters are 
highlighted in yellow. - = 0-5%, + = 6-25%, ++ = 26-50%, +++ = 51-100%. 

  Cluster 1 Cluster 2 Cluster 3 Cluster 4 
  Bleo Sal Bleo Sal Bleo Sal Bleo Sal 

Fibroblast 
Activation          

Vimentin +++ +++ +++ +++ +++ +++ +++ +++ 
S100a4 
(FSP1) +++ +++ +++ +++ +++ +++ +++ +++ 
FAP - - + ++ + ++ - - 
Serpinh1 
(HSP47) + ++ +++ +++ +++ +++ +++ +++ 
ACTA2 
(aSMA) +++ +++ +++ +++ +++ +++ +++ +++ 
Col1a1 ++ ++ +++ +++ +++ +++ ++ +++ 
Tagln +++ +++ +++ +++ +++ +++ +++ +++ 
Tagln2 +++ +++ +++ +++ +++ +++ +++ +++ 
DDR2 - - +++ +++ +++ +++ + + 
Fn1 +++ +++ +++ +++ +++ +++ +++ +++ 
Monocyte         

CD68 +++ +++ +++ +++ + + + + 
MRC1 
(CD206) +++ +++ +++ +++ + + - - 
GFP +++ ++ +++ +++ ++ + ++ + 
PTPRC (CD45) +++ +++ +++ +++ - - - - 
FCGR3 
(CD16) +++ +++ +++ +++ + + - + 
CSF1R +++ +++ +++ +++ ++ ++ - - 
F4/80 
(ADGRE1) +++ +++ +++ +++ - - - - 
CD11b 
(ITGAM) +++ +++ +++ +++ - - - - 
LGALS3 (Mac-
2) +++ +++ +++ +++ ++ ++ +++ +++ 
LAMP2 (Mac-
3) +++ +++ +++ +++ +++ +++ +++ +++ 
Endothelial 
Markers          

PECAM - - - - - - +++ +++ 
Claudin5 - - - - - - + +++ 
LYVE1 - - - - - - + +++ 
Markers of 
Interest          

MMP9 + +++ + +++ - - - - 
Caveolin-1 + - +++ ++ +++ ++ +++ +++ 
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Discussion 

 The contribution of CD45+ cells to primary fibroblasts has been controversial 

(Kleaveland, Velikoff et al. 2014, Moore-Morris, Guimaraes-Camboa et al. 2014). To 

evaluate whether cells from the hematopoietic lineage (CD45+) can contribute to the 

population of fibroblasts in fibrosis, we have used multiple complementary systems and 

methods to study the levels and phenotypes of CD45+ cells from the fibrotic lung. 

Systems used include a bone marrow transplant and transgenic mouse models, as well as 

human lung tissue from a patient with scleroderma-associated ILD. Methods used include 

flow cytometry and single cell RNA sequencing. All these studies support the concept 

that CD45+/Col I+ fibroblasts exist and play a central role in fibrotic lung disease, and 

resolve the issues surrounding fibrocytes by using novel methods to confirm their lineage 

and contribution to lung fibrosis. We find that: 

• CD45+/Col I+ cells (fibrocytes) increase in number and level of Col during 

fibrosis both in the lung tissue and in the BAL  

• The appearance of Col I+ in CD45+ precursors occurs after their recruitment into 

the lungs 

• The fibrocytes express higher levels of monocyte/macrophage markers (CD45, 

CD16, CD68, CD206) than do CD45+/Col I- cells. They also express high levels 

of myofibroblast markers ASMA and HSP47. 
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• CD45+/Col I+ cells are at first predominant in fibroblast cultures (we define 

fibroblasts as cells that bind to tissue-culture plastic, express Col I, and are 

spindle-shaped in vitro), but then are lost progressively during passage 

o CD45-/Col I+ cells spread more than fibrocytes and thus may crowd them 

out despite the fact that fibrocytes can adhere to fibronectin-coated 

surfaces at lower fibronectin concentrations 

o Fibrocytes do not appear to grow in vitro in the absence of CD45-/Col I+ 

cells 

• Treatment with a novel, water-soluble version of CSD called WCSD inhibits 

fibrocyte accumulation as well as overall Col, Tenascin C, α-sma, and HSP47 

levels and vascular leakage. The decreased fibrocyte accumulation may result 

both from decreased precursor recruitment due to decreased vascular leakage and 

to the decreased differentiation of fibrocytes from CD45+/Col I- precursor 

monocytes. 

• WCSD also reverses the pathological effects of systemic bleomycin on the loss of 

the transdermal adipose layer. 

Identification and Characterization of CD45+ Fibroblasts 

To recapitulate the features of ILD seen in patients with SSc or IPF, an animal 

model in which bleomycin is delivered systemically via osmotic minipumps (Lee, Reese 

et al. 2014) was used to more accurately model the effects of the disease compared to the 

more routine model where bleomycin is delivered directly into the lungs. We find that 
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there are populations of cells in both control and fibrotic lung tissue that are of 

hematopoietic origin, and yet express markers for fibrosis such as, Col I and HSP47, as 

wells as expressing other monocyte macrophage markers including CD11b, CD16, 

CD68, and CD206. In fibrotic lung tissue, the number of these cells was significantly 

increased compared to control lung tissue, and these cells derived from the hematopoietic 

lineage in fibrotic tissue also expressed higher levels of collagen.  

 By looking at the time course for the accumulation of CD45+/Col I+ cells in the 

fibrotic lung, we confirmed the association of these cells with the development of 

fibrosis. By breaking CD45+/Col I+ cells into two regions, Region I (CD45high/Col I+) 

and Region II (CD45+/Col I+), we were able to differentiate between the early 

inflammatory response from pump installation, and the later accumulation of these cells 

in response to fibrosis. In both saline or bleomycin-treated mice, the number of cells 

found in Region I (CD45high/Col I+) remained low 3 days after pump implantation. 

After 10 days, the number of cells in Region I (CD45high/Col I+) remained low in the 

saline lung, but showed a slight increase in the bleomycin lung. By day 28, the number of 

cells in Region I (CD45high/Col I+) had dramatically increased in the bleomycin lung 

while remaining unchanged in saline. The results in Region I (CD45+/Col I+) showed an 

interesting difference at day 3 compared to what was seen in Region I (CD45high/Col 

I+). Both saline and bleomycin lung, had large numbers of CD45+/Col I+ cells in Region 

II 3 days after pump implantation, which decreased significantly by day 10. The number 

of cells in Region I (CD45+/Col I+) remained relatively unchanged in both saline and 

bleomycin lung by day 28, but by this time point the number of cells observed in the 
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bleomycin lung was significantly higher than in the saline lung. Our observations support 

the idea that CD45+/Col I+ cells (particularly CD45high/Col I+ cells) accumulate in the 

lung over time, and that an initial transient increase in the number of CD45+/Col I+ cells 

is likely due to the surgery and pump implantation rather than the contents of the pumps. 

 Because circulating fibrocytes have been reported in both human disease and 

various mouse models (Yang, Scott et al. 2002, Galligan and Fish 2012, Russell, Herzog 

et al. 2012, Lin, Alrbiaan et al. 2020), we investigated whether we could detect these cells 

among circulating PBMCs in the bleomycin pump model. While we did detect an initial 

small increase in circulating CD45+/Col I+ cells shortly after pump installation (both 

vehicle and bleomycin pumps), this increase did not persist, using antibodies for CD45 

and Col I, very low levels of fibrocytes were detected in the blood from both saline and 

bleomycin-treated mice. Interestingly, a similar increase in the number of cells in Region 

I (CD45+/Col I+) was observed at day 3 for both saline and bleomycin PBMCs, as was 

the subsequent decrease. These observations further support the idea that there is an early 

inflammatory response to the implantation of the pump that resolves by day 10. These 

observations may also suggest that cells of hematopoietic origin may not fully 

differentiate into fibroblast-like cells until they reach their target tissue. Despite the fact 

that other studies report finding circulating fibrocytes in the PBMCs of mice (Lin, 

Alrbiaan et al. 2020), we were unable to detect them even when using several different 

antibodies for Col I. 

 Because Col I is a secreted protein that has been reported to be taken up by cells, 

we performed a wide variety of control experiments to rule out the possibility that the 
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CD45+/Col I+ cells that we detect picked up Col I from the extracellular matrix in vivo 

that had been secreted by CD45-/Col I+ cells. First of all, the antibody that we use to 

detect Col I (which we call Pro) was made against the Col Iα1 C-terminal propeptide. 

This peptide is cleavage off of Col I prior to its deposition in the extracellular matrix, so 

should not recognize Col I derived from the extracellular matrix. Next, one would expect 

Col I derived from the extracellular matrix to be bound to the cell surface. However, we 

only detected Col I in cells that had been fixed and permeabilized, not in live cells (data 

not shown). (Fix-permeabilization was also necessary to detect certain other markers that 

we used; namely the macrophage marker CD68 and the myofibroblast markers HSP47 

and ASMA). In another approach, we used the Col I chaperone HSP47, which is involved 

in the secretion, processing, and stabilization of collagen I (Hagiwara, Iwasaka et al. 

2007, Ishida and Nagata 2011) and not present in the extracellular matrix, as a surrogate 

marker for collagen production. We found that there are significantly higher levels of 

HSP47 in CD45+/Col I+ cells compared to CD45+/Col I- cells. In addition to this 

observation, CD45+/Col I+ cells from bleomycin lung contained significantly higher 

levels of HSP47 than was found in CD45+/Col I+ cells from saline lung. These data are 

consistent with several studies that demonstrate that HSP47 is upregulated in fibrosis 

(Kakugawa, Yokota et al. 2013, Lee, Reese et al. 2014, Pleasant-Jenkins, Reese et al. 

2017, Miyamura, Sakamoto et al. 2020). Finally, we used transgenic mice that express 

EGFP under the control of the Col Iα1 promoter. It is straightforward to detect 

endogenous Col I expression in these mice as EGFP, while adsorbed Col I would not be 

detected as EGFP. These observations strongly support the idea that BM cells are 

recruited into sites of fibrosis and are capable of producing their own collagen and 
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contributing to the population of myofibroblasts in the tissue, and is similar to what has 

been reported in renal fibrosis (Li, Deane et al. 2007, Jang, Kim et al. 2014, Wang, Meng 

et al. 2016). 

 While most of the experiments used in these studies made use of 10 to 12-week 

old C57BL/6 mice to confirm the presence of CD45+/Col I+ cells in the lungs of fibrotic 

mice, some of the experiments performed in the study used 24-week old C57BL/6 mice. 

These mice had undergone irradiation, and received BM transplants from mice that 

express EGFP in all of their cells. This approach allowed us to see if CD45+/Col I+ cells 

are in fact BM-derived, and whether the fibrotic response to bleomycin was something 

that occurred in both young and old mice. These studies confirmed that all CD45+ cells 

from both saline and bleomycin-treated mice were BM derived, and that CD45- cells did 

not express EGFP. This study also showed that the strong fibrotic response to bleomycin 

was not just limited to young mice, but can also occur in mice that are several months 

older. This observation may be useful as many studies make use of relatively young mice 

(10 weeks) to study ILD, while most patients that develop ILD are older adults 

(Foocharoen, Netwijitpan et al. 2016). Additionally, lung tissue sections taken from the 

bleomycin mice not only showed increases in the number of EGFP+ cells, they also 

showed that the EGFP+ cells are also positive for Col I. Together these data further 

support the idea that during fibrosis, CD45+ cells accumulate in the lung tissue and 

express Col I. 
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Lineage Tracing of Vav1 Derived Fibrocytes and Fibroblasts  

 By using Vav1-Cre;mTmG mice, we were able to further assess the contribution 

of hematopoietic cells to the population of fibrocytes and fibroblasts, as well as perform 

additional experiments to further characterize these cells. Vav1 is expressed early in the 

development of hematopoietic cells. In our model these cells are marked by their 

expression of EGFP (Georgiades, Ogilvy et al. 2002). These studies allowed for the 

monitoring of hematopoietic (Vav1) cells without the use of antibodies, and also for 

monitoring of live cultures of Vav1+ cells by fluorescent microscopy. As with our 

previous experiments, we detected significant increases in the number of hematopoietic 

cells (Vav1-Cre+;EGFP+) that expressed Col I in the lungs of mice that received 

bleomycin compared with saline-treated mice. The same result was observed whether we 

used Vav1-EGFP or CD45 double labeled with antibodies for Col I; confirming that 

Vav1-EGFP expression was a reliable marker for all hematopoietic cells. In addition to 

looking at total lung cells, BAL was also isolated from both bleomycin and saline-treated 

mice and the same flow cytometric analyses were performed. As with the total lung cells, 

there was an increase percentage of Vav1+/Col I+ cells in the BAL from bleomycin lungs 

compared to saline. In addition to the increased percentage of Vav1+/Col I+ cells, there 

were three times as many total cells in the BAL of bleomycin-treated mice. This 

observation is likely due to the increased vascular leakage characteristic of bleomycin 

treatment and fibrotic diseases like ILD (Swaney, Chapman et al. 2010, Gendron, Lemay 

et al. 2017, Zhao, Tian et al. 2019). These observations on both total lung cells and BAL 

cells confirm that Vav1 is a reliable marker for hematopoietic cells that marks the same 
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population of cells from our experiments that used CD45 or EGFP+ BM cells to identify 

cells of hematopoietic lineage origin.  

 To further phenotype the Vav1 cells that contribute to fibrosis, a panel of 

antibodies for monocyte/macrophage and fibrosis markers was used on cells expressing 

Vav1-EGFP from total lung digests and BAL from bleomycin and saline-treated mice. In 

the lungs of bleomycin-treated mice, for the monocyte/macrophage markers we found 

significant increases in the numbers of cells expressing CD11b, CD16, and CD68 

compared to the lungs from saline-treated mice. In cells isolated from the BAL, there 

were significant increases in the numbers of cells expressing CD11b and CD16 in the 

bleomycin BAL. These data further confirm that there are increased numbers of 

monocyte/macrophages in both the lung and BAL of bleomycin treated mice. When the 

fibrosis markers were analyzed in Vav1-Cre+;EGFP+ cells from bleomycin and saline-

treated mice, we found bleomycin-treated mice exhibited significant increases in the 

number of cells expressing Col I, using antibodies against both the collagen Iα1 C-

terminal propeptide and the Collagen Iα1 C-terminal telopeptide in cells from both the 

lung and BAL of bleomycin. Higher numbers of cells expressing α-SMA and HSP47 

were also detected in the bleomycin lung, but the difference was not significant. 

However, the level of HSP47 in these cells from bleomycin-treated mice was much 

higher than in saline-treated mice. Together these data indicate that fibrosis is 

characterized by increased numbers of hematopoietic lineage cells in both the lung and 

BAL, and that these cells express high levels of fibrosis markers. 
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 Since hematopoietic lineage (Vav1-EGP+) cells were shown to express fibrosis 

markers, we wanted to determine the contribution these cells would make to fibroblast 

cultures prepared under routine conditions. In unpassaged fibroblast cultures, there were 

relatively high numbers of Vav1-Cre+;EGFP+ cells observed by fluorescent microscopy 

from day 1 (when unbound cells are removed) to confluency for cultures from both 

bleomycin- and saline-treated mice. The Vav1-Cre+;EGFP+ cells appeared to be smaller 

in size than the Vav1-EGFP- cells and appeared to be less spread than the Vav1-EGFP- 

cells. After the fibroblasts reached confluency, the cells were passaged. We noted a 

dramatic decrease in the number of Vav1-Cre+;EGFP+ cells in the fibroblast cultures. 

The number of Vav1-Cre+;EGFP+ cells decreased even further after an additional 

passaging resulting in cultures with almost no Vav1-Cre+;EGFP+ cells. To confirm the 

visual observations, flow cytometry was performed on the fibroblast cultures at the 

various passages. Similar high numbers (>75% of total cells) of Vav1-EGP+ or CD45+ 

cells were observed in unpassaged cells. The decreases in Vav1-Cre+;EGFP+ cells vs 

passage detected by flow cytometry totally paralleled the decreases observed by 

fluorescent microscopy. These observations indicate that cells of hematopoietic origin are 

capable of growing in typical fibroblast cultures, but may ultimately be outcompeted for 

space by resident fibroblasts due to the enhanced ability of the resident fibroblasts to 

spread. This observation may be why many researchers have overlooked the contribution 

of hematopoietic cells to fibroblast populations, as experiments are typically done with 

fibroblasts that are at least in passage 3. 



59 
 

 Since it appears that while fibroblasts derived from the BM can grow in fibroblast 

cultures, but may be outcompeted for space by resident fibroblasts, experiments were 

preformed to examine whether BM derived fibroblasts could grow with reduced 

competition for space. Initially, CD45+ cells were isolated from the lung tissue of both 

saline and bleomycin-treated mice, but were unable to grow and expand under normal 

fibroblast conditions. However, when total lung digests were plated at 50% the routine 

seeding density, the Vav1-Cre+;EGFP+ cells were able to grow and expand to the point 

that the Vav1-Cre+;EGFP+/Col I+ fibroblasts were >90% of the cells in the culture. 

These data further support the idea that cells from the hematopoietic lineage contribute to 

the fibroblast population in vivo and in vitro prior to passage. 

To further evaluate whether Vav1-Cre+;EGFP+/Col I+ fibroblasts require Vav1-

EGFP-/Col I+ cells to grow, we used BAL cells (>95% CD45+) as the source of Vav1-

Cre+;EGFP+/Col I+ fibroblasts. These cells were cultured either using routine fibroblast 

growth media, conditioned media from Vav1-EGFP- fibroblast cultures, or in co-culture 

with established cultures of Vav1-EGFP- fibroblasts. These experiments revealed that 

with no additional stimulation, the CD45+ cells failed to grow and expand in culture; and 

that CD45+ cells grown in conditioned media had some growth and expansion, but 

ultimately failed to assume a spindle shape and grow to confluency. It was only in co-

culture that the CD45+ cells were able to grow well and uniformly assume a spindle 

shape. These data support the idea that both secreted factors, ECM proteins, and/or cell 

contact provided by Vav1-EGFP- fibroblasts may be critical in allowing BM derived 

cells to grow and assume the spindle shape characteristic of fibroblasts. 
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 The ECM protein fibronectin is upregulated in the lung of many different fibrosis 

related injuries, and plays a role in the adhesion, activation, and recruitment of fibroblasts 

in the lung (Roman, Ritzenthaler et al. 2004, Muñoz-Esquerre, Huertas et al. 2015, 

Klecker and Nair 2017, Ghavami, Yeganeh et al. 2018). For these reasons and because 

fibronectin is well-known as a protein capable of mediating fibroblast adhesion, we 

performed an experiment to compare the ability of Vav1-Cre+;EGFP+ and Vav1-EGFP- 

fibroblasts to adhere to plates coated with fibronectin. Cells harvested from unpassaged 

fibroblast cultures containing both Vav1-Cre+;EGFP+ and Vav1-EGFP- cells were plated 

in 96-well plates coated with a range of concentration of fibronectin. Interestingly, at the 

lowest concentration of fibronectin tested (1 μg/ml in the coating solution), near-maximal 

attachment of Vav1-Cre+;EGFP+ cells occurred. In contrast, the adhesion of Vav1-

EGFP- cells continued to increase up to the highest concentration of fibronectin tested 

(30 μg/ml in the coating solution). These data suggest that Vav1-Cre+;EGFP+ cells are 

highly responsive to the ECM protein fibronectin and raise the possibility that in fibrotic 

diseases the increased concentration of ECM proteins leads to activation of fibroblasts 

derived from the hematopoietic lineage. 

WCSD Decreases Fibrocyte Levels and Fibrosis in the Bleomycin Lung 

 Previous data from our lab has shown that PBMCs from patients with SSc-ILD 

express lower levels of caveolin-1 than healthy controls, and that the use of a caveolin 

surrogate peptide, CSD, is effective at blocking the recruitment of these cells towards 

several chemokines in vitro and their expression of Col I (Reese, Dyer et al. 2013, Lee, 

Perry et al. 2014, Reese, Perry et al. 2014). In addition, CSD inhibits Col I expression by 
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myofibroblasts and mesenchymal stem cells (Tourkina2005, Lee2019). To address the 

importance of fibrocytes in lung fibrosis, a novel water-soluble version of CSD (WCSD) 

was used to evaluate the effects of the peptide on fibrocyte accumulation and the 

progression of fibrosis in bleomycin-treated mice. The mice received bleomycin by 

osmotic minipump for 7 days, at which point the mice were given daily I.P. injections of 

either WCSD or vehicle until they were sacrificed at day 21. Treatment with WCSD was 

effective in reducing the number of CD45+/Col I+ cells in the lungs compared with 

vehicle treated mice, even though treatment with WCSD did not begin until after 

bleomycin administration had stopped. Our experimental design does not allow us to 

determine whether WCSD inhibited the recruitment of fibrocyte precursors into the lungs 

or inhibited the differentiation of the precursors into Col I+ fibrocytes; based on previous 

studies, however, we expect that WCSD is inhibiting both processes. While WCSD 

reduced the number of fibrocytes, it did not significantly alter their phenotype. 

Additionally, lung and skin tissue were collected from these mice and Masson’s 

trichrome staining was performed. WCSD was effective at inhibiting the amount of 

inflammation (cellularity) and collagen deposition in the lungs of the bleomycin-treated 

mice, compared to those that only received vehicle. WCSD also prevented the complete 

loss of fat in the dermal layer that was seen in mice that only received vehicle treatment. 

Lung tissue extracts were also examined by Western blot for their expression of ECM 

proteins associated with fibrosis (Col I, Tenascin C), myofibroblast markers (α-sma, 

HSP47) (van Amerongen, Bou-Gharios et al. 2008, Hinz, Phan et al. 2012, Cao, Wang et 
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al. 2018), and for vascular leakage measured by the amount of IgG in the tissue. WCSD 

almost completely inhibited the over-accumulation in the tissue of all of these proteins. 

These major beneficial effects of WCSD on fibrosis may result from the direct inhibition 

of the expression of Col I, tenascin c, α-sma, and HSP47. They may also result from a 

decrease in the recruitment of inflammatory cells as a consequence of the inhibition of 

the vascular leakage known to occur in fibrotic lungs (Tang, Zhao et al. 2014, Gendron, 

Lemay et al. 2017). It is also possible that inhibiting the expression of certain ECM 

proteins contributes to the inhibition of the recruitment of inflammatory cells, given that 

fibronectin and tenascin c have been shown to promote recruitment in fibrosis(Roman, 

Ritzenthaler et al. 2004, Bhattacharyya, Wang et al. 2016).  

In other words, WCSD may be preventing BM derived cells from leaving the 

circulation and entering the tissue, as well as inhibiting the release of chemo attractants 

into the circulation. Together, these data strongly support the idea that WCSD is effective 

at inhibiting the progression of fibrosis by reducing the number of BM derived fibroblasts 

in the tissue by blocking their recruitment and activation into myofibroblasts.  

CD45+/Col I+ Cells in Human SSc-ILD Lung Tissue 

 To address whether fibrocytes (CD45+/Col I+ cells) could be found in the lungs 

of patients with ILD, lung tissue from a patient with SSc-ILD was analyzed by flow 

cytometry. These studies revealed a population of fibrocytes from the SSc-ILD lung that 

were CD45+/Col I+, and these fibrocytes also expressed the monocyte/macrophage 

markers CD68 and CD206, as well as the myofibroblast markers α-sma and HSP47. 
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While several other studies have reported detecting fibrocytes in the circulation and BAL 

of patients with ILD (Fujiwara, Kobayashi et al. 2012, Borie, Quesnel et al. 2013, Sun, 

Zhu et al. 2016, Wollin, Distler et al. 2019), to the best of our knowledge this is the first 

report detecting these cells in lung tissue. The data from this experiment show that as in 

our animal model for ILD, CD45+/Col I+ can be detected in human lung samples, where 

they appear to be contributing to the population of myofibroblasts. 

Single-Cell Sequencing of Fibroblasts from the Saline and Bleomycin Lung 

 The use of single-cell RNA sequencing (scRNA-seq) has become a powerful tool 

in the understanding of cell functions, responses to treatments, and disease progression at 

the single-cell level (Gao 2018). To fully characterize and understand the populations of 

cells that are contributing to the fibroblast populations, we utilized this technique to study 

fibroblasts that were isolated from both saline and bleomycin-treated Vav1-Cre+/mTmG 

mice. Total lung cells were first isolated and grown under routine conditions till near 

confluency before processing for scRNA-seq. By processing the data and applying 

dimension reduction using PCA and UMAP, we recognized 4 clusters of cells that could 

be characterized by their gene expression profiles. The cells in Cluster 1 expressed the 

highest levels of GFP which marks hematopoietic-lineage derived cells, as well as 

expressing modest levels of Col I. Cluster 2 expressed moderately high levels of GFP, 

and high levels of Col I. The cells in cluster 3 contained modest levels of GFP and high 

levels of Col I. The cells in cluster 4 expressed moderate levels of both GFP and Col I, 

but expressed high levels of endothelial markers. Cells from both saline and bleomycin 

fell into these clusters, and overall shared fairly similar features. 
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To further characterize and compare the clusters, we examined several genes 

associated with fibroblast activation and monocyte markers. Interestingly, there were 

many genes for fibroblast activation expressed in high levels across all 4 of the clusters. 

The intermediate filament protein, vimentin, which plays an important role in the 

migration, growth, and proliferation of fibroblasts, and is associated with their response 

to injury, was highly expressed in all clusters (Mendez, Restle et al. 2014, Cheng, Shen et 

al. 2016). FSP1, a protein that is expressed by fibroblasts in tissue remodeling and has 

also been used to identify fibroblasts that have undergone epithelial to mesenchymal 

transition (EMT) in different organs, was high in all clusters (Österreicher, Penz-

Österreicher et al. 2011). Other genes (α-sma, Col I, Transgelin [Tagln], Tagln2, 

fibronectin 1 [FN1]} associated with fibroblasts as well as their response to injury were 

expressed in all four clusters. In summary, all the clusters are composed of cells with a 

variety of fibroblastic characteristics. 

 We further examined the 4 clusters for their expression of various hematopoietic 

lineage and monocyte markers. Most important, while clusters 1 and 2 contained high 

levels of EGFP, clusters 3 and 4 contained moderate levels of EGFP when derived from 

saline-treated mice, but contained much higher levels when derived from bleomycin-

treated-mice. Certain genes considered to be monocyte markers (Galectin-3 [LGALS3] or 

Mac-2) and lysosome-associated membrane protein 2 (LAMP2 or Mac-3) were expressed 

by a high percentage of cells in all 4 clusters. Therefore, it is difficult to simply state that 

any particular cluster represents fibrocytes and that any particular cluster represents 

resident fibroblasts(Dong and Colin Hughes 1997, Chueh, Lin et al. 2015). This difficulty 
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may result from the fact that all of these cells have been removed from the in vivo 

environment and been cultured on plastic in the presence of 10% serum that may cause a 

convergence in the phenotypes of fibroblasts from saline- and bleomycin-treated mice. 

Experiments in which cells are analyzed directly after release from tissue may help 

overcome this ambiguity. Given these caveats, we believe that the clusters that we have 

observed for the most part represent: Cluster 1, Fibrocytes; Cluster 2, Myofibroblasts 

derived from fibrocytes; Cluster 3, Resident fibroblasts; Cluster 4, Cells undergoing 

endothelial-mesenchymal transformation.  

Monocyte markers (e.g., CD68, CD206, GFP, CD45, CD16, Colony Stimulating 

Factor 1 Receptor [CSFR1], F4/80, and CD11b) are expressed at high levels in clusters 1 

and 2. These genes are expressed at moderate levels in clusters 3 and 4, but among this 

group only GFP was expressed in high levels of cluster 3 and 4, and that was only in cells 

from the bleomycin-treated mice.  

 When the 4 clusters were examined for their expression of various endothelial 

markers, there were no genes expressed by a high percentage of cells across all 4 clusters. 

In fact, clusters 1-3 contained almost no cells expressing endothelial markers. Platelet 

endothelial cell adhesion marker (PECAM-1) was the only gene that was expressed in a 

high number of cells from both bleomycin and saline-treated mice in cluster 4. Claudin 

and lymphatic vessel endothelial hyaluronic acid receptor 1 (LYVE1) were expressed in 

cells from both bleomycin and saline mice, but only saline contained high (≥50%) 

numbers of cells expressing these genes. Studies on whether the loss of the tight junction 
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protein claudin5 is related to the increase in vascular leakage will be an exciting topic for 

future research.  

 Additionally, we examined the expression of matrix metalloproteinase 9 (MMP-9) 

and Caveolin-1 (cav-1), two genes of interest to this study. MMP-9, expressed by a wide 

variety of cell types including monocyte/macrophages and fibroblasts, is an interesting 

molecule that plays a profibrotic part as well as a role in the resolution of fibrosis. This 

dynamic role of MMP-9 is seemingly temporal, where MMP-9 has been shown to 

promote a fibrotic response early, while aiding in the resolution of fibrosis at later stages 

(Feng, Ding et al. 2018, Wang, Gao et al. 2019, Wang, Liu et al. 2019). When we 

examined our clusters for MMP-9 expression, we found that expression was largely 

limited to clusters 1 and 2, with little to no expression in clusters 3 and 4. Interestingly, 

the number of cells expressing MMP-9 was highest in saline for both clusters 1 and 2. 

This increase in MMP-9 expression in saline cells may reflect the fact that these cells 

have left an in vivo environment with no fibrotic stimuli, and are now being cultured on 

tissue culture plastic potentially initiating a fibrotic response in these cells. Conversely, 

an opposite effect was observed when we looked at cav-1 expression in the 4 clusters. 

While all clusters had some expression of cav-1, there were only high numbers of cells 

expressing cav-1 in clusters 2-4. Interestingly, the percentage of cells expressing cav-1 

was higher for cells from bleomycin-treated mouse compared to saline in all clusters. 

This is somewhat unexpected, as previous data from our lab showed that both in the 

bleomycin animal model and in patients with SSc-ILD, cav-1 expression was decreased 

in fibrocytes, monocytes, and other fibrosis related cell types (Lee, Reese et al. 2014, 
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Reese, Perry et al. 2014). However, this observation may reflect the fact that now that 

these cells are out of the bleomycin/fibrosis environment, they may have increased their 

expression of cav-1 to make up for any loss that was occurring due to the fibrotic stimuli. 

These data further suggest that by removing these cells from their in vivo environment 

and placing them on TC plastic, we are potentially inducing changes to the both the types 

of cells and their phenotypes that aren’t truly reflective of the populations of fibroblasts 

and fibroblast precursors seen in vivo.  

Summary 

 In summary, the results of these studies strongly suggest that during fibrosis cells 

from the hematopoietic lineage that express Col I and other fibrosis markers increase in 

number, and that their differentiation into these fibroblast precursors primarily occurs 

once they are in the target tissue. Previous studies may have overlooked the contributions 

of these cells to the fibroblast populations, since they disappear from in vitro cultures 

with passaging and are difficult to detect using IHC. These studies highlight several 

potential therapeutic targets (using WCSD or other treatments), including the recruitment 

and differentiation of fibrobcytes, as well as receptors that may interact with ECM 

proteins like fibronectin to promote adhesion and differentiation of these cells.  

Limitations 

 There are several limitations to the experiments performed in this study for a 

variety of different reasons, and which could be addressed in future experiments. 

Characterization of the phenotype of hematopoietic derived cells would have benefited 
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from a more in-depth analysis using the Col-EGFP mice, rather than just the Vav1-

Cre/mTmG mice. By using the Col-EGFP mice, we would be able to provide a more 

precise characterization of CD45+/Col-EGFP+ cells rather than having to rely on Vav1-

Cre+;EGFP+ cells for this characterization, or through the use of antibodies for CD45 

and Col I. Unfortunately, limited numbers of Col-EGFP mice and equipment failures 

prevented these analyses for this study. Another area that could benefit from additional 

investigation would be further expanding the growth conditions for isolated CD45+ and 

BAL cells in culture. While we identified that hematopoietic cells (Vav1-Cre+;EGFP+) 

were highly responsive to the ECM protein, fibronectin, and that fibronectin promoted 

their adhesion, there were no experiments performed to see how fibronectin and other 

ECM proteins affected the growth of CD45+ or BAL cells isolated from the lung. Further 

investigation may elucidate the importance of these molecules, and whether the presence 

of resident fibroblasts is required or not. One final limitation for this study appears to be 

the use of cultured fibroblasts versus total lung cells in our scRNA-Seq experiments. Our 

data suggests that cells contributing to fibroblast populations in vivo change their 

phenotypes in response to being cultured on TC plastic. By looking at cells directly 

isolated from lung digests, a more accurate gene expression profile can be obtained for 

cells from bleomycin and saline-treated mice providing valuable insights into the 

mechanisms and processes that are occurring during fibrosis.  

Future Directions 

 As discussed above, to gain a more accurate picture of the gene expression 

profiles, future studies could utilize scRNA-Seq to characterize total lung cells isolated 
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directly from bleomycin and saline-treated mice. In addition to this change, we will also 

use scRNA-Seq to evaluate total lung cells from bleomycin-treated mice that have 

received WCSD to understand what gene expression profiles have changed, and what 

potential gene pathways may be affected by treatment with WCSD. Future studies may 

also look at administering WCSD to bleomycin-treated mice at later time points after 

fibrosis has been initiated. Furthermore, two drugs that are FDA approved for the 

treatment of ILD, pirfenidone and nintedanib, could be evaluated for their effects on 

fibrocytes using similar research strategies, which could provide further insight into the 

mechanisms and pathways affected by these treatments thus leading to more targeted and 

effective therapies. In fact, one study by (Inomata, Kamio et al. 2014) has shown that 

pirfenidone was effective at reducing fibrocyte accumulation in the bleomycin-lung, and 

may further benefit from using the Vav1-Cre/mTmG mice to lineage trace the cells, and 

scRNA-Seq. Combinations of these therapeutics could also be evaluated in our model to 

see if there are any synergistic effects of these therapies. 
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