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Abstract 

Head and neck cancer accounts for approximately 6% of diagnosed malignancies 

in the United States, with an estimated 35,000 incidences and over 7,000 deaths every 

year. Head and neck squamous cell carcinoma (HNSCC) comprises the majority of head 

and neck cancers, with a worldwide incidence of more than 500,000 cases. Head and 

neck cancer patients often present in advanced stages of disease, and despite ongoing 

research, survival rates remain lower than other more common malignancies. Cytokines 

and pro-inflammatory factors have been shown to have a critical role in the various steps 

of malignant transformation, including tumor growth, survival, invasion, angiogenesis, 

and metastasis. Mitogen-activated protein kinases (MAPK), such as p38, JNK, and ERK, 

relay information from extracellular signals to the effectors that control these diverse 

cellular processes. Negative regulation of MAPK activity is provided by MAPK 

phosphatases that dephosphorylate MAPK proteins. The founding member of this class of 

phosphatases is dual-specificity phosphatase-1 (DUSP1) and has been shown to be 

crucial for negatively regulating innate immune responses. Initial studies revealed 

significant over-expression of DUSP1 in a range of human epithelial tumors including 

prostate, colon, and bladder, with loss of DUSP1 expression in tumors of higher 

histological grade and in metastases. Based on the above, this study hypothesized that 

DUSP1 is a negative regulator of tumor-promoting inflammation in head and neck 

cancer. To test this hypothesis, we first assessed the effect of Dusp1 deficiency in animal 

models of tumor progression. Dusp1 deficiency enhanced tumor progression in a 

carcinogen-induced model of oral cancer with higher levels of inflammatory infiltrate and 

gene expression. Deficiency in hematopoietic-derived cells by bone marrow transplant 
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did not recapitulate the advanced disease phenotype seen in Dusp1 deficient animals. 

However, Dusp1 deficiency also enhanced the progression of subcutaneous syngeneic 

breast and prostate allograft tumors. Examination of Dusp1 deficient bone marrow 

macrophages revealed enhanced expression of inflammatory cytokine IL-1β after 

stimulation with lipopolysaccharide. Elevated levels of IL-1β were shown to be due to 

increased de novo transcription in addition to enhanced mRNA stability. Inflammasome 

activation was not affected by Dusp1 deficiency. Lastly, in human HNSCC tissues, both 

mRNA and protein DUSP1 was decreased in tumor compared to adjacent non-tumor 

samples, and IL-1β protein was increased. These studies demonstrate DUSP1 expression 

is deregulated in HNSCC and suggests an important role for DUSP1 as a negative 

regulator of tumor-promoting inflammation through suppression of inflammatory 

cytokines, such as IL-1β. Understanding the role of these inflammatory mediators and the 

upstream signaling pathways in the tumor microenvironment in head and neck cancer 

may yield novel therapeutic targets for prevention and treatment.  
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CHAPTER 1. Background & Significance 

 

1.1 Head and neck squamous cell carcinoma 

Importance of the problem 

Head and neck cancers encompass a set of malignancies that affect the oral cavity, 

nasal cavity and sinuses, nasopharynx, oropharynx, laryngopharynx, and salivary glands. 

Head and neck squamous cell carcinoma (HNSCC) comprises over 90% of these cancers 

and is the sixth most commonly diagnosed cancer in the world (1). Of HNSCCs, cancers 

of the oral cavity are the most common, with 263,900 new cases of oral squamous cell 

carcinomas (OSCC) diagnosed worldwide and an estimated 42,000 new cases in the 

United States in 2014 (2, 3). 

Current treatments available to patients diagnosed with HNSCC include surgical 

resection, radiation, and chemotherapies, performed alone or in combination, depending 

upon disease stage. Since the 1960s, great improvements have been in reconstructive 

methods to improve functional outcomes and reduce associated morbidities, yet overall 

survival rates have not significantly changed (4). 

 

Etiological factors in HNSCC 

Tobacco remains an important risk factor for HNSCC, as upwards of 80% of 

cases are attributed, in part, to tobacco exposure (5). Smokers have ten times the risk of 
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HNSCC compared to patients who have never smoked (6). In the United States, public 

health campaigns and significant health education efforts have begun reduce prevalence 

of tobacco use, leading to an overall trend toward decreased HNSCC incidence (5, 6). 

However, tobacco exposure remains an important causative agent in HNSCC for many 

countries outside the developed world.  

Although the national incidence of HNSCC has been decreasing due to changes in 

tobacco use, a rapid increase in oropharyngeal squamous cell carcinoma has been 

reported in a younger population of adults, associated with the presence of the human 

papilloma virus (HPV) (7, 8). Of the 100 characterized HPV subtypes, the predominant 

subtype associated with oncogenesis is HPV-16, which accounts for over 90% of HPV-

associated HNSCC (9, 10). The majority of HPV-associated HNSCCs are found within 

the oropharynx, while the rate is much lower for tumors found within the oral cavity (11). 

 

Signaling pathways deregulated in HNSCC 

HPV-mediated carcinogenesis is driven by the E6 and E7 viral oncoproteins 

expressed by the DNA virus. The ubiquitin ligase E6 inhibits p53 tumor suppressor 

function by targeting it for proteosomal degradation (12), and E7 inhibits the 

retinoblastoma protein (pRB) releasing its inhibition of cyclin-dependent kinase 

inhibitors, including p21, p27, and p16 (13). Overexpression of p16, by 

immunohistochemistry, has become commonly used as a detection tool for identifying 

tissues with HPV infection (14). As HPV-associated HNSCC incidence continues to rise, 

the clinical, pathological, and etiological distinctions with significantly improved 

prognosis and therapeutic outcomes from HPV-negative HNSCC are gaining recognition 
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(15, 16). However, the biological mechanisms underlying these characteristics remain 

unclear.  

HPV-negative HNSCCs typically contain TP53 mutations, the most common in 

HNSCC (17), in addition to mutations in other tumor suppressors which enhance 

genomic instability and resistance to typical cytotoxic regimens (18). In contrast, TP53 

mutations are significantly decreased in HPV-positive HNSCCs concomitant with fewer 

overall mutation rates (19). Unlike HPV-positive HNSCCs, where p16 is overexpressed, 

in HPV-negative HNSCC tissues, exome sequencing studies have found mutation rates 

and copy number losses in the CDKNA gene that encodes both p16INK4A and 

p14INK4B at 7% and 20-30% respectively (20, 21). As data continue to emerge, there is 

a growing appreciation for the distinction between HPV-positive and negative disease in 

HNSCC to support the stratification of patients by HPV status for prognostic and 

predictive assessments. 

HNSCC proliferation is driven predominantly by activation of the epidermal 

growth factor receptor (EGFR), phosphatidylinositol-3-kinase-AKT (PI3K-AKT), and 

Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathways (22). 

EGFR is a cell surface receptor that binds ligands such as epidermal growth factor, 

amphiregulin, and β-cellulin, which initiates receptor dimerization, tyrosine kinase 

activation and autophosphorylation, driving downstream signaling cascades. By driving 

cellular proliferation and survival, EGFR is an oncogene with reports of mutations and 

gene amplification in HNSCC (23, 24). As EGFR expression varies among HNSCC 

tissue sites, with higher levels in the oral cavity and pharynx compared to the larynx (25), 

the signaling pathways within different tumor sites likely vary. 
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Cetuximab is a chimeric monoclonal antibody that targets EGFR and was the first 

approved biologic agent for HNSCC. In patients with locally advanced or recurrent and 

metastatic disease, the addition of cetuximab to radiation or platinum chemotherapies 

improves overall survival (26, 27). However, resistance to cetuximab often develops, due 

to expression of a constitutively active EGFRvIII deletion mutant in the cancer cells (28, 

29). Although antibody and vaccine therapies are being developed to target this mutant 

variant, results have not yet been extended to HNSCC (30, 31).  

A number of cytokine receptors activate intracellular signaling cascades through 

JAKs, non-receptor tyrosine kinases constitutively bound to cytokine receptors that 

transphosphorylate receptors after ligand binding. Activated cytokine receptors 

phosphorylate STAT proteins, which translocate into the nucleus to initiate target gene 

transcription as dimerized transcription factors (32). In HNSCC carcinogenesis, the JAK-

STAT pathway has been shown to promote tumor cell survival and growth as well as 

angiogenesis and suppression of anti-tumor immunity within the microenvironment (33). 

Increased STAT3 expression has been shown in cancer cell lines, human tumor tissues, 

and is an early molecular event in patients with tobacco-associated HNSCC (34, 35). 

STAT5 has also been shown to promote tumor growth as well as epithelial-mesenchymal 

transition in HNSCC and may contribute to chemoresistance (36, 37). In addition to 

efforts to shut down STAT3 signaling downstream of EGFR using kinase inhibitors, such 

as erlotinib (38, 39), a recent in-human trial describes effective downregulation of 

STAT3 target genes in HNSCC tissues using an anti-STAT3 oligonucleotide (40).   

MicroRNAs (miRNAs) are small non-coding RNAs of 18-22 nucleotides in 

length that regulate a host of cellular processes through altering gene expression. After 
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transcription by RNA polymerase II as primary-miRNAs, they are processed within the 

nucleus into pre-miRNAs that are transported into the cytoplasm for further processing 

by the ribonuclease Dicer to form a mature miRNA. Upon association with the RNA-

induced silencing complex (RISC), the miRNA can associate with its target mRNAs 

through interactions most often within the 3’-untranslated region (UTR) to effect gene 

silencing. Partial complementarity with its target mRNA sequence instead results in 

suppression of protein synthesis by translational repression (41).  

Like coding genes, miRNAs have been identified that are oncogenic and 

overexpressed in cancer or tumor suppressive and down-regulated in cancers. In HNSCC, 

the tumor suppressive miRNAs let-7, miR-125a/b, miR-200a, and miR-133a/b have been 

reported to regulate important signaling targets such as oncogenic KRAS, EGFR, the 

EMT-associated transcription factors ZEB1 and ZEB2, and the metabolic regulator 

pyruvate kinase 2, respectively (42-47). Oncogenic miRNAs that are overexpressed in 

HNSCC include miR-106b-25, miR-17-92, miR-106a which downregulate the p21 cyclin 

dependent kinase inhibitor and RB1 (48) as well as miRNA-205 which may target the 

tumor suppressor phosphatase and tensin homolog (PTEN) (49). Although an open-

source database of deregulated miRNAs in HNSCC has been established (50), the 

functional impact of these miRNAs and whether they are suitable targets for therapy have 

yet to be determined. 
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1.2 Mitogen-activated protein kinases and regulation 

Overview of MAPK signaling 

Mitogen-activated protein kinases (MAPKs) comprise a number of signal 

transduction pathways that coordinate cellular responses to a variety of intra- and extra-

cellular stimuli (51, 52). MAPKs phosphorylate serine and threonine residues to regulate 

cellular functions including proliferation, differentiation, survival, and death, through its 

actions on gene transcription, protein translation, stability, localization, and enzymatic 

activity (53, 54). Thus, MAPKs are key players in physiological processes, including 

development, immune and metabolic homeostasis, as well as pathological responses in 

human diseases including obesity, autoimmune disorders, and cancer (55-58). 

MAPK pathways typically include an activation cascade of three members: the 

MAPK kinase kinase (MKKK), a MAPK kinase (MKK), and the MAPK, each of which 

serves as a substrate for the previous kinase for activation (59). Dual phosphorylation of 

both a threonine and a tyrosine residue within the activation loop domain are required. 

The major mammalian MAPK pathways include the extracellular signal-regulated 

kinases (ERKs) 1 and 2, the p38 MAPK family including p38α, p38β, p38γ, and p38δ, 

the c-jun N-terminal kinases (JNKs) 1, 2, and 3, and the ERK5 pathway (60). Other less 

well-characterized MAPKs include ERK3, ERK4, ERK7, and ERK8 (61).  

 

Overview of dual-specificity phosphatases 

The functional outcome of MAPK signaling is controlled, largely in part, by the 

duration of pathway activation (62). Thus, MAPK pathway activation is carefully 

balanced by both the activation of upstream pathway kinases as well as a number of 
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negative regulatory mechanisms. Direct inactivation of MAPK signaling can occur 

through dephosphorylation by specific protein phosphatases at either the threonine or 

tyrosine residue, as phosphorylation of both is required for activation. Dephosphorylation 

can be performed by type 1 and type 2 serine/threonine phosphatases, protein tyrosine 

phosphatases, or dual-specificity tyrosine and threonine phosphatases (DUSPs) (63). 

Although all of these family members may play a role, the largest of these groups are the 

dual-specificity phosphatases and MAPK phosphatases (MKPs).  

 

MAPK phosphatase structure and function 

Within the dual-specificity phosphatases, the MAPK phosphatases are a specific 

sub-family of phosphatases dedicated to MAPK regulation, all of which share a N-

terminal noncatalytic domain and a C-terminal catalytic domain, containing the protein 

phosphatase consensus active site (64). The N-terminal domain serves a number of 

functions, including a docking site for MAPK substrates, and localization sequences (65). 

A kinase interacting domain (KIM) was identified within the N-terminus and shown to be 

responsible for MAPK binding through a cognate MAPK motif (66, 67). MKP-mediated 

dephosphorylation occurs through two separate binding, dephosphorylation, and release 

cycles, first of the tyrosine and then the threonine residue (68, 69). Substrate specificity 

overlap may have risen from gene duplication with divergence across evolution; 

however, tissue and cellular localization, in addition to phosphatase-independent 

mechanisms of regulation must also be considered (70).    

The ten catalytically active MAPK phosphatases in mammalian cells can be 

subdivided into three families based on cellular localization, substrate specificity, and 
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sequence homology. The stress-inducible, nuclear MKPs include DUSP1/MKP-1, 

DUSP2, DUSP4/MKP-2, and DUSP5. ERK-selective, cytoplasmic MKPs include 

DUSP6/MKP-3, DUSP7/MKP-X, and DUSP9/MKP-4. Lastly, the JNK and p38-selective 

MKPs, which are found both in the nucleus and cytoplasm, include DUSP8, 

DUSP10/MKP-5, and DUSP16/MKP-7 (71, 72).  

 

1.3 Dual-specificity phosphatase-1 

The archetype of the MAPK phosphatases is DUSP1/MKP-1, an inducible 

nuclear phosphatase that has been shown to bind and dephosphorylate p38, JNK, and 

ERK MAPKs both in vitro and in vivo (66, 73). However, the KIM of DUSP1 has been 

shown to be necessary only for interaction with p38 and ERK MAPKs. The KIM mutant 

in which the arginine residues have been substituted with alanine can still bind and 

dephosphorylate JNK both in vitro and in vivo with the same efficiency (66). Interaction 

of MKPs with their MAPK substrates has been shown, for DUSP6/MKP-3 as well as 

DUSP1, and DUSP2, to induce conformational changes that enhance enzymatic activity 

(66, 74-77). In the absence of a three-dimensional structural conformation, understanding 

DUSP1 function and activity has come from mutagenesis studies and characterization in 

different cells and tissues.   

 

Regulation of DUSP1 expression 

DUSP1 was initially identified as one of a set of genes expressed during the 

G0/G1 transition in cultured murine cells (78) and is widely expressed in a number of 

tissues (72). The human DUSP1 gene is located in chromosome 5 and contains four 
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exons and three introns, encoding a transcript of approximately 2.4kb shown in Figure 1-

1 (79). Transcription is induced following a variety of stimuli, including growth factors, 

cytokines, lipopolysaccharide (LPS), and other cellular stressors, such as hypoxia, and 

heat shock (65, 80, 81). Transcriptional regulation occurs through regions within the 

DUSP1 promoter and upstream regulatory regions containing cAMP responsive 

elements, glucocorticoid responsive elements, the vitamin D responsive element, as well 

as binding sites for activator protein 1 (AP-1), nuclear factor (NF)-κB, specificity protein 

1 (SP-1), and controlled amino acid treatment (CAAT)-binding transcription 

factor/nuclear factor 1 (CTF/NF-1) (79, 82-86). Epigenetic regulation includes histone 

H3 phosphorylation and acetylation that also modulate stress-induced DUSP1 gene 

transcription (87). More recently, promoter methylation has been described as a 

mechanism of DUSP1 downregulation in both the prostate cancer cell line PC-3 and 

HNSCC tissues (88, 89). 

 

Figure 1-1. Schematic of DUSP1 gene. The DUSP1 gene is located on chromosome 5 
and includes 4 exons and 3 introns. The mature transcript is 2.4kb long. The N-terminus 
contains 2 cdc25-like domains and a noncanonical nuclear localization motif. The C-
terminus contains the phosphatase domain. Adapted from Boutros et al. 2008 (70). 
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As an immediate-early response gene, a number of factors induce transcription of 

DUSP1, including serum in fibroblasts (90), dexamethasone (91, 92) and glucagon in 

hepatocytes (93), insulin in a hepatoma cell line (94), and atrial natriuretic peptide in  

human umbilical vein endothelial cells (95). Stressors such as heat shock in dermal 

fibroblasts (96) and murine macrophages (97), osmotic shock in rat hepatoma (94, 98), 

hypoxia (99, 100), cobalt chloride, a hypoxic mimic (101), and tissue ischemia (102, 103) 

also increase transcription. Similar effects are also seen following exposure to DNA 

damaging agents such as reactive oxygen species from hydrogen peroxide treatment (96), 

ultraviolet radiation (104, 105), and gamma-radiation (106). Although a multitude of 

conditions regulate DUSP1 mRNA, it is unclear whether reported increases are a result of 

de novo synthesis or increased mRNA stability.  

The DUSP1 mRNA has a half-life of 1 to 2h, depending upon the induction 

method (78).  Post-transcriptional regulation of DUSP1 includes negative regulation by 

miR-101, following LPS stimulation, to enhance the strength and duration of the 

inflammatory response (107) and control by the RNA binding proteins Hu antigen R 

(HuR) and nuclear factor 90 (NF90), which enhance DUSP1 transcript stability through 

interactions with the 3’UTR (108). In addition to phosphorylation, DUSP1 can be 

modified following oxidative stress through S-glutathionylation, targeting it for 

proteasomal degradation (109).  

Protein expression of DUSP1 can be increased with exposure to many of the same 

stimuli as those which induce expression, including insulin (110, 111), glucagon (93), 

dexamethasone (91, 92), EGF (112), hypoxia (99, 113-115), and peroxide (116). 

However, it is still unclear whether these increases in protein are due to elevated levels of 
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de novo translation or enhanced protein stabilization. As with transcriptional stimulation, 

these inducing factors are not specific to DUSP1 and increase a large number of targets to 

generate their cellular responses. DUSP1 protein half-life has been reported to be 

between 40min (117) and 2h (85). Modulation of protein half-life is differentially 

regulated by a number of mechanisms. Heat shock has been shown to reversibly 

aggregate DUSP1 protein through HSP72, to preserve its function (118). A p38 inhibitor, 

SB203580, partially blocked cisplatin-induced, ERK-mediated accumulation of DUSP1 

protein, independent of transcriptional effects (119). 

 

Regulation of DUSP1 activity 

The large number of family members and overlapping substrate specificity 

suggest redundancy in the negative regulation of MAPKs by MKPs. However, the 

combination of differing subcellular localization, MAPK specificity, and temporal 

control of activity suggest these phosphatases can modulate MAPK signaling with greater 

finesse than simply turning them on or off. A noncanonical nuclear localization signal 

was identified, through a series of deletion and mutation experiments, in the N-terminus 

of DUSP1 (120), and is conserved among the nuclear MKPs. This LXXLL motif targets 

DUSP1 to the nucleus (120), where it exerts its phosphatase action (72, 120). Spatially, 

MKP binding can serve as an anchor to MAPKs, restricting them to a particular cellular 

compartment for nonenzymatic purposes (121, 122). Reports of cytoplasmic localization 

have been made in different human tumor tissue samples (123). In addition, treatment of 

a human lymphoblastic cell line with nerve growth factor increased DUSP1 mRNA and 

protein levels with translocation of the protein to the mitochondria (124). The 
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significance of these reports and understanding what impact DUSP1 has outside the 

nucleus has yet to be addressed. The C-terminus of DUSP1 contains a region which 

autoinhibits phosphatase activity, as a truncated mutant had higher phosphatase activity 

without change in substrate specificity (125). Determining whether this domain plays a 

part in interaction with other proteins may reveal additional levels of regulation.  

DUSP1 has greater affinity for p38MAPK and JNK than ERK1/2 (126) but also 

minor activity for ERK5 (127). A model of DUSP1 regulation of ERK activity 

independent of dephosphorylation suggests its binding prevents ERK1/2 interaction with 

its downstream targets (112) or translocation into the nucleus. DUSP1 is unable to 

recognize or inactivate p38γ or p38δ (66), despite significant sequence homology to 

p38α. Although initial RNAi experiments suggested DUSP1 could interact with and 

inactivate STAT1 protein to regulate interferon-responses (128), subsequent in vitro 

analyses failed to demonstrate protein-protein interactions or phosphatase activity or 

downregulation of interferon-induced transcription (66). RNAi knockdown of DUSP1 

highlighted phosphorylated-histone H3 at serine 10 as a potential dephosphorylation 

target, in response to thrombin and vascular endothelial growth factor (129). Although 

kinetics demonstrated histone H3 dephosphorylation coincided with DUSP1 expression, 

similar results from Dusp1 deficient mouse embryonic fibroblasts do not support a 

DUSP1-dependent mechanism of action (130). 

Typically, MKPs are expressed at low levels basally and up-regulated following 

exposure to stimuli as an immediate early or delayed early response gene (131, 132). 

Subsequent modulation by MAPKs, such as ERK, forms an autoregulatory feedback loop 

for MAPK signaling (133). ERK phosphorylation of DUSP1 at serine 359 and 364 has 



	   13	  

been shown to increase protein stability, as a mechanism of negative feedback control 

(134, 135). Alternatively, ERK phosphorylation at residues serine 296 and 323 recruit 

ubiquitin ligases to enhance DUSP1 degradation (136-138). DUSP1 has also been shown 

to be acetylated by p300 acetyltransferase on lysine 57, following Toll-like receptor 4 

(TLR4) stimulation (138). Due to its close proximity to the KIM, substrate specificity for 

p38 is enhanced, increasing its negative feedback effect (139).  

 In summary, MAPK regulation by MKPs depends on a number of factors 

including spatial localization and cellular shuttling of MAPKs, substrate MAPK 

concentration, temporal delays in transcriptional feedback, and other post-translational 

modifications. The unique properties of MKPs place them as central coordinators of 

MAPK signaling and crosstalk with other pathways. Understanding these regulatory 

mechanisms will enable more sophisticated targeting of deregulated pathways in disease.  

 

Phenotype of Dusp1 deficient mice 

When first developed, Dusp1 deficient mice were reported to have no overt 

phenotype, with no differences in cellular proliferation between primary embryonic 

fibroblasts from wild-type or Dusp1 deficient animals (140). Between wild-type and 

knockout littermates, no differences were readily detected during development or in 

adulthood within the neurological, cardiac, endocrinological, and hematological organ 

systems (141).  Subsequent studies have identified an important role for Dusp1 in 

regulation of key cellular processes in these organ systems in pathologic states, detailed 

below.  
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Numerous groups have identified a crucial role for DUSP1 as a negative regulator 

of innate immunity, in models of infection, sepsis, periodontal disease, and arthritis (142-

147). Challenges with endotoxin have demonstrated Dusp1 deficient mice are 

significantly more susceptible to immune activation, with increased leukocyte infiltration, 

severe hypotension, and increased mortality (141-144, 148, 149). In a periodontal model, 

Dusp1 deficient mice developed more severe bone loss with increased inflammatory 

infiltrate and osteoclast formation (150), reversed with adenoviral transfer of Dusp1 into 

the tissues (151). In these models, macrophages from knockout mice express elevated 

levels of cytokines, chemokines, and inflammatory enzymes. In a model of collagen-

induced arthritis, Dusp1 deficient mice displayed increased disease incidence, earlier 

disease onset, and accelerated disease progression, associated with increased serum TNF-

α and IL-6 levels as well as increased inflammatory cell infiltrate and osteoclast 

formation (141, 152).  

In models of Escherichia coli sepsis, Dusp1 deficient mice had more severe 

inflammatory responses with increased mortality but also had impaired bacterial 

clearance (153). Other models of infection include polymicrobial periotonitis (154) and 

pulmonary infection with Chlamydophila pneumoniae (155), which yielded similar 

results. Impaired clearance may be due to excess production of the anti-inflammatory 

cytokine interleukin-10, inhibition of which relieved splenic bacterial load by 

neutralizing antibody or on Dusp1/Il10 double knockout mice in the case of Escherichia 

coli sepsis (153). Dusp1 deficient mice challenged with two strains of the gram-positive 

bacterium Staphylococcus aureus showed no difference in mortality or bacterial burden 
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(156). However, heat-killed bacteria yielded enhanced inflammatory response and 

mortality.  

Additional studies have shown that Dusp1 deficient mice are resistant to diet-

induced obesity, with increased MAPK activity in both skeletal muscle and white adipose 

tissue (157). Recently, JNK activity in macrophages was shown to be necessary for 

insulin resistance induced by high-fat diet, with macrophage-specific JNK deletion 

protecting mice from obesity-induced insulin-resistance, macrophage infiltrate, and pro-

inflammatory polarization (158).  

Few studies have examined the effects of increased Dusp1 expression in animals. 

Constitutive cardiac transgenic mice expressing 4-fold higher levels of Dusp1 die within 

the first two weeks of life in the absence of developmental hypertrophy, whereas mice 

with 2-fold higher levels survive with only moderate cardiac morphology, as determined 

by histology and echocardiography (159).  

Given the phenotype of Dusp1 deficient mice with normal development and 

fertility, it suggests phosphatases are capable of compensating for Dusp1 during 

development. The question remains what compensatory mechanisms are in play and why 

they fail to do so during stress.    

 

Regulation of inflammation by DUSP1 

 The initiation of an inflammatory response can occur when components of the 

bacterial cell wall, such as LPS, engage with host immune cells via Toll-like receptors. 

Resulting activation drives the transcription of pro-inflammatory cytokines through 

activation of NF-κB and the MAPK signaling pathways, detailed above. In addition to 
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transcriptional initiation, p38αMAPK increases mRNA stability of targets (160), via 

MAPKAPK2 (MK2) which phosphorylates RNA binding proteins such as tristetraprolin 

(TTP) (160), heterogeneous nuclear ribonucleoprotein A0 (161), and poly(A)-binding 

protein (162). These RNA binding proteins interact with AU-rich elements within the 

3’UTR of targets such as DUSP1 (163), VEGF (164), and MMP (165, 166), targeting 

them for decay in the absence of an activating stimulus. Activation of toll-like receptors 

also drives DUSP1 expression through the adaptor molecules myeloid differentiation 

factor 88 (MyD88) and toll-interleukin 1 receptor (TIR) domain-containing adaptor 

inducing IFN-β (TRIF) in macrophages (144). As an early response gene, DUSP1 is 

crucial to quell the production of inflammatory cytokines in a timely manner, 

summarized in Figure 1-2. 
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Figure 1-2. DUSP1/MKP-1 negatively regulates inflammatory cytokine production. In 
response to TLR4 activation, signaling cascades induce the phosphorylation of p38 and 
JNK MAPK to stimulate production of inflammatory cytokines and other mediators. The 
induction of DUSP1/MKP-1 dephosphorylates MAPKs to inhibit this process by two 
mechanisms: decreasing transcriptional activation and inhibiting MK2-dependent 
increases in mRNA stability. Adapted from Li et al. 2012 (167). 

 

Glucocorticoids exert an anti-inflammatory effect in macrophages, in part, 

through DUSP1 inactivation of p38 MAPK (168, 169). The upstream region of the 

DUSP1 gene contains functional glucocorticoid response elements at -1.3kb and -4.6kb, 

which function alongside p300 to initiate transcription after glucocorticoid stimulus (82, 

170). In vitro treatment with dexamethasone induces DUSP1 expression, initially 
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identified by microarray analysis (91). Dexamethasone failed to inhibit p38 and JNK 

dephosphorylation in Dusp1 deficient macrophages and had little effect in a dorsal air 

pouch model of inflammation (171). In asthma patients, single nucleotide polymorphisms 

in the DUSP1 gene have been associated with response to inhaled glucocorticoid therapy 

(172). However, dexamethasone also exerts anti-inflammatory effects through alternative 

pathways, as some dose-dependent anti-inflammatory responses are still seen in Dusp1 

deficient animals (173).  

Despite their enhanced susceptibility to innate immune challenges, Dusp1 

deficient mice display normal thymocyte development and have no difference in total 

number or ratio of CD4+ and CD8+ T cells, compared to wild-type mice (147). However, 

T cells from Dusp1 deficient mice display impaired IL-2 release and proliferation, with 

decreased Th1 and Th17 responses following T cell receptor stimulation or exposure to 

antigen, in an influenza vaccination model (147). In a Th17-driven disease model, 

experimental autoimmune encephalomyelitis, Dusp1 deficient mice were relatively 

protected with decreased levels of IFN-γ and IL-17 in infiltrating CD4+ T cells (147). In 

an elegant chimera model, Huang et al. demonstrated Dusp1 deficiency in dendritic cells 

impaired IL-12 production and subsequent Th1 response, while enhancing IL-6 

production and promoting a Th17 response (146). Furthermore, the production of induced 

regulatory T cells was negatively regulated by Dusp1 through inhibition of TGF-β2 

production in deficient dendritic cells (146). 

 These studies demonstrate Dusp1 deficiency, through both enhanced and 

prolonged activation of its MAPK substrates, impacts the duration of inflammation in 

response to innate stimuli. In addition to prolonged inflammation, Dusp1 can also 
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regulate adaptive immunity through the alteration of secreted cytokines, which mediate 

interaction with innate cells and guide the developing immune response. 

 

Expression of DUSP1 in cancer 

As a negative regulator of MAPK signaling, DUSP1 may have a tumor 

suppressive role (123). DUSP1 gene expression has been examined in a number of 

malignant tissues and cell lines. In bladder, breast, prostate, and colon cancers, 

expression of DUSP1 gene was shown to decrease in late stage, more aggressive disease, 

with loss of DUSP1 in nearly 80% of metastatic tissues examined (174). It is unclear 

whether DUSP1 expression is serving a direct role as a metastasis suppressor or the loss 

of DUSP1 is a bystander effect. In vitro studies suggest that DUSP1 expression may 

serve key roles in curtailing filopodia formation and cell motility, in studies of ovarian 

cancer cell lines in which DUSP1 was re-expressed, although the mechanism for this 

phenotype is unclear (175). However, studies of DUSP1 expression in tumor tissues are 

mostly limited to characterization of mRNA levels by in situ hybridization and protein 

levels by immunohistochemistry. The functional role of DUSP1 in cancer remains 

undefined. 

In prostate cancer, DUSP1 mRNA expression decreases with increasing tumor 

grade (174, 176). Similarly, in lymph node metastases of prostate cancer, DUSP1 mRNA 

was absent (176). Both DUSP1 mRNA and protein have been detected in the basal cells 

of prostatic acini (174, 176). In assessing matched patient tissues, an inverse relationship 

was observed between DUSP1 expression and JNK1 activity but not ERK1 (176). Across 

all tumor grades, DUSP1 expression, both mRNA and protein, decreased following 
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hormone ablation. A later study showed similar findings of lower DUSP1 expression in 

hormone-refractory prostate compared to untreated carcinomas and benign hyperplasia 

controls (177).  

In human lobular and ductal breast carcinomas, lesions had higher levels of 

DUSP1 mRNA than the constitutive expression seen in surrounding tissue with loss of 

expression in late stage and metastatic disease (174). However, tissues with positive 

DUSP1 expression strongly correlated DUSP1 with HER2 and EGFR expression as well 

as ERK1/2 (174), which may be due in part to positive feedback regulation of DUSP1 

expression through stimulation of the Raf-MEK-ERK pathway.  

In normal bladder urothelium, DUSP1 mRNA is expressed at only very low 

levels. However, in increasing histological tumor grade, DUSP1 expression is inversely 

related, with more expression in in situ lesions than high-grade carcinomas (174). 

Another group found low DUSP1 expression, in conjunction with high JNK1 expression, 

correlated with higher tumor grade, invasion, and vascularity in human urotehlial 

carcinomas (178). In vitro chorioallantoic membrane assays with cell lines corroborated a 

relationship between low DUSP1 expression supporting JNK-mediated angiogenesis 

(178). 

Human colon adenocarcinomas show a similar pattern of DUSP1 expression 

inversely correlating with tumor histologic grade (174). In the human EB-1 colon cancer 

cell line, p53-dependent expression of DUSP1 could induce apoptosis in response to 

stress (179). In turn, DUSP1 protein inactivation of JNK could allow for the targeting of 

p53 by nonphosphorylated JNK for ubiquitiation and degradation (180).  In human 

gastric adenocarcinomas, DUSP1 expression is increased compared to control tissues 
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from healthy donors, alongside increased ERK1/2 activity (181). However, p38 and 

JNK1/2 activity were not assessed in this study.  

Compared to normal controls or benign lesions, DUSP1 protein expression is 

reduced in low-grade ovarian carcinomas. However, in high-grade lesions, DUSP1 

protein expression greatly varies, with a significant correlation with shorter progression-

free survival, but not overall survival (182). In both cancer cell lines and primary ovarian 

cancer tissues, DUSP1 gene expression was decreased compared to immortalized cell 

lines or normal ovarian control tissues, decreasing with increasing disease stage (175). In 

a xenograft model, nude mice bearing cell lines conditionally expressing DUSP1 had 

decreased tumor burden compared to control cell lines (175).  

In the work by Loda et al., minimal DUSP1 expression was detected in 

hepatocellular carcinomas by in situ hybridization (174). Another group found in DUSP1 

negative tumors, an inverse relationship with increased size and serum levels of the tumor 

burden marker α-fetoprotein compared to DUSP1 positive tumors (183). They also 

suggest DUSP1 may serve as a predictive biomarker for survival post-hepatectomy (183).  

In NSCLC cell lines, DUSP1 expression was increased compared to small cell lung 

cancer cell lines (184). However, there was no relationship between DUSP1 expression 

with other variables such as clinical or pathological stage or MAPK phosphorylation 

status. Overall, increased DUSP1 protein expression correlated with improved survival, 

based on percentage of tumor nuclei staining positive for DUSP1 by 

immunohistochemistry (184).  

Gain of DUSP1 expression has been associated with cancer progression, 

chemoresistance, and poor prognosis (123). This rise in DUSP1 expression may be 
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secondary to increased MAPK activity, as one subset of MAPK-responsive transcripts 

that are elevated in tumorigenesis. When elevated, DUSP1 protein expression can inhibit 

the apoptotic pathways initiated by chemotherapies, through targeting JNK and p38 

MAPKs (119, 185-187).  In a number of tissue contexts, it appears DUSP1 activation is 

necessary for cell survival by inhibiting pro-apoptotic p38 and JNK signaling. Despite a 

substrate preference for JNK (66), induction of DUSP1 gene expression can also occur 

through ERK or p38-dependent pathways (87, 105, 188, 189). In response to ultraviolet 

radiation, p38 activity induces DUSP1 expression to inhibit JNK-mediated apoptosis 

(105, 190). In cortical development, DUSP1 induction also represses JNK signaling, but 

in an ERK-dependent manner, to guide axonal branching (190). In untreated mesangial 

cells, ectopic expression of DUSP1 induced apoptosis. However, in the context of 

hydrogen peroxide treatment, DUSP1 had an anti-apoptotic effect, suggesting DUSP1 

may inhibit basal MAPK activity in the absence of a stress-activated MAPK target (191). 

As a member of several cellular stress-response pathways, DUSP1 expression has 

been suggested to enhance chemoresistance in some cancers (92, 192). Cisplatin is a 

mainstay in chemotherapeutic treatment of HNSCC, as a DNA cross-linking agent that 

blocks transcription and DNA synthesis (193, 194). Cisplatin treatment was shown to up-

regulate DUSP1 expression in human lung and ovarian cancer cell lines (119). Mouse 

embryonic fibroblasts from Dusp1 deficient mice were more sensitive to cisplatin-

induced apoptosis, reversed by treatment with the JNK inhibit SP600125 (119). DNA 

fragmentation was reduced in cells transduced with DUSP1 adenovirus after treatment 

with chemotherapies including paclitaxel, doxorubicin, and mechlorethamine and 

combination regimens as well as in MEFS from wild-type mice compared to Dusp1 
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deficient mice, via JNK inhibition (186). In the breast cancer cell line MDA-MB-231 

paclitaxel-induced caspase-3/7 activation was reduced in the presence of DUSP1 

expression (195). In addition to mediating apoptosis, caspases 3 and 7 can activate p38, 

ERK1/2 and JNK MAPKs through cleavage products of Mst1 (196). Other non-apoptotic 

roles for caspase-3/7 include cellular maturation, differentiation, and cytokine activation 

(197).  

Treatment of the prostate cancer cell line PC-3 with histone deacetylase inhibitor 

trichostatin A (198) and DNA methyltransferase inhibitor decitabine up-regulated 

DUSP1 gene expression (177), suggesting epigenetic regulation is responsible for 

downregulation in these cells and can be reversed with pharmacotherapy. Although 

hormone-refractory prostate carcinomas showed decreased expression of DUSP1 mRNA 

and protein, no differences were detected in untreated prostate carcinomas compared to 

benign prostate hyperplasia control tissues (177).  

Dexamethasone is a glucocorticoid with pleiotropic effects, currently used as an 

antiemetic or to reduce adverse effects or toxicity as a part of a chemotherapeutic 

regimen. Studies have shown dexamethasone treatment prior to chemotherapy with 

paclitaxel or doxorubicin protects breast cancer cells from apoptosis (91), with similar 

effects seen in cell cultures with ectopic DUSP1 expression. This effect was abrogated in 

the presence of siRNA targeting DUSP1. Surprisingly, targeting DUSP1 by RNAi 

increased JNK and ERK1/2 phosphorylation with no effect on p38 activity (92). 

Although these studies suggest DUSP1 plays a part in dexamethasone-induced 

chemoresistance in breast cancer cell lines, the mechanism is still unclear.  
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As many as half of cancer patients receive concurrent radiotherapy with 

chemotherapy (199). In HNSCC, radiation therapy can be given at curative doses for 

early stage disease as well as an adjuvant therapy for more aggressive disease. Gamma-

radiation can also induce DUSP1 expression, in vitro and in irradiated nude mice, 

resulting in ERK1/2 dephosphorylation (106, 200). Ultraviolet radiation-induced 

apoptosis can be inhibited by ectopic DUSP1 expression in the U937 human monocytic 

cell line (104), through the inhibition of JNK1 activity. However, low dose short 

wavelength UVC radiation can decrease DUSP1 gene expression in human fibroblasts 

deficient in transcription-coupled repair (201).  

Originally identified in a set of genes expressed in the G0/G1 cell cycle transition 

(78), DUSP1 has been better characterized as a negative regulator of the G0/G1transition, 

with constitutive expression blocking G1 cycle gene expression, including cyclin D1 

(175, 202, 203). Thus, it is not surprising that in several in vitro systems, DUSP1 

overexpression leads to cell cycle inhibition. Transfection of a phosphatase-dead DUSP1 

dominant-negative mutant enhanced platinum-induced cell death independent of c-Jun-

activation (185). This protective effect may be, in part, due to sequestration of JNK from 

other inactivating phosphatases to promote AP-1-mediated cell cycle progression (204).  

Conditional expression of DUSP1 in U28 and M18 ovarian carcinoma cell lines 

decreased intraperitoneal tumor growth in nude mice, compared to tumors expressing 

vector controls (175). Surprisingly, this effect was not seen in subcutaneous xenografts. 

Similarly, DUSP1 inhibition by RNAi in xenografts of pancreatic cell lines PANC-1 and 

T3M4 also resulted in delayed tumorigenicity in nude mice (205). DUSP1 knockdown 

also impaired anchorage-independent growth of these cell lines in soft agar assays (205). 
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Similar results were seen in transfected cell lines A2780 and UCI101 (175). DUSP1 has 

also been implicated in expression of the melanocyte-specific transcription factor 

Microphthalmia. When overexpressed, DUSP1 rescues Microphthalmia from ERK-

mediated degradation to enhance melanocyte differentiation (206), suggesting induction 

of DUSP1 expression may enhance tumor control, in part, through promoting 

differentiation. The functional impact of loss or gain of DUSP1 expression on 

differentiation and cell cycle progression likely varies across tumor tissues.  

As previously discussed, DUSP1 mRNA and protein are increased in the presence 

of hypoxia or ischemia in a number of systems. Response to VEGF and thrombin 

treatment is reduced in Dusp1 deficient aorta sections, suggesting a supportive role of 

Dusp1 in endothelial sprouting (207). However, in tumor cells, low levels of DUSP1 

expression may promote angiogenesis through p38- and JNK-mediated chemotaxis and 

VEGF response (208, 209). When induced, DUSP1 can inhibit HIF-1 activity through 

inactivation of ERK (114) by reducing phosphorylation of the cofactor p300 (115), an 

acetyltransferase (210). Studies of stress-induced transcriptional activation of DUSP1 

suggest a role of chromatin remodeling through histone H3 phosphorylation and 

acetylation (87), but a clear mechanism has yet to be defined.  

In summary, these studies suggest DUSP1 expression is deregulated in human 

malignancies. In several but not all tumor tissues, DUSP1 expression is lost with disease 

progression and is associated with advanced stage and decreased survival. A number of 

cellular processes, including differentiation, cell cycle progression, and anti-apoptotic 

signal can be altered by modulating DUSP1 levels. However, the functional impact of 

these changes is unclear and warrants further investigation. 
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1.4 Cancer-associated inflammation 

The ability of inflammatory conditions to promote tumor progression has been 

observed in a number of malignancies. These associations include hepatitis infection in 

hepatocellular carcinoma, asbestos and silica exposure with lung carcinoma, 

Helicobacter pylori infection with gastric carcinoma, and Schistosomiasis with bladder 

carcinoma (211-215). In these situations, inflammation occurs initially as a protective 

measure against pathogen exposure or a foreign irritant. As immune cells are recruited, 

an inflammatory response develops with release of cytokines, chemokines, and reactive 

oxidants. Many of these mediators, highly expressed in cases of dysregulated 

inflammation, have been shown to promote tumor growth and invasion, enhance 

mutagenesis, and increase angiogenesis and lymphangiogenesis (216). As such, these 

inflammatory mediators not only support tumorigenesis but may also promote tumor 

progression.  

 

Inflammatory signaling pathways activated in cancer 

The Toll-like receptor family contains highly conserved transmembrane proteins, 

which recognize both microbial products and endogenous molecules released during cell 

death (217). As a first line of defense, these receptors on immune cells activate signaling 

pathways crucial for activation of innate immunity and following induction of adaptive 

immunity (218, 219). TLRs are also expressed on cancer cells, where they may promote 

cell growth, enhance survival and resistance to cytotoxic stressors (217, 220). Previous 
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reports have identified an association between TLR4 expression and HNSCC 

progression, through induction of IL-6, IL-8, VEGF, and GM-CSF (221, 222). Treatment 

of HNSCC cell lines with lipopolysaccharide (LPS) enhanced cell proliferation, 

migration, invasion, and cytokine production (223). Aside from LPS, other endogenous 

ligands for TLR4 include S100A and HMGB1 (217, 224).  

Downstream of the TLR pathway, through adaptor molecule MyD88, NF-κB can 

be activated in both immune and tumor cells to drive expression of inflammatory 

cytokines, prostaglandin synthase enzymes, pro-angiogenic factors, and adhesion 

molecules, as well as pro-survival anti-apoptotic genes. NF-κB is a key regulator of 

innate immunity and inflammation, with dysregulation of NF-κB pathways often 

observed in many cancers (225). The family is composed of NF-κB1 (p105/p50), NF-

κB2 (p100/p52), RelA (p65), and RelB, inactivated in a complex with inhibitor-κB (IκB) 

proteins within the cytoplasm. Upon stimulation, kinase cascades phosphorylate IκB, 

leading to its ubiquitination and proteasomal degradation. The released dimers translocate 

to the nucleus to enact target gene transactivation (226). 

A number of studies have demonstrated that NF-κB activity promotes tumor 

initiation and progression within the lower gastrointestinal tract and liver (225, 227, 228). 

For example, specific inhibition of NF-κB activity within leukocytes, through myeloid-

specific IκKβ deletion, protected animals from colitis-associated cancer (227). MAPK 

cross-talk can occur through MEKK1 activation of IκBα kinase, leading to the 

phosphorylation and degradation of IκBα. The kinase can also be phosphorylated by 

JNK, also targeting it for polyubiquitination and degradation, leading to the activation of 

the NF-κB signaling pathway (229). Blocking NF-κB function in HNSCC results in 
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decreased IL-6 mRNA expression and secretion as well as reduced tumor growth (230, 

231). Inhibition of p65, activating kinase IKK1 or IKK2, and expression of dominant 

negative mutants of IκBα have also demonstrated the pro-survival pro-tumorigenic 

function of this pathway (230, 232).  

Prostaglandin E2 (PGE2) has been shown to be increased in HNSCC tissues. This 

secreted factor promotes tumor growth, inhibits apoptosis, and enhances tumor cell 

invasion, metastasis, and supports angiogenesis (233). Synthesis of PGE2 is regulated by 

the rate-limiting cyclooxygenase (COX) enzymes. Of the two isoforms, COX-2 is up-

regulated in inflammation as well as premalignant and malignant tissues, as a target gene 

of both NF-κB and MAPK pathways. COX-2 has been shown to be overexpressed in 

both oral premalignant lesions as well as HNSCC, with its expression correlated with 

increased invasiveness and angiogenesis (234). In vitro treatment of cell lines of oral 

squamous cell carcinoma, the most common subtype of HNSCC, reduced cellular 

proliferation and expression of matrix metalloproteases (235). However, clinical trials to 

inhibit cyclooxygenase activity to reduce oral leukoplakia have not been effective (236, 

237). A trial with the COX-2 inhibitor celecoxib also failed to demonstrate reduction in 

oral premalignant lesions, with decreased interest as concerns for cardiotoxicity arise 

(236). Early studies of 25-hydroxyvitamin D3 suggested treatment of HNSCC patients 

could impair the recruitment and development of immunosuppressive CD34+ cells within 

the tumor, yet no effect on plasma IL-1β, IL-6, or TGF-β was observed (238).  

 Growing evidence supports the pro-tumorigenic role of inflammation in many 

malignancies, including HNSCC. TLR signaling pathways drive production 

inflammatory mediators, which contribute to disease development and progression, in 
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part through MAPK activation. Thus, there is a need to understand the potential roles of 

MAPK signaling and phosphatase regulation in controlling chronic inflammation-

mediated tumorigenesis as well as anti-tumor immunity. 

 

The HNSCC tumor microenvironment  

Malignancies develop in a multi-factorial process, resulting from the interaction 

of genomic alterations and altered gene expression within the context of a tumor-

supportive microenvironment. The tumor microenvironment is composed of resident 

stromal cell populations, such as fibroblasts and endothelial cells, but also infiltrating 

immune cells, such as macrophages, lymphocytes, natural killer (NK) cells, dendritic 

cells (DCs), eosinophils, and neutrophils (239-241). The relationships between 

inflammatory cells and cancer are complex, with great variability among tumor types, 

tissue sites, and other factors within the microenvironment. Understanding these 

relationships and how they support anti-tumor immunity, enhance disease progression, or 

generate a heterogeneous commixture of the two remains an avenue for exploration.  

 In HNSCC patients with lymph node metastases, there were significantly 

decreased numbers of tumor-infiltrating CD8+ T cells (242). One mechanism of evading 

the adaptive immune system is the secretion of gangliosides by tumor cells which serve 

to down-regulate expression of major histocomptability complex I by T cells (243). The 

secretion of Fas ligand to induce apoptosis in T cells has also been proposed to be another 

mechanism of avoiding cytotoxic killing (244). Intratumoral CD8+ T cells within HNSCC 

also have increased expression of programmed death-1 (PD-1) (245), a signal for immune 

checkpoints to inhibit T cell activation, through interaction with PD-1L, found on 
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HNSCC cells (246). Within HNSCC tissues, immune cell infiltration occurs mostly 

within the underlying stroma, with increasing levels of Foxp3+ T regulatory cells in later 

stages of disease (247). 

In addition to T cells, innate immune cells are powerful players within the tumor 

microenvironment. Dendritic cells are highly specialized antigen-presenting cells, able to 

stimulate adaptive immune T cell responses. In the context of cytokines such as TGF-β 

and IL-10, they can also promote the development of an immunosuppressive environment 

by driving regulatory T cell differentiation (248, 249). In many solid tumors, the majority 

of infiltrating immune cells is comprised of tumor-associated macrophages (TAMs) (240, 

250, 251). Although macrophages have the potential to inhibit tumor progression and 

enhance anti-tumor immunity, TAMs often express factors that both support tumor 

progression directly and also suppress the anti-tumor response. In breast, bladder, and 

ovarian carcinomas, TAMs display a skewed pro-tumor phenotype (252-254). M1-

polarized macrophages produce the pro-inflammatory cytokines IL-12, IL-23, and IFN-γ 

(255). M2-polarized macrophages produce cytokines including IL-10 and TGF-β to 

promote wound healing and angiogenesis. In HNSCC, infiltrating TAMs seem to closely 

resemble the M2 phenotype and in high levels, correlate with increased tumor stage and 

lymph node involvement and extracapsular spread (256-258).  

 

Inflammatory cell recruitment and activation 

Macrophages infiltrating the tumor are derived from monocytes in circulation that 

home to the tumor site and differentiate (254, 259). Chemokines activate the migratory 

response of hematopoietic cells in normal trafficking to sites of inflammation and also for 
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homeostatic migration to lymphoid organs (260, 261). Chemokine receptors, in turn, may 

facilitate a number of processes necessary for metastasis including endothelial 

attachment, cell migration and extravasation, angiogenesis, and pro-proliferative and 

survival signaling (262).  

 CSF-1 is crucial for hematopoiesis and myeloid cell development (263). In 

addition to enhancing monocyte recruitment, it may act secondarily by supporting 

subsequent differentiation into macrophages at the tumor site (264). Although CSF-1 has 

the ability to activate macrophages, promoting phagocytosis and release of cytotoxic 

products, its ability to promote tumor progression suggests a dual role, possibly for its 

secreted rather than membrane-bound form (265). Members of the TGF family have also 

been suggested to participate in monocyte recruitment to tumors. These proteins may 

play a number of roles, regulating the functions of epithelial cells, endothelium, as well 

as immune cells. TGF-β1 in HNSCC was shown to enhance peripheral blood monocyte 

migration and their production of proangiogenic factors, such as IL-8 and vascular 

endothelial growth factor (VEGF) (266, 267). Genetic deletion of TGF-β signaling in a 

mouse model of chemical carcinogenesis in the skin resulted in reduced TAM infiltration 

(268).  

The chemokine C-X-C motif ligand (CXCL) 12 (CXCL12) and chemokine C-X-

C motif receptor (CXCR) 4 (CXCR4) have been identified in HNSCC tissues with some 

associations with poor survival (269-271) and lymph node metastases (271, 272). Interest 

in CXCR4 antagonists as inhibitors of tumor angiogenesis and metastases continues with 

promising results from animal studies (271, 273). A key to unlocking potential 

therapeutic targets in these chemokine networks will be an understanding of the 
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regulatory pathways driving their expression and their function within the tumor 

microenvironment. 

 

Roles of macrophages in cancer 

Differentiated cells of the myeloid monocyte-macrophage lineage display a broad 

diversity with extensive plasticity among phenotypes, which guide the functional 

outcome of interactions with immune cells (274). TAMs constitute the predominant 

leukocyte population within the tumor microenvironment that drives the inflammatory 

response. Based on phenotypic marker expression and functional properties, TAMs 

closely resemble M2-polarized macrophages with some distinctions (253, 275). Focusing 

on M2-polarized cells reveals sub-categories of macrophages, which can drive a 

predominantly T helper 2 response, T regulatory cell response, or B cell response via 

immune complex and LPS stimulation	  (274). 

Within the tumor microenvironment, a number of factors, including IL-10 and 

TGF-β, promote the differentiation of recruited monocytes toward M2-polarized 

macrophages (252, 276). TAMs enhance malignancies through secretion of cytokines, 

growth factors, matrix proteases (277-279), and pro-angiogenic growth factors and 

chemokines (278, 280). In addition, accumulation of TAMs within regions of hypoxia 

promotes a pro-angiogenic switch in those cells (280). Metabolic changes, such as tumor-

secreted lactic acid, can also promote induction of the IL-23/IL-17 inflammatory pathway 

in TAMs, limiting induction of anti-tumor IL-12/Th1 responses (281). TAMs and 

myeloid-derived suppressor cells (MDSCs) themselves express a large repertoire of 

immunosuppressive mediators which inhibit antitumor immunity by targeting cytotoxic T 
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cell activation, as well as further promoting the development of regulatory T cells and 

enhancing M2 polarization (282-285). 

 

Cytokines, chemokines, and inflammatory mediators 

Immune cells impact tumor progression through the release of soluble factors to 

support angiogenesis, tumor cell proliferation, and tissue remodeling (250, 252, 286, 

287). In addition, immunosuppressive effects of these inflammatory mediators inhibit 

potential anti-tumor responses from cytotoxic T lymphocytes, NK cells, macrophages, 

and neutrophils, skewing the immune phenotype to a pro-tumor response (286, 288). 

Chemokines such as IL-8 and CXCL1 recruit neutrophils, monocytes, and endothelial 

cells to promote the inflammatory response as well as local angiogenesis, enhancing local 

invasion and metastasis (289). Chemokines also attract MDSCs, immature myeloid-

lineage cells that have been shown to be important effectors of angiogenesis (282, 290). 

Signaling from these secreted growth factors and other mediators initiate signal 

transduction pathways which can further promotes malignant transformation, such as the 

MAPK, NF-κB, and PI3K/Akt pathways (289).  

By these mechanisms, altered cytokine, chemokine, and growth factor expression 

influences the development of a number of cancers, including HNSCC (291, 292). 

Factors such as IL-1α, IL-6, IL-8, CXCL1, GM-CSF, and VEGF have been identified 

both in secretions from HNSCC cell lines, from within tumor samples, and also in patient 

sera (230, 231, 293). For a number of these secreted factors, increasing levels have been 

associated with disease progression and recurrence, with decreases associated with 

therapeutic response (231). IL-6 has been shown to correlate with poor prognosis in 
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HNSCC (294), in part through induction of VEGF and an invasive phenotype in tumor 

cells (295). Whether targeting these secreted mediators will have a beneficial effect on 

disease progression requires further investigation. 

 

Roles of interleukin-1ββ  in cancer biology 

 The interleukin-1 family contains IL-1α and IL-1β members that exert potent pro-

inflammatory effects in a pleiotropic manner, produced by macrophages in response to 

inflammatory stimuli. Located on chromosome 2, this gene family produces the pro-

inflammatory cytokines IL-1α and IL-1β, in addition to the antagonist, interleukin 1-

receptor antagonist (IL-1RA).  The agonist members, IL-1α and IL-1β, activate an 

inflammatory response through the IL-1 receptor (IL-1R), but also induce the expression 

of a panel of inflammatory molecules across a diverse panel of stromal and immune cells. 

Low levels of IL-1α expression within healthy cells, released during necrosis may 

activate immune responses (296), through binding IL-1RI on immune surveillance cells, 

bearing MHC class I, B7.1, B7.2, L-selectin, and NKG2D ligands (297, 298). However, 

IL-1β expression is tightly controlled at multiple regulatory points and is only secreted in 

the presence of inflammatory stimuli.  

Genetic knockout mice lacking IL-1β are protected from B16 local and lung 

metastases (299). In models of carcinogen-induced tumorigenesis, both tumor and 

immune cell-derived IL-1β contribute to enhanced tumor cell adhesion and invasion, 

increased angiogenesis within the microenvironment, and local immune suppression 

(300). In prostate cancer, IL-1β was identified as a macrophage-secreted factor with the 

ability to alter androgen receptor signaling modulators to enhance hormonal therapy 
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resistance (301). In human studies, IL-1β polymorphisms were associated with increased 

risk of gastric carcinoma (302). In transgenic mice, expression of human IL-1β within 

stomach tissue generated spontaneous gastric inflammation and cancer, associated with 

the recruitment of MDSCs (303).  

IL-1β has been well characterized as a pro-metastatic factor (304, 305) and is one 

of a number of secreted factors increased in progressing or resistant oral tumors (306, 

307). In HNSCC cell lines, IL-1β exposure promoted epithelial-mesenchymal transitions 

through the up-regulation of Snail, proposed to occur through COX-2 activation (308). In 

oral keratinocytes, the induction of Snail expression was shown to increase pro-

inflammatory cytokine expression (309), generating a cycle of tumor-promoting 

inflammation. Although previous reports have identified IL-1α as a constitutively 

expressed cytokine in a panel of HNSCC cell lines, IL-1β secretion was not detected 

(310), supporting the role of stromal cells as a cellular source of this cytokine in HNSCC. 

Expression of IL-1β is tightly regulated at both the mRNA and protein level. Like 

other early response cytokine genes, IL-1β mRNA can be regulated post-transcriptionally 

through AU-rich elements (AREs) within its 3’ untranslated region (UTR) (311). The 

precise interactions of specific RNA binding proteins and the IL-1β 3’UTR and whether 

other RNA binding factors such as miRNAs are involved in this process have not yet 

been addressed. In addition to post-transcriptional regulation, IL-1β is also regulated 

post-translationally by inflammasome activation. All members of the NLR (nucleotide 

binding, lots of leucine-rich repeats containing) gene family contain a nucleotide-binding 

domain, a leucine-rich repeats (LRR) domain in the C-terminus, and an effector domain 

in the N-terminus, such as CARD or PYRIN (312). In activation complexes, these 



	   36	  

proteins are key to host responses to pathogen and damage-associated molecular patterns 

(313, 314), including viral DNA (315) and RNA (316), extracellular ATP (317), and 

reactive oxygen species (318). Following activation, the NLR proteins assemble a 

multimeric protein complex, the inflammasome, to cleave pro-caspase-1 into its mature 

form, which in turn cleaves the 36 proform of IL-1β and IL-18 into their mature secreted 

forms (313).	  

Within the NLRP family, genetic variants and experimental deletions have 

identified a regulatory role for these proteins in colorectal carcinogenesis (319-322). 

However, discordant roles for NLRP family members have been identified by different 

research groups. In murine models, deficiencies in Nlrp3 and Casp1 were shown to 

reduce severity of colitis-associated cancer (323, 324), whereas mice lacking Nlrp3, 

Nlrp6, Nlpr12, Pycard, and Casp1 were shown to be more susceptible to the model 

compared to wild-type animals(319, 321, 325-328). Interpretation of results from bone 

marrow-reconstitution experiments should be taken in consideration that previous 

characterizations of engraftment have shown particularly poor reconstitution of intestinal 

lamina propia and intraepithelial lymphocytes despite high splenic reconstitution (329). 

Thus, these discrepancies may be due, in part, to differing roles of inflammasome 

signaling in immune cells versus intestinal epithelium (325), as well as the potential 

impact of varying microflora among animals from different institutions. 

Like, other cytokines, IL-1β expression is deregulated in human cancers. As a 

early pro-inflammatory mediator, IL-1β initiates a downstream cascade of inflammatory 

molecules to potentiate its effect, activating stromal cells, other immune cells, and also 

tumor cells. With increasing interest in the blockade of IL-1β signaling in cancer therapy, 
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the need remains to characterize cellular sources of IL-1β within the tumor and 

surrounding microenvironment and delineate the regulatory mechanisms involved for the 

development of efficient therapeutic targets. 
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1.5 Hypothesis & Specific Aims 

DUSP1 has been shown to be an important regulator of innate immune activity, with 

exuberant over-production of inflammatory cytokines in Dusp1 deficient animals 

following immune challenge. Although levels of DUSP1 expression have been shown to 

be lost in a number of human cancers with advanced tumor stage, whether this change in 

DUSP1 expression is directly related to disease progression or simply a bystander effect 

of altered cancer signaling pathways is unknown. We hypothesized that DUSP1 is a 

negative regulator of tumor-promoting inflammation in head and neck squamous cell 

carcinoma. This hypothesis was tested with the following specific aims.  

Specific Aim 1 addressed how Dusp1 deficiency affects tumor progression in an 

animal model. Wild-type and Dusp1 deficient mice were challenged with 4-

nitroquinoline 1-oxide (4NQO) to initiate the development of oral squamous cell 

carcinoma. The effects of Dusp1 deficiency were examined by assessing disease onset, 

tumor burden, and histological tumor grade. To understand how Dusp1 alters the tumor 

microenvironment, Nanostring analysis and qPCR arrays were performed to quantitate 

the mRNA expression levels of inflammatory mediators in wild-type and knockout tumor 

tissues. Flow cytometry analysis further assessed the numbers of innate and adaptive 

immune cells present within the spleen and draining lymph nodes from tumor-bearing 

wild-type and knockout mice. To determine whether Dusp1 deficiency in the 

hematopoietic compartment was sufficient to recapitulate the enhanced disease 

phenotype observed, bone marrow chimeras were generated from wild-type and Dusp1 

deficient mice, challenged with 4-nitroquinoline 1-oxide, and monitored for disease 

progression. Lastly, tumor progression was assessed using a syngeneic subcutaneous 
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tumor cell injection in wild-type and Dusp1 deficient mice using three different cancer 

cell lines, with enhanced tumor growth in Dusp1 deficient mice inhibited by 

intraperitoneal injections of the p38 inhibitor SB203580.  

Specific Aim 2 addressed the mechanism by which Dusp1 regulates inflammation 

in macrophages. The effect of Dusp1 deficiency on macrophage polarization to M1 or 

M2 phenotypes was examined in vitro. Wild-type and Dusp1 deficient wild-type bone 

marrow-derived macrophages were challenged with inflammatory stimuli including 

lipopolysaccharide and tumor cell-conditioned media to assess expression of Il1b mRNA. 

Total levels of Il1b mRNA and primary mRNA were assessed at steady-state levels by 

qPCR. Rates of mRNA decay were quantified by qPCR following actinomycin D 

treatment. Lastly, the effects of Dusp1 deficiency on inflammasome activation and IL-1β 

secretion were assessed by western blotting and ELISA from primary macrophages. 

Specific Aim 3 addressed how DUSP1 expression is altered in human head and 

neck squamous cell carcinoma. The levels of DUSP1 mRNA and protein were examined 

in matched tissues from human head and neck squamous cell carcinoma tissues and 

adjacent non-tumor tissues. In addition, the mRNA and protein expression levels of IL-1β 

were quantified in these samples. Publicly available datasets from human head and neck 

squamous cell carcinoma tissues were also examined for significant alterations in DUSP1 

expression and IL-1β, identified in the animal model in Specific Aim 1. 
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CHAPTER 2. Materials and Methods 

 

2.1 Generation of animals 

All animal studies were carried out in accordance with NIH guidelines, in 

compliance with the Guide for the Care and Use of Laboratory Animals, and protocols 

were approved by the Medical University of South Carolina (MUSC) Institutional 

Animal Care and Use Committee. Dusp1-/- (KO) and Dusp1+/+ (WT) mice, on a C57/129 

mixed genetic background were obtained through a Material Transfer Agreement from 

Bristol-Myers Squibb (NY) and bred at MUSC. Every five generations, homozygous 

wild-type and knockout breeder pairs were replaced with littermates from Dusp1-/+ 

heterozygous breeder pairs to prevent genetic drift. Litters from these C57/129 

background mice were used for all experiments with the exception of allograft and 

chimeric experiments, which necessitated a C57BL/6 genetic background. For allograft 

and bone marrow transplants, Dusp1-/- mice were backcrossed to a C57BL/6NCrl 

background (Charles River Laboratories) for ten generations, alternating male and female 

C57BL/6 mates. Homozygous Dusp1-/- and Dusp1+/+ breeder pairs for colony 

maintenance were established from heterozygous Dusp1-/+ breeder pairs. Every five 

generations, Dusp1-/- mice were backcrossed with C57BL/6J mice (The Jackson 

Laboratory) to prevent genetic drift. 
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2.2 Carcinogen-induced oral cancer model 

Male and female mice aged 6-8 weeks old and weighing 16-22g were housed in 

appropriate sterile filter-capped cages and fed and given water ad libitum. A stock 

solution of 4-nitroquinlone 1-oxide (4NQO) (Sigma-Aldrich) dissolved in propylene 

glycol (4mg/mL) was diluted in the drinking water to a final concentration of 25µg/mL 

for mice on a mixed genetic background or 50µg/mL for mice on a C57BL/6 genetic 

background.  4NQO concentration was decreased for mice on the mixed C57/129 genetic 

background, compared to C57BL/6, due to enhanced toxicity in an initial pilot study. 

These results are in accordance with previous reports that mice on a C57BL/6 genetic 

background are more resistant to other models of carcinogenesis. Drinking water was 

protected from light exposure and prepared weekly. Animals were given either water 

with propylene glycol vehicle controls or 4NQO in the drinking water for 16 weeks, after 

which all cages were reverted to regular water and monitored until week 28-32. Animals 

were euthanized at week 28 (C57BL/6 background) or 32 (C57/129 background) or when 

greater than 20% weight loss was documented. Full autopsies were performed, and 

tissues were immediately collected in 10% buffered formalin for histology or snap frozen 

for homogenization. All animals were monitored daily for general behavioral 

abnormalities and any sign of toxicity or illness. 

Weekly examinations were performed under anesthesia [3-5% isoflurane mixed 

with oxygen] to document pathologic changes within the oral cavity. Images were 

recorded using an Olympus SZ40 Stereo Zoom Microscope at 6.7x magnification and 
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Hitachi KP-D20B CCD color camera, and disease onset was determined by a blinded 

observer. Survival rates were estimated from the first date of visible oral tumor 

formation, using the Kaplan-Meier method, and differences between the curves were 

compared using the log-rank test. 

 

 

2.3 Bone marrow transplantation 

Male and female mice aged 8-10 weeks old and weighing 18-24g were used to 

generate bone marrow chimeras through lethal irradiation and hematopoietic 

reconstitution by bone marrow transplant. The day before irradiation of recipient mice, 

access to food but not water was restricted to limit radiation-induced gastrointestinal 

toxicity. Mice received 2 doses of 550 cGy, spaced 4 hours apart, from a JL Shepherd 

Model 143 137 Cesium irradiator. The following day, irradiated mice received 200µL 

injections of 2 x 106 red blood cell-depleted whole bone marrow in phosphate-buffered 

saline (PBS) through the lateral tail vein.  Animals were monitored for signs of radiation-

induced illness and given access to soft gel-based diets for a week following treatment. 

At 6-8 weeks post-transplant, engraftment was assessed by flow cytometry analysis of 

peripheral blood for the markers CD45.2 from Dusp1-/- and Dusp1+/+ mice and the 

congenic marker CD45.1 from C57/Ly5.1 mice (NCI, Frederick). Successful engraftment 

was determined as greater than 80% expression of the donor marker. After validation, 

animals began 4NQO treatment at 50µg/mL for 16 weeks, as described above, followed 

by 12 weeks of regular water. Weights were monitored as a surrogate for disease burden 

throughout the model. 
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2.4 Subcutaneous syngeneic tumor model 

Male and female Dusp1-/- and Dusp1+/+ mice on a C57BL/6 genetic background 

aged 8-10 weeks old and weighing 18-24g were implanted with syngeneic cancer cell 

lines. Animals were anesthetized by isoflurane inhalation (3-5% mixed with oxygen), and 

fur on the dorsal flank was removed with an electric razor. EO771, TRAMP-C2, or 

B16F10 tumor cells were subcutaneously injected in 100 – 200µL volumes of PBS over 

the right flank using 27 gauge x ½” tuberculin needles. After injections, animals were 

monitored daily for signs of illness. Tumor progression was monitored by assessing 

tumor volume, calculated as (length x width2)/2 with digital calipers every other day. 

Animals were sacrificed if tumor volume exceeded 1500mm3 or tumors developed 

extensive non-healing ulcerations. During tissue collection, tumor tissues were split and 

either fixed in 10% buffered formalin for 48 hours or snap frozen in liquid nitrogen. 

Animals were also examined for any signs of metastatic lesions or other illness. 

 

2.5 Human tissue samples 

Previously collected snap-frozen tissues from patients diagnosed with head and 

neck squamous cell carcinoma were acquired from the MUSC Hollings Cancer Center 

Tissue Biorepository in compliance with protocols approved by the MUSC Institutional 

Review Board. Tissue samples were collected fresh from the surgical pathology grossing 

room. A representative sample of the tissue sample was placed in Optimum Cutting 

Temperature (OCT) compound with the remaining tissue frozen in liquid nitrogen. Tissue 

pathology and tumor percentage within the representative frozen section was verified by 
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hematoxylin and eosin (H&E) staining by the Tissue Biorepository research pathologist. 

Non-tumor adjacent tissue was obtained from the same patient during the same surgical 

procedure and underwent the same collection procedure. The non-tumor adjacent tissue 

was also verified by H&E staining to contain no abnormal pathology. 

 

2.6 Histology 

Formalin-fixed paraffin-embedded tissues were used for histological scores and 

immunohistochemistry. Tissues were sectioned at 7µm thickness by rotary microtome 

and placed onto glass slides before drying overnight. Slides were deparaffinized in three 

five minute washes of xylene and rehydrated through three five minute washes of 100%, 

95%, and 90% ethanol before staining. Tissue sections were stained with hematoxylin 

and eosin before examination by two pathologists, blinded to experimental group. 

Histological scores were graded as normal, hyperplasia, dysplasia, in situ squamous cell 

carcinoma, or invasive squamous cell carcinoma. For tissue samples with multiple 

lesions, the most severe histological score was used for analysis. Inflammation was 

scored on a 0–4 scale (0, normal mucosa; 1, minimal inflammation (occasional scattered 

granulocytes and leukocytes); 2, mild inflammation (scattered granulocytes with 

occasional infiltrates); 3, moderate inflammation (scattered granulocytes with patchy 

infiltrates); and 4, severe inflammation (multiple extensive areas with abundant 

granulocytes and marked infiltrates), as previously described (330). For animals with 

multiple lesions of varying inflammation, the highest inflammation score was used for 

analysis. 
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2.7 Immunohistochemistry 

Tissue slides were deparaffinized and rehydrated, as described above, before 

performing antigen retrieval in ethylenediaminetetraacetic acid (EDTA) buffer (1mM 

EDTA, 0.05% Tween-20, pH 8.0) or in citrate buffer (10mM sodium citrate, 0.05% 

Tween-20, pH 6.0) at 100°C for 30min. Sections were blocked in 10% goat serum in PBS 

and incubated with the following primary antibodies in blocking buffer at 4°C overnight: 

F4/80 at 1:500, phospho-p38 MAPK, phospho-ERK1/2, phospho-SAPK/JNK (Cell 

Signaling) at 1:1000, Ki67 (Abcam) at 1:100, and isotype controls (Santa Cruz) at 

corresponding µg/mL dilutions to the primary antibody. After washing in PBS, slides 

were sequentially incubated with biotinylated secondary antibody at 1:200 and avidin-

biotin complex (Santa Cruz) at 1:1:50 before developing in 3,3-diaminobenzidine (Vector 

Labs), according the manufacturers’ protocols. Slides were washed, counterstained with 

Gill’s hematoxylin No. 2 (Sigma-Aldrich), dehydrated overnight, and transferred to 

xylene before mounting with CytoSeal mounting media (ThermoScientific).  

Staining was scored by a research pathologist, blinded to animal identification and 

experimental group. Immunohistochemistry scores were calculated by the Quick-Score 

method of multiplying the intensity coefficient and the frequency of positivity coefficient 

(331). The intensity coefficient was scored as 0 (negative), 1 (low), 2 (moderate) or 3 

(strong), and the positivity coefficient was scored based on the percentage of positively 

staining cells (0 = no positive staining, 1 = 1-19% positive, 2 = 20-39% positive, 3 = 40-

59% positive, 4 = 60-79% positive, and 5 = 80-100% positive). The resulting product was 

categorized from 0 to 5 yielding the IHC staining score as follows: 0 = negative score, 1 

= 1-3, 2 = 4-6, 3 = 7-9, 4 = 10-12, and 5 = 13-15. For F4/80+ cell counts, tumor-positive 
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fields of view were acquired at 10X magnification and quantified using Viziopharm 

acquisition and analysis software v. 4.48.201 (Hoersholm, Denmark), in a blinded 

manner, and expressed as the number of positive cells in each histologically defined area.  

 

 

2.8 Primary bone marrow-derived macrophage isolation 

Bone marrow cells were obtained from age and sex-matched 8-12 week-old 

Dusp1-/- and Dusp1+/+ mice. Animals were euthanized by CO2 inhalation, followed by 

cervical dislocation. After spraying with 70% ethanol, six bones from each mouse, 

humerus, femur, tibia, were removed and cleaned with a Kimwipe to remove muscle and 

connective tissue. Bones were sprayed with 70% ethanol and moved to a sterile cell 

culture dish. In the cell culture hood, one epiphysis was removed from each bone, and the 

bones were placed, three to a tube, cut side down, into sterile 0.5 mL tubes within a 1.5 

mL tube. The 0.5 mL tubes each contained a small hole bored using a heated 20 gauge 

needle. Bone marrow cells were flushed by centrifuging the tubes for a 5 second pulse in 

a tabletop centrifuge. Following isolation, red blood cells were lysed with ammonium 

chloride potassium (ACK) lysis buffer for 2 minutes before plating remaining cells.  

Isolated bone marrow cells were differentiated for 6-7 days in Iscove’s Modified 

Dulbecco’s Medium (IMDM, Life Technologies) or α-minimum essential media (α-

MEM, Life Technologies) supplemented with 2mM glutamine, 10% HyClone 

characterized endotoxin-free fetal bovine serum (FBS) (ThermoScientific), penicillin 

(100U/mL, Sigma-Aldrich), streptomycin (100µg/mL, Sigma-Aldrich), and 10ng/mL 

macrophage colony-stimulating factor (M-CSF, R&D Systems). During differentiation, 
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bone marrow cells were plated in untreated plastic tissue culture dishes with media 

replenishment every two days. Bone marrow-derived macrophages were released from 

culture dishes with Cellstripper solution (Cellgro) and plated the day prior to treatment. 

All inflammasome treatments were performed in serum-free IMDM supplemented with 

10ng/mL M-CSF. All other treatments were performed in complete α-MEM diluted 5-

fold in serum-free α-MEM. 

 

2.9 Macrophage polarization 

Primary bone marrow-derived macrophages were cultured, as described in section 

2.8, and plated the day prior to treatment in α-MEM with 10% FBS, antibiotics, and 

10ng/mL M-CSF. Macrophages were plated at a density of 1.5 x 106 cells in 2mL media 

in a 6-well dish. Treatments were performed for 24 hours in low serum α-MEM, 

prepared from complete media diluted 5-fold in serum-free α-MEM, containing either 

LPS (100ng/mL) and recombinant mouse interferon-γ (IFN-γ, 20ng/mL, R&D Systems) 

or recombinant mouse IL-4 (10ng/mL, R&D Systems), to polarize cells to a M1 or M2 

phenotype, respectively. Supernatants were collected and centrifuged at 1,000 x g for 10 

minutes at 4°C to remove cellular debris before analysis of cytokine expression by 

ELISA. Cell lysates were collected in protein lysis buffer, as described in in section 2.11. 

RNA was collected for qPCR analysis, as described in section 2.14. 

 

2.10 Inflammasome activation 

Primary bone marrow-derived macrophages were cultured, as described in section 

2.8, and plated the day prior to treatment in IMDM with 10% FBS and antibiotics with 
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10ng/mL M-CSF. Macrophages were plated at a density of 1 x 106 cells per 1mL media 

in 12-well dishes or 2.5 x 106 cells per 2mL media in 6-well dishes. Macrophages were 

primed with LPS (100ng/mL) from Aggregatibacter actinomycetemcomitans (strain Y4, 

serotype B), extracted by the hot phenol-water method (332), and diluted in PBS. After 

priming for 4 hours, cells were washed twice with serum-free IMDM before treatment 

with adenosine tri-phosphate (5mM ATP, Sigma-Aldrich) or nigericin (10µM, Sigma-

Aldrich) for 30 or 60 minutes, respectively, to induce inflammasome activation. 

Supernatants were collected and centrifuged at 1,000 x g for 10 minutes at 4°C to remove 

cellular debris before IL-1β detection by ELISA. Cell lysates were collected in protein 

lysis buffer, described in section 2.11. 

 

2.11 Protein isolation 

 Prior to protein collection, cell culture media was removed, and adherent cells 

were washed with PBS. Cell lysates were scraped in a 50µL volume of 

radioimmunoprecipitation assay (RIPA) buffer supplemented with phenylmethylsulfonyl 

fluoride (PMSF, 1mM), and the protease and phosphatase inhibitors cOmplete protease 

inhibitor cocktail and phosSTOP (Roche), according to manufacturer’s guidelines. 

Murine and human tissues, previously snap frozen, were thawed on ice and homogenized 

with a rotor stator homogenizer in the same lysis buffer in a 500µL volume in a 5mL 

round bottom tube. Following homogenization, tissue lysates were sonicated at 50% 

amplitude for five 1 second pulses. Cellular and tissue debris was removed by 

centrifugation at 14,000 x g for 15 minutes at 4°C and transferring the supernatant. 

Tissue samples and supernatants were filter-concentrated in a table-top centrifuge, 
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removing excess buffer and proteins smaller than 3kDa, following manufacturer’s 

protocol using a 30 minute centrifugation time (Millipore).  

 

2.12 Western blotting 

Protein samples were quantified by bicinchoninic acid assay immediately prior to 

electrophoresis. Samples from inflammasome experiments were analyzed on 15% 

acrylamide gels. All other samples were analyzed on 10% acrylamide gels. All 

acrylamide gels contained 4% acrylamide stacking phases and were prepared within 24 

hours prior to electrophoresis, using 30% acrylamide/bis solution (37.5:1), 

tetramethylethylenediamine, and ammonium persulfate (Bio-Rad). Protein samples of 30 

- 50µg were loaded into each well and electrophoresed before transfer in Towbin buffer 

onto polyvinyldiene fluoride membranes with 0.2µM pore size (Bio-Rad). Membranes 

were blocked from non-specific binding with 5% non-fat dry milk in Tris buffered saline, 

containing 0.1% Tween-20 (TBS-T), for 30 minutes. Membranes were then incubated in 

primary antibody, prepared in 5% bovine serum albumin in TBS-T, overnight at 4°C with 

gentle rocking.  

The following antibodies were used: DUSP1/MKP-1 (Millipore), caspase 1 p20 

(Millipore) and p10 (Santa Cruz), IL-1β (Abcam) at 1:500, β-actin, phospho- and total p-

38 MAPK GAPDH, phospho- and total-ERK1/2 MAPK, phospho- and total-

SAPK/JNK1/2 MAPK, GAPDH, and α-tubulin (Cell Signaling). All primary antibodies 

were used at 1:1000 dilutions unless stated otherwise and incubated overnight at 4°C with 

gentle agitation. Membranes were washed three times in TBS-T for 5 minutes before 

incubating in secondary antibodies, diluted 1:1000 in 5% non-fat dry milk in TBS-T. 
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Secondary antibodies were horseradish peroxidase-conjugated anti-rabbit and anti-biotin 

antibodies (Cell Signaling). After secondary antibody incubation for 1 hour at room 

temperature, membranes were washed five times for 5 minutes in TBS-T and incubated 

in prepared SuperSignal WestPico chemiluminescent substrate (Pierce) before exposing 

on X-ray film (ThermoScientific). Images of X-ray films were captured on a Gel Doc 

imaging systems and saved as TIFF files. 

 

2.13 Enzyme-linked immunosorbent assay 

Supernatants, previously collected with cellular debris removed by centrifugation, 

were thawed from -80°C for ELISA analysis. Single aliquots of supernatant were used to 

avoid freeze-thaw. Cytokine secretion in supernatants was detected using the Mouse IL-1 

beta/IL-1F2, IL-1RA, IL-12p40, and IL-10 DuoSet ELISAs (R&D Systems). Levels of 

IL-1β in tissue lysates and sera were detected using the Mouse IL-1β ELISA for Lysates 

(Ray Biotech). All samples were prepared in triplicate and analyzed alongside a standard 

curve, prepared in triplicate. Concentration was calculated from the standard curve using 

a 4-parameter logistic nonlinear regression model, per manufacturer’s recommendations. 

 

2.14 RNA isolation and quantitative PCR 

RNA isolation was performed using QIAprep RNeasy spin columns (Qiagen) for 

for quantitative PCR array analysis of tumor tissue lysates. Column eluents were assessed 

for RNA integrity on the Agilent Bioanalyzer using the RNA 6000 Pico chip, and only 

samples with RNA integrity > 7 were used for qPCR array analysis. TRIzol (Invitrogen) 

was used for preparation of all other samples. After addition of chloroform to TRIzol, the 
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aqueous phase was transferred, and isolated RNA was precipitated in isopropanol. All 

RNA for qPCR arrays were prepared with on-column DNase treatment, per 

manufacturer’s protocol (Qiagen). Isolated RNA was washed with 75% ethanol and 

resuspended in RNase and DNase-free water. Concentration was determined by Beer-

Lambert law, using absorbance at 260 and 280nm measured by NanoDrop 

spectrophotometer (ThermoScientific).  

Complementary DNA was prepared from 500ng of total RNA using random 

hexamers, according to manufacturer’s protocol (Applied Biosystems). Gene expression 

was determined using the following probe-primer TaqMan sets for delta-delta Ct 

calculations: Ptprc (Mm01293577_m1), Il1b (Mm00434228_m1), Cxcl1 

(Mm04207460_m1), Il12b (Mm00434174_m1), Nos2 (Mm00440502_m1), Il10 

(Mm00439614_m1), Arg1 (Mm00475988_m1), Gapdh (Mm99999915_g1), 16s rRNA 

(Mm04260181_s1), DUSP1 (Hs00610256_g1), and ACTB (Hs01060665_g1). 

Quantitation of primary Il1b mRNA was performed using the following SYBR Green 

primer pairs for delta-delta Ct calculations: Il1b exon 3 forward 5’-TGA CCT GTT CTT 

TGA AGT TGA CG-3’, Il1b intron 3 forward 5’-CCT TGG TGT TCT CTG GGG TTG-

3’, Il1b intron 3 reverse 5’-TAT CCC TTC CCG TTT GGG TT-3’, Il1b exon 4 reverse 

5’-CGA GAT TTG AAG CTG GAT GCT C-3’, Actb exon 2 forward 5’-CCA ACC GTG 

AAA AGA TGA CC-3’, Actb intron 2 reverse 5’-ATG GGA GAA CGG CAG AAG A-

3’. Samples were prepared in duplicate and amplified on the StepOnePlus PCR System 

(Applied Biosystems).  
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2.15 Quantitative PCR array 

RNA samples were prepared, as described in section 2.14, using the QIAgen 

RNeasy mini kit with on-column DNase digestion. After validation of RNA integrity on 

the Agilent Bioanalyzer RNA 6000 Pico chip, samples were prepared for qPCR array 

analysis using the RT2 Prolifer PCR array system (SA Biosciences). For each sample, 

1µg RNA was transcribed to cDNA using the RT First Strand synthesis kit and prepared 

for amplification using a SYBR Green qPCR master mix with ROX reference dye (SA 

Biosciences). Samples were amplified on the StepOnePlus PCR system (Applied 

Biosystems) using the following two arrays, Mouse MAP Kinase Signaling Pathway and 

Mouse Inflammatory Cytokine and Receptors (SA Biosciences).  

 

2.16 Nanostring 

Samples for Nanostring analysis were prepared by TRIzol extraction, as described 

in section 2.14. The nCounter analysis system (NanoString Technologies, Seattle, WA) 

was used to screen for gene expression using two specific probes (capture and reporter) 

for each gene of interest, in a custom panel. Total RNA, 250ng of each sample, was 

hybridized with customized Reporter and Capture ProbeSets according to the 

manufacturer’s instructions to directly label mRNAs with molecular barcodes without 

reverse transcription or amplification. Manufacturer probe sets were designed and 

validated for mRNA specificity to preclude the need for DNase treatment or RNA 

integrity > RIN 7 as in qPCR arrays. Hybridized samples were recovered in the 

NanoString Prep Station, and mRNA molecules were enumerated with the nCounter. For 

analysis of expression, each sample profile was normalized to the geometric mean of 4 
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reference genes, Eif4a2, Oaz1, Ncln, and Gfra2, chosen for their lowest variance among 

all experimental samples. 

 

2.17 mRNA decay 

 Primary bone marrow-derived macrophages from Dusp1-/- and Dusp1+/+ were 

cultured, as described in section 2.8, and plated the day prior to treatment in α-MEM 

with 10% FBS, antibiotics, and 10ng/mL M-CSF. Macrophages were plated at a density 

of 1.5 x 106 cells in 2mL media in a 6-well dish. Cells were treated in low serum media, 

consisting of complete α-MEM diluted 5-fold in serum-free α-MEM. Macrophages were 

stimulated with LPS (100ng/mL) for 4 hours, before the addition of ActD (5µg/mL, 

Sigma-Aldrich). Media was removed, and adherent cells were washed with PBS before 

collecting RNA by TRIzol extraction, as described in section 2.14. RNA was collected 

from cells treated with LPS for 4 hours alone, in addition to cells treated with 

actinomycin D for 15, 30, 45, 60, and 90 minutes. Relative quantification of mRNA 

expression by the 2^(-ΔΔCt) method was used to generate a semi-logarithmic curve of 

mRNA expression over time to calculate the mRNA half-life from the linear regression, 

under the assumption of first-order kinetics.  

 

2.18 Flow cytometry 

Spleens and cervical lymph nodes were isolated from tumor-bearing Dusp1-/- and 

Dusp1+/+ mice on a C57BL/6 genetic background 28 weeks after beginning 4NQO 

treatment. Organs were crushed through a 40µm nylon filter to generate a single cell 

suspension. Red blood cells from splenocyte preparations were lysed in ACK lysis buffer 
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for 2 minutes, and the concentration of remaining viable cells were counted on a 

hematocytometer prior to staining. Peripheral blood was collected from the lateral tail 

vein in 3mg/mL EDTA in PBS. The majority of red blood cells were separated in 1% 

dextran T500, and remaining red blood cells were lysed in ACK lysis buffer for 2 

minutes. Viable cells were enumerated by hematocytometer prior to staining.  

 Cells were prepared in 1x 105 – 1 x 106 cells per staining sample in PBS buffer 

containing 0.5% BSA and 2mM EDTA. Non-specific staining through Fc receptor 

binding was blocked by incubation with FcR blocking reagent (Miltenyi Biotec) for 10 

minutes on ice. Fluorescently-labeled antibodies diluted in staining buffer were added for 

an additional 30 minutes on ice. Samples were washed with staining buffer before 

resuspension in running buffer for analysis. Propidium iodide was added to each sample 

for dead cell exclusion. Samples stained for intracellular Foxp3 expression were stained 

with Fixable Viability Dye for dead cell exclusion (eBioscience). Prior to each flow 

cytometry experiment, calibration was performed, and instrument settings were adjusted 

for compensation of all necessary fluorophores using single antibody staining controls on 

the MACSQuant Analyzer (Miltenyi Biotec). 

 These murine-specific antibodies were used for staining at the following 

concentrations: CD45.1-APC (1:50), CD45.2-FITC (1:50), CD4-FITC (1:1500), CD62L-

PE (1:1000), CD69-eFluor450 (1:500), IgM-PE (1:200), IgD-eFluor450 (1:500), CD40-

APC (1:800), NK1.1-PE (1:500), CD3-FITC (1:2000), F4/80-PE (1:1000), MHCII-PE 

(1:500), PDCA-1-FITC (1:1000), CD4-FITC (1:1500), CD25-PE (1:1000), Foxp3-APC 

(1:500), rat IgG2a-APC (1:500) (eBioscience), Ly6C-FITC (1:500, Novus Biologicals), 

Ly6G-Pacific Blue (1:500, BioLegend), CD8-APC (1:10), B220-FITC (1:10), CD11b-
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APC (1:11), CD11c-APC (1:10) (Miltenyi Biotec). Intracellular staining with antibodies 

against Foxp3 or its isotype control was performed following staining with Fixable 

Viability dye and cell surface markers and incubation in permeabilization and fixation, 

according to manufacturer’s protocols (eBioscience). Flow cytometry data were collected 

from a live cell gate using either propidium iodide or Fixable Viability Dye to exclude 

dead cells. A total of 10,000 events were collected for each sample. Analysis was 

performed on MACSQuantify software (Miltenyi Biotec). 

 

2.19 Statistical analyses 

When comparing effect of genotype, a two-sample Student’s t-test was performed 

using the Satterthwaite method for unequal variances, Mann-Whitney U-test in absence 

of normal distribution, or pooled method for all other comparisons. For distributions of 

categorical scores, a Fischer’s Exact test was used. A repeated measures mixed model, 

with random intercept and time effect, was used to test effect of genotype on weight gain 

and inhibitor treatment by genotype interaction. Survival analyses (event = tumor volume 

> 1500mm3) with Kaplan-Meier estimates were performed using a log-rank test. Adjusted 

p-values using Tukey-Kramer multiple comparisons method are provided when 

comparing least square mean estimates. Analysis of human samples with matched tumor 

and adjacent tissues were assessed by paired Student’s t-test. Data analysis was 

performed using GraphPad Prism version 4.00 (GraphPad Software) with repeated 

measures mixed models using SAS 9.4; p values of < 0.05 were considered statistically 

significant. Error bars represent standard error of the mean. 
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CHAPTER 3. Dusp1 deficiency enhances tumor growth and progression. 

 

3.1 Rationale & Hypothesis 

Although the expression of DUSP1 has been shown to be deregulated in a number 

of human cancers, with expression lost or increased depending on tumor type, the 

functional impact of this phosphatase on tumor development and progression has not 

been examined. As a negative regulator of MAPK signaling, DUSP1 has the potential to 

influence a broad array of cellular functions driven by MAPK activation. Despite 

extensive characterization by in situ hybridization and immunohistochemistry, there lacks 

an understanding of how DUSP1 gene and protein expression levels alter cancer 

phenotype.  

Previous studies have demonstrated DUSP1 is a crucial component to control 

inflammation in response to acute immune challenges, such as endotoxin. More recently, 

DUSP1 has also been shown to play a role in shaping the adaptive immune response to 

bacterial and fungal pathogens. The contribution of chronic inflammation to tumor 

progression has gained recognition, especially in oral cancer, where the tissue site is 

subjected to a highly dense array of microbial products. The following studies were 

designed to test the hypothesis that Dusp1 deficiency enhances tumor growth and 

progression, using two in vivo cancer models. 
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3.2 Results 

Dusp1 deficient mice are more susceptible to carcinogen-induced oral cancer. 

To understand how DUSP1 regulates tumor development and progression in oral 

cancer, Dusp1 wild-type and deficient mice were treated with 4-nitroquinoline 1-oxide 

(4NQO) in the drinking water. As a DNA adduct-forming agent, which generates 

successive DNA damage, 4NQO mimics chronic tobacco exposure, a risk factor for 

HNSCC, resulting in progressive epithelial neoplasia that culminates in the formation of 

oral squamous cell carcinomas (Figure 3-1). The development of oral lesions was 

monitored by weekly examinations performed under anesthesia, and the first onset of 

visible oral tumors was documented. Oral tumor-free survival curves show a significant 

enhancement of disease progression, by approximately 2-3 weeks, in Dusp1 deficient 

mice (Figure 3-2). Additional tumor sites were discovered on necropsy, primarily within 

the esophagus, as previously reported (333), with a minority of Dusp1 deficient animals 

demonstrating tumor invasion in the cervical lymph nodes. Studies from our laboratory 

have identified a gender bias in Dusp1 deficient mice in other models of inflammation, as 

well as skeletal homeostasis (334) (unpublished studies). However, no difference in 

disease onset was noted between Dusp1 deficient male and female mice (n = 19 per 

group, p = 0.4163) or wild-type male and female mice (n = 18 per group, p = 0.6824) 

(Figure 3-3).  
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Figure 3-1. Induction of squamous cell carcinoma by 4-nitroquinoline 1-oxide treatment. 
Animals were treated with 4-nitroquinoline 1-oxide (4NQO), a DNA-adduct-forming 
agent, chemical structure shown, in the drinking water for 16 weeks. After 4NQO 
treatment, animals were switched to regular drinking water and monitored for the 
development of oral lesions during biweekly examinations. A representative series of 
images depict the typical progression of disease. 
 

 

4NQO in drinking water 
Vehicle control 

Regular water 

16 32 DUSP1 WT 
DUSP1 KO 
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Figure 3-2. Tumor-free survival is decreased in Dusp1 deficient animals. Following 
4NQO treatment, the development of oral tumors was monitored through biweekly oral 
examinations under anesthesia. Tumor-free survival was assessed as the time until the 
first visible oral lesion. n = 36. Log-rank test, p = 0.0137. 
 

Figure 3-3. Gender does not affect 4NQO progression in wild-type or Dusp1 deficient 
animals. Differences in tumor-free survival were assessed between male and female 
groups overall, n = 26, p = 0.428 (A), in wild-type mice, n = 18, p = 0.6824 (B), or in 
Dusp1 deficient animals, n = 19, p = 0.6607 (C).  
 

Weight gain was also monitored weekly as a surrogate for disease burden. Dusp1 

deficient mice ceased gaining weight at approximately 12-14 weeks, while wild-type 

mice continued weight gain until 15-16 weeks (Figure 3-4). Dusp1 deficient mice have 

been shown to be resistance to diet-induced obesity, and previous studies have identified 

a role for DUSP1 in regulating metabolism within adipocyte and skeletal muscle tissue 

A' B' C'
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(335, 336).  However, Dusp1 deficient and wild-type mice in vehicle treatment groups 

showed no difference in weight gain throughout the course of the model (Figure 3-5).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-4. Weight gain is decreased in Dusp1 deficient mice treated with 4NQO. As a 
surrogate marker of tumor burden, weight gain was monitored for wild-type and Dusp1 
deficient mice over the course of 4NQO treatment and tumor development. Dusp1 
deficient animals show significantly less weight gain than wild-type counterparts. n = 37, 
p < 0.05 at week 15. 
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Figure 3-5. Dusp1 deficiency does not affect weight gain in vehicle treatment groups. No 
differences were detected in weight gain between wild-type and Dusp1 deficient mice 
throughout the course of the model. n = 15-17. 
 

After 16 weeks of 4NQO treatment, animals were monitored for an additional 16 

weeks and then euthanized for tissue collection. Any animal that lost greater than 20% of 

its original weight before 32 weeks was also sacrificed, under the assumption of severe 

tumor burden.  At the time of tissue collection, full necropsies were performed, and major 

organs, including spleen, liver, lung, heart, esophagus, and cervical lymph nodes were 

collected for histological analysis. Total tumor burden on the tongue and esophagus were 

measured at that time with digital calipers. At the time of collection, nearly all animals 

had visible oral lesions. However, Dusp1 deficient animals had larger oral tumors, and 

only Dusp1 deficient animals had cases of cervical lymph node involvement or distant 

lung metastases (Figure 3-6). Furthermore, 4NQO treatment resulted in significantly 

enhanced esophageal tumor burden in Dusp1 deficient animals (Figure 3-7).  



	   62	  

 

 

 

 

 

 

Figure 3-6. Representative panel of tongue tissues at the time of collection. After 32 
weeks, animals were euthanized for tissue collection. By gross inspection, the majority of 
all animals had developed oral tumors. Views of the dorsal and ventral tongue from a 
representative panel of 4 wild-type and Dusp1 deficient animals are shown. Instances of 
cervical lymph node metastasis were only observed within the Dusp1 deficient group. 
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Figure 3-7. Enhanced esophageal tumor burden in Dusp1 deficient animals. Esophageal 
tumors were detected within both wild-type and Dusp1 deficient groups upon tissue 
collection. Images were taken at the 32 week timepoint. The heart and lungs were 
removed from the chest cavity to obtain a view of the esophagus. Male animals are 
shown on the left. Female animals are shown on the right. Wild-type animals are shown 
above. Dusp1 deficient animals are shown below. Yellow arrows indicate grossly visible 
esophageal tumors. 
 

Analysis of tumor burden at the model endpoint revealed significantly enhanced 

tumor burden, defined as cumulative tumor volume per individual animal, in Dusp1 

deficient mice (Figure 3-8). Histological tumor score, on a scale of normal, hyperplasia, 

dysplasia, in situ squamous cell carcinoma, and invasive squamous cell carcinoma, 

revealed advanced disease progression in the Dusp1 deficient mice, with nearly all tissues 
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in the invasive SCC category, compared to wild-type mice which were more evenly 

distributed across dysplasia, in situ, and invasive lesions (Figure 3-9).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-8. Total tumor burden is increased in Dusp1 deficient animals. At the time of 
tissue collection, tumor burden of both oral cavity and esophageal tumors was calclulated 
as the total tumor volume per animal. n = 14-15, Mann-Whitney test, p = 0.0032. 
 

Figure 3-9. Dusp1 deficiency enhances histological disease progression. Tumor tissues 
were stained by hematoxylin and eosin and assessed for histological grade on a scale of 
epithelial neoplastic progression of normal, hyperplasia, dysplasia, in situ squamous cell 
carcinoma, and invasive squamous cell carcinoma. The majority of Dusp1 deficient 
animals had the most severe grade of disease, invasive SCC, whereas wild-type lesions 
were more evenly distributed across the spectrum of dysplasia, in situ SCC, and invasive 
SCC. n = 32-38. 
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Dusp1 deficient tumors contain higher levels of inflammation. 

 Histological examination of hematoxylin and eosin-stained tumor sections 

revealed marked inflammatory infiltrate in Dusp1 deficient samples (Figure 3-10A). 

Tissue sections were scored for inflammation on a scale of 0–4 (0, normal mucosa; 1, 

minimal inflammation (occasional scattered granulocytes and leukocytes); 2, mild 

inflammation (scattered granulocytes with occasional infiltrates); 3, moderate 

inflammation (scattered granulocytes with patchy infiltrates); and 4, severe inflammation 

(multiple extensive areas with abundant granulocytes and marked infiltrates), as 

previously described (330). Histologically scored inflammation was significantly 

enhanced in Dusp1 deficient tumor samples (Figure 3-10B). Levels of Ptprc, encoding 

the pan-leukocyte marker CD45, were quantified by qPCR in tumor tissues and also 

suggest an enhanced immune cell presence within Dusp1 deficient tumors (Figure 3-

10C).  
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Figure 3-10. Dusp1 deficient lesions have enhanced inflammatory infiltrate. (A) 
Hematoxylin and eosin-stained tissue sections show enhanced inflammatory infiltrate, 
indicated by the white arrow, surrounding the epithelial lesions in Dusp1 deficient mice. 
(B) A histological inflammation score was generated based on numbers of infiltrating 
leukocyte and granulocytes, demonstrating significantly enhanced inflammation in the 
Dusp1 deficient tumor tissues, compared to wild-type. n = 12-13 (vehicle), 31 (4NQO), 
Mann-Whitney test, p = 0.0005. (C) Expression of the pan-leukocyte marker Ptprc 
(CD45) by qPCR was performed as a measure of leukocyte infiltrate in tissues from wild-
type and Dusp1 deficient animals. In tumor-bearing mice, Ptprc was significantly 
elevated in Dusp1 deficient tissues. n = 7, Mann-Whitney test, p = 0.0175. 
 

Immunohistochemistry for the murine tissue macrophage marker F4/80 identified 

a notable macrophage presence within 4NQO-induced lesions. IHC analysis of a broader 

panel of tissue sections revealed enhanced macrophage infiltrate in tumor tissues, 

compared to vehicle control-treated animals, but no significant difference between wild-

type and Dusp1 deficient mice (Figure 3-11). Immunohistochemistry was also performed 
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for the monocyte-macrophage lineage marker CD11b and the myeloid-derived suppressor 

cell marker Ly6G, which demonstrated no significant difference in CD11b-positive cells 

but increased numbers of Ly6G-positive cells in Dusp1 deficient tumors compared to 

wild-type tumor tissues (Figure 3-12).  

 

 

 

 

 

 

 

 

 

Figure 3-11. Quantification of immunohistochemistry for macrophages in wild-type and 
Dusp1 deficient tissues. Macrophages were enumerated by counting F4/80+ cells in 10X 
fields of view by Viziopharm software. n = 4 (vehicle), n = 16-18 (4NQO). 

 



	   68	  

Figure 3-12. Quantification of immunohistochemistry for monocyte-myeloid lineage 
infiltrate in tumor tissues. Macrophages, monocyte-derived cells, and granulocytic cells 
were enumerated by counting F4/80+, CD11b+, or Ly6G+ cells, respectively, by 
Viziopharm software in 10X field of view. No significant differences were detected in 
F4/80 or CD11b expression between wild-type and Dusp1 deficient tumor tissues, but 
significantly increased numbers of Ly6G+ cells were present in Dusp1 deficient tumor 
tissues, compared to wild-type. n = 17-18 (F4/80), 8 (CD11b), 8-9 (Ly6G). p = 0.0176 
(Ly6G). 
 

 To understand how Dusp1 deficiency alters the tumor environment, Nanostring 

analysis was performed on a set of tumor tissues from wild-type and Dusp1 deficient 

mice. This quantitative analysis of mRNAs revealed alterations in a number of gene sets. 

Markers of cellular infiltrate did not show any significant differences in Foxp3, indicative 

of T regulatory cells, but suggested a trend toward increased Cd11b and Gr1 expression. 

Similar to immunohistochemistry studies, no significant difference was detected in Emr1, 

encoding the murine macrophage marker F4/80 (Figure 3-13A). Markers of macrophage 

polarization, including Nos2, Ifng, Tnf, and Irf5, revealed no significant alterations in 

expression of M1-polarized macrophages, with the exception of decreased Il12a (Figure 
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3-13B). However, several markers of M2-polarization were significantly increased in 

Dusp1 deficient tumor tissues, including Arg1 and Il4ra, with a trend toward increased 

Cd163, Cd206, Ym1 and Fizz1 (Figure 3-13C). Most significant were increased levels of 

inflammatory cytokines, chemokines, and several receptors. In this panel, Il1b, Cxcl1, 

Cxcl2, Cxcl9, Cxcl10, Ccl2, and Ccr5 were all significantly elevated (Figure 3-13D). The 

receptor Cxcr5 was also significantly down-regulated.  

 

Figure 3-13. Gene expression from tumor tissues by Nanostring analysis. (A) Markers of 
cellular infiltrate suggested a trend toward increased monocyte lineage cells (Cd11b) and 
myeloid-derived suppressor cells (Gr1) but showed no difference in tissue macrophages 
(Emr, F4/80) or regulatory T cells (Foxp3). (B) Markers of macrophage M1 polarization 
revealed no significant differences except for decreased Il12a expression in Dusp1 
deficient tumor tissue. (C) Markers of macrophage M2 polarization revealed significant 
increases in Arg1, Ym1, and Il4ra expression in Dusp1 deficient tumor tissues with a 
trend toward increased Cd163 and Cd206 expression as well. (D) Significant increases in 
cytokine, chemokine, and receptor expression were detected in Dusp1 deficient tumor 
tissues, including Il1b, Cxcl1, Cxcl2, Cxcl9, Cxcl10, Ccl2, and Ccr5. The receptor Cxcr5 
was significantly decreased in Dusp1 deficient samples. n = 6, Student’s unpaired t-test, p 
< 0.05. 
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 Flow cytometry analysis of immune cell populations within the spleen and 

draining cervical lymph nodes was performed to discern how Dusp1 deficiency alters the 

cellular constituents within the immune system in tumor-bearing mice. The number of 

CD4+ T helper and CD8+ cytotoxic T cells was assessed, in addition to activation status, 

as determined by CD69+ and CD62L- staining. No significant alteration in T cell numbers 

or activation was noted except for a moderate but significant increase in activated 

cytotoxic T cells within the spleen of Dusp1 deficient mice (Figure 3-14). No significant 

differences were detected in levels of T regulatory cells, defined as CD4+/CD25+/Foxp3+, 

in either spleen or draining lymph nodes from wild-type and Dusp1 deficient mice 

(Figure 3-15). Total number of B220+ B cells was significantly decreased in the spleen of 

Dusp1 deficient mice, but no differences in markers of B cell maturation or activation 

were detected in populations of B220+/IgM+/IgD-, B220+/IgM+/IgD+, or 

B220+/IgD+/CD40+ cells either tissue (Figure 3-16). 
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Figure 3-14. Flow cytometry analysis of T cells in tumor-bearing mice. Numbers and 
activation state of T cells in the spleen and draining lymph nodes were assessed using the 
markers CD4, CD8, CD62L, and CD69. Numbers of activated cytotoxic T cells were 
increased in the spleen of Dusp1 deficient mice. No other changes were detected. n = 6, 
Student’s unpaired t-test, p < 0.05. Gating strategy is shown for a representative sample.  
 

T cell panel

C
D

4+

C
D

4+ /
C

D
62

L- /C
D

69
+

C
D

8+

C
D

4+

C
D

4+ /
C

D
62

L- /C
D

69
+

C
D

8+

0

10

20

30

 

%
 c

el
ls

Spleen Lymph node

FSC$

SS
C$

FSC$

PI
$

CD4)FITC$

CD8)APC$ CD62L)PE$

CD
62
L)
PE

$

CD
69
)V
io
Bl
ue

$

CD69)VioBlue$

Spleen Lymph node
0.0

0.2

0.4

0.6

 

%
 c

el
ls

WT
KO

*

CD8+/CD62L-/CD69+ cells



	   72	  

 

Figure 3-15. Flow cytometry analysis of T regulatory cells in tumor-bearing mice. 
Numbers of T regulatory cells in the spleen and draining lymph nodes were assessed 
using the markers CD4, CD25, and Foxp3. No changes were detected. n = 6. Gating 
strategy is shown for a representative sample. 
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Figure 3-16. Flow cytometry analysis of B cells in tumor-bearing mice. Numbers and 
activation state of B cells in the spleen and draining lymph nodes were assessed using the 
markers B220, IgM, IgD, and CD40. There were significantly less total B cells in the 
spleens of Dusp1 deficient animals. No other changes were detected. n = 6. Gating 
strategy is shown for a representative sample. 
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 No changes were detected in total levels of dendritic cells, CD11c+, or 

plasmacytoid dendritic cells, CD11c+/PDCA-1+, in either tissue, but there were 

significantly decreased levels of activated dendritic cells, CD11c+/MHCIIhi within the 

spleen of Dusp1 deficient mice. No changes in activated plasmacytoid dendritic cells 

were noted in either tissue (Figure 3-17). No changes in natural killer cell populations 

were detected within the spleen. However, natural killer cells, Cd11b+/Nk1.1+, and 

natural killer T cells, CD3+/Nk1.1+, were significantly elevated in Dusp1 deficient lymph 

nodes (Figure 3-18). The most abundant changes were noted in the cells of the myeloid 

lineage. Cells of interest were defined as monocytic myeloid derived suppressor cells, 

CD11b+/Ly6C+/Ly6G-, granulocytic myeloid-derived suppressor cells, CD11b+/Ly6C-

/Ly6G+, neutrophils, CD11b+/Ly6C+/Ly6G+, or macrophages, CD11b+/F4/80+. In the 

spleen, there was a trend toward increased levels of both myeloid derived suppressor cells 

with significant increase in neutrophils in the Dusp1 deficient mice. In the lymph node, 

all populations were elevated in Dusp1 deficient samples, with the exception of tissue 

macrophages (Figure 3-19).  
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Figure 3-17. Flow cytometry analysis of dendritic cells in tumor-bearing mice. Numbers 
and activation state of dendritic cells and plasmacytoid dendritic cells in the spleen and 
draining lymph nodes were assessed using the markers CD11c, PDCA-1, and MHCII. 
There were significantly less activated dendritic cells in the spleens of Dusp1 deficient 
animals. No other changes were detected. n = 6. Gating strategy is shown for a 
representative sample. 
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Figure 3-18. Flow cytometry analysis of natural killer cells in tumor-bearing mice. 
Numbers of natural killer cells and natural killer T cells in the spleen and draining lymph 
nodes were assessed using the markers CD11b and Nk1.1. There were significantly 
increased natural killer and natural killer T cells in the draining lymph nodes of Dusp1 
deficient animals. No other changes were detected. n = 6. Gating strategy is shown for a 
representative sample. 
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Figure 3-19. Flow cytometry analysis of myeloid lineage cells in tumor-bearing mice. 
Numbers and activation state of myeloid-derived cells in the spleen and draining lymph 
nodes were assessed using the markers CD11b, Ly6C, Ly6G, and F4/80. There were 
significantly increased numbers of neutrophils in the spleens and significantly increased 
numbers of monocytic and granulocytic myeloid-derived suppressor cells and neutrophils 
in the draining lymph nodes of Dusp1 deficient animals. No changes were detected in 
tissue macrophages by F4/80 expression. n = 6. Student’s t-test, p < 0.05. Gating strategy 
is shown for a representative sample.  
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Effects of Dusp1 deficiency on MAPK activation in oral tumor epithelium. 

 To determine how the absence of Dusp1 affects MAPK activation, esophageal 

tumor tissue lysates were probed for levels of phosphorylated and total MAPK levels 

(Figure 3-20). Esophageal tumor tissues were chosen as their larger size enabled a 

sampling of increased tumor:epithelial ratio, compared to tongue tumors which were 

unable to be cleanly dissected from surrounding epithelium due to their small size. 

Western blot analysis revealed no significant changes in MAPK expression or activation 

in tissues from vehicle-treated mice. However, most striking were elevated levels of total 

MAPK expression, particularly p38 and ERK1/2, despite equal amounts of protein by 

bicinchoninic acid quantification and expression of the housekeeper glyceraldehyde 3-

phosphate dehydrogenase (GAPDH). Phospho-ERK1/2 MAPK expression was decreased 

in Dusp1 deficient tumor tissues compared to wild-type. No significant difference was 

seen in phospho-p38 MAPK expression between Dusp1 deficient tumor tissues compared 

to wild-type; however, densitometry analysis only revealed increases in total MAPK 

levels (Figure 3-21). 
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Figure 3-20. MAPK expression and activity in wild-type and Dusp1 deficient tissues. 
Western blots for phosphorylated and total forms of p38a, JNK1/2, and ERK1/2 MAPK 
in tissues show elevations in phospho-p38 in Dusp1 deficient tumor tissues compared to 
wild-type. More striking are elevations in total p38, JNK, and ERK MAPKs in Dusp1 
deficient tissue samples compared to wild-type. No significant changes are noted between 
wild-type and Dusp1 deficient tumor-free mice. 
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Figure 3-21. Densitometry analysis of Western blots for phosphorylated and total forms 
of p38α, JNK1/2, and ERK1/2 MAPK in tissues. Analysis demonstrates increased total 
p38, JNK, and ERK MAPKs, with no significant changes in phosphorylated forms 
between Dusp1 deficient and wild-type tumor tissues. 
 

 To address whether alterations in MAPK activation were due to tumor epithelial 

tissue, immunohistochemistry was performed to assess levels of phosphorylated MAPK 

expression in tumor epithelium (Figure 3-22). Only the tumor epithelium was assessed in 

scoring the staining percentage and positivity. No significant differences were detected in 

levels of phosphorylated JNK or ERK MAPK. Although levels of phospho-p38 MAPK 

were elevated in tumor tissues compared to vehicle-treated tissues, no differences were 

detected in wild-type, compared to Dusp1 deficient mice (Figure 3-23). 

Immunohistochemistry for the proliferation marker Ki67 also revealed no significant 

differences in proliferation rates between wild-type and Dusp1 deficient tumor tissues.  

Immunohistochemistry for markers of angiogenesis and proliferation, CD31 and TUNEL 
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sections due to physiologic epithelium turnover, and minimal CD31 positivity was 

detected in these tissues. The small size of many of the oral cancer tissues made it 

difficult obtain multiple serial sections to accurately assess angiogenesis by CD31 

expression.   

 

Figure 3-22. Immunohistochemistry of phosphorylated MAPK in oral tumor tissues. 
Immunohistochemistry was performed to detect phospho-p38, ERK1/2, and JNK1/2 
MAPK in oral tumor tissues in wild-type and Dusp1 deficient animals. Representative 
staining from serial sections for the three kinases and antibody isotype controls are shown 
from data in Figure 3-24. The majority of tissues showed phospho-p38 MAPK activation, 
with little phospho-ERK or phospho-JNK. n = 12 (vehicle), 15 (4NQO). 
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Figure 3-23. Quantification of MAPK and Ki67 immunohistochemistry staining. 
Immunohistochemistry scores were generated based on assessment of staining intensity 
and area within the tumor epithelium. Of the three MAPK, p38 was significantly 
increased in tumor tissues compared to vehicle-treated tissues. However, no differences 
were detected in MAPK activity between wild-type and Dusp1 deficient tumor 
epithelium. In addition, no significant differences in tumor proliferation, as assessed by 
Ki67 staining were detected. n = 12 (vehicle), 15 (4NQO). Kruskal-Wallis test, p = 0.006. 
 

Effect of hematopoietic Dusp1 deficiency in carcinogen-induced oral cancer.    

 To delineate the contribution of the immunologic constituents versus tumor 

epithelium to the advanced disease phenotype in Dusp1 deficient mice, bone marrow 

chimeras were generated with Dusp1 deficient and wild-type mice on a C57BL/6 

background and wild-type mice bearing the congenic allele CD45.1. Engraftment was 

assessed by expression of the CD45 alleles on peripheral blood at 6-8 weeks after 
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transplant. After transplant and engraftment, animals were treated with 4NQO at 

50µg/mL for 16 weeks, at a treatment dose and schedule as previously described (337). 

Earlier treatment of wild-type and Dusp1 deficient mice on a mixed C57/129 genetic 

background required a lower dose of 25µg/mL, due to enhanced susceptibility of Dusp1 

deficient mice to the carcinogen and were monitored for an extended period of 32 weeks 

to achieve sufficient tumor development on wild-type animals.  

After backcrossing to a C57BL/6 genetic background, the Dusp1 deficient mice 

and chimeras were treated with the originally described 50µg/mL dose and monitored for 

a total of 28 weeks, rather than 32 weeks. Weight gain was assessed as a surrogate 

measure of tumor burden (Figure 3-24). Comparison of wild-type and Dusp1 deficient 

mice both on a C57BL/6 genetic background demonstrates the same enhanced 

susceptibility of Dusp1 deficient animals to 4NQO-induced disease as previously seen on 

a mixed genetic background. Chimeric wild-type animals reconstituted with Dusp1 

deficient hematopoietic cells had similar changes in weight to wild-type animals. 

Surprisingly, chimeric Dusp1 deficient animals reconstituted with wild-type 

hematopoietic cells were more susceptible to 4NQO-induced weight loss than wild-type 

animals or wild-type animals with Dusp1 deficient hematopoietic cells.   These chimeric 

animals appeared to be more sensitive to 4NQO-induced weight loss early in the model, 

before returning to a similar pattern of weight change to the Dusp1 deficient animals by 

week 20. These results suggest Dusp1 deficiency in the radiation-resistant compartment 

is responsible for the increased disease burden described in Figure 3-4. At this time, 

additional analyses of histologic disease and inflammation scores from paraffin-

embedded tumor tissues as well as mRNA and protein analyses from snap frozen tissues 
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remain to be evaluated to assess how hematopoietic Dusp1 deficiency alters tumor-

associated inflammation.  

 
Figure 3-24. Weight gain in chimeric wild-type and Dusp1 deficient mice treated with 
4NQO. Wild-type and Dusp1 deficient mice were irradiated and reconstituted with either 
wild-type or Dusp1 deficient bone marrow, 6 weeks prior to enrollment in the 4NQO 
model of oral carcinogenesis. Weight gain was tracked over the duration of the 28 week 
model.  
 

Dusp1 deficient mice support enhanced syngeneic tumor growth. 

 To understand how Dusp1 expression within only the microenvironment affects 

tumor progression, wild-type and Dusp1 deficient mice were injected with syngeneic 

tumor cells to form subcutaneous allografts. Few murine oral cancer cell lines have been 

described, with SCCVII being the best characterized. Although SCCVII readily forms 

tumors in mice (338), the cell line was derived from a mouse on the C3H/HeJ genetic 

background, which is protected from endotoxin challenge due to a spontaneous Tlr4 

mutation (339). Murine cancer cell lines on a C57BL/6 background are limited to other 
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tissue origins, including colorectal, breast, and prostate adenocarcinomas, melanoma, 

lymphoma, and lung carcinomas.  

 Previous studies have demonstrated DUSP1 expression is lost in advanced stages 

of human breast and prostate cancer (174, 176, 340). Furthermore, analysis of DUSP1 

gene expression in publicly available databases has revealed the same trend, with loss of 

DUSP1 expression in metastatic lesions compared to adjacent non-tumor tissue and 

primary prostate cancer tissues (Figure 3-25). In breast cancer, patients stratified as 

having high DUSP1 expression compared to those with low DUSP1 expression have 

significantly enhanced progression-free survival (Figure 3-26). Based on these data 

suggesting these malignancies mirror the trend seen in HNSCC, the murine prostate 

adenocarcinoma cell line TRAMP-C2 and the murine breast adenocarcinoma cell line 

EO771 were selected for subcutaneous allografts. In contrast, DUSP1 expression has not 

been well characterized in melanoma, and no reports have identified a consistent 

correlation between expression levels and disease stage or survival. In that regard, the 

murine B16F10 melanoma cell line was used for comparison. 

 
Figure 3-25. Expression of DUSP1 by microarray analysis in prostate cancer. Microarray 
data from the NCBI GEO dataset GDS2545 demonstrate significant loss of DUSP1 
mRNA in metastatic tissues compared to samples from adjacent non-tumor tissue and 
primary tumors. n = 18 (normal), 63 (adjacent), 65 (primary), 25 (metastatic). Kruskal-
Wallis with Dunn’s post-test, p < 0.001. 
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Figure 3-26. Effect of DUSP1 expression on progression-free survival in breast cancer. 
Previously generated microarray data was used to stratify patients based on high versus 
low DUSP1 expression. Patients with low levels of DUSP1 expression had significantly 
decreased time to disease progression. Data generated from model described in Gyorffy 
et al. 2010 (341). 
 

 Measurements of allografts were taken with digital calipers every other day after 

the formation of palpable tumors, usually occurring after ~ 3-5 days for EO771 and 

B16F10 cell lines and after ~14-16 days for TRAMP-C2 cells.  For both EO771 and 
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TRAMP-C2 cell lines, implanted tumors in Dusp1 deficient mice were significantly 

larger than wild-type mice. However, B16F10 allografts grew at the same rate in wild-

type and Dusp1 deficient mice (Figure 3-27). Histological analysis of inflammatory 

infiltrate was scored as previously described for 4NQO-induced tumors on a 0-4 scale. 

No differences in distribution of inflammation scores were detected in either EO771 or 

TRAMP-C2 tumors (Figure 3-28). To determine whether enhanced p38α MAPK 

activation was responsible for the increase in tumor growth, the small molecule inhibitor 

SB203580 was injected intraperitoneally daily following establishment of subcutaneous 

tumors 7 days after initial tumor cell injection (Figure 3-29). SB203580 did not have an 

effect on EO771 tumor growth in wild-type mice, and no difference was seen between 

SB203580 versus vehicle treatment in wild-type mice. However, in Dusp1 deficient mice, 

SB203580 injection abrogated the enhanced tumor growth seen in Dusp1 deficient mice 

compared to wild-type mice, suggesting enhanced tumor growth in Dusp1 deficient mice 

is driven by p38α MAPK activity within the tumor microenvironment. 
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Figure 3-27. Subcutaneous syngeneic tumor growth in wild-type and Dusp1 deficient 
animals. The growth of subcutaneous allografts using C57BL/6 syngeneic tumor cell 
lines from prostate cancer (TRAMP-C2), breast cancer (EO771), and melanoma 
(B16F10) were measured in wild-type and Dusp1 deficient animals. Significant tumor 
growth was evidence in Dusp1 deficient mice bearing TRAMP-C2 and EO771 tumors 
but not B16F10 tumors. Student’s unpaired t-test. n = 11, p = 0.0396 at day 25 (TRAMP-
C2), n = 8, p = 0.0158 at day 11 (EO771), 13-14 (B16F10).  
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	  Figure 3-28. Inflammation scores of syngeneic subcutaneous tumors in wild-type and 
Dusp1 deficient animals. Histological scores of inflammatory infiltrate within tumors of 
injected syngeneic TRAMP-C2, EO771, and B16F10 cells were performed on a 0-4 
scale, as previously described. n = 6-7, p = 0.6585 (TRAMP-C2), n = 7, p = 0.6747 
(EO771). Fisher’s exact test.  
 

 
Figure 3-29. Inhibition of p38α MAPK in wild-type and Dusp1 deficient mice with 
subcutaneous syngeneic EO771 tumors. Wild-type and Dusp1 deficient mice were 
injected subcutaneously with syngeneic EO771 cells, as previously described. Starting on 
day 7, mice received daily intraperitoneal injections of SB203580 (5mg/kg) or vehicle 
control. Rate of tumor growth is increased in Dusp1 deficient vehicle-treated animals (p < 
0.0001) and Dusp1 deficient SB203580-treated animals (p = 0.0098). Dusp1 deficient 
animals had decreased survival compared to wild-type animals (p = 0.0123). Survival 
was enhanced in Dusp1 deficient animals treated with SB203580 compared to vehicle 
treatment group (p = 0.0086). n = 6-8. 
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3.3 Summary & Discussion 

Although the mechanisms of pro-tumorigenic inflammation in gastric and 

colorectal cancer have been well described, only recently has there been an appreciation 

of the contribution of chronic inflammation to other processes of tumorigenesis. The 

development of cancer is now better understood as the interplay between genomic 

alterations, such as those induced by carcinogen exposure, and a supportive tumor 

microenvironment. To understand how Dusp1 deficiency alters the development and 

progression of oral cancer, wild-type and Dusp1 deficient mice were subjected to a 

carcinogen-induced oral cancer model, previously optimized to generate heterogeneous 

oral lesions that evolve into squamous cell carcinomas (337). This carcinogen-induced 

model of oral cancer has previously been described, in wild-type animals, as generating 

little inflammation with low levels of COX-2 expression and stromal infiltrate (337, 342). 

Results from these studies demonstrate the immense alteration of the inflammatory 

milieu within these tumors that develops in the absence of Dusp1 negative regulation.  

In this model system designed to mirror human disease progression from 

hyperplasia to dysplasia to in situ and invasive squamous cell carcinoma, Dusp1 deficient 

mice demonstrated accelerated oral tumorigenesis with associated inflammation and 

provides the first evidence for a mechanistic link between loss of DUSP1 expression and 

advanced disease progression in human cancers. Furthermore, this is the first 

experimental evidence to demonstrate the pro-tumorigenic effect of enhanced 

inflammatory cytokine expression in oral cancer. The particularly enhanced tumor burden 

within esophageal tissues (Figure 3-7) suggests the same mechanism lies true for 

esophageal squamous cell carcinoma. Whether the dramatic increase in esophageal tumor 
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volume in Dusp1 deficient animals is due to tissue-specific effects of Dusp1 regulation or 

characteristics of the esophageal tissue architecture that might render it more susceptible 

to rapid tumor proliferation and expansion requires further investigation. 

The panel of increased cytokines and chemokines identified by Nanostring 

analyses suggests a wide-scale activation of immune signaling. Although IL-1β was one 

of the most highly elevated mRNAs, it is unclear if this cytokine is sufficient to generate 

the development of the pro-inflammatory microenvironment that promotes tumor 

progression. The gradual process of tumorigenesis in the 4NQO model makes antibody 

blockade of IL-1β prohibitively expensive. Repeating the model with Casp1-/- and Casp1-

/-Dusp1-/- double knockout animals or Il1r-/- animals could better address the functional 

role of elevated IL-1β in oral tumorigenesis and tumor progression.  

Although the identification of a precise cytokine driver has not been identified in 

this model, these studies highlight the potential of targeting an upstream regulator of the 

pro-tumorigenic inflammatory response rather than single, secreted factors with 

biologics, which have not yielded significant improvement in clinical trials (343, 344).  

Pharmaceutical methods of increasing DUSP1 expression have been described in a 

number of in vitro studies (345-347) and merit further investigation, particularly in 

cancer models.  

The loss of DUSP1 expression has implications on the biologic activities of many 

cellular constituents within the tumor, which have yet to be clearly dissected in these 

experiments. A recent survey of over 400 human HNSCC tissues revealed p38 MAPK 

activity to be highly elevated in nearly 80% of cases studied by immunohistochemistry, 

with significant impact on cancer cell growth, lymphangiogenesis, and angiogenesis in 
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xenograft studies (348). The discrepancy between elevated phosphorylated p38 MAPK in 

immunoblotting whole tissue lysates versus equal immunohistochemical staining of 

tumor epithelium suggests a more critical role for Dusp1-mediated p38 regulation in the 

supporting stromal and immune cells.  

 Results from the bone marrow chimeric model suggest hematopoietic-derived 

cells alone cannot recapitulate the enhanced disease progression in the long-term model 

of carcinogenesis and tumor progression driven by 4NQO exposure. An initial hypothesis 

for advanced disease progression in Dusp1 deficient mice centered on inflammatory cells 

driving an enhanced immune response that promoted tumor growth. Although Dusp1 

hematopoietic deficiency did not recapitulate the original phenotype, the possibility 

remains increased immune activation with infiltrating leukocytes and cytokine production 

are still necessary for the enhanced disease production seen in Dusp1 deficient animals, 

both with wild-type and Dusp1 deficient bone marrow. Although the 4NQO model 

produces heterogeneous tumors of the oral cavity, bearing numerous molecular 

alterations similar to human HNSCC, the slow, carcinogen-driven disease process 

encompasses a wide spectrum of tumor biology, including carcinogenesis and neoplastic 

transformation, immune escape, tumor proliferation, and early local invasion, which 

makes identification of specific points of regulation difficult. More specific models to 

address immune escape, e.g. MCA-induced fibrosarcoma, or suppression of anti-tumor 

responses, e.g. adoptive transfer of pmel-1 T cells against B16 melanoma, could begin to 

more precisely answer how Dusp1 deficiency enhances tumor progression through 

immune modulation. 
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These initial findings from the chimer and syngeneic subcutaneous tumor models 

suggest non-hematopoietic, non-epithelial tissues within the tumor microenvironment, 

including endothelium, lymphatic vessels, and cancer-associated fibroblasts, may also be 

a driving force. Xenograft studies with a small molecular inhibitor of p38α MAPK 

demonstrated a crucial role for p38-mediated regulation of tumor-promoting secreted 

factors from cancer-associated fibroblasts (349). Inactivation of the RNA decay factor 

AUF1 increased expression of a panel of cytokines and chemokines, including IL-1β, 

CXCL1, and GM-CSF, validated in larger datasets of stromal-specific factors present in 

human breast cancer. In a murine hindlimb ischemia model, Dusp1 expression in 

endothelial cells promoted angiogenesis by modulating histone H3 dephosphorylation to 

induce expression of the proangiogenic chemokine fractalkine (350). As DUSP1 is 

ubiquitously expressed, the potential impact it has on tumorigenesis may vary across 

different cell types.  

DUSP1 is capable of regulating activation of multiple MAPKs, although it has 

greatest affinity for p38. In HNSCC, p38α activation fails to inactivate ERK1/2 

signaling, as in normal oral keratinocytes, due to a failure to inactivate MEK1/2 (351). 

The enhanced p38α and p38δ activity promoted tumor cell proliferation and survival, 

both in vitro and in vivo (351). In peripheral blood mononuclear cells isolated from 83 

HNSCC patients, p38α MAPK was significantly elevated compared to healthy donors 

(352). Levels of p38α were also found to be elevated in sera from HNSCC patients, with 

significant decreases during and after radiation therapy in the group of responders (70 

patients), not seen in the non-responders (11 patients) (353). Based on these previous 

characterizations of human HNSCC samples and the MAPK activation profile in Dusp1 
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deficient 4NQO-induced tumor tissues, the candidate MAPK target responsible for the 

enhancement of tumor progression in Dusp1 deficient animals is p38α, as suggested by 

small molecule inhibition of subcutaneous syngeneic tumor cell growth (Figure 3-29). 

Already, several orally available p38 MAPK inhibitors are in phase II and III 

clinical trials for inflammatory conditions with no signs of clinical toxicity (354, 355). A 

xenograft model of tumor progression using co-injected cancer-associated fibroblasts and 

preneoplastic cell lines demonstrated oral p38 inhibitor treatment could preferentially 

target stromal production of pro-inflammatory mediators (349). However, xenograft 

studies using a systemically administered p38 inhibitor blocked HNSCC tumor cell 

growth (356), suggesting inhibition of p38 signaling within tumor epithelium may also 

have beneficial effects.  

However, the tumor-promoting effect of Dusp1 deficiency may be through 

increased activation of other pathways, such as JNK1/2. Small molecular inhibitors of 

JNK1/2 were effective at targeting in vitro HNSCC cell lines and in xenograft models, 

reducing tumor proliferation and microvasculature, EGFR expression, and secretion of 

IL-6, IL-8, and VEGF (357). In rat tongue cancers, resulting from 4NQO treatment, of all 

the AP-1 family members, JunB and cfos mRNA and protein were elevated in cancerous 

tissue compared to normal control, although only cfos was elevated during the dysplastic 

stage (358). In addition, a targeted qPCR array described in Chapter 4.2 revealed cfos to 

be highly elevated in the Dusp1 deficient tumor sample, although this result was not 

selected for further validation.   

 Histological scores, flow cytometry, immunohistochemistry, and Nanostring 

analyses describe a highly inflammatory tumor tissue in Dusp1 deficient mice subjected 
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to 4NQO. The panel of cytokines and chemokines suggest a mechanism by which 

recruited myeloid-derived immune cells traffick to the tumor site to promote tumor 

progression in Dusp1 deficient animals. Potential cellular mediators include myeloid-

derived suppressor cells, tumor-associated macrophages, neutrophils, and other 

granulocytes. In a murine model of rhabdomyosarcoma, the recruitment of Cxcr2+ 

granulocytic myeloid derived suppressor cells (CD11b+/Ly6G+), via Cxcl1/2 expression, 

inhibited anti-PD1 therapy. Tumor regression after anti-PD1 treatment was restored on 

Cxcr2 deficient mice or with a CXCR2 neutralizing antibody (359). Genetic deletion of 

eosinophils in Balb/c mice challenged with 4-nitroquinoline 1-oxide resulted in reduced 

disease burden (360).  

A similar association between increased numbers of myeloid-derived 

granulocytes and disease progression has been described in HNSCC. A study of HNSCC 

patients revealed high levels of neutrophilic infiltrate in HNSCC tissue with greater 

infiltrate correlating to poorer survival in advanced disease (361). Furthermore, HNSCC 

cell line conditioned medium enhanced neutrophil survival and increased chemotaxis and 

secretory function (361). A later study of neutrophils isolated from peripheral blood of 

HNSCC patients identified impairment of HNSCC-conditioned neutrophilic inducible 

ROS production but not cytokine secretion, with elevated cytokine levels in HNSCC 

serum compared to controls. Similar to previous studies, these cells had enhanced 

survival with lower rates of spontaneous apoptosis. Importantly, HNSCC patients had 

increased numbers of immature PMNs, suggesting a systemic response engaging 

hematopoietic precursors to traffick to the tumor site (362). 
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Little changes were detected in members of the adaptive immune response, with 

low levels of activation markers in T cell subsets, suggesting T cell exhaustion may be 

occurring, as described in other characterizations of the 4NQO model (342). Slight 

decreases in expression of dendritic cell activation markers may be signs of impaired 

recruitment of an anti-tumor immune response. A dendritic cell-based vaccination 

strategy using 4NQO-treated animals suggests these cells are capable of promoting an 

immune response to premalignant and HNSCC lesions (363). In previous 

characterizations of 4NQO-induced lesions on wild-type mice, cervical lymph nodes 

contained higher levels of immunosuppressive T regulatory cells but also conventional T 

cells, albeit with decreased proliferative capacity (342). A study of circulating and 

intratumoral T regulatory cells isolated from HNSCC patients found higher levels of 

immune checkpoint markers (CTLA-4 and PD-1) in intratumoral cells with 

corresponding greater immunosuppressive ability (364). The development of such a 

potent immunosuppressive microenvironment may result, in part, from the enhanced 

secretion of cytokines within earlier premalignant lesions (365). In a small study of 11 

patients and 10 healthy donors, peripheral blood-isolated regulatory T cells from HNSCC 

patients were significantly elevated with increased TLR expression and enhanced 

immunosuppressive effect following LPS and Hsp60 stimulation (366). However, no 

differences in effector T cell proliferative ability were detected. At this time, it is unclear 

how these immunosuppressive mechanisms develop in HNSCC, but Dusp1 deficiency 

does not appear to immediately affect these pathways in the 4NQO model. 

Although 4NQO treatment generated lymph node metastases only in Dusp1 

deficient animals, whether loss of DUSP1 protein promotes metastasis is still unclear. A 
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previous group’s modification of the 4NQO delivery model, using a higher dose with 

prolonged monitoring period, has been used to establish lymph node metastasis with 

complete penetrance in Balb/c mice (367). This and other more rapid models of could be 

used to address this question, especially if DUSP1 is postulated to be a regulator of the 

supporting soil for tumor initiation and development.  

 The subcutaneous allogeneic tumor model was performed to address whether an 

equivalent tumor burden, with wild-type Dusp1 expression, would progress more rapidly 

in a Dusp1 deficient tumor microenvironment compared to wild-type. A limitation of this 

model is the tissue-specific effects of the oral cavity, in particular, potential sources of 

innate immune activation in the microflora. The syngeneic murine oral squamous cell 

line SCCVII can be used on a C3H/HeJ genetic background to model oral squamous cell 

carcinoma with local invasion into the local muscle and mandible, and cervical lymph 

node and pulmonary metastases (368). Unfortunately, the C3H/HeJ genetic background 

necessary for a syngeneic transplant contains a spontaneous mutation in Tlr4, rendering 

these mice resistant to endotoxin challenge (339).   

Due to supporting evidence from human tissue datasets, breast and prostate 

adenocarcinoma cell lines were selected for allogeneic tumor cell experiments, results of 

which support the role of Dusp1 in the microenvironment as a suppressor of tumor 

growth. This effect was not seen across all tumor cell lines, with no statistical difference 

in the growth curves of B16F10 allografts. The spontaneous murine B16 melanoma cell 

line is highly tumorigenic and rapidly growing but has generally been described as poorly 

immunogenic (369, 370). Furthermore, the characterization of DUSP1 in human 

melanoma samples is not consistent, with much smaller sample sizes available in public 
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databases such as NCBI Gene Expression Omnibus and Oncomine. Thus, in future 

investigation of DUSP1 as a target of therapeutic induction, careful consideration of the 

tumor type and molecular patterns of MAPK and cytokine expression should be made. 
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CHAPTER 4. Dusp1 regulates inflammatory mediators ex vivo.  

 

4.1 Rationale & Hypothesis 

Animal models of tumor progression, both carcinogen-induced and transplanted 

tumors, suggest Dusp1 deficiency enhances disease progression and generates a more 

inflammatory phenotype than in wild-type animals. Although DUSP1 is well described as 

a negative regulator of the innate immune response to acute endotoxin stimuli in models 

of sepsis and other bacterial-driven disease processes (143, 144, 150, 153, 334, 371), how 

it affects tumor-associated inflammation has not been addressed. Within the oral cavity, 

tissues are constantly exposed to pathogen-associated molecular patterns (PAMPs) 

through the diverse microbiota (372). Correlations between altered microbiota and cancer 

development have been made, in patients with periodontitis or poor oral hygiene (373, 

374). However, the functional impact of these bacterial triggers and host inflammatory 

responses on HNSCC carcinogenesis are not well characterized. 

In HNSCC, IL-1β has been identified as a potential diagnostic biomarker, through 

mRNA and protein studies of tumor tissue and patient saliva samples (375, 376). IL-1β 

was initially discovered as a secreted cytokine from activated monocytes (377) and has 

been shown to be expressed primarily by innate myeloid cells. A study of cytokine 

secretion from well-established UMSCC cell lines revealed varying levels of IL-6, 

VEGF, and IL-8 secretion but no detectable IL-1β (378), suggesting an alternative 
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cellular source of IL-1β within the microenvironment is driving transcription of these 

cytokines and growth factors.   

 Due to the highly elevated levels of IL-1β mRNA and increase in myeloid-lineage 

cells within Dusp1 deficient tumor tissues, we hypothesize Dusp1 negatively regulates 

expression of IL-1β in macrophages. Of the elevated cytokines and chemokines identified 

by Nanostring analysis in the 4NQO tumor model, IL-1β had previously been shown to 

upregulated in human HNSCC. Furthermore, IL-1β signaling has been described as an 

activator of a number of inflammatory mediators, making it an attractive candidate for 

validation as a downstream target of Dusp1 for future therapeutic targeting. 

 

4.2 Results 

Macrophage polarization is not skewed in Dusp1 deficient primary cells. 

Immunohistochemistry previously identified similar numbers of infiltrating 

F4/80+ tumor-associated macrophages within 4NQO-induced lesions in wild-type and 

Dusp1 deficient mice. However, Nanostring analysis suggested the phenotype of these 

macrophages might differ between wild-type and Dusp1 deficient animals, based on 

expression of macrophage polarization genes, such as Il12a, Arg1, and Il4ra. To 

determine whether Dusp1 deficiency generated an intrinsic defect in M1 polarization, 

primary bone marrow-derived macrophages from wild-type and Dusp1 deficient mice 

were treated ex vivo to classic M1 (LPS and IFN-γ) or M2 (IL-4) polarizing conditions 

and assessed for cytokine response.  

There have been conflicting reports of whether IL-12 is within a group of 

cytokines negatively regulated by DUSP1 (142, 379). In this study, Dusp1 deficient 
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macrophages express less Il12b mRNA and IL-12p40 protein following stimulation, 

although the difference was not statistically significant. Levels of Nos2 mRNA and IL-23 

protein were also decreased in Dusp1 deficient macrophages. However, examination of 

markers of M2 polarization did not reveal a consistent trend. There were no significant 

changes in Il10 mRNA and no detectable IL-10 protein secreted. There was a trend 

toward decreased Arg1 mRNA and no significant difference in IL-1RA expression 

(Figure 4-1). These data suggest Dusp1 deficient macrophages may have impaired M1 

polarization, but the effect of Dusp1 deficiency on M2 polarization is still unclear.  
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Figure 4-1. Effect of Dusp1 deficiency on macrophage polarization. Primary bone 
marrow-derived macrophages from wild-type and Dusp1 deficient mice were treated with 
LPS and IFN-γ to induce M1 polarization or IL-4 to induce M2 polarization. Il12b and 
Nos2 gene expression and IL-12p40 and IL-23 cytokine secretion were assessed as 
measures of M1 polarization. Il10 and Arg1 gene expression and IL-1RA and IL-10 
cytokine secretion were assessed as measures of M2 polarization. n = 4. 
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Dusp1 deficient tumor tissues express significantly higher levels of inflammatory 

chemokines and cytokines. 

 A targeted qPCR array was used to assess a panel of 89 inflammatory cytokines, 

chemokines, and receptors comparing expression between a pair of wild-type and Dusp1 

deficient tumor tissues matched for sex, tumor grade, and inflammation score. Fifteen 

targets were expressed greater than 5-fold in the Dusp1 deficient sample, with the three 

highest being Il20, Il1b, and Cxcl1 (Appendix A). Of these three targets, Il1b was 

validated in a larger panel of 4NQO and vehicle-treated tissue samples with significant 

increased in Il1b in Dusp1 deficient tumor tissues (Figure 4-2). Il1b was also selected for 

further investigation, due to the supportive evidence that IL-1β is up-regulated in human 

HNSCC. A similar qPCR array targeted towards members of the MAPK signaling family 

identified 6 genes up-regulated greater than 5-fold in at the Dusp1 deficient tumor tissue 

sample compared to a wild-type match, but validation of the most highly expressed gene, 

p16INK4A, in a larger panel of tissue samples was unsuccessful (Appendix B). 
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Figure 4-2. Increased Il1b gene expression in Dusp1 deficient tumor tissues. Validation 
of Il1b as an upregulated gene in Dusp1 deficient tumor tissues was performed by qPCR 
in a panel of wild-type and Dusp1 deficient tumor and control-treated tissues. Il1b mRNA 
was significantly increased in Dusp1 deficient tumor tissues, with no differences between 
tumor-free animals. n = 7-8, Mann-Whitney test, p = 0.0003. 
 

Dusp1 deficient macrophages express more Il1b mRNA after stimulation. 

 Stimulation of primary bone marrow-derived macrophages with LPS confirmed 

enhanced expression of Il1b mRNA in Dusp1 deficient cells compared to wild-type 

(Figure 4-3). The same trend was seen when conditioned media from a premalignant cell 

line obtained from a 4NQO-induced lesion was used as an activation stimulus, although 

to a much lesser extent than with LPS (Figure 4-4). IL-1β expression is carefully 

controlled at both the mRNA and protein level. To understand whether the increase in 

steady-state mRNA was due to increased de novo transcription or enhanced mRNA 

stability, levels of primary mRNA transcripts were quantified by qPCR using primers 

targeting the exon-intron junction present only in unprocessed mRNA compared to 

amplicons generated from primers targeting exon-exon junctions of mature, fully 
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processed mRNA. These data revealed increases in both primary transcripts as well as 

mature mRNA after LPS stimulation, both with greater levels in Dusp1 deficient cells 

(Figure 4-5). However, mature mRNA appeared to constitute the majority of Il1b mRNA 

present after LPS stimulation. The expression levels of mature mRNA detected by exon-

exon primer pairs were identical to that detected by TaqMan assays using fluorescent 

probes specific for exon-exon junctions performed in independent experiments (Figure 4-

3).   

 

Figure 4-3. Il1b mRNA is increased in Dusp1 deficient macrophages after stimulation 
with LPS. Primary bone marrow-derived macrophages from wild-type and Dusp1 
deficient mice were treated with LPS (100ng/mL) for 4h. Il1b expression was assessed by 
qPCR, normalized to the housekeeping gene Gapdh. n = 4, Student’s unpaired t-test, p = 
0.0122. 
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Figure 4-4. Il1b expression is increased after stimulation with 4NQO-derived conditioned 
media. Primary bone marrow-derived macrophages from wild-type and Dusp1 deficient 
mice were treated with conditioned media from a cell line derived from a 4NQO-induced 
premalignant lesion, diluted 5-fold in serum-free media for 4h. Il1b expression was 
assessed by qPCR, normalized to the housekeeping gene Gapdh. n = 3, Student’s 
unpaired t-test, p = 0.0231. 
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Figure 4-5. Il1b primary transcripts are increased in Dusp1 deficient macrophages after 
LPS stimulation. Primary bone marrow-derived macrophages from wild-type and Dusp1 
deficient mice were treated with LPS (100ng/mL) for 4h and assessed for gene 
expression by qPCR. (A, B) Unprocessed primary transcripts of Il1b were detected with 
primer pairs flanking intron-exon junctions, revealing increased Il1b primary mRNA in 
Dusp1 deficient macrophages. (C) Mature Il1b mRNA was detected with primer pairs 
flanking exon-exon junctions, revealing increased Il1b primary mRNA in Dusp1 
deficient macrophages, as previously shown in Figure 4-3. The majority of Il1b transcript 
after LPS stimulation is mature, processed mRNA rather than de novo transcription. n = 4 
(WT), 7 (KO). Student’s unpaired t-test, p = 0.0016 (A), 0.0024 (B), 0.0028 (C).  

A 

B 

C 
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Il1b mRNA stability is enhanced in Dusp1 deficient macrophages. 

 The 3’ untranslated region of Il1b mRNA, like many other cytokines, contains 

multiple AU-rich elements capable of interacting with RNA binding proteins, such as 

AUF1, HuR, and TTP (Figure 4-6) (380). The activity of these RNA binding proteins can 

be regulated by p38MAPK-mediated phosphorylation downstream of DUSP1, affecting 

their cellular localization or targeting them for degradation (381-383). To determine 

whether enhanced Il1b expression after stimulation was due to increased mRNA stability 

following LPS stimulation, primary bone marrow-derived macrophages were treated with 

actinomycin D to inhibit de novo transcription. After actinomycin D treatment, levels of 

Il1b mRNA were quantified to assess rates of mRNA decay. In these experiments, LPS 

stimulation revealed enhanced Il1b stability in Dusp1 deficient macrophages with a half-

life of approximately 45 minutes in wild-type macrophages compared to greater than 60 

minutes in Dusp1 deficient cells (Figure 4-7A). However, treatment with conditioned 

media from the 4NQO-derived cell line did not reveal significant differences in mRNA 

half-life, both between 30-35 minutes (Figure 4-7B), possibly due to the low levels of 

induction as seen in steady-state experiments.  

 

Figure 4-6. The 3’ untranslated region of IL1B contains AU-rich elements. The 3’ 
untranslated region of the human IL1B gene contains several AU-rich elements enabling 
interaction with mRNA binding proteins. Images adapted from AREsite. Gruber et al. 
2011 (384).  
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Figure 4-7. Dusp1 deficiency differentially affects Il1b mRNA stability. Primary bone 
marrow-derived macrophages from wild-type and Dusp1 deficient mice were treated with 
LPS (100ng/mL) or conditioned media from a 4NQO-derived cell line for 4h followed by 
actinomycin D (5ug/mL). Il1b expression was assessed by qPCR, normalized to the 
housekeeping gene Gapdh at time 0, 15, 30, 45, and 60 minutes. n = 3. 
 

Dusp1 deficiency does not affect inflammasome activation. 

 After transcription of Il1b mRNA, the message must be translated as a 34kDa 

protein and then cleaved by the inflammasome protein complex before being secreted in 

its active 17kDa form. Examination of tumor tissues from the 4NQO model revealed the 

proform of IL-1β to be elevated only in Dusp1 deficient tumor samples. Furthermore, 

these samples contained highly elevated levels of procaspase-1, the enzyme within the 

inflammasome complex responsible for cleavage and activation of IL-1β (Figure 4-8). 

These data support increased production of IL-1β within the 4NQO-induced tumor 

microenvironment, with both elevated transcriptional and translational products. 

However, the increased levels of procaspase-1 within Dusp1 deficient tumor tissues 
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suggested Dusp1 could potentially modulate an additional point of post-translational 

regulation by the inflammasome.  

Figure 4-8. IL-1β and caspase-1 expression in 4NQO tissues. The proforms of caspase-1 
and IL-1β were detected in tissue samples from wild-type and Dusp1 deficient animals 
treated with vehicle or 4NQO. Gapdh was used as a loading control. Cleaved isoforms of 
caspase-1 and IL-1β were unable to be detected in these samples. 
 

 To determine whether this was the case, primary bone marrow-derived 

macrophages from wild-type and Dusp1 deficient mice were treated with LPS for 4 hours 

to prime these cells to express Il1b mRNA. Following this treatment, cells were 

stimulated with either adenosine tri-phosphate (ATP) or nigericin to induce formation of 

the Nlrp3 inflammasome complex necessary to cleave Il1b to its mature, secreted form. 

Activation of inflammasomes requires this secondary treatment to recruit members of the 

complex with subsequent cleavage of procaspase-1 into active p10 and p20 subunits. 

ELISA of supernatants collected revealed enhanced IL-1β secretion by Dusp1 deficient 

macrophages after ATP or nigericin treatment, although this was not statistically 

significant (Figure 4-9). Western blotting showed similar increases of IL-1β protein in 

lysates as well as supernatants in Dusp1 deficient samples. However, no changes were 

Pro Il-1b 
31kDa 
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seen in procaspase-1 expression or its cleaved caspase 1 p20 subunit (Figure 4-10), 

suggesting enhanced IL-1β secretion is due to increased influx of Il1b mRNA and its 

translational product rather than increased inflammasome recruitment or activation.  

 

Figure 4-9. IL-1β secretion by wild-type and Dusp1 deficient macrophages after 
inflammasome activation. Primary bone marrow-derived macrophages from wild-type 
and Dusp1 deficient mice were treated with LPS (100ng/mL) for 4h or primed with LPS 
under the same conditions, followed by ATP (5mM) for 30 minutes or nigericin (10uM) 
for 60 minutes to activate the inflammasome complex. Secreted IL-1β in the supernatant 
was quantified by ELISA. ATP stimulation resulted in a trend toward increased IL-1β 
from Dusp1 deficient macrophages. Nigericin stimulation resulted in detectable IL-1β 
secretion only in Dusp1 deficient cells. n = 4, p = 0.4555 (ATP), p = 0.1036 (nigericin), 
Student’s unpaired t-test.  
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Figure 4-10. IL-1β expression in increased in Dusp1 deficient macrophages. Primary 
bone marrow-derived macrophages from wild-type and Dusp1 deficient mice were 
treated with LPS (100ng/mL) for 4h or primed with LPS under the same conditions, 
followed by ATP (5mM) for 30 minutes. Lysates and supernatants were probed for 
caspase-1 and IL-1β expression. LPS followed by ATP treatment resulted in increased 
mature IL-1β expression by Dusp1 deficient macrophages. Increased IL-1β expression 
was not accompanied by increased caspase-1 cleavage, detected as caspase-1 p20. 
Loading control for lysates was α-tubulin. Western blots shown are representative of 4 
independent experiments. 
 

4.3 Summary & Discussion 

 Immunohistochemistry and flow cytometry analysis did not suggest alterations in 

macrophage numbers within Dusp1 deficient tumor tissues. However, the phenotype of 

infiltrating macrophages was only indirectly assessed by Nanostring analysis. These gene 

expression results suggest a skewing toward M2 polarization, which would promote 

tumor progression through immunosuppressive effects on other immune cells and 
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enhancing angiogenesis (287, 385, 386).  Macrophage polarization was assessed ex vivo 

using primary bone marrow-derived macrophages and revealed no intrinsic bias toward 

M2 polarization but did demonstrate decreased IL-12 expression, which could lead to a 

less effective anti-tumor immune response. Dusp1 deficient dendritic cells have been 

shown to express lower levels of IL-12, rescued by p38 but not JNK inhibition, which 

impaired effective recruitment of Th1 and Th17 but not Th2 responses (387).  

Dusp1 deficient macrophages have been well characterized as expressing 

enhanced levels of IL-10 after LPS challenge (143, 144, 151, 371), but this effect was not 

seen in M2-polarized primary cells. Enhanced IL-10 may promote the development of an 

immunosuppressive tumor microenvironment (286, 388). It is unclear whether 

recombinant IL-4 treatment can sufficiently mimic the conditions that promote the 

development of tumor-associated macrophages. Furthermore, debate continues as to 

whether M2 polarized macrophages from primary cells can accurately recapitulate these 

cells or whether tumor-associated macrophages are a truly distinct entity (389).  

The inflammatory component of 4NQO-induced tumors in Dusp1 deficient mice 

was characterized by qPCR array to identify cytokine mediators for more in-depth 

validation. Both Nanostring analyses, performed in Chapter 3.2, and targeted qPCR array 

results, described in Chapter 4.3, found Il1b mRNA to be significantly elevated in Dusp1 

deficient tumor tissues. To address the mechanism of IL-1β regulation by Dusp1, primary 

bone marrow-derived macrophages were used for an ex vivo culture model, based on 

these observations. A previous study of 4NQO-induced lesions in Balb/c mice revealed 

Il1b mRNA was elevated in HNSCC lesions but not in epithelial-enriched samples 

examined by laser-capture microdissection, with prominent CD11b+ cells in the 



	   114	  

underlying stroma (390). Examination of secreted supernatants from HNSCC cell lines 

compared to supernatants from freshly derived tumors and tumor-draining lymph nodes 

from HNSCC patients found similar results with elevated levels of IL-1β only in the 

tumor lysates and lymph nodes but not isolated cell lines (391). 

Results from the experiments detailed in this chapter demonstrate multiple points 

of regulation of IL-1β expression by Dusp1, both transcriptionally and post-

transcriptionally. Transcriptional regulation of IL-1β has been shown to be mediated by 

NF-κB and AP-1 (392), both key members of the TLR-MAPK innate immune signaling 

pathway, suggesting similar mechanisms may be increased in Dusp1 deficient cells. 

Identifying the MAPK responsible for increased transcription by inhibitor treatment, 

followed by chromatin immunoprecipitation of the putative transcription factor and 

promoter region will more clearly delineate this pathway. 

Following stimulation, the majority of Il1b mRNA was determined to be mature, 

processed transcript suggesting enhanced mRNA stability as the main mechanism by 

which IL-1β is rapidly elevated following stimulation. Like other cytokines rapidly 

induced following TLR4 activation, the 3’ UTR of IL-1β contains several ARE sites for 

interactions with RNA binding proteins to regulate its stability (393). Specifically in 

HNSCC tissues, the RNA binding protein tristetraprolin down-regulates expression of IL-

6, VEGF, and PGE2 by decreasing mRNA stability, with an inverse correlation between 

TTP and IL-6 expression, serving as a biomarker for poor prognosis (394). More 

recently, the tumor-promoting effects of p38α MAPK activity in senescent and cancer-

associated fibroblasts was found to be mediated through post-transcriptional regulation of 

secretory products known collectively as the senescence-associated secretory phenotype, 
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which includes IL-1β, by RNA binding protein AUF1 (349). As the ARE sites within IL-

1β have been identified to bind to at least three RNA binding proteins (395-399), more 

thorough ribonucleoprotein immunoprecipitation reactions with 3’ UTR mutation screens 

are needed to dissect the regulatory pathway involved. 

Functionally, IL-1β may have several distinct roles within the tumor 

microenvironment. In Epstein Barr virus-associated nasopharyngeal carcinoma, tumor-

derived IL-1β was shown to recruit neutrophils to generate an anti-tumor immune 

response, associated with increased survival (400). Other knockout studies have also 

suggested hematopoietic-derived IL-1β may have beneficial anti-tumor effects (325, 

401). IL-1β has the potential to induce dendritic cell-mediated activation of adaptive 

immune cells (401). However, the effects of IL-1β may vary greatly depending upon the 

cellular constituents of the microenvironment. In a xenograft model, tumor cells 

engineered to overexpress IL-1β were shown to preferentially induce expansion of a 

Ly6C- MDSC population, particular immunosuppressive against NK cell function (402). 

Il1r and Myd88 deficiency protected mice from topical skin carcinogenesis, but 

orthotopic tumor growth was only inhibited in Myd88 deficient keratinocytes and not Il1r 

deficient cells (403). Deficiency in IL-1β but not IL-1α was shown to protect mice from 

3-methylcholanthrene-induced fibrosarcoma, an effect reversed with addition of 

recombinant IL-1RA, an endogenous inhibitor of IL-1β signaling (300). In mouse models 

of obesity, inflammasome activation in adipose tissue macrophages occurs in response to 

secreted factors from adipocytes; the increase in circulating IL-1β then promotes the 

expansion and recruitment of bone marrow-derived myeloid progenitors (404).  Data 

from the Dusp1 deficient animals challenged with 4NQO, described in chapter 3, suggest 
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IL-1β may play a similar role in recruiting myeloid lineage immune cells to the tumor 

microevironment. Understanding the direct contribution of IL-1β in these models of 

tumor progression could be better addressed in the future with Casp1-/- or Il1b-/- animals.  

In addition to tumor-associated macrophages, other cellular sources of IL-1β 

could further modulate the immune response. Sublethal doses of radiation and 

chemotherapeutics 5-fluourouracil and cisplatin were shown to increase levels of IL-1β 

in a panel of HNSCC cell lines (405). Surprisingly, enhanced tumorigenesis in colitis-

associated cancer through Nlrc4 inflammasome activation has been attributed to caspase-

1 regulation of colonic epithelium (406). However, Nlrp3 has been shown in the same 

model of colitis-associated cancer to regulate tumorigenesis through the hematopoietic 

compartment (325). Whether these complex regulatory pathways impact HNSCC 

development are exciting avenues for future investigation. 
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CHAPTER 5. Assessment of DUSP1 expression in human HNSCC 

 

5.1 Rationale & Hypothesis 

 DUSP1 gene and protein expression have been shown to be lost in a number of 

human malignancies, including prostate, breast, and colon, with increasing tumor grade 

(174, 176, 340). Based on characterization of the knockout animal, Dusp1 has been 

shown to be necessary for timely inactivation of immune responses to bacterial 

challenges, including LPS, peptidoglycan, and other innate immune stimuli (144, 153, 

407). The oral microenvironment contains a unique complement of dense bacterial 

pathogens and constant immune surveillance, with important implications in head and 

neck cancer (374, 408).  Animal studies presented in Chapter 3 suggest Dusp1 may have 

a tumor suppressive role in head and neck cancer, due in part to alterations of the 

immunologic milieu. Thus, we hypothesize expression of DUSP1 is decreased in human 

HNSCC tissues.  

 

5.2 Results 

Decreased DUSP1 expression in human HNSCC 

Expression of DUSP1 mRNA and protein levels were examined in tumor tissue 

from patients diagnosed with HNSCC in comparison to matched adjacent non-tumor 

tissue. RNA and protein were isolated from snap frozen tissues and assessed by qPCR 
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and immunoblotting. DUSP1 mRNA was significantly decreased in ten pairs of HNSCC 

tissues compared to non-tumor controls (Figure 5-1). Protein levels of DUSP1 were also 

down-regulated in tumor tissues in 8 of the 11 pairs of tissue samples. Expression of IL1B 

mRNA was also examined to determine if there was a similar inverse relationship as seen 

in the 4NQO animal model and in ex vivo macrophage experiments. A linear regression 

of IL1B and DUSP1 gene expression from each patient, using fold change of gene 

expression in the tumor tissue normalized to the adjacent non-tumor tissue sample did not 

detect an inverse linear relationship between fold change of DUSP1 versus fold change of 

IL1B for each patient sample pair. However, this method of comparison is not well suited 

for these data, in which a single patient provides two pairs of (x, y) data. Using an 

alternative statistical test, an association (β = 1.34, p = 0.011) was detected between IL1B 

and DUSP1 in this sample set. However, the available sample size limits the 

interpretation that can be made from this comparison. As expression of IL-1β is regulated 

at multiple points, both in gene expression and post-translational processing, protein 

expression of IL-1β by Western blotting was assessed (Figure 5-2). These blots 

demonstrate increased levels of 35kD proform and cleaved 17kD IL-1β in eight of eleven 

pairs of these HNSCC tumor tissues, likely a more appropriate measure of IL-1β 

expression within the tumor microenvironment than mRNA.  
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Figure 5-1. DUSP1 mRNA is decreased in human HNSCC. Tissues from patients 
diagnosed with HNSCC were assessed for DUSP1 expression by qPCR. DUSP1 
expression was significantly decreased in tumor tissues compared to matched adjacent 
non-tumor tissue. n = 10, Student’s paired t-test, p = 0.0378. 
 

Figure 5-2. DUSP1 and IL-1β expression in human HNSCC. Tissues from patients 
diagnosed with HNSCC were assessed for DUSP1 and IL-1β expression by Western 
blotting. DUSP1 expression was decreased in nine of the eleven tumor tissues compared 
to matched adjacent non-tumor tissue. IL-1β expression was increased eight of the eleven 
tumor tissues. n = 11. 
 

DUSP1 expression in other HNSCC datasets 

 Previously generated microarray data from a set of 22 patients diagnosed with 

HNSCC were also examined for DUSP1 expression. Five of the 22 pairs of patient 

samples were obtained from a hospital in Shanghai, China, and the remainder during 
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surgical resection at New York University. Thirteen of the 22 tumors were located within 

the oral cavity. Three of the tumor samples were located within the oropharynx. Nine 

patients were diagnosed with stage T1 or T2 disease with no nodal involvement, and none 

of the patients had any distant metastatic disease (409). In this sample set, comparing 

HNSCC expression with that of non-tumor adjacent tissue revealed significantly 

decreased DUSP1 and significantly increased IL1B mRNA (Figure 5-3).   

Figure 5-3. DUSP1 and IL1B mRNA in HNSCC from available microarray datasets. 
Previous microarray analysis of human HNSCC and matched adjacent non-tumor tissues 
show significantly decreased DUSP1 expression and increased IL1B expression. n = 22, 
Wilcoxon signed-rank test, p =0.0005 (DUSP1), 0.047 (IL1B). 
 

Correlation between DUSP1 expression and cytokine levels in HNSCC 

 Linear regression analysis of DUSP1 and IL1B mRNA expression from the ten 

sample sets obtained from the Hollings Cancer Center did not reveal a significant 

correlation. This analysis was performed using a linear regression of IL1B and DUSP1 

gene expression from each patient, comparing fold change of gene expression in the 

tumor tissue normalized to the adjacent non-tumor tissue sample, for both DUSP1 and 

IL1B gene levels, which did not detect an inverse linear relationship between fold change 

of DUSP1 versus fold change of IL1B for each patient sample pair. As previously 

discussed, this statistical method is not well suited for these data, in which a single 

patient provides two pairs of (x, y) data. Although an association (β = 1.34, p = 0.011) 
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was detected between IL1B and DUSP1 using an alternative statistical test, the available 

sample size limits the interpretation that can be made from this comparison. 

 

5.3 Summary & Discussion 

 These experiments demonstrated that DUSP1 gene and protein expression is 

reduced in human HNSCC compared to adjacent non-tumor tissue, as previously 

described in other tumor types (88, 174, 182). The interpretation of these results is 

limited by a disease-free tissue sample to account for potential changes in gene 

expression due to a tumor field effect. Although adjacent non-tumor tissue samples were 

used as controls, the field of precancerous epithelium, seen early in the progression of 

OSCC (410), has likely already begun to accumulate genomic and epigenetic alterations. 

An alternative option for control tissues from cancer-free patients includes samples from 

uvulopharyngoplasty for obstructive sleep apnea. These tissues offer similar anatomical 

location but often are complicated by long-standing inflammation and hypoxia (411). In 

the available tissue pairs, the difference between HNSCC and adjacent non-tumor tissue 

was significant, even in a small sample size, suggesting loss of DUSP1 is a common 

molecular occurrence. Searches of available genome-wide association studies and copy 

number variation analyses have not identified sites of mutation or deletion to explain its 

loss. Recently, an unbiased promoter hypermethylation screen identified DUSP1 (89), 

suggesting its down-regulation can be mediated by epigenetic means. The upstream 

epigenetic modifiers responsible and whether loss of expression can be reversed with 

pharmaceutical inhibitors, such as azacytidine and decitabine, should be addressed in 

future studies. 
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 A shortcoming of these studies is the inability to address whether regulation of 

IL-1β is deregulated by loss of DUSP1 expression, as seen in murine macrophages ex 

vivo. Correlation analysis suggests a trend toward increasing IL-1β mRNA expression 

with decreasing DUSP1 mRNA expression, but analysis of IL-1β gene levels may not be 

sufficient as its expression is highly regulated post-translationally by inflammasome 

activation. Furthermore, the small sample size limits the associations that could be drawn 

to understand whether DUSP1 and/or IL-1β expression may have prognostic or 

predictive value in HNSCC. In future studies with a larger sample set, ideally these 

tissues can be stratified based on tissue site, stage, grade, patient sex, exposure to 

tobacco, alcohol, and chemotherapeutic and radiotherapeutic treatments.  The tissues 

used for these analyses did not include tumors from the oropharynx, limiting likelihood 

of HPV-positive status. However, in future studies with larger datasets, stratification of 

HPV-positive versus negative tissues will be an important distinction, as pathophysiology 

of these tumors, particularly with respect to immune involvement, differs dramatically. In 

addition, analysis of tissues from primary tumors versus lymph node or distant metastases 

might answer whether DUSP1 expression level is involved in metastatic progression. 

 Immunohistochemical studies were not performed due to non-specific background 

staining in testing of several commercially available DUSP1 antibodies. The 

consequences of altered subcellular localization must be considered, as DUSP1 

immunohistochemistry has been characterized as cytoplasmic in certain cancers (184) 

(182). With a more specific antibody for immunohistochemistry, subcellular localization 

can be assessed as well as identifying which cells within the tumor express DUSP1 and 

whether these colocalize with specific cytokines, such as IL-1β. The latter question can 



	   123	  

be addressed by laser-capture microdissection of epithelial versus stromal expression 

within HNSCC tissues, but delineating key immune cell players will require more precise 

techniques.  

 Already a recombinant form of IL-1RA, an endogenous antagonist to IL-1R1, 

approved for use in rheumatoid arthritis, is showing signs of efficacy in clinical trials for 

smoldering myeloma and numerous murine cancer models (412, 413). A dose-escalation 

phase I clinical trial of a monoclonal antibody against IL-1α demonstrated 29% stable 

disease and 3% partial response in a group of 34 patients with metastatic disease of 18 

tumor types. Furthermore, 70% of patients with cancer-associated cachexia demonstrated 

reduced IL-6 plasma levels with increased lean body mass (414). Before expanding these 

to other disease models, additional studies must be done to better understand the cellular 

constituents and downstream mechanisms targeted by these inhibitors. 
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CHAPTER 6. General Discussion & Future Directions 

Although previous reports have identified down-regulation of DUSP1 across a 

diversity of tumor tissues, this is the first study to demonstrate a tumor suppressive role 

for this MAPK phosphatase. Results from these in vivo and ex vivo studies also highlight 

a potential mechanism for up-regulation of the pro-inflammatory cytokine IL-1β in oral 

cancer, previously shown to be elevated both as mRNA in salivary exosomes (376) and 

secreted protein (375). Using a model that closely mimics the genetic heterogeneity of 

HNSCC following long-term carcinogen exposure, these findings support the role of IL-

1β as a potential biomarker for human disease. However, additional work must be done 

to address the functional impact of IL-1β on tumor progression. 

The implications of these findings may extend well beyond HNSCC, as DUSP1 

expression has been shown to be dysregulated in a number of other cancers and may even 

be predictive of response to targeted therapies, such as cetuximab (174, 415). Genomic 

studies have not identified common mutation or deletions, but a recent DNA methylation 

screen identified significantly increased promoter hypermethylation in over 80% of oral 

cancer tissues compared to normal samples (89). Furthermore, aberrant ERK signaling in 

cancer cells may enhance DUSP1 degradation through the proteasomal pathway (136, 

137). The delineation of regulatory mechanisms in different cell types will enhance the 

understanding of expression changes in pathologic states and enhance development of 

specific therapeutic agents.    
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Bone marrow chimeric and subcutaneous syngeneic tumor experiments suggest 

the loss of DUSP1 expression in the tumor microenvironment, but not hematopoietic 

cells, supports tumor progression. Additional studies must be performed to address how 

Dusp1 deficiency in non-hematopoietic cells alters tumor-associated inflammation and 

the specific cell types involved. This finding presents an opportunity to design 

therapeutics with the benefit of targeting cell types with decreased heterogeneity, 

compared to tumor cells, with the goal of generating a consistent anti-tumor response. In 

addition, modulation of an immune regulator, such as DUSP1, has the potential to go 

beyond simply reducing inflammation and shifts the immune response to reprogram it 

toward a less immunosuppressive phenotype. 

An unanswered question remains the potential inflammatory trigger that initiates 

the inflammatory response seen in the 4NQO model of oral cancer. Although tumor-

associated inflammation is commonly referred to as “sterile inflammation,” possibly 

driven, in this scenario, by the interleukin-1 response to necrotic tissue, the context of the 

oral cavity brings up potential involvement of the abundant and diverse microflora.  

Recent studies of germ-free mice have identified crucial roles of the gut microbiome in 

shaping immune system development with broad-reaching effects on metabolism, 

autoimmunity, and cancer. Additional work must be done to address how the complex 

biodiversity in the oral cavity may interact with the immune cells within the head and 

neck tumor microenvironment and its effects on tumor growth and progression.  

Pharmaceutical intervention to induce DUSP1 expression, with agents such as 

rosiglitazone and mapracorat, are currently being explored with promising results, 

suppressing MMP-2 and CXCR4 expression and xenograft growth in NSCLC cells and 
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LPS-induced activation in macrophages, respectively (345, 347). Additional agonists of 

DUSP1 include aurothiomalate and auranofin, which increase DUSP1 expression and 

inhibit p38 MAPK phosphorylation, are anti-rheumatic gold compounds (416). 

Phosphodiesterase 4 (PDE4) inhibitors, recently used to treat chronic obstructive 

pulmonary disease, plaque psoriasis, and psoriatic arthritis (417-419), inhibit the cyclic 

AMP (cAMP) degradation pathway regulating the signaling through this second 

messenger in a number of cell types (420). DUSP1 has been shown to mediate the anti-

inflammatory effect of the PDE4 inhibitor rolipram through transcriptional activation by 

the cAMP-PKA-CREB pathway (421-424). Vitamin D has also been shown to induce 

DUSP1 expression and inhibit p38 MAPK phosphorylation in macrophages (83), as one 

of a number of mechanisms for its role as an endogenous anti-inflammatory agent. The 

use of thiazolidinediones as an anti-diabetic agent was previously shown in a 

retrospective study to be associated with reduced risk of lung, prostate, and colon cancer 

(425). Concerns over adverse cardiovascular events associated with rosiglitazone use 

have dampened enthusiasm over its potential as a chemopreventive agent. However, on 

November 25, 2013, the Food and Drug Administration released an update removing 

prescribing restrictions on the drug following evaluation of the Rosiglitazone Evaluated 

for Cardiovascular Outcomes and Regulation of Glycemia in Diabetes (RECORD) 

clinical trial when no increase in risk of heart attack or death was found. Within the same 

family of thiazolidinediones, pioglitazone was recently examined in a Phase IIa clinical 

trial for prevention of head and neck cancer in patients with oral leukoplakia, with partial 

or complete responses in 15 out of 21 patients, as reported to clinicaltrials.gov 
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(NCT00099021). Given these promising early findings, additional investigation as to 

whether these agents could enhance current therapies is needed. 

In summary, these studies demonstrate DUSP1 plays an important role within the 

tumor microenvironment, regulating key cytokines such as IL-1β. Loss of DUSP1 

expression, as shown here in head and neck cancer, alters the inflammatory milieu of the 

tissue, with enhanced expression of pro-tumorigenic cytokines that enhance immune cell 

recruitment and activation while promoting suppression of anti-tumor immunity. In 

animal tumor models, down regulation of Dusp1 leads to enhanced disease progression 

through increased activation of MAPK-driven signaling pathways. Thus, restoring 

DUSP1 expression represents a promising target of pharmacological intervention and 

merits further investigation as a suppressor of tumor-promoting inflammation. 
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Appendix A. Comparison of inflammatory cytokine, chemokine and receptor expression 

in wild-type and Dusp1 deficient tumor tissue by targeted qPCR array. 

 

Gene 
Symbol 

Fold 
Change 

(KO/WT) 
Abcf1 0.6329 
Bcl6 0.6875 

Cxcr5 0.3248 
C3 0.1073 

Casp1 1.4903 
Ccl1 2.7989 
Ccl11 4.7209 
Ccl12 1.7519 
Ccl17 0.2741 
Ccl19 0.1674 
Ccl2 1.9337 
Ccl20 10.2795 
Ccl22 0.4401 
Ccl24 0.4618 
Ccl25 3.3507 
Ccl3 6.182 
Ccl4 2.9434 
Ccl5 0.9409 
Ccl6 0.1186 
Ccl7 4.1278 
Ccl8 7.7008 
Ccl9 0.3585 
Ccr1 1.9907 
Ccr2 0.093 
Ccr3 0.4918 
Ccr4 0.8927 
Ccr5 1.7285 
Ccr6 0.4775 
Ccr7 1.7226 
Ccr8 2.1032 
Ccr9 0.9698 
Crp 0.5606 

Cx3cl1 4.0198 
Cxcl1 61.9138 
Cxcl10 8.8977 
Cxcl11 0.2104 

Cxcl12 0.0616 
Cxcl13 0.2982 
Cxcl15 14.1112 

Pf4 0.2629 
Cxcl5 38.2254 
Cxcl9 2.5912 
Cxcr3 0.4102 
Ccr10 0.595 
Ifng 1.6071 
Il10 4.7894 

Il10ra 0.6025 
Il10rb 1.001 
Il11 4.4849 
Il13 1.0203 

Il13ra1 3.471 
Il15 0.1727 
Il16 0.2565 
Il17b 3.2297 
Il18 0.2697 
Il1a 17.6278 
Il1b 70.8116 
Il1f6 1.0531 
Il1f8 0.3074 
Il1r1 1.1472 
Il1r2 0.1121 
Il20 98.0404 
Il2rb 1.5139 
Il2rg 1.3098 
Il3 1.2666 
Il4 2.3206 

Il5ra 0.4031 
Il6ra 0.4937 
Il6st 0.2467 
Il8rb 10.4981 
Itgam 0.5867 
Itgb2 0.5232 
Lta 1.1531 
Ltb 0.65 
Mif 1.5026 

Scye1 0.3676 
Spp1 32.0843 
Tgfb1 4.3959 
Tnf 11.3496 

Tnfrsf1a 1.5127 
Tnfrsf1b 1.3287 
Cd40lg 31.3148 
Tollip 0.7192 
Xcr1 5.7944 
Gusb 2.2192 
Hprt1 1.9778 

Hsp90ab1 0.7519 
Gapdh 0.172 
Actb 1.7619 

MGDC 4.4951 
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Appendix B. Comparison of the expression levels of MAPK signaling pathway members 

in wild-type and Dusp1 deficient tumor tissue by targeted qPCR array. 

 

Gene 
Symbol 

Fold 
Change 

(KO/WT) 
Araf 1.06 
Atf2 1.93 

Ccna1 0.81 
Ccna2 0.01 
Ccnb1 4.01 
Ccnb2 11.16 
Ccnd1 2.47 
Ccnd2 1.09 
Ccnd3 1.07 
Ccne1 3.29 
Cdc42 2.91 
Cdk2 3.05 
Cdk4 1.16 
Cdk6 4.7 

Cdkn1a 1.07 
Cdkn1b 0.88 
Cdkn1c 1.49 
Cdkn2a 124.88 
Cdkn2b 27.25 
Cdkn2c 1.17 
Cdkn2d 0.63 
Chuk 3.7 

Col1a1 0.17 
Creb1 1.39 
Crebbp 0.7 
Dlk1 0.81 
E2f1 2.56 
Egfr 0.62 
Egr1 7.55 
Elk1 0.74 
Ets1 5.48 
Ets2 0.44 
Fos 102.33 

Grb2 1.04 
Hras1 1.21 
Hspa5 2.12 

Hspb1 0.86 
Jun 0.56 

Kcnn1 0.11 
Kras 3.46 
Ksr1 0.13 

Map2k1 1.47 
Mapksp1 2.96 
Map2k2 0.56 
Map2k3 1.01 
Map2k4 1 
Map2k5 1.11 
Map2k6 0.75 
Map2k7 0.42 
Map3k1 0.89 
Map3k2 1.42 
Map3k3 3.01 
Map3k4 0.31 
Map4k1 0.7 
Mapk1 0.88 
Mapk10 0.16 
Mapk11 2.89 
Mapk12 0.15 
Mapk13 4.69 
Mapk14 0.42 
Mapk3 1.06 
Mapk6 4.59 
Mapk7 2.38 
Mapk8 0.81 

Mapk8ip1 0.35 
Mapk8ip2 0.67 
Mapk8ip3 1.93 

Mapk9 0.7 
Mapkapk2 0.3 
Mapkapk5 0.34 

Max 0.89 
Mef2c 0.03 
Mknk1 1.16 

Mos 1.2 
Myc 2.68 

Nfatc4 0.21 
Nras 2.7 
Pak1 4.26 
Rac1 1.81 
Raf1 0.87 
Rb1 0.58 
Sfn 2.57 

Smad4 0.94 
Trp53 1.32 
Gusb 1.93 
Hprt1 2.18 

Hsp90ab1 1.07 
Gapdh 0.14 
Actb 1.55 
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Appendix C. Nanostring gene counts from wild-type and Dusp1 deficient tumor tissues. 

Gene counts are shown for individual tumor tissue lysates, after normalization against 

positive and negative in-assay controls and housekeeping genes. n = 6. 

 
a-SMA Activin AB Acvr2a ADAM17 ALK-1 

WT 11775.74 13.16 1266.01 2303.91 3407.61 
WT 12400.28 13.23 1284.19 2389.29 3476.07 
WT 1489.83 5.02 1696.78 2935.46 561.58 
WT 12312.11 11.72 1529.42 2195.55 1032.76 
WT 6367.13 22.76 1473.21 3544.08 892.31 
WT 9517.23 25.36 1483.79 3163.57 900.42 
KO 9980.18 12.16 1087.9 3462.71 1265.9 
KO 2372.75 14.97 1468 4034.42 794.35 
KO 2283.04 11.14 1426.2 3961.06 728.7 
KO 2861.85 7.53 1308.97 4579.52 720.41 
KO 6599.72 8.93 1275.89 2604.37 804.63 
KO 1818.34 21.6 1583.38 4706.96 453.51 

 

 
ALK-2 

(Acvr 1) 
ALK-3 

(BMR1A) 
ALK-4 

(Acvr 1B) 
ALK-5 

(TGFbR I) 
ALK-6 

(BMPR1B) 
WT 1203.72 6603.78 4139.32 1946.83 644.85 
WT 1333.04 6820.87 4136.48 2029.06 706.2 
WT 1018.67 6231.58 4353.97 2206.12 343.58 
WT 1130.81 6497.11 4368.71 2282.94 751.39 
WT 1389.37 6224.6 4418.42 2003.8 476.7 
WT 1292.41 6240.68 4883.71 1776.63 537.25 
KO 1478.18 6724.21 5472.68 2340.54 357.11 
KO 1414.67 6384.71 4170.08 2917.28 188.06 
KO 1325.92 6384.49 4227.36 2959.37 172.7 
KO 1520.86 7440.42 4582.34 2873.15 136.55 
KO 1061.59 5700.84 3225.45 1787.84 335.34 
KO 2146.59 11267.68 5760.82 4127.34 80.34 

 

 
ALK-7 

(Acvr1C) Alpl AMH APRIL Arg-1 
WT 23.69 206.18 7.02 108.79 6703.8 
WT 31.55 194.36 5.09 123.13 6988.77 
WT 52.24 239.1 5.02 164.76 12976.52 
WT 62.88 313.35 9.59 181.19 7331.63 



	   131	  

WT 141.33 267.09 7.19 179.66 13404.98 
WT 29.98 198.3 6.92 227.12 14945.11 
KO 17.69 504.15 4.42 135.99 39627.73 
KO 165.61 145.96 14.97 130.05 160061.26 
KO 171.59 122.56 11.14 141.51 155674.57 
KO 5.65 542.42 5.65 80.99 86303.61 
KO 49.61 200.41 7.94 84.33 9542.4 
KO 9.5 38.87 6.91 50.1 24022.86 

 

 Arginase Atf4 Axin2 Bad Bax 
WT 89.49 9329.7 420.25 364.1 1262.5 
WT 86.49 9760.67 423.32 401.95 1297.42 
WT 25.12 10790.5 301.38 459.11 1477.78 
WT 38.37 7856.01 510.52 363.44 1170.25 
WT 22.76 10674.16 352.13 420.4 1143.83 
WT 42.66 9732.83 408.13 447.33 1127.54 
KO 160.31 13104.58 375.9 509.68 1451.64 
KO 236.71 12309.09 245.13 589.44 1963.88 
KO 240.67 12043.62 222.84 563.8 1896.4 
KO 367.27 12590.61 344.66 543.36 1777 
KO 33.73 11155.62 278.79 373.04 1116.16 
KO 126.12 16403.09 188.31 597.76 2265.8 

 

 Bcl2 Bcl2l1 Bcl2l11 Bcl6 Bglap 
WT 310.58 1706.44 485.17 914.19 6679.24 
WT 345.98 1722.77 528.13 936.18 6835.11 
WT 115.53 1423.53 318.46 798.66 20252.9 
WT 262.19 1164.92 447.64 840.92 12957.99 
WT 222.78 1349.84 421.6 1002.5 11506.58 
WT 249.03 1254.36 469.23 832.4 9053.76 
KO 192.37 1795.48 724.16 1072.42 1460.49 
KO 109.47 2055.57 747.57 906.62 1217.25 
KO 93.59 2089.17 726.47 915.89 1246.81 
KO 113 1618.79 761.84 741.12 459.55 
KO 70.44 907.81 299.63 872.09 1088.38 
KO 155.49 1161.84 694.51 1102.24 251.37 

 

 Bmp-1 Bmp2 Bmp4 BMPR-II C-fos 
WT 1547.64 450.96 1898.58 2263.55 1444.11 
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WT 1502.97 487.42 1953.76 2269.21 1507.04 
WT 816.75 744.41 888.07 2799.84 958.4 
WT 962.42 820.67 1606.16 2940.54 1289.62 
WT 1052.8 589.28 958.18 2617.04 1913.97 
WT 1215.16 645.63 1423.84 2712.79 1165.59 
KO 1822.02 674.41 1223.89 2672.22 3153.15 
KO 2170.65 1007.67 712.01 3360.77 10835.48 
KO 2071.34 947.09 677.45 3295.87 10536.08 
KO 2058.57 730.76 1280.72 2608.53 2936.24 
KO 714.34 369.08 1018.93 2352.36 1433.64 
KO 5028.3 1921.14 1224.9 3905.33 15322.45 

 

 C1qa C1qb C3ar1 C5ar1 Calcr 
WT 1712.58 3354.09 547.46 374.63 37.73 
WT 1821.48 3395.68 590.2 365.31 38.67 
WT 1819.35 3333.29 494.27 339.56 31.14 
WT 2550.46 4242.95 940.04 331.46 28.78 
WT 1948.71 3287.77 1203.72 406.03 41.92 
WT 2526.02 4613.93 1035.31 440.41 24.21 
KO 3147.62 5973.51 1169.72 705.37 16.58 
KO 4553.69 9327.25 1756.17 1274.32 8.42 
KO 4507.03 9220.18 1644.59 1331.49 17.83 
KO 3254.54 5420.46 2217.72 921.93 11.3 
KO 1494.16 3338.55 540.72 303.59 26.79 
KO 2101.68 4063.41 1591.16 446.6 10.37 

 

 CCL2 CCR5 Cd 44 Cd 47 Cd 9 
WT 504.47 106.16 11211.61 3898.05 13505.87 
WT 525.07 135.34 11338.94 4029.63 14243.13 
WT 445.04 115.53 11416.37 5073.27 20856.67 
WT 540.36 185.45 10892.47 4500.87 13942.79 
WT 1366.61 209.6 15350.1 4525.02 15465.08 
WT 840.47 228.28 14834.43 4949.42 14910.52 
KO 794.92 256.5 24304.22 5984.57 22548.55 
KO 2137.91 377.06 39415.11 8776.17 50118.67 
KO 2152.68 384.41 38495.24 8796.78 49367.81 
KO 1214.8 509.46 32803.39 8977.29 39992.38 
KO 655.8 157.75 10609.95 3605.44 11283.61 
KO 3063.11 332.57 50665.68 9912.34 56344.44 
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 CD105  CD109 CD11b CD16 CD163 
WT 1759.08 2347.78 423.76 219.34 959.82 
WT 1926.29 2419.82 443.67 241.17 979.93 
WT 697.2 3527.18 546.51 341.57 882.05 
WT 1316.26 3418.02 653.34 274.98 1108.43 
WT 1234.86 2327.19 450.35 202.42 945.01 
WT 1378.87 2361.15 737.86 319.35 1265.89 
KO 1670.55 2546.18 740.75 479.83 1678.29 
KO 1156.43 3188.61 1442.74 1424.02 4221.54 
KO 1080.79 3221.21 1520.91 1352.66 4169.42 
KO 1244.94 2830.77 833.41 838.12 1554.76 
KO 1149.89 1676.72 536.75 302.6 540.72 
KO 801.63 8969.92 404.27 374.03 375.76 

 

 CD32 CD40lg CD46 CD55 CD56  
WT 1473.06 13.16 26.32 3350.59 1350.24 
WT 1490.76 21.37 18.32 3506.6 1374.76 
WT 1403.44 9.04 12.06 2343.75 931.27 
WT 1303.47 29.84 22.38 3080.16 1235.26 
WT 1353.43 34.73 28.75 2421.81 983.34 
WT 1596.77 29.98 18.45 2588.27 990.35 
KO 3138.78 38.7 23.22 2640.15 885.58 
KO 6517.57 27.13 12.16 2264.21 786.86 
KO 6138.25 23.4 20.06 2184.99 699.73 
KO 4228.26 32.02 14.13 1438.93 431.3 
KO 1097.31 26.79 21.83 2690.68 882.01 
KO 2521.49 16.41 20.73 567.53 1844.26 

 

 Col10a1 Col1a1 CD86 Cdh1 CEBPb 
WT 4.39 4788.56 296.54 9626.24 8791.89 
WT 6.11 4880.33 306.29 9845.13 9098.22 
WT 4.02 3398.59 240.1 10433.86 11097.91 
WT 4.26 4995.4 436.98 8474.17 8942.06 
WT 11.98 4413.63 554.55 11681.45 12782.17 
WT 13.83 7221.8 526.88 12096.28 10289.68 
KO 12.16 9460.55 671.09 15243.9 11820.99 
KO 11.23 12267.93 265.72 20376.06 11453.93 
KO 21.17 11987.91 269.64 20265.46 11015.19 
KO 19.78 9013.07 652.6 15222.68 10204.33 
KO 6.94 4705.72 326.41 8153.41 9482.88 
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KO 244.46 4910.82 310.98 14060.41 6772.35 
 

 Chordin Col10a1 Col1a1 Col1A2 Col2a1 
WT 163.19 4.39 4788.56 3107.56 11.41 
WT 180.11 6.11 4880.33 3231.85 14.25 
WT 112.52 4.02 3398.59 1482.8 14.06 
WT 187.58 4.26 4995.4 3731.36 20.25 
WT 135.34 11.98 4413.63 3260.22 25.15 
WT 177.55 13.83 7221.8 4853.73 16.14 
KO 127.14 12.16 9460.55 5199.6 13.27 
KO 78.59 11.23 12267.93 3752.8 25.26 
KO 60.17 21.17 11987.91 3613.42 31.2 
KO 65.92 19.78 9013.07 5009.88 25.43 
KO 99.21 6.94 4705.72 1886.06 10.91 
KO 50.97 244.46 4910.82 2074.03 38.01 

 

 Cpt1a Crim1 CSF1 CSF2 CSF3 
WT 3472.54 1612.56 1067.73 21.93 35.97 
WT 3613.44 1801.12 1120.36 36.63 46.81 
WT 4810.06 1114.11 894.1 14.06 8.04 
WT 3208.06 1711.67 1187.3 27.71 24.51 
WT 3630.32 1206.11 1269.59 22.76 69.47 
WT 3637.42 1324.69 1207.09 25.36 13.83 
KO 4412.42 1556.67 1055.84 16.58 202.32 
KO 3428.13 1882.48 880.42 55.2 152.51 
KO 3387.23 1908.66 817.84 46.8 134.82 
KO 3594.49 1573.59 823.05 61.21 259.91 
KO 3341.53 1323.52 929.64 12.9 7.94 
KO 4144.61 2888.62 848.27 55.28 119.21 

 

 Ctla4 Ctnnb1 Ctsk CXCL1 CXCL10 
WT 129.85 20536.04 464.99 100.02 42.11 
WT 121.09 20424.95 436.54 98.71 42.74 
WT 97.45 22674.01 259.19 48.22 53.24 
WT 228.08 23931.46 699.16 106.58 121.5 
WT 231.16 24639.68 492.27 332.97 415.61 
WT 244.42 25083.76 707.88 103.76 198.3 
KO 464.35 26059.9 824.77 1174.14 456.61 
KO 178.7 32609.37 1959.2 1250.93 246.07 
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KO 193.87 32197.66 1808.38 1128.71 233.99 
KO 836.24 27795.4 747.71 1544.4 457.67 
KO 81.36 19792.21 353.2 78.38 101.2 
KO 199.54 38908.22 344.66 2392.78 374.03 

 

 CXCl11 CXCL13 CXCL2 CXCL9 CXCR5 
WT 23.69 202.67 48.25 41.24 35.97 
WT 31.55 202.5 49.86 42.74 58 
WT 47.22 589.7 11.05 120.55 49.23 
WT 105.51 344.25 35.17 160.94 96.99 
WT 79.05 1245.64 38.33 168.88 80.25 
WT 117.6 1065.28 62.26 387.38 99.15 
KO 26.53 547.27 906.59 347.16 35.38 
KO 31.81 2408.3 1215.38 364.89 27.13 
KO 25.63 2313.12 1270.21 324.24 33.43 
KO 48.03 433.18 2536.96 1107.45 30.13 
KO 31.75 104.17 11.91 128.98 15.87 
KO 32.83 31.1 610.72 377.49 26.78 

 

 Decorin Dermatopontin Dkk1 DMP-1 Dspp 
WT 66434.41 25010.51 15.79 9.65 8.77 
WT 67027.26 25073.28 13.23 20.35 3.05 
WT 75432 20581.41 8.04 10.05 11.05 
WT 97661.33 25296.75 30.91 19.18 24.51 
WT 57691.02 26109.3 20.36 10.78 20.36 
WT 77477.54 26981.44 21.91 12.68 17.29 
KO 67276.37 26277.71 14.37 14.37 12.16 
KO 49692.03 9735.19 8.42 25.26 11.23 
KO 49153.88 9468.65 10.03 20.06 10.03 
KO 30450.07 11938.01 11.3 26.37 11.3 
KO 48463.07 19216.76 7.94 5.95 16.87 
KO 7776.11 7115.29 11.23 13.82 9.5 

 

 Erbin Ets1 Eif4a2 Elastase  Emr1 
WT 7349.53 1823.13 32873.28 10.53 294.79 
WT 7390.72 1888.64 33172.23 9.16 317.49 
WT 7451.18 1031.73 30200.53 12.06 654 
WT 7525.61 1393 30605.49 12.79 597.91 
WT 7033.07 1569.03 28751.49 15.57 601.26 
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WT 6968.16 1468.8 30991.24 12.68 718.26 
KO 7233.89 1817.59 30459.05 15.48 372.58 
KO 8424.38 1714.07 20233.85 14.97 813.06 
KO 8280.89 1608.94 20080.5 15.6 821.18 
KO 7404.64 1756.28 32189.4 5.65 483.1 
KO 4855.53 1248.11 31393.3 11.91 383.96 
KO 9261.02 1652.49 33940.38 11.23 301.47 

 

 EOMES Erbin Ets1 Factor B Fgf2 
WT 10.53 7349.53 1823.13 214.95 1156.34 
WT 17.3 7390.72 1888.64 178.08 1098.99 
WT 5.02 7451.18 1031.73 294.35 585.69 
WT 21.32 7525.61 1393 401.81 1165.98 
WT 15.57 7033.07 1569.03 328.18 722.23 
WT 25.36 6968.16 1468.8 457.7 780.52 
KO 5.53 7233.89 1817.59 637.93 657.83 
KO 22.46 8424.38 1714.07 946.85 277.88 
KO 31.2 8280.89 1608.94 937.06 287.47 
KO 13.18 7404.64 1756.28 657.31 152.56 
KO 9.92 4855.53 1248.11 529.8 640.92 
KO 32.83 9261.02 1652.49 343.8 101.07 

 

 Fgf23 Fgf4 Fgf8 Fizz1 FKBP51 
WT 8.77 14.91 5.26 16235.29 1137.92 
WT 8.14 18.32 8.14 16512.34 1097.97 
WT 17.08 28.13 13.06 40055.73 655 
WT 38.37 30.91 6.39 33439.46 690.64 
WT 63.48 39.53 11.98 27507.05 839.61 
WT 38.05 39.2 5.76 34869.62 667.53 
KO 49.75 15.48 7.74 15194.15 1911.57 
KO 34.62 14.97 7.49 33161.39 1698.16 
KO 55.71 18.94 8.91 32078.44 1598.91 
KO 68.74 15.07 6.59 12470.07 606.46 
KO 16.87 24.8 4.96 23334.15 459.36 
KO 21.6 18.14 12.09 2810.01 324.8 

 

 FLT3L Follistatin Foxo1 FoxP3 Fstl3 
WT 372.87 599.23 1208.98 34.22 67.56 
WT 387.7 579.01 1231.28 31.55 89.55 
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WT 211.97 503.31 1023.7 28.13 36.17 
WT 339.99 522.24 1470.8 103.38 93.79 
WT 396.45 352.13 1143.83 140.13 85.04 
WT 317.05 499.21 1062.98 136.04 83.01 
KO 302.93 1060.26 1166.4 107.24 89.55 
KO 244.2 1091.88 1409.05 31.81 130.05 
KO 226.19 1021.74 1372.72 26.74 123.68 
KO 285.34 1488.84 747.71 122.42 77.22 
KO 218.27 376.02 749.07 31.75 40.68 
KO 416.36 8448.17 1151.47 31.1 158.94 

 

 Fstl4 
Furin 

(PACE) G6pd2 Gata3 GDF1 
WT 16.67 4412.17 3260.22 135.11 52.64 
WT 29.51 4404.11 3490.31 129.23 68.18 
WT 15.07 5261.13 3367.45 95.44 31.14 
WT 40.5 4466.77 3253.89 266.45 77.8 
WT 17.97 5180.18 3833.93 173.67 68.27 
WT 34.59 5080.85 3300.77 279 48.42 
KO 22.11 8414.66 3599.81 174.68 32.06 
KO 17.78 12194.01 4503.17 105.73 16.84 
KO 18.94 12311.03 4518.17 114.76 18.94 
KO 12.24 10256.12 3330.81 184.57 22.6 
KO 7.94 4822.79 2152.94 94.25 40.68 
KO 22.46 16334.85 2179.42 143.39 11.23 

 

 
GDF15 
(MIC-1) 

GDF2 
(BMP9) 

GDF3 
(Vgr-2) 

GDNFR 
alpha-2 

GDNFR 
alpha-3 

WT 5.26 8.77 14.04 366.73 28.95 
WT 8.14 6.11 11.19 391.77 39.69 
WT 11.05 13.06 12.06 278.28 16.07 
WT 19.18 22.38 29.84 395.41 49.03 
WT 34.73 19.16 13.18 346.14 37.13 
WT 23.06 21.91 29.98 386.22 35.74 
KO 13.27 11.06 44.22 392.49 38.7 
KO 14.97 9.36 14.97 422.9 16.84 
KO 17.83 17.83 20.06 441.23 12.26 
KO 21.66 10.36 20.72 358.79 11.3 
KO 8.93 13.89 28.77 403.8 31.75 
KO 14.68 11.23 30.23 214.23 10.37 
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GFR 

alpha-1 Gfra4 Gli1 GP49A Gprasp1 
WT 215.83 286.89 251.8 541.32 529.92 
WT 253.38 296.12 276.78 623.78 533.21 
WT 240.1 181.83 57.26 203.94 371.71 
WT 222.75 311.21 142.82 341.06 525.44 
WT 198.82 194.03 82.64 519.81 516.22 
WT 168.32 250.18 129.13 515.35 500.36 
KO 123.83 208.96 105.03 1902.72 286.35 
KO 69.24 151.57 50.52 3142.77 174.03 
KO 62.4 141.51 55.71 3132.08 192.76 
KO 52.74 154.44 57.44 5239.65 144.08 
KO 92.27 90.28 64.49 375.03 312.52 
KO 63.06 67.38 59.6 1760.47 187.45 

 

 Gprasp2 Gr1 Gremlin GusB GzmB 
WT 131.6 6.14 660.64 626.43 10.53 
WT 117.02 10.18 668.55 641.08 13.23 
WT 67.31 3.01 44.2 619.84 22.1 
WT 229.15 12.79 474.28 614.97 33.04 
WT 156.9 11.98 457.53 606.05 22.76 
WT 157.95 25.36 600.66 722.87 38.05 
KO 50.86 17.69 1656.18 986.19 33.17 
KO 29 56.14 1370.69 1136.79 101.05 
KO 28.97 49.03 1422.86 1184.42 90.25 
KO 36.73 34.84 1699.78 946.41 117.71 
KO 24.8 7.94 147.83 667.71 16.87 
KO 21.6 18.14 501.88 1208.49 87.25 

 

 HAVCR2 Hk2 Hmgb1 Hmox1 Ibsp 
WT 149.15 7147.74 5464.99 3448.85 6.14 
WT 161.8 7405.98 5522.43 3514.74 6.11 
WT 83.38 6423.46 6713.8 3909.93 15.07 
WT 101.25 6575.98 6591.97 3053.52 11.72 
WT 152.11 8646.41 5792.22 3734.52 3.59 
WT 142.96 6512.76 5622.72 2597.5 8.07 
KO 280.82 8892.27 5513.59 5964.67 3.32 
KO 185.25 8276.55 6671.01 6017.01 18.71 
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KO 162.68 7965.57 6554.96 5825.15 11.14 
KO 334.31 5998.67 6074 5559.83 10.36 
KO 82.35 8668.33 5609.56 3558.81 9.92 
KO 225.46 4083.28 8817.88 2154.37 19.87 

 

 IFNG Ift122 Ift139 Ift140 Ift172 
WT 19.3 634.32 455.34 735.22 858.92 
WT 17.3 674.66 447.74 742.84 845.61 
WT 15.07 516.37 355.63 575.64 730.35 
WT 27.71 609.64 448.7 685.31 882.48 
WT 29.94 528.2 424 842 887.52 
WT 21.91 510.74 455.4 902.72 760.92 
KO 15.48 636.82 382.53 719.74 623.55 
KO 29 682.07 510.85 918.78 705.46 
KO 13.37 667.42 547.08 929.26 601.68 
KO 11.3 550.9 513.23 765.61 387.98 
KO 22.82 437.53 311.53 502.02 626.04 
KO 12.09 1047.81 1015.85 1267.23 743.75 

 

 Ift88 Igsf1 Ihh IL-10 IL-12a 
WT 259.69 24.57 9.65 14.91 566.77 
WT 252.36 23.4 19.33 12.21 565.78 
WT 223.02 15.07 8.04 5.02 713.27 
WT 249.4 25.58 10.66 13.86 563.81 
WT 289.85 37.13 13.18 26.35 455.14 
WT 257.1 20.75 12.68 13.83 348.18 
KO 243.23 24.32 6.63 15.48 241.02 
KO 331.21 19.65 10.29 21.52 58.01 
KO 373.26 13.37 10.03 24.51 42.34 
KO 247.67 14.13 10.36 24.48 78.16 
KO 162.71 19.84 8.93 18.85 421.66 
KO 574.44 9.5 19.87 19 33.69 

 

 IL-13 IL-15 IL-15Ra IL-17a IL-1B 
WT 7.9 241.27 269.35 16.67 304.44 
WT 12.21 257.45 317.49 10.18 290.01 
WT 13.06 321.47 184.85 15.07 42.19 
WT 25.58 379.42 301.62 44.76 88.46 
WT 14.37 376.09 337.76 34.73 332.97 



	   140	  

WT 33.43 522.27 325.12 57.65 244.42 
KO 12.16 319.52 430.08 27.64 2276.41 
KO 24.33 222.68 226.42 25.26 4731.46 
KO 18.94 197.22 203.9 33.43 4423.46 
KO 31.08 271.21 351.26 48.97 8111.86 
KO 13.89 456.38 191.48 19.84 71.43 
KO 29.37 125.25 248.78 27.64 3077.79 

 

 IL-2 IL-21r IL-2RB IL-2Rg IL-4 
WT 7.02 102.65 493.07 206.18 14.91 
WT 5.09 78.35 493.53 237.1 5.09 
WT 8.04 56.26 178.82 148.68 16.07 
WT 23.45 156.67 442.31 211.03 21.32 
WT 14.37 179.66 582.1 261.1 29.94 
WT 23.06 234.04 575.3 270.93 27.67 
KO 13.27 175.79 799.34 407.96 17.69 
KO 4.68 107.6 272.27 234.84 110.4 
KO 12.26 124.79 283.01 280.78 147.08 
KO 7.53 328.66 882.38 440.72 80.05 
KO 9.92 64.49 210.33 213.31 8.93 
KO 4.32 182.27 241.87 245.33 106.25 

 

 IL-4Ra IL-6 IL-7 IL-7Ra IL18r1 
WT 1589.75 38.6 129.85 573.78 634.32 
WT 1594.55 32.56 132.29 594.27 658.38 
WT 1135.21 15.07 124.57 317.46 271.24 
WT 944.3 31.97 150.28 516.91 429.52 
WT 1922.36 45.51 136.54 837.21 469.51 
WT 1965.7 35.74 168.32 866.98 534.95 
KO 6754.06 116.09 171.37 1408.52 604.76 
KO 15117.84 227.36 205.84 459.39 469.68 
KO 14708.84 230.64 215.04 452.37 473.54 
KO 10327.69 199.64 239.19 1182.78 637.54 
KO 1830.5 17.86 149.81 421.66 274.82 
KO 11254.72 205.59 107.98 440.55 376.63 

 

 IL1RL1 IL2ra IL9R iNOS Irf-5 
WT 200.91 62.29 18.42 45.62 784.35 
WT 206.57 52.91 16.28 51.9 800.84 
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WT 236.08 93.43 17.08 44.2 1287.91 
WT 325.07 165.2 38.37 66.08 1406.86 
WT 318.6 141.33 37.13 65.88 1237.25 
WT 436.95 197.15 26.52 59.95 1407.7 
KO 453.29 179.11 18.8 63.02 1089.01 
KO 758.79 105.73 15.91 87.95 1351.98 
KO 698.62 114.76 14.48 76.88 1322.58 
KO 655.43 277.8 14.13 59.33 1482.25 
KO 193.47 75.4 8.93 53.58 802.64 
KO 152.9 112.3 12.09 63.92 1058.18 

 

 Lag3 Ldha Lef1 Lefty Lilrb4 
WT 82.47 56098.39 114.93 441.31 327.25 
WT 82.42 56527.83 117.02 460.97 320.54 
WT 81.37 65711.42 27.12 308.41 155.71 
WT 124.7 52390.43 36.24 442.31 187.58 
WT 147.32 69859.95 46.71 255.12 194.03 
WT 134.89 56214.51 47.27 403.52 219.05 
KO 142.62 72462.7 54.17 613.6 728.59 
KO 158.12 92997.47 43.97 541.73 1445.54 
KO 154.88 91134.4 37.88 463.52 1368.26 
KO 305.11 63465.35 105.47 549.01 1505.79 
KO 67.47 70321.91 56.55 275.81 228.19 
KO 243.6 84590.51 47.51 900.1 777.44 

 

 LRRC32 MCP-1 Amhr2 Mmp1 MMP2 
WT 898.4 75.45 1559.92 5.26 3649.76 
WT 907.69 86.49 1607.78 7.12 3851.56 
WT 233.07 102.47 1530.02 14.06 3437.77 
WT 478.54 296.29 1236.33 12.79 4824.87 
WT 444.36 366.51 1337.86 7.19 3379.99 
WT 519.96 220.2 1207.09 13.83 4751.12 
KO 835.83 143.73 1279.17 7.74 5301.31 
KO 569.8 597.86 796.22 10.29 3776.19 
KO 583.85 533.71 750.99 10.03 3583.34 
KO 521.71 155.38 667.67 16.01 2862.79 
KO 383.96 87.31 1655.88 7.94 2793.87 
KO 456.96 209.04 752.39 16.41 1146.29 
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 MMP9 Msx1 Msx2 MMP14 MMP16 
WT 172.84 60.54 64.92 1708.19 71.94 
WT 181.13 76.32 61.06 1613.89 73.27 
WT 245.12 34.16 47.22 1320.06 53.24 
WT 193.98 60.75 69.28 1873.68 95.92 
WT 247.93 64.68 49.11 2115.19 55.1 
WT 216.75 65.72 42.66 2185.91 71.48 
KO 1049.21 61.91 100.61 2723.07 46.43 
KO 1126.49 63.62 83.27 4303.88 36.49 
KO 1181.07 34.54 65.74 4162.73 39 
KO 2314.71 48.97 108.3 4210.37 19.78 
KO 60.52 38.69 52.58 1176.68 60.52 
KO 12239.48 112.3 266.06 6945.12 21.6 

 

 Nanog ND4 Nfatc1 Nfkb NGF 
WT 12.28 2772.41 705.39 2198.63 64.92 
WT 10.18 2733.23 738.77 2349.6 71.23 
WT 21.1 2584.86 500.29 2282.47 72.33 
WT 29.84 2851.01 613.9 2208.34 81 
WT 37.13 3177.58 613.24 3100.92 92.23 
WT 38.05 2858.05 545.32 2644.76 86.47 
KO 11.06 2836.95 538.42 4059.73 106.14 
KO 15.91 2635.66 445.36 5718.55 214.26 
KO 16.71 2405.6 425.63 5583.36 168.25 
KO 10.36 3291.26 448.25 4574.81 151.61 
KO 11.91 3911.02 497.06 2141.04 97.23 
KO 15.55 2899.85 407.72 5806.6 72.56 

 

 Nicalin Noggin Nox1 Oaz1 Ocstamp 
WT 1521.32 318.48 59.66 20699.23 21.93 
WT 1440.9 329.7 56.98 20273.33 19.33 
WT 1797.24 262.2 32.15 25134.29 18.08 
WT 1531.55 394.35 67.15 20482.53 19.18 
WT 1825.34 267.09 41.92 20897.98 22.76 
WT 1642.89 145.27 44.96 19305.4 20.75 
KO 1585.42 234.39 40.91 20030.01 19.9 
KO 2042.47 117.89 52.4 21721.49 55.2 
KO 2056.85 112.54 40.11 20831.48 42.34 
KO 1443.64 115.83 30.13 22769.51 27.31 
KO 1376.1 340.3 22.82 21762.6 30.76 
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KO 1939.28 296.29 19 26923.57 46.65 
 

 Pcx Pdcd1 PDGFA Pdlim7 Pfkl 
WT 1108.09 78.96 1868.75 12937.35 3024.21 
WT 1136.64 67.16 1931.38 13029.15 3208.44 
WT 2005.2 33.15 1287.91 11025.57 4440.37 
WT 2612.27 99.12 1611.49 12334.5 4143.83 
WT 1939.12 130.55 1426.5 11130.5 5715.56 
WT 1706.3 176.39 1472.26 10747.38 4006.35 
KO 1247.11 385.85 1520.19 10987.37 5939.24 
KO 2622.56 112.28 1928.32 8305.55 11006.7 
KO 2514.8 119.22 1928.72 8378.95 10774.52 
KO 873.9 384.22 1782.65 7723.87 5629.52 
KO 1793.79 54.57 1128.06 13943.54 2891.1 
KO 609.86 61.33 3615.09 9393.19 11751.42 

 

 PGAM1 Pgd PGE2 Pilrb1 Plasmin 
WT 3025.09 6594.13 936.13 63.17 28.95 
WT 2983.56 6657.04 999.27 63.09 26.46 
WT 3839.61 6177.34 964.42 55.25 14.06 
WT 3690.86 5509.12 1081.79 75.67 116.17 
WT 5662.86 6625.84 1036.04 105.4 15.57 
WT 4827.21 6100.02 1039.92 127.97 17.29 
KO 6761.8 6921 1197.36 91.76 21.01 
KO 9174.75 8307.42 1276.19 84.21 23.39 
KO 9242.47 7854.15 1260.18 83.57 17.83 
KO 8034.64 6219.97 1010.45 108.3 16.95 
KO 2970.47 4384.27 1208.43 50.6 13.89 
KO 10763.21 4754.47 1094.46 58.74 11.23 

 

 POSTN Pou5f1 PPARG Ppargc1a Prdm1 
WT 7610.1 4.39 308.83 930.86 1229.16 
WT 7680.73 7.12 302.22 932.11 1275.03 
WT 3219.77 6.03 183.84 632.9 3584.44 
WT 8961.24 14.92 295.23 830.26 2244.57 
WT 5194.55 20.36 361.71 656.36 3285.37 
WT 7742.91 20.75 216.75 589.13 2707.02 
KO 7176.4 12.16 152.57 864.57 2326.17 
KO 9714.6 11.23 499.62 574.47 2921.96 
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KO 9327.15 8.91 454.6 592.77 2774.41 
KO 4733.02 8.48 65.92 227.89 3090.68 
KO 2307.72 6.94 155.77 1312.6 1566.59 
KO 4148.93 6.91 52.69 121.8 2600.96 

 

 Prf1 Ptch1 Ptgs2 Pth1r Pthlh 
WT 44.74 378.14 994.91 216.7 363.22 
WT 49.86 402.96 989.09 212.68 360.22 
WT 12.06 192.88 267.23 171.79 140.65 
WT 35.17 278.17 376.23 330.4 214.23 
WT 50.3 258.71 445.56 362.91 118.58 
WT 56.49 270.93 624.87 264.02 446.17 
KO 23.22 235.49 3923.75 213.38 1760.1 
KO 28.07 175.9 4411.48 272.27 5590.36 
KO 28.97 198.33 4434.6 269.64 5512.05 
KO 33.9 213.77 5877.19 124.31 2865.61 
KO 20.83 141.88 203.39 232.16 90.28 
KO 19.87 226.32 8461.99 77.74 5651.98 

 

 PTPRC RGM-A RGM-B RGM-C Rorc 
WT 1354.62 1128.27 4772.76 6072.99 1337.95 
WT 1355.42 1196.68 4601.52 6284.6 1364.58 
WT 841.86 767.52 4069.67 4287.67 2123.74 
WT 1243.79 1018.9 5389.75 3634.38 1566.73 
WT 1509.14 1020.47 3995.62 3235.07 1469.61 
WT 1684.39 951.15 4009.8 3298.46 1242.83 
KO 1473.75 933.12 3379.79 3567.74 1202.88 
KO 1241.58 878.55 2409.24 1279.94 1048.84 
KO 1189.99 824.52 2347.66 1257.96 1062.97 
KO 2681.04 644.13 1834.44 1487.9 717.58 
KO 849.27 805.62 3305.81 9342.98 1960.47 
KO 1012.4 1916.82 3149.49 843.95 539.02 

 

 Runx2 SCF SDF-1 Serpinb9 Shh 
WT 216.7 2075.8 1771.36 321.11 64.92 
WT 216.75 2031.1 1943.59 366.33 49.86 
WT 112.52 1425.54 1736.97 166.76 6.03 
WT 102.32 2206.2 2596.29 308.02 14.92 
WT 178.46 1182.16 1752.28 253.92 5.99 
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WT 189.08 1570.26 2129.42 314.74 16.14 
KO 298.51 1741.31 3003.89 228.86 3.32 
KO 310.63 2058.38 1880.61 208.64 10.29 
KO 301.95 1958.8 1851.84 231.76 2.23 
KO 351.26 1167.72 1433.28 261.79 2.83 
KO 80.36 1430.67 2812.72 155.77 2.98 
KO 638.36 2226.07 513.97 348.98 6.05 

 

 Slc2a1 Slc2a4 Smad3 SOCS1 SOST 
WT 2145.11 5058.78 4678.01 193.89 7.02 
WT 2212.23 5110.31 4899.67 163.83 4.07 
WT 3740.16 3894.87 4719.65 237.09 11.05 
WT 1977.06 5627.42 4630.9 276.04 19.18 
WT 3781.23 4460.34 4310.63 323.39 13.18 
WT 3140.51 3947.55 3553.25 359.71 12.68 
KO 9818.76 3681.62 3125.51 718.63 1.11 
KO 26045.95 2644.08 1991.95 606.29 29.94 
KO 25275 2688.62 1924.26 518.11 28.97 
KO 17462.06 960.54 2048.21 646.01 1.88 
KO 3281.01 7544.23 3975.51 241.09 2.98 
KO 27263.05 1069.41 2555.18 1445.17 6.91 

 

 Sox9 Sp7 Sparc Sphk1 SPON-1 
WT 205.3 7.02 1319.53 479.91 615.9 
WT 198.43 13.23 1331 515.92 625.81 
WT 146.67 9.04 805.7 125.58 67.31 
WT 224.88 18.12 999.72 160.94 321.87 
WT 155.7 15.57 919.86 149.72 155.7 
WT 259.4 14.99 1065.28 200.61 249.03 
KO 329.47 12.16 1208.41 417.91 517.42 
KO 1055.39 20.58 1075.03 430.39 804.64 
KO 1044.03 22.28 1007.26 426.75 729.82 
KO 523.59 20.72 872.02 412.47 602.69 
KO 199.42 9.92 1066.55 178.59 121.04 
KO 2585.42 28.51 862.09 398.22 133.89 

 

 Spp1 Sprouty2 Sprouty4 Stat1 Stk36 
WT 200.91 951.04 516.76 1331.81 40.36 
WT 220.82 965.69 466.05 1363.56 39.69 
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WT 118.54 725.33 168.77 1809.3 19.09 
WT 72.47 755.65 280.31 2491.84 25.58 
WT 389.26 968.96 287.45 2304.43 31.14 
WT 118.75 642.17 230.58 1876.93 27.67 
KO 552.8 621.34 379.22 2184.65 23.22 
KO 2186.56 875.75 208.64 2184.69 29.94 
KO 2130.39 854.61 249.59 2211.73 37.88 
KO 2250.68 524.53 180.81 2448.44 20.72 
KO 93.26 610.17 192.48 1407.85 11.91 
KO 3178.86 1433.08 182.27 2515.45 41.46 

 

 Tbx21 Tceb1 Tcf7 
Tdgf1 

(Cripto) TFAM 
WT 9.65 3018.07 261.45 10.53 1519.56 
WT 14.25 3150.44 263.55 10.18 1497.88 
WT 12.06 4039.53 112.52 14.06 1670.66 
WT 35.17 3351.94 219.55 18.12 1621.08 
WT 22.76 3366.82 212 35.93 1545.07 
WT 26.52 3230.44 277.85 25.36 1506.85 
KO 17.69 3768.96 379.22 12.16 1688.24 
KO 16.84 4554.63 422.9 25.26 1969.49 
KO 18.94 4683.07 408.92 21.17 1937.63 
KO 15.07 4862.03 408.7 16.01 1844.8 
KO 6.94 3765.17 212.32 9.92 1880.11 
KO 15.55 4861.58 494.11 13.82 2550.86 

 

 TGF-B1 
TGF-beta 

2 TGF-b 3 TGFb R II TGFBRIII 
WT 1374.8 353.57 1455.52 3700.65 3624.32 
WT 1397.14 374.47 1466.34 3753.87 3740.64 
WT 1107.08 215.99 1014.65 2870.17 2023.28 
WT 1268.3 289.9 1257.64 3808.1 3557.64 
WT 1451.65 222.78 1031.24 3637.5 2267.3 
WT 1525.29 231.73 1148.29 3856.47 2471.83 
KO 2715.33 390.27 1276.96 4290.8 2234.4 
KO 4829.7 443.49 874.81 5343.36 1375.37 
KO 4644.08 411.15 909.2 5408.43 1401.69 
KO 3245.12 353.14 1018.93 4556.92 666.73 
KO 926.66 236.13 1522.94 2929.79 1421.74 
KO 6773.22 2646.75 1123.83 4268.14 523.48 
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 TNF Tnfrsf11a Tnfrsf11b TNFRSF4 Tnfsf11 
WT 24.57 200.03 43.87 71.07 15.79 
WT 22.39 203.52 53.93 63.09 24.42 
WT 35.16 132.61 39.18 36.17 28.13 
WT 60.75 292.03 74.61 74.61 30.91 
WT 101.81 233.56 63.48 85.04 33.54 
WT 102.61 254.79 101.46 66.87 33.43 
KO 96.19 195.69 116.09 80.71 54.17 
KO 87.01 181.51 126.31 93.56 75.79 
KO 92.48 187.19 99.17 67.97 74.65 
KO 150.67 183.63 160.09 153.5 50.85 
KO 29.76 126 58.54 29.76 14.88 
KO 209.91 142.53 85.52 115.75 20.73 

 

 Tnfsf13b Tubb4a VEGF VHL Wnt5a 
WT 204.42 189.51 4428.84 395.68 2276.71 
WT 209.62 194.36 4524.18 397.88 2254.97 
WT 86.4 79.36 2129.77 342.57 1554.13 
WT 192.91 139.62 2533.41 670.39 1926.97 
WT 177.26 94.62 2584.7 904.29 1816.96 
WT 193.69 86.47 2079.84 968.44 2097.13 
KO 290.77 70.76 4689.92 687.68 1772.26 
KO 223.61 26.2 8483.32 281.62 1964.81 
KO 198.33 30.08 8409.03 330.92 1930.95 
KO 290.05 24.48 5273.55 558.43 2692.34 
KO 115.09 49.61 3283.98 305.58 1316.57 
KO 112.3 10.37 11494 641.82 4409.81 

 

 Wnt7a Ym1 
WT 23.69 122.83 
WT 17.3 102.78 
WT 12.06 95.44 
WT 25.58 92.72 
WT 22.76 59.89 
WT 21.91 92.23 
KO 23.22 1054.73 
KO 17.78 54121.28 
KO 15.6 53186.25 
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KO 22.6 1001.03 
KO 12.9 46.63 
KO 20.73 887.14 
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