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ABSTRACT 
	
  
	
  

SEAN ROBERT JESINKEY. Discovery of Pharmacological Compounds that 
Stimulate Renal Mitochondrial Biogenesis and Restore Kidney Function (Under the 
direction of Drs. Rick G. Schnellmann and Craig C. Beeson) 

	
  
 

Dysfunctional mitochondria are a primary pathological consequence of acute 

kidney injury (AKI).  Mitochondrial homeostasis is disrupted up to 144 h after 

ischemia-reperfusion (I/R) induced-AKI in the renal cortical tissue of mice.  

Stimulation of mitochondrial biogenesis in renal cells after oxidant injury restores 

mitochondrial function.  The primary goals of this project were to identify novel 

pharmacological compounds capable of inducing mitochondrial biogenesis in the 

renal proximal tubule and evaluate if this induction would promote the recovery 

of mitochondrial and/or renal function after in vivo AKI.  The secondary goal was 

to employ our mitochondrial approach for drug discovery towards identifying a 

novel treatment for a different disease state, skeletal muscle atrophy.  

	
  
	
  

Stimulation of the G-protein couple receptor (GPCR) family in response to 

physiological stress results in the downstream activation of effectors, which up-

regulates the expression and activity of PGC-1α and subsequently activates the 

mitochondrial biogenic program.  Pharmacological agonism of both the 

stimulatory GPCR (β2-AR) and the inhibitory (A1AR) GPCR family via full and 

partial agonists resulted in the stimulation of mitochondrial biogenesis in the renal 

proximal tubule.  The A1AR partial agonist CVT-2759 was superior to the full 

agonist CCPA in stimulating mitochondrial biogenesis in the proximal tubule.   
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Acute kidney injury (AKI), by induction of ischemia-reperfusion (I/R), in mice 

produced persistent proximal tubule damage, which resulted in minimal recovery 

of kidney and mitochondrial function at 144 h post injury.  Tubule pathology was 

characterized histologically by the presence of presence of necrosis.  Renal 

dysfunction and injury was evidence by robust increases in serum creatinine and 

KIM-1 expression.  In addition, mitochondrial OXPHOS proteins were suppressed 

and dysfunctional.  

 

Treatment with formoterol, a potent, highly specific, and long-acting -β2-AR 

agonist, restored renal function, rescued renal tubules from injury, and diminished 

necrosis after I/R-induced AKI. Concomitantly, formoterol stimulated 

mitochondrial biogenesis and restored the expression and function of 

mitochondrial proteins. 

 

Skeletal muscle atrophy remains a clinical problem in numerous pathological 

conditions. β2-AR receptor agonists, such as formoterol, are capable of inducing 

mitochondrial biogenesis and skeletal muscle hypertrophy.  Recently, atomoxetine, 

an FDA approved norepinephrine reuptake inhibitor, was positive in a cellular assay 

for mitochondrial biogenesis.  Using a mouse model of dexamethasone-induced 

skeletal muscle atrophy we determined that atomoxetine prevents skeletal muscle 

atrophy via a non-canonical PGC-1α signaling mechanism.  In addition, we 

determined that formoterol selectively induces the PGC-1α4 splice variant, which 

initiates a discrete gene program resulting in skeletal muscle hypertrophy. 	
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Taken together, we determined that pharmacological stimulation of mitochondrial 

biogenesis via formoterol is capable of promoting faster recovery of 

mitochondrial function, which is associated with accelerated recovery of overall 

kidney function after maximal kidney dysfunction is established.  Overall, we have 

demonstrated that our drug discovery approach is effective in identifying 

pharmacological compounds capable of inducing mitochondrial biogenesis and 

other nuclear regulators of metabolism.  This approach proves beneficial in 

defining novel therapies for disease states that are characterized by dysfunctional 

mitochondria.   
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        Chapter 1: 
	
  
	
  
	
  

ACUTE KIDNEY INJURY AND MITOCHONDRIAL 
BIOGENESIS 

	
  
	
  
	
  
	
  
	
  

RENAL ANATOMY AND PHYSIOLOGY 
	
  

 
 
Overview 

	
  
The processes of filtration, secretion, and reabsorption, in addition to, hormonal 

secretion and metabolism, characterize renal function.  The kidney’s primary role in 

the overall maintenance of body homeostasis is the urinary excretion of 

nitrogenous wastes, xenobiotics, water, and electrolytes from the bloodstream [1].  

This is achieved through the combination of filtration, secretion and reabsorption, 

which takes place in the functional unit of the kidney, the nephron.  Auto 

regulatory mechanisms, the sympathetic nervous system, and hormones control 

these processes.  The kidney is comprised of three distinct zones; from the outer 

most zone termed the renal cortex, to the renal medulla (divided into the outer 

medulla, further segmented into the outer stripe and inner stripe, and the inner 

medulla), and the inner most zone known as the renal papilla.  
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The nephron 

	
  
As previously stated, the nephron is the functional unit of the kidney and is 

responsible for the formation of urine through a combination of filtration, secretion, 

and reabsorption processes, which maintain the balance of solutes and fluid 

contributing to body homeostasis.  The kidney is composed of approximately 1-1.5 

million nephrons, which can reside either completely in the cortex (cortical 

nephrons) or extend from the cortex into the medulla (juxtaglomerular nephrons) [2].  

The nephron consists of five distinct regions, which are the renal corpuscle, the 

proximal tubule, the loop of Henle, the distal tubule, and the collecting duct. Each 

of these regions and their role in renal physiology is discussed in further detail 

below and can be referenced in Fig 1-1. 
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Figure 1-1. Segmentation of mammalian nephron. Scheme modified from that 
proposed by Renal Commission of International Union of Physiological Sciences.  
Note that definitions used in this review correspond to those listed as “preferred 
terms” except that the term distal tubule (see asterisk) is used to denote nephron 
segment between region of macula densa and confluence with another tubule to 
form collecting duct [3]. 
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Renal corpuscle: filtration   

The renal corpuscle is composed of an outer epithelial shell called the Bowman’s 

capsule, which encases a capillary network known as the glomerulus.  The 

Bowman’s capsule and glomerulus function to filter the blood to produce an 

ultrafiltrate and are the first steps in the formation of urine. The filtrate must 

transverse three layers, which are the endothelium of the glomerular capillaries, a 

negatively charged glomerular basement membrane (GBM), and the porous 

epithelial cells of the Bowman’s capsule known as podocytes [2].  The afferent 

arteriole supplies the glomerulus with blood, which then diverges through the 

glomerular capillary network ultimately converging on and exiting through the 

efferent arteriole. Glomerular filtration is a passive process by which the blood is 

filtered based on size and charge whereby, ions, small molecular weight molecules 

and proteins (<60 kDa) can be filtered, but polyanionic molecules are restricted 

from filtration due to the electronegative charge on the GBM [4].  The glomerular 

filtration rate (GFR), which flows at approximately 180 ml/min, is mainly 

determined by renal blood flow pressure, which is regulated by non-simultaneous 

vaso-constriction and –dilation of the afferent and efferent arterioles.  The 

arterioles respond to stimuli from autoregulation (i.e.-myogenic and tubular 

feedback mechanisms), sympathetic nervous system (i.e.-adenosine and 

norepinephrine), and hormones (i.e.-angiotensin II, atrial natriuretic peptide, and 

antidiuretic hormone) [2, 5, 6].  Despite such a large volume being filtered by the 

glomerulus, almost all of it is returned to the blood by a process known as 

reabsorption.  
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Proximal tubule: reabsorption and secretion   

Reabsorption is the movement of water and solutes (i.e.-Na+, Cl-, Ca2+, PO4
3--, 

HCO3
-, amino acids, small proteins and carbohydrates) filtered by the glomerulus 

from to the tubular lumen to the blood.  In contrast secretion is the movement of 

filtered solutes (i.e.-H+, K+, organic anions and cations) from the blood to the tubular 

lumen.  The majority of reabsorption and secretion occurs within the proximal 

tubule, which is the segment of the nephron distally attached to the Bowman’s 

capsule.  The proximal tubule has two distinct morphological regions: the pars 

convoluta and the pars recta [2].   

 

The pars convoluta resides in the cortex and is composed of cuboidal/columnar 

cells and has a denser brush border and mitochondrial concentration than the pars 

recta, which extends into the in renal medulla.  Each of these two regions can be 

further subdivided based on reabsorption and secretion physiology into the S1 

and S2 segments (pars convoluta) and the S3 segment (pars recta).  More 

specifically, the pars convoluta reabsorbs HCO3
-, amino acids, small proteins, 

glucose via the sodium glucose transporter 2 (SGLT-2), and secretes H+ and organic 

anions and cations [2].  The S3 segment of the pars recta is similar in reabsorption 

and secretion capacity previously described for the S1 and S2 segments, but is 

differentiated by the use of sodium glucose transporter-1 (SGLT-1) and the presence 

of the glutathione (GSH) transporter [2, 7]. 
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Loop of Henle, distal tubule, and collecting duct: reabsorption and secretion   

The loop of Henle is composed of a thin descending limb composed of 

cuboidal/columnar cells with a brush border and a thick ascending limb, which is 

void of a brush border.  The function of the loop of Henle is to dilute the urine 

entering from the proximal tubule.  Active transport mechanisms for solutes are 

absent in the thin descending limb and even though it is permeable to water, it is 

only slightly permeable to NaCl.  In contrast, the thick ascending limb is permeable 

to Na+, impermeable to water, and utilizes Na+, K+-ATPase as the main active 

transport mechanism [2, 8].  Beyond the loop of Henle exists the distal tubule, 

which absorbs 5-10% of the filtered Na+ and Cl-, secretes K+, as well as being 

central in the homeostasis of Ca2+ and Mg2+ [3].  Finally, the distal tubule connects 

to the collecting duct.  The collecting duct is relatively impermeable to NaCl and 

water permeability is regulated by the antidiuretic hormone (ADH) and serves as the 

region in the nephron where urine concentration occurs [2, 9].  

	
  
	
  

ACUTE KIDNEY INJURY 
	
  

 
 
Definition 

	
  
Acute kidney injury (AKI), formerly known as acute renal failure (ARF), is a 

syndrome characterized by the rapid loss of the kidney's excretory function, 

generally hours to days, and is typically diagnosed by the independent or 

simultaneous accumulation of end products of nitrogen metabolism (urea and 

creatinine) [10].   Other clinical and laboratory endpoints include decreased urine 
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output, accumulation of metabolic acids, and increased potassium and phosphate 

concentrations [10].  Historically, ARF was defined as a decrease in GFR that is 

associated with an increase in waste products including urea and creatinine and at that 

time more than 35 definitions existed for diagnosis [1, 11]. Recently, ARF has been 

replaced by the term AKI in order to highlight that injury to the kidney precedes current 

quantitative laboratory measures identifying a loss of excretory function [10].   Despite 

GRF being an excellent diagnostic tool for evaluating kidney function, the lack of 

standardization for defining AKI has created challenges in determining contributing 

factors to and the burden of this pathology.   

 

Efforts to standardize definitions of AKI were developed through the Acute Dialysis 

Quality Initiative (ADQI), which lead to the risk, injury, failure, loss, end stage  

(RIFLE) criteria and the Acute Kidney Injury Network (AKIN) further modified these 

criteria  [12].   In general, the RIFLE and AKIN criteria stratify injury based upon 

changes in serum creatinine (SCr), GFR, and urine output (UO).  The prognostic merits 

for both the RIFLE and AKIN definitions have been validated in thousands of patients 

[10, 13].  More recently, the Kidney Disease: Improving Global Outcomes (KDIGO) 

working group have combined the RIFLE and AKIN criteria to further refine the 

diagnostic criteria for AKI [10, 14].  Whereby, the KDIGO criteria retain the AKIN 

time frame of 48 hours for an absolute increase in serum creatinine of ≥0.3 mg/dL, the 

RIFLE criteria time frame of 7 days for a ≥50 percent increase in serum creatinine, and 

do not include GFR for staging criteria [10, 14].  Figure 1-2 outlines the direct 

comparisons between the RIFLE, AKIN, and KDIGO criteria.   
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The future challenges in defining AKI include being able to evolve current diagnostic 

criteria with the emergence of novel biomarkers and the general complexity 

surrounding renal fluid dynamics.  In addition the variability in administrative claims 

data for identifying AKI has resulted in problematic interpretation of 

epidemiological parameters.  However, standard definitions for evaluating AKI have 

resulted in a more accurate interpretation of the epidemiology surrounding AKI.  
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Figure 1-2.  AKIN, RIFLE, AND KDIGO criteria for identifying acute                                                           
kidney injury diagram originally published in Up-to-date. 

	
  



	
  
10	
  

Epidemiology, mortality, and economics 
	
  

Acute kidney injury is a common condition experienced worldwide.  In developed 

countries it affects 1 in 5 adults and 1 in 3 children hospitalized with an acute 

condition [14, 15].  In the United States between the years 1996-2003 the incidence 

of community acquired AKI in renal replacement therapy (RRT) and nonRRT 

populations increased from 19.5 to 29.5 per 100,000 person-years (33%) and 322.7 

to 522.4 per 100,000 person-years (38%), respectively [14].  In the past 50 years, 

mortality rates have remained unchanged, ranging from 50% to 70% and have 

become a significant financial burden not only for patients, but also the overall 

healthcare system [10, 16-18].  In general, an increase in the severity of AKI is 

correlated with a decrease in survival and is highest in those requiring RRT        

Fig. 1-3 [14].  
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Figure 1-3. Kaplan–Meier graph for hospital survival, stratified by KDIGO stages 
of acute kidney injury. Reproduced with permission from Oxford University Press © 
Wang, H. E. et al. Comparison of absolute serum creatinine changes versus Kidney 
Disease: Improving Global Outcomes consensus definitions for characterizing stages of 
acute kidney injury. Nephrol. Dial. Transplant. 28, 1447–1454 (2013) [14]. 
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More specifically, a study from 2005 evaluated if rates of mortality and hospital costs are 

correlated with elevations in SCr in hospitalized patients [18].  From this study it was 

determined that an increase in SCr greater than or equal to 0.5 mg/dl was associated with 

a 6.5-fold increase in the odds of death (Fig 1-4a), a 3.5 day increase in length of stay, 

and nearly $7500 in excess hospital costs (Fig. 1-4b) [18].  When interpreting 

epidemiological, mortality, and economic studies it is important to note how existing 

comorbidities in populations suffering from AKI influence a study’s outcome.  

Nonetheless, the results from these studies further emphasize how guidelines from the 

RIFLE, AKIN, and KDIGO are beneficial in providing a cohesive platform by which to 

compare various analyses in an effort to provide evidence outlining the impact AKI has 

on a patient’s quality of life and the global healthcare system.      
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Figure 1-4a. Mortality associated with change in serum creatinine. Green 
bars are unadjusted, blue bars are age and gender adjusted, and gray bars are 
multivariable adjusted. Multivariable analyses adjusted for age, gender, 
diagnosis-related group (DRG) weight, chronic kidney disease (CKD) status, and 
ICD-9-CM codes for respiratory, gastrointestinal, malignant, and infectious 
diseases; n = 1564, 885, 246, and 105 for change in SCr 0.3 to 0.4, 0.5 to 0.9, 1.0 
to 1.9, and ≥2.0 mg/dl [54]. 

	
  
	
  
	
  

 
	
  

Figure 1-4b. Mean hospital costs associated with changes in SCr. Green bars 
are unadjusted, blue bars are age and gender adjusted, and gray bars are 
multivariable adjusted. Multivariable analyses adjusted for age, gender, DRG 
weight, and ICD-9- CM codes for cardiovascular, respiratory, malignant, and 
infectious diseases; n = 1564, 885, 246, and 105 for change in SCr 0.3 to 0.4, 0.5 
to 0.9, 1.0 to 1.9, and ≥2.0 
mg/dl [54]. 
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Etiology 

The etiology of AKI can be apportioned into the three major pathological 

categories of injury (i.e.- prerenal, intrinsic, and postrenal) with the associated 

contributing factors.  Major causes of AKI are septic shock, 

ischemia/reperfusion (IR) injury, cardiogenic shock, hypovolemia, and 

drug/toxicant exposure.  Sepsis (toxic injury) is the most common cause of AKI in 

hospital inpatients and those in the intensive care unit (ICU) [10].  Ischemic insult 

(hemodynamic injury) is also a leading cause of AKI and can develop secondary to 

pathologies reducing renal perfusion (i.e.- sepsis, reduced cardiac output, and/or 

surgery [1].  Acute kidney injury from general systemic inflammation can manifest, 

pathologically, similar to either sepsis and/or ischemic injury.  Figure 1-5 describes 

the pathologies associated with the major causes of AKI [10].  Even though this 

figure portrays a linear progression in cellular injury dependent on the type of 

insult, it is important to note that the degree of cellular injury (i.e.- sublethal, 

apoptosis, or necrosis) from sepsis or ischemia is not linear, but rather dependent 

upon the extent and duration of injury.  
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Figure 1-5. Key potential pathways implicated in pathogenesis of acute kidney 
injury due to ischemia or sepsis.  The timing of activation of each pathway, their 
interaction, and the hierarchy of these pathways remain unknown.  RAAS = renin–
angiotensin–aldosterone system. TGF = tubuloglomerular feedback [10]. 
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Numerous drugs are established to be nephrotoxic (Table 1-1) and contribute to 

AKI in roughly 20% of patients, especially in the critically ill patient population 

[10, 19, 20].  Clinical use of iodinated radiocontrast agents for angiography has 

been reported as the third most common cause of hospital acquired AKI (behind 

decreased renal perfusion and nephrotoxic drugs) and responsible for 11% of all 

hospital acquired AKI cases [21-23].   
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Table 1. Drugs that contribute to acute kidney injury [10]. 
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Aminoglycosides are a class of antibiotics known to cause acute tubular necrosis 

(ATN) via accumulation in the proximal tubule and are reported to induce AKI in 

5-15% of prescribed patients [24, 25].  Acute kidney injury can also occur with any 

class of non-selective or cyclooxygenase -2 (COX-2) selective non-steroidal anti-

inflammatory drugs (NSAIDs) due to their inhibition of COX enzymes, which 

decreases prostaglandin (PG) synthesis; thereby, inhibiting an important afferent 

arteriole vasodilatory mechanism resulting in a decrease of peritubular blood flow 

increasing the risk for ischemic ATN [26].  Depending on the type of NSAID being 

prescribed, with the exclusion of naproxen, the relative risk of developing NSAID 

induced AKI ranges from 1.5-2.4, compared to NSAID naïve individuals [27]. 

Cisplatin is a potent chemotherapeutic agent that is highly nephrotoxic.  Cisplatin-

induced AKI results from direct tubule epithelial cell toxicity, microvascular 

vasoconstriction, reactive oxygen species (ROS) production from proinflammatory 

effects, and ATP depletion [28, 29]. Ultimately, cisplatin injures the S3 segment of 

the proximal tubule casing a decrease in GFR [30].  

 

 

 

 

 

 

 

 



	
  
19	
  

Pathophysiology: prerenal, intrinsic, and postrenal  
	
  

The initiation of AKI can broadly be classified into three categories: prerenal, 

intrinsic, and postrenal.  Prerenal AKI results from hypoperfusion of the renal 

parenchyma with or without systemic arterial hypoperfusion and prerenal azotemia 

accounts for 55-60% of all AKI incidences [1, 23].  The initial physiological 

responses to overcome prerenal hypotension are activation of the renin-angiotensin-

aldosterone and sympathetic nervous systems and the release of ADH.  Activation of 

these systems and release of hormones results in an increase blood pressure through 

vasoconstriction, simultaneously with an increase in blood volume via the retention 

of sodium and water and the stimulation of thirst.   

 

Intrinsic AKI accounts for 35-40% of observed AKI and is categorized based on 

damage to the following kidney structures: the renal vasculature, glomeruli, tubules, 

and the interstitium [1, 23].  Occlusion of the renal vasculature can occur when large 

atheroemboli or thromboemboli block blood flow in bilateral renal arteries leading to 

a rise in SCr.  Glomerular damage accounts for only 5% of intrinsic AKI and arises 

through similar mechanisms as the renal vasculature, but also can activate the 

inflammatory response resulting in severe inflammation.  Tubular damage that 

manifests in acute tubular necrosis (ATN) accounts for approximately 85% of 

intrinsic AKI, of which 50% are the result of renal ischemia, typically arising from 

prerenal injury [1].  Irrespective of the etiology, tubular damage prevents the kidney 

from concentrating the urine and ultimately leads to a decrease in GFR [31].  

Intrinsic AKI from interstitial damage typically manifests when the interstitium 
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becomes severely inflamed, which is most commonly caused by medications, 

bacteria, or viruses; however, up to 30% of cases have no identifiable cause [1, 32].  

Finally, postrenal AKI classically develops from an obstruction at any level of the 

urinary collection system starting with the renal tubule and ending at the urethra [1].  

Wherever location of the obstruction, prevention of the outflow of urine will result in 

an increased pressure upstream; whereby, the ureters, renal pelvis, and calyces all 

expand, which leads to a decrease in GFR [1].     

 
 

Pathophysiology of ischemia/reperfusion (I/R) induced AKI 
	
  

Renal ischemia/reperfusion (I/R) injury is a leading cause of AKI that results from 

impairment of oxygen and nutrient delivery to, and waste product removal from, 

cells of the kidney [10, 33-35].  The imbalance between the delivery of oxygen, 

cellular demand for oxygen, and proper removal of metabolic wastes can lead to cell 

death via apoptosis or necrosis [35].  The pathophysiology of I/R induced AKI 

involves complex alterations in the functioning and repair mechanisms of vascular 

and tubular components, all of which are described in further detail below. 

 

Initiation, extension, maintenance, and recovery phases of I/R injury.  The 

temporal patterns of I/R induced AKI are traditionally divided into four phases: 

initiation, extension, maintenance, and recovery [36].   
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The initiation phase is characterized by sublethal injury to the tubule epithelial 

and endothelial cells, generation of reactive oxygen molecules is initiated, and 

activation of inflammatory mechanisms commences [36]. An early pathological 

consequence of the initiation phase is the markedly reduced production of ATP 

by the proximal tubule, which is less adaptable than the medullary thick 

ascending limb (MTAL) in converting from oxidative to glycolytic metabolism 

[35]. During the extension phase blood flow returns to the cortex, but remains 

severely reduced in the medulla and tubules undergo reperfusion-dependent cell 

death simultaneously with regeneration processes [36].  Damaged endothelial 

and epithelial cells, which also cause severe vasoconstriction, intensify 

inflammatory cascades and GFR continues to decline [36].  Throughout the 

maintenance phase GFR is at its lowest despite normalization in blood flow, 

parenchymal injury is established, and concomitant cell injury and regeneration 

exists [36].  Lastly, in the recovery phase GFR improves and structural tubule 

integrity is reestablished, with fully differentiated and polarized epithelial cells [36]. 

 

Vascular components of injury.  Both the endothelial and smooth muscle cells of the 

microvasculature play critical roles in the pathophysiology of AKI (Fig. 1-6) [35].  

The observed decrease in GFR in I/R induced AKI is a byproduct of regional 

alterations in renal blood flow (RBF) [37].  Data from renal I/R induced AKI animal 

models have established that following ischemic injury blood flow to the outer 

medulla is reduced disproportionately to the reduction in total kidney perfusion, 

which is inferred to be the case in humans [35, 38, 39].  
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 In addition, endothelia of the microvasculature are also injured and vasoconstriction 

is more prevalent in the postischemic kidney than vessels from a normal kidney in 

response to increased tissue levels of endothelin-1, angiotensin II, thromboxane A2, 

prostaglandin H2, leukotrienes C4 and D4, and adenosine as well as sympathetic 

nerve stimulation [35, 40-43].  Concomitantly, vasodilatory mechanisms are also 

compromised in the damaged endothelium due to a reduced production in nitric 

oxide and other substances that stimulate vasodilation  [44].  Beyond the 

pathologies associated with vaso -constriction and –dilation exists vascular 

occlusion mechanisms.  For example, ischemic injury activates the coagulation 

cascade resulting in occlusion of small vessels.  Furthermore, damaged endothelial 

cells express cell adhesion molecules, such as ICAM-1, which enhance leukocyte-

endothelial adhesion resulting in obstruction of capillaries [45].   Simultaneous 

vasoconstriction and occlusion mechanisms further propagate injury by 

compromising microcirculation, preventing the clearance of metabolic wastes, and 

supplying necessary amounts of oxygen to meet the demands of the injured cells 

(Fig. 1-6) [35].   
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Figure 1-6.  Alterations in the microvasculature and inflammation in ischemic 
AKI.  During the extension phase, endothelial injury leads to intense 
vasoconstriction, microvascular sludging, and microvascular congestion with 
leukocytes. Activated leukocytes produce a number of inflammatory mediators and 
reactive oxygen species that potentiate tubule cell damage. In addition, tubule cells 
exhibit a maladaptive response by generating cytokines and chemokines that further 
amplify the inflammation. PMN, polymorphonuclear leukocyte; Th1, T-helper 1 
cell. Strategies that modulate the inflammatory response may provide significant 
beneficial effects in ischemic AKI. Illustration by Josh Gramling—Gramling 
Medical Illustration [36]. 
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Tubular components of injury.  The two major tubular components involved with 

the pathology of AKI are the proximal and distal tubules.  Damaged tubular 

epithelia are not quiescent and respond to I/R injury by triggering an inflammatory 

response from both the innate and adaptive immune systems.  Activation of 

inflammatory cells by tubule epithelial cells involves the generation of 

proinflammatory and chemotactic cytokines (i.e.-TNF-α, TGF-β, IL-8, IL-6, IL-1β) 

and epithelial neutrophil-activating protein 78 (ENA-78) [46].  In addition, tubular 

cells express Toll-like receptors (TLRs), complement and complement receptors, 

and costimulatory molecules, which regulate T lymphocyte activity [35].   It is 

established in animal models simulating I/R injury that the most evident site of 

injury is the S3 segment of the proximal tubule [35].  Autophagy is important in 

proximal tubule cell survival after I/R injury.  However, this process can be 

inhibited during injury, resulting in the cellular accumulation of malformed 

mitochondria, ubiquitin-positive cytoplasmic inclusions, and, therefore, have an 

increased propensity to become apoptotic [47].  The straight portion of the distal 

tubule, the medullary thick ascending limb (MTAL) has a close spatial association 

with the proximal tubule in the outer stripe of the outer medulla [35].  The cells 

from the distal nephron are more resistant to oxidative injury than the proximal 

tubules and, for the most part, remain intact during I/R injury. The MTAL adapt to 

ischemic conditions by readily switching from oxidative to glycolytic metabolism, 

as well as producing antiapoptotic Bcl-2 proteins and reparative growth factors, 

which all work synergistically to minimize cell death [35, 48].   
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Overall, the tubular component of injury characterized by the breakdown of the 

cytoskeleton, loss of cell polarity, cell death (i.e.-apoptosis or necrosis), 

desquamation of viable and nonviable cells, and tubular obstruction [49, 50].   

 

Cellular injury and repair after I/R induced AKI.  The typical processes of injury 

and repair to the kidney epithelium are depicted Fig. 1-7 [35].  Initial ischemic 

injury results in rapid loss of cytoskeletal integrity.  This sets in motion a cascade 

of morphological changes such as the loss of the apical brush border and 

redistribution of membrane proteins and a loss in cell polarity [51].  The 

misappropriated proteins include adhesion molecules and other membrane proteins 

such as the Na+K+-ATPase and β-integrins [51].  The inflammatory response (i.e-

cytokine release) disrupts the cell-matrix adhesion dependent on β integrins and 

disruption of cell-cell interactions at adherent and tight junctions [33, 46, 52].  

Actin also re-localizes from the apical to lateral cell membrane [35, 53, 54].  Under 

normophysiological conditions, epithelial cells communicate with one another via 

tight and adhesion junctions, which are regulated by the F-actin cytoskeleton [35]. 

In turn, the cytoskeleton is under control by the Rho family of GTPases, which 

become activated in response to the ischemic injury [35].  The Rho associated 

coiled-coil–forming protein kinase (ROCK) is a downstream effector of Rho 

GTPases and plays a role in increased production of apoptotic cells [35]. 
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Figure 1-7.  Normal repair in ischemic AKI.  The current understanding of 
tubular injury and repair after ischemic AKI. With IRI, the normally highly polar 
epithelial cell loses its polarity and brush border with proteins mislocated on the 
cell membrane. With increasing time/severity of ischemia, there is cell death by 
either necrosis or apoptosis. Some of the necrotic debris is released into the lumen. 
Viable epithelial cells migrate and cover denuded areas of the basement membrane. 
These cells undergo division and replace lost cells. Ultimately, the cells go on to 
differentiate and reestablish the normal polarity of the epithelium [35]. 
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Simulating I/R induced AKI in animal models 
	
  

The use of animal models to study AKI is a necessity for the elucidation of 

pathological mechanisms involved at all stages of development and recovery from 

kidney injury.  Inherent limitations exist with any animal model simulating disease 

or injury observed clinically in humans.  With regards to replicating I/R induced 

AKI in humans, there are validated rodent models that are comparable to the type of 

injury and recovery observed in humans.   

	
  
	
  

I/R model of AKI. I/R injury can be replicated in a number of animals, but the most 

common rodents used are mice and rats.  Experimentally, renal ischemia can be 

induced by significantly reducing blood flow via uni- or bi-lateral clamping of 

the renal artery or pedicle for a specified amount of time.  This type of procedure 

is the most extensively used animal model for AKI studies [55].  Adjustment 

of ischemic time and choosing to obstruct either one or both kidneys can 

optimize the degree of injury desired by the researcher.  Reperfusion of the 

kidneys is obtained by simple removal of the arterial or pedicle clamps.  It has 

been reported in rat models mimicking I/R induced kidney injury, that clamping of 

both kidneys for 60 minutes followed by reperfusion was sufficient to develop AKI 

[55, 56].  Alternatively, in mice, arterial clamping occurs in the range of 20-60 

minutes in followed by reperfusion has also been reported to sufficiently induce 

kidney injury [55, 57].  During the time frame used for clamping the kidney is anoxic 

and functional outputs such as GFR and transport activity are completely stopped [55].  
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Acute tubular necrosis develops upon reperfusion and anatomically is initiated in the S3 

segment of the proximal tubule at the corticomedullary junction in the outer stripe of the 

outer medulla [55, 57].  Endothelial injury, manifested by outer medullary congestion, 

stasis, and hemorrhage, is accompanied by a substantial inflammatory response with the 

recruitment of neutrophils [55, 58]. 

 

Clinical translational caveats of I/R induced AKI animal models.   

The characteristics of I/R induced AKI in animal models are similar to those 

observed in humans such as the presence of both casts and tubular cells in the 

urine, matching alterations in biomarkers, and damage to the S3 segment of the 

proximal tubule.  However, the mechanisms by which these characteristics 

manifest might be achieved differently.  Human ischemia can lead to tissue hypoxia 

or anoxia, but in the previously described animal model only anoxic conditions are 

generated from the ischemic insult.  It is suggested that ROS play a more important 

role at hypoxic oxygen tensions than at severe anoxic oxygen tensions in protein 

stabilization and gene regulation [59, 60].  

 

Additionally, tubular damage from I/R induced AKI in humans clinically presents 

as being focal in nature [55]. In contrast, most experimental models elicit extensive 

non-focalized injury and therefore the pattern of injury distribution may be 

misleading in the determination of clinical relevance [55].  
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AKI Biomarkers: traditional and emerging 
	
  

As previously discussed, the term acute kidney injury has replaced acute renal 

failure to emphasize that a continuum of kidney injury exists that begins long before 

sufficient loss of excretory kidney function can be measured with standard 

laboratory tests [10].  In the past decade there have been extensive efforts towards 

the identification of novel biomarkers for detection of AKI that are more specific for 

the location of injury and sensitive than those currently used clinically.  Both 

traditional and an emerging biomarker for detection of AKI are discussed in further 

detail below and depicted in Fig. 1-8 [61].  
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Figure 1-8. Biomarkers of AKI: Traditionally used markers, such as blood urea 
nitrogen (BUN) and creatinine (CR), are insensitive, nonspecific, and do not 
adequately differentiate between the different stages of AKI. A delay in diagnosis 
prevents timely patient management decisions, including administration of 
putative therapeutic agents. Urinary biomarkers of AKI will facilitate earlier 
diagnosis and specific preventative and therapeutic strategies, ultimately resulting 
in fewer complications and improved outcomes  [61]. 
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Creatinine.  Creatinine is a standard clinical measurement that has been used for 

over 60 years to diagnose kidney function [62].  It is readily detectable in the urine 

(UCr) and serum (SCr).  For simplicity SCr will be used for the remainder of this 

section to illustrate benefits and limitations of creatinine as a biomarker for AKI.  

Creatinine is freely filtered by the glomerulus and trace amounts are secreted into 

the tubular lumen [63]. During AKI the increase in serum creatinine is a result of 

decreased GFR and backleaks through damaged proximal tubule cells.  Though the 

initial discovery was a clinical breakthrough for evaluation of kidney function, it has 

several limitations.   

 

Despite its use in the RIFLE, AKIN, or KDIGO guidelines for determining AKI, 

SCr is technically a measure of renal function, not injury.  Though the two, injury 

and function, are often correlated, rises in SCr can occur in the absence of kidney 

injury.  In addition, serum creatinine fails to provide accurate diagnostic 

information with regards to the location of injury, thus it is nonspecific.  

Furthermore, if injury does exist, there is a lag time between initial insult and 

observable increases in SCr.  Therefore, it is not sensitive to the timing of injury, 

either.  However, when used in conjunction with other functional parameters (i.e.-

GFR) or other novel injury biomarkers (KIM-1, cystatin-C, etc.) it is effective in the 

painting of a prognostic picture for AKI. 

	
  
	
  

 

Blood urea nitrogen.  Blood urea nitrogen (BUN) is a traditional biomarker, like 

creatinine, which is widely used clinically as a diagnostic parameter for AKI.  
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Similar to creatinine, BUN is not a specific or sensitive marker for AKI.  

Alterations in blood concentrations can be affected by other physiological 

mechanisms not related to AKI.  Overall, its limitations and use as a diagnostic 

tool closely mirror the benefits and limitations outlined in the previous section 

about creatinine.   

 

Kidney injury molecule-1.  Previous studies, conducted by the laboratory of J.V. 

Bonventre, that sought the identification of novel biomarkers for AKI lead to the 

discovery of kidney injury molecule-1 (KIM-1). Kidney injury molecule-1 is an 

emerging biomarker that is both selective for proximal tubule injury and sensitive 

to the initiation of cell injury [63, 64].  This molecule has been cloned in rats, mice, 

and humans and is only biochemically expressed after proximal tubule injury [65].  

Thus, KIM-1 is an ideal biomarker not only for the diagnosis of AKI, but also 

clinically translating data obtained from animal models to humans.    

 

Structurally, KIM-1 is a type I membrane glycoprotein that contains both a novel 

six-cysteine immunoglobulin-like domain and a mucin domain in its extracellular 

portion [63, 65].  As shown in Fig. 1-9, after injury to the proximal tubule KIM-1 

adheres to proximal tubular cells and it is the ectodomain that is cleaved via a 

metalloproteinase-dependent mechanism [63], which is detectable in the urine by 

the quantitative micro-bead based KIM-1 ELISA.   
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Figure 1-9. KIM-1. It is expressed in proximal tubule cells and is thought to promote 
apoptotic and necrotic cell clearance. Upon injury, KIM-1 is upregulated and shed into 
the urine and extracellular space. It is thought to activate immune cells in injury-induced 
immune response [63]. 
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In addition, KIM-1 is also expressed in immune cells where it is thought to activate 

T-helper2 (Th2), Th1 and Th17 differentiation as well as activating receptor in B 

cells, dendritic cells and natural killer cells.  The US Food and Drug 

Administration (FDA) has approved its use as an AKI biomarker for preclinical 

drug development [66].   

 

MITOCHONDRIA 

Mitochondrial structure and function 

Mitochondria are cellular organelles that are present in almost all cell types of 

animals.  Intracellular mitochondrial abundance ranges from hundreds to thousands, 

depending on the type of cell.  In healthy cells, the persistent processes of fusion and 

fission to form tubular networks maintain mitochondrial homeostasis.  

Evolutionarily, mitochondria are thought to have previously existed in nature as 

unicellular organisms of aerobic bacterial orgin.  The endosymbiotic hypothesis 

postulates that eukaryotic cellular organisms engulfed mitochondria more than a 

billion years ago and remain due to a symbiotic relationship based on the exchanging 

of energy in the form of ATP for intracellular habitation.  Supportive evidence for 

this hypothesis resides in the presence of mitochondrial DNA (mtDNA), the 

mitochondria’s capacity to carry out DNA transcription and RNA translation, and its 

dependence on the nuclear genome for replication.  

 

 

 



	
  
35	
  

Structurally, the mitochondria are composed of four main compartments: (1) the 

outer membrane, (2) the inner membrane space, (3) the inner membrane, and (4) the 

matrix.  The outer membrane is porous and permeable to certain ions and small 

molecules in contrast to the inner membrane.  The processes of fusion and fission are 

controlled by: (1) mitofusins (outer mitochondrial membrane fusion), (2) 

OPA1/Mgm1 (inner mitochondrial membrane fusion), and (3) Drp1/Dnm1 (division 

of outer and inner mitochondrial membranes) [67]. All three of these molecules are 

GTP-hydrolyzing proteins (GTPases) that belong to the dynamin superfamily [67]. 

 

Functionally, mitochondria are integral in fundamental cellular processes, which 

include the production of energy in the form of ATP or GTP, biosynthesis, ion 

homeostasis, oxygen sensing, and apoptosis.  The generation of ATP occurs via 

aerobic metabolism through a process known as oxidative phosphorylation 

(OXPHOS).  Within the inner membrane of the mitochondria exists the electron 

transport chain (ETC), which is composed of 5 enzyme complexes (Fig. 1-10) [68]. 

The entire coding capacity of mitochondrial DNA (mtDNA) is devoted to the 

synthesis of 13 essential subunits of the inner membrane complexes of the 

respiratory chain whereas the remaining 77 are encoded by the nuclear genome [69].  

Complex I, aka nicotinamide adenine dinucleotide (NADH) dehydrogenase-

ubiquinone oxidoreductase, and complex II, aka succinate dehydrogenase-

ubiquinone oxidoreductase, oxidize reduced forms of nicotinamide adenine 

dinucleotide (NADH) and flavin adenine dinucleotide (FADH2), respectively, which 

are generated in the mitochondrial matrix by the citric acid cycle and beta-oxidation 

of fatty acids, to initiate the flow of electrons through the ETC.   
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Electrons are transferred from NADH and FADH2 to complexes I and II, 

respectively, to coenzyme Q, which then shuttles electrons to complex III, aka 

ubiquinone-cytochrome c oxidoreductase, onto cytochrome c, and terminating at 

complex IV, aka cytochrome c oxidase, with the reduction of molecular oxygen into 

water.  Concurrently, complexes I, III, and IV pump protons across the inner 

mitochondrial membrane from the matrix to the inner membrane space thereby 

generating a higher concentration of protons in the inner membrane space relative to 

the matrix.  Protons flow down the concentration gradient through complex V, aka 

ATP-synthase, triggering its rotary mechanism, which then forms ATP via 

phosphorylation of ADP (Fig. 1-10) [69, 70]. 
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Figure 1-10. Summary of protein subunits of the five respiratory chain complexes 
encoded by nuclear and mitochondrial genes. Depicted is a schematic of the five 
respiratory complexes (I–V) embedded in the lipid bilayer of the inner mitochondrial 
membrane. Dissociable electron carriers cytochrome c (Cyt c) and coenzyme Q (Q) are 
also shown. Arrows (green) show the pathway of electrons from the various electron 
donors. Broken arrows (blue) show the sites of proton pumping from the matrix side to 
the cytosolic side by complexes I, III, and IV. The red arrow shows the flow of protons 
through complex V from the cytosolic side to the matrix coupled to the synthesis of ATP. 
Indicated above each complex are the number of protein subunits encoded by nuclear 
(nDNA) and mitochondrial (mtDNA) genomes [70]. 
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Mitochondrial dysfunction in AKI 
	
  

A decrease of intracellular mitochondrial abundance and compromised structural 

integrity manifested as mitochondrial fragmentation is commonly observed in 

renal cells following AKI [71, 72].  Specifically, the extent of renal injury and the 

release of apoptotic proteins were attenuated in Drp1 null mice subjected to I/R 

induced AKI when compared to their wild type littermates [72].  However, 

elucidation of the precise role of mitochondrial fission and fusion during the 

initiation, extension, maintenance, and recovery phases has yet to be determined.   

 

Mitochondrial dysfunction contributes to oxidative stress, persistent energy 

depletion and impairment of energy dependent repair mechanisms, ultimately 

leading to end organ damage and failure in a variety of tissues including brain, 

heart, liver, and kidneys [73-76].  Dysfunctional mitochondria are an important 

component of I/R and sepsis-induced AKI [77-80] and a large number of 

nephrotoxic xenobiotics target the mitochondria to promote dysfunction [81-90].  

Major pathophysiological mechanisms observed in the mitochondria following 

ischemic injury are characterized by the disruption of mitochondrial respiratory 

complexes, membrane depolarization and permeabilization, lipid peroxidation, 

release of apoptotic proteins, and de-energized mitochondria, which result in 

severe energy deficits within the proximal tubule [49, 50, 74, 85, 91, 92].  

 

 Upon reperfusion, dysfunctional mitochondria promote additional damage of 

injured cells through the production of reactive oxygen and nitrogen species, thus 

implicating mitochondria as both a target for and a cause of I/R injury [84].  



	
  
39	
  

Additionally, elevations in intracellular and mitochondrial Ca2+ and Fe3+ may 

contribute to the central role of the mitochondria in the disease process [93, 94].   

 

A sentinel study investigated renal mitochondrial dysfunction in an I/R model of 

AKI [95].  In mice subjected to I/R insult, injury was evident by a reported spike 

in serum creatinine at 24 h, which partially recovered, but was persistently 

elevated through 144 h [95].  Renal mRNA and protein levels of both nuclear and 

mitochondrial encoded proteins of the electron transport chain (ETC) such as, 

NADH dehydrogenase ubiquinone 1 beta complex 8 (NDUFB8), ATP synthase 

subunit β (ATPβ), NADH dehydrogenase 6 (ND6), and cytochrome c oxidase 

subunit I (COX I) were continually suppressed through to 144 h post I/R injury 

(Fig. 1-11) [95]. 
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Figure 1-11.  Sustained depletion of mitochondrial proteins after I/R AKI.  
(A) mRNA from sham and I/R mice was analyzed by qPCR for expression of nuclear-
encoded respiratory genes NDUFB8 and ATP synthaseβ and the mitochondrial-
encoded genes ND6 and COX I at 24, 72, and 144 h after injury.  
(B) expression of mitochondrial respiratory proteins from kidneys of sham and I/R 
mice was examined by immunoblot analysis. Bars with different superscripts are 
significantly different from one another (P < 0.05) [95]. 
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MITOCHONDRIAL BIOGENESIS 
        
 

Definition of mitochondrial biogenesis 
	
  

Mitochondrial biogenesis is the physiological process by which the cell forms new 

mitochondria in response to environmental stimuli or physiological stress [96]. This 

process serves as the primary mechanism to increase cellular energy, especially 

under pathologic conditions [97].  The formation of new mitochondria is theorized 

to occur either through (i) de novo synthesis of mitochondria from submicroscopic 

precursors present in the cytoplasm; (ii) formation from other membranous 

structures of the cell; and/or (iii) growth and division of pre-existing mitochondria 

[98].  To date, the majority of evidence in the literature supports the theory that 

biogenesis of mitochondria transpires from growth and division of pre-existing 

mitochondria.    

 

The formation of new mitochondria is a dynamic and complex process involving 

crosstalk between both the mitochondrial and nuclear genome, which is dependent 

on transcription factors and their associated coactivators.  This process is thought to 

be under control by the nuclear encoded coactivator protein peroxisome 

proliferator-activated receptor-gamma coactivator-1α  (PGC-1α), aka the “master 

regulator” of mitochondrial biogenesis, which is abundantly expressed in tissues 

with high metabolic demand (e.g. heart, skeletal muscle, and kidneys) [70, 99-101].   
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Nuclear control of mitochondrial biogenesis and function  

Successful transcription of mtDNA is entirely dependent on a set of nuclear-

encoded genes. Briefly, transcription of mtDNA necessitates formation and binding 

of initiation complexes on a promoter of the of the D-loop region of mtDNA.  These 

complexes contain a mitochondrial RNA polymerase (POLMRT), mitochondrial 

transcription factors (Tfam, TFB1M, and TFB2M), and ultimately binding of a 

termination factor (MTERF1).  The transcription of the subunits as well as nuclear- 

encoded subunits of the respiratory complexes, is controlled by nuclear transcription 

factors and their associated co-activators (Fig. 1-12) [102].   
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Figure 1-12.  Diagrammatic summary of the nuclear control of mitochondrial 
functions by NRF-1 and NRF-2 (GABP). NRFs contribute both directly and 
indirectly to the expression of many genes required for the maintenance and 
function of the mitochondrial respiratory apparatus. NRFs act on genes encoding 
cytochrome c, the majority of nuclear subunits of respiratory complexes I–V, and 
the rate-limiting heme biosynthetic enzyme 5-aminolevulinate synthase. In addition, 
NRFs promote the expression of key components of the mitochondrial transcription 
and translation machinery that are necessary for the production of respiratory 
subunits encoded by mtDNA. These include Tfam, TFB1M, and TFB2M as well as 
a number of mitochondrial ribosomal proteins and tRNA synthetases. Recent 
findings suggest that NRFs are also involved in the expression of key components 
of the protein import and assembly machinery [70]. 
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Nuclear respiratory factors 1 and 2.  Nuclear respiratory factors-1 and 2 (NRF-1 

and NRF-2) are transcription factors that act upon nuclear genes, which activate the 

transcription of nucleus-encoded subunits for cytochrome c oxidase, respiratory 

complexes I-V of the respiratory chain, and mitochondrial transcription, translation, 

and import machinery that are necessary for the expression of genes encoded by the 

mitochondrial genome [70, 103].  The NRF-1 transcription factor was first 

discovered from the identification of promoter regions of mammalian cytochrome c 

[104].  Whereas NRF-2 was identified through its specific binding to essential cis 

acting elements on the cytochrome oxidase subunit IV (COXIV) promoter region 

[70, 105].  Both respiratory factors are considered upstream modulators of 

mitochondrial transcription and ribosome assembly, due to their ability to activate 

the promoter for the mitochondrial exclusive transcription factors Tfam and Tfb1m, 

a mitochondrial methyltransferase that dimethylates 12S rRNA and controls the 

stability or assembly of the mitochondrial ribosome [103]. In addition, NRF-1 is 

involved with the transcription of TOMM20, a key functional subunit of the TOMM 

complex [70, 103].  The TOMM complex exists in the outer mitochondrial 

membrane and is involved with the import of thousands of proteins into the 

mitochondria that are diverse in function [70].  Thus, providing evidence that NRF-

1 and NRF-2 are involved with both the coordination of respiratory chain 

expression and the biogenesis of mitochondria [103].  

 

Nuclear receptor superfamily.  Nuclear-encoded mitochondrial genes are also under 

control by the nuclear receptor (NR) superfamily.   
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The peroxisome proliferator-activated receptor (PPAR) family and the estrogen-

related receptors (ERR) are both members of the NR superfamily that regulate 

nuclear genes of the mitochondria involved with fatty acid oxidation [103, 106, 

107].  However, the ERRα receptors can regulate the transcription of the PPARα 

gene in addition to nucleus-encoded mitochondrial proteins involved in the TCA 

cycle and the respiratory chain [102].   The cis – containing elements of the 

cytochrome c promoter recognize transcription factors of the ATF/CREB family 

[70, 104, 108].  In vitro and in vivo studies revealed that these elements bind CREB 

directly and the serum induction of cytochrome c in quiescent fibroblasts is 

associated with the phosphorylation of cAMP response element binding (CREB) 

and NRF-1 [70, 109, 110].  The Sp1 transcription factor is also involved in the 

regulation of cytochrome c1 as well as adenine nucleotide translocase 2 genes, both 

of which lack NRF sites [70, 111].  This is significant as this property illustrates 

alternative regulation of nucleus-encoded respiratory chain proteins.  Another 

nuclear transcription factor involved in the control of mitochondrial biogenesis is 

the initiator element YY1, which has been implicated in both positive and negative 

control of cytochrome oxidase subunit gene expression [70, 112, 113].   

 

Nuclear coactivators in mitochondrial biogenesis: the PGC-1 family.  As described 

above the NRFs, Sp1, and ERRα have the most evidence supporting their role in the 

coordination of expression of nuclear and mitochondrial respiratory proteins.  In 

addition, other mitochondrial oxidative pathways are controlled by alternative 

factors such as PPARα and the fatty acid oxidation pathway [70, 114].   
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However, this evidence does not provide the answers to how these transcription 

factors are incorporated into the mitochondrial biogenesis program.  The 

identification of the PGC-1α family of transcriptional coactivators has provided an 

explanation for the mechanistic framework, which describes how the regulatory 

pathways of nuclear transcription factors are coupled to the biogenesis of 

mitochondria.  This family of transcriptional coactivators is composed of PGC-1α, 

PGC-1β, and the PGC-1 related coactivator (PRC).   

 

The first identified member of this family was PGC-1α, which was described as a 

cold inducible coactivator of the nuclear receptor, PPARγ, in brown adipocytes 

[100].  Canonical coactivation of certain nuclear receptors via PGC-1α, PGC-1β, or 

PRC is dependent on binding of nuclear receptor coactivator signature motifs 

(LXXLL) adjacent to the activation domain, an RNA recognition domain (RRM), 

and a host cell factor-1 (HCF) binding domain [70, 103].  The pairing of RNA 

processing and transcription by these coactivators occurs similarly through COOH-

terminal arginine/serine rich (R/S) as well as RNA recognition motifs comparable to 

those found in RNA splicing factors [70, 115].  In vitro studies that overexpressed 

PGC-1α in myoblasts have reported an induction of mRNAs of the respiratory 

chain, increases in COXIV and cytochrome c protein levels and the steady-state 

level of mtDNA (Figs. 1-13, 1-14) [70, 101, 116].   
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Figure 1-13.  PGC-1 Increases Expression of Genes of the Mitochondrial 
Respiratory Chain.  (A) RNA analysis of PGC-1-expressing cells. Myoblasts 
expressing PGC-1 and the control cells were induced to differentiation and were 
then treated with various stimuli, including 100 nM T3 (24 hr) and 1 mM 8-bromo-
cAMP (A) (6 hr). Total RNA was extracted and subjected to Northern blot analysis. 
Probes used for hybridization were PGC-1, β-ATP synthetase, COXII and IV, CytC, 
and myogenin. A cDNA encoding a ribosomal protein, 36B4, was also used as a 
control for loading equivalence of RNA.  (B) Protein analysis of PGC-1-expressing 
cells. Total proteins were extracted from the cells at confluence (myoblasts) or day 
5 postconfluence (myotubes) and were subjected to Western blot analysis [101]. 
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Figure 1-14. PGC-1 Stimulates Mitochondrial DNA Replication and Biogenesis 
(A) Southern blot analysis of mitochondrial and genomic DNA. Total cellular DNA 
was isolated from C2C12 cells expressing PGC-1 and their controls, in both the 
myoblast and myotube states. Ten micrograms of DNA was digested with NcoI and 
subjected to Southern blot analysis using a cDNA for COX II as a probe for 
mtDNA. The blot was then stripped and hybridized to a cDNA for 36B4, a 
nuclearly encoded gene.  (B) Transmission electron microscopy of PGC-1 
expressing myoblasts and control cells. The magnification is 8750× [101]. 
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The nuclear transcription factors NRF-1, NRF-2, CREB, ERRs, and PPARs have 

been identified as important targets for coactivation by PGC-1α and subsequent 

induction of mitochondrial biogenesis (Fig. 1-15) [70].  The illustration in figure  

1-15, portrays the biological link between PGC-1α and the mitochondrial 

transcriptional machinery, which can occur through PGC-1α induction of NRF-1/2 

and coactivation of the NRF-1 and NRF-2 recognition sites within Tfam and 

TFB1/2M promoters leading to an increase mRNA expression [70, 117].  The  

PGC-1α coactivator also stimulates expression of numerous OXPHOS genes, such 

as cytochrome c and ATP synthase-β, through interactions with conserved ERRα 

and NRF-2 recognition sites in their promoter regions (Fig. 1-15) [70, 118].  As 

previously mentioned, other nuclear transcription factors that function in the 

replication of subunits of the respiratory chain and ribosomes are YY1 and MEF-2, 

both of which are also coactivated by PGC-1α (Fig. 1-15) [70].   

 

Physiological mechanisms controlling mitochondrial biogenesis 

The PGC-1 family of coactivators is highly inducible by various types of stimuli.  

Tissue specific expression of PGC-1α alters in response to the type of external 

stimuli (Fig. 1-15): cold in brown adipose tissue (BAT), exercise and decreased 

ATP levels in skeletal muscle, and fasting in liver [70, 119].  Diverse signaling 

mechanisms have been identified for the regulation of PGC-1α at the transcriptional 

level, such cellular pathways include those involved with growth, differentiation, 

and energy metabolism [70, 103, 120].  
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Figure 1-15.  Illustration summarizing PGC-1α-mediated pathways governing 
mitochondrial biogenesis and function. Depicted in the nucleus (shaded 
sphere) are the key transcription factors (NRF-1, NRF-2, ERRα, PPARα, and MEF-
2) that are PGC-1α targets and act on nuclear genes governing the indicated 
mitochondrial functions. Some of the physiological effector pathways mediating 
changes in the transcriptional expression or function of PGC-1α are also shown. The 
CREB activation of PGC-1α gene transcription in response to cold (thermogenesis), 
fasting (gluconeogenesis), and exercise has been well documented. The 
physiological mechanisms of PGC-1α induction by nitric oxide are not established 
but may involve the production of endogenous nitric oxide by eNOS. A potential 
pathway of retrograde signaling through calcium is also included [70]. 
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More specifically, it is well established that caloric restriction, cold exposure, and 

other environmental stimuli activate β-adrenergic and cytokine cell surface 

receptors triggering cascades involving the phosphokinase A (PKA) and p38 

mitogen-activated protein kinase (p38 MAPK) pathways [96].  Activation of PKA 

phosphorylates the CREB transcription factor, which can then directly bind to the 

promoter region of the PGC-1α gene and influence expression [96, 121]. 

Alternatively, the p38 MAPK protein can directly phosphorylate the PGC-1α 

protein, resulting in its activation, stabilization, and triggering the expression of the 

nucleus-encoded subunits of respiratory chain and Tfam through the induction of 

the expression of NRFs and the coactivation of NRF-1-mediated transcription [96].   

In the same fashion previously discussed, Tfam subsequently translocates into the 

mitochondrion and directly increases the transcription and replication of  

mtDNA [96].  

 

In addition, regulation of PGC-1α is also controlled through signaling of the 

calcium/calmodulin-dependent protein kinase (CaMK-IV) pathway, and post-

translational modifications alter its subcellular localization and activation by either 

phosphorylation (β-adrenergic/cAMP/p38 MAPK) or deacetylation by sirtuin1 

(SIRT1) [96, 122-124].  See Table 1-2 for the complete description of biological 

consequences of post-translation modifications of PGC-1α [125]. 
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Table 1-2.  Post-translational modifications of PGC-1α and their biological 
consequences [125]. 
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Mitochondrial biogenesis in renal cell injury   

Studies simulating sublethal oxidant injury with the model oxidant tert-

butylhydroperoxide in renal proximal tubule cells (RPTC) have established that 

within 24 h of injury mitochondrial function, as measured by ATP production and 

respiration, and expression of OXPHOS components are markedly decrease, which 

gradually recover over 6 days [126-129].  Previously our laboratory utilized the 

same in vitro oxidant model to evaluate expression of PGC-1α throughout the 

phases of injury and recovery and discovered that PGC-1α is endogenously 

upregulated in response to injury; furthermore, overtime expression is inversely 

correlated with respiratory capacity (Fig. 1-16) [130].  Additionally, this study 

determined that the upregulation in PGC-1α was partly mediated through the p38 

MAPK pathway, which is an established downstream effector of β-

adrenergic/cAMP signaling [130].   
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        Figure 1-16.  Induction of PGC-1α protein (A, B) correlates with recovery  
       of basal (C) and uncoupled (D) respiration after oxidant injury in RPTC [130]. 
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Since PGC-1α was associated with the recovery of mitochondrial function, a 

follow-up study was conducted by Rasbach, et al., which evaluated if the induction 

of mitochondrial biogenesis via overexpression of PGC-1α in RPTC either prior to 

or after oxidant injury affected mitochondrial function [128].  Renal proximal 

tubular cells overexpressing PGC-1α resulted in an increase in mitochondrial 

number/function prior to oxidant exposure, potentiated dysfunction and cell death, 

but did not preserve mitochondrial function once injured [128].  However, 

increased mitochondrial biogenesis after oxidant injury accelerated recovery of 

mitochondrial function [128].  Illustrated in Fig. 1-17A, the mitochondrial proteins 

ATP synthase β and NDUFB8 were significantly reduced after TBHP exposure, but 

were almost completely restored in cells overexpressing PGC-1α after injury 

[128].  Concomitantly, mitochondrial functional markers, including total cellular 

ATP (Fig 1-17B), basal respiration (Fig 1-17C) and uncoupled respiration (Fig 1-

17D) were significantly suppressed following oxidant injury, but were reported to 

be fully recovered in RPTC overexpressing PGC-1α post oxidant exposure [128]. 
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Figure 1-17.  Overexpression of PGC-1α after oxidant injury restored 
mitochondrial protein expression (A), as well as total cellular ATP (B) and basal 
(C) and (D) uncoupled oxygen consumption in RPTC exposed to tertbutyl-
hydroperoxide [128]
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Alternative splice variants of PGC-1α  

 As previously stated, PGC-1α is an inducible transcriptional co-activator.  In skeletal 

muscle, PGC-1α has been reported as a major regulator that allows muscle to adapt to 

endurance-type exercise, but has no effect on muscle strength or hypertrophy.  

Recently, the laboratory of Bruce Spiegelman identified 4 alternatively spliced 

variants of the PGC-1α gene [131].  Of the 4 identified, the PGC-1α isoform (PGC-

1α4) that results from alternative promoter usage and splicing of the primary 

transcript was highly expressed in exercised muscle but did not control most known 

PGC-1α targets such as the mitochondrial OXPHOS genes [131].   

 

Instead, PGC-1α4 specifically induced insulin-like growth factor-1 (IGF1), a 

stimulator of muscle hypertrophy, and repressed myostatin, a known inducer of 

muscle atrophy [131].  Moreover, Ruas, et al., reported that mice overexpressing 

PGC-1α4 showed increased muscle mass and strength and resistance to the muscle 

wasting in an animal model of cancer cachexia [131].  Their studies identify a novel 

biological target, the PGC-1α4 protein, which regulates and coordinates factors 

involved in skeletal muscle hypertrophy [131].   Finally, discrete pharmacological 

activation of the PGC-1α4 represents a clinically rationale approach to defining a 

drug therapy that can combat skeletal muscle hypertrophy, a clinical disease void of 

approved treatment.   
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BIOTECHNOLOGY: DRUG DISCOVERY AND MITOCHONDRIAL 
BIOGENESIS 
 

G-protein coupled receptors: biological targets for mitochondrial biogenesis 

The previous section described key players involved with the regulation of 

mitochondrial biogenesis, which includes the nucleus-encoded transcription factors 

(NRF-1, NRF-2, ERRs, PPARs, MEF-2, and SP-1), and coactivators (PGC-1α, 

PGC-1β, and PRC).  These players and their associated upstream regulators are 

representative of potential targets for pharmacological stimulation of mitochondrial 

biogenesis.  More specifically, it is established that PGC-1α expression can be 

induced via β-adrenergic receptor (β-AR) activation intrinsically as part of an 

adaptive thermogenic response for energy homeostasis [100] or by treatment with 

exogenous pharmacological agents that are β-AR agonists [132].   

 

Stimulatory G-protein coupled receptors.  In general, the family of receptors known 

as G-protein coupled receptors (GPCR) is a class of cell surface receptors that are 

composed of a polypeptide chain that weaves through the phospholipid bilayer 7 

times forming a transmembrane helix.   Approximately 1/3 of all clinically 

approved drugs target this family of receptors.  The β-AR is a classical stimulatory 

G-protein coupled receptor (Gs) that is characterized by a markedly increase 

expression of cAMP and exist in three distinct isoforms (β1, β2, β3) [133, 134].  

More specifically, the β2-AR is a heterotrimer composed of G-protein subunits α, β, 

and γ. After ligand binding on the extracellular surface, this receptor undergoes a 

conformational change of the intracellular domain that leads to activation of the G-
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proteins. The Gα subunit releases GDP in exchange for GTP when activated and 

dissociates from the Gβγ dimer.  This subunit then binds and stimulates adenylyl 

cyclase resulting in the increased production of cAMP from ATP. Cyclic AMP acts 

as an intracellular messenger capable of initiating a diverse set of signaling 

cascades, depending on the tissue type, stimulus, and downstream effector(s) 

involved. With regards to mitochondrial biogenesis, cAMP can phosphorylate PKA 

initiating CREB mediated increases in PGC-1α as discussed in the section entitled 

physiological mechanisms controlling mitochondrial biogenesis (Fig. 1-15).  

Stimulation of the β2-AR also leads to activation of the Gβγ subunit, which in turn 

regulates its own effectors such as increased intracellular Ca2+.  An increase in Ca2+ 

leads to activation of CamKKβ and activation of AMPK, which is capable of 

targeting PGC-1α [135].  

 

Inhibitory G-protein coupled receptors.  In contrast to the Gs receptor family, the 

inhibitory G-protein coupled receptors (Gi/o) prevent formation of cAMP.  An 

example of this class of GPCRs includes the A1 adenosine receptors  (A1 AR).   

Upon ligand binding and activation of the Gi/o receptor, the Gα subunit releases 

GDP in exchange for GTP and dissociates from the Gβγ dimer, as previously 

described.   However, the Gα-i protein inhibits adenylate cyclaseactivity, which 

leads to the decrease of cAMP level and attenuation of CREB phosphorylation by 

PKA.  In addition, Gi/o receptor activation can also inhibit G-protein-coupled 

activation of voltage dependent Ca2+ channels and is reported to induce 

phospholipase C activation [136, 137].   



	
  
60	
  

Drug discovery: AKI and mitochondrial biogenesis 

AKI drug discovery.  Currently, there no clinically approved drug therapies for the 

treatment of AKI.  Current treatments are limited to mechanical support by 

dialysis. Historically, the vast majority of drug research efforts for AKI have 

focused on pretreatment.  However, clinical translation of the outcomes obtained 

from this approach is limited, as AKI primarily presents with an unpredictable 

acute onset.  Except for a few isolated studies where pretreatment is beneficial for 

the prevention of AKI [138], the vast majority of animal and clinical studies have 

yet to demonstrate conclusively the benefit of pharmacologic treatment of AKI and 

Table 1-3 briefly outlines barriers to successful treatment of AKI [139].  

Therefore, an approach that identifies novel and relevant biological targets in the 

kidney is quintessential for successful drug discovery for the treatment of AKI.  
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Table 1-3.  Complexity of human AKI: barriers to successful treatment [139]. 
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Mitochondrial biogenesis as a pharmacological target.  Experimental assessment 

of mitochondrial biogenesis is challenging, as one succinct technique does not exist 

which can directly count the amount of newly formed mitochondria.  Therefore, the 

technique utilized for determination is dependent on which definition, previously 

discussed under the section “mitochondrial biogenesis”, is employed by the 

investigator to define endpoint mitochondrial biogenesis.   

 

As previously discussed, mitochondrial biogenesis is a conserved mechanism to 

maintain cellular homeostasis in response to cellular stressors, and is stimulated 

when increased tissue energy demand exceeds mitochondrial ATP-producing 

capacity [140].  The high inducible nature of mitochondrial biogenesis makes it an 

ideal target for drug discovery and pharmacological induction of MB might be 

capable of accelerating recovery of mitochondrial and organ function post acute 

injury [141].  Activators of SIRT1, a protein deacetylase, including isoflavones, 

resveratrol and SRT1720, have proven effective at increasing the expression and 

activity of PGC-1α and promoting increased mitochondrial number and improved 

function [142-145].  In addition, our laboratory reported that treatment with 

SRT1720 promotes recovery from oxidant injury in RPTC [126].    

 

Given the success of these experiments and that there are only a few 

pharmacological agents reported that are capable of stimulating mitochondrial 

biogenesis, the need for accurate experimental approaches determining the ability 

of pharmacologically active compounds to induce mitochondrial biogenesis is a 
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necessity for this field to reach maturation.  Described below are several techniques 

that are established in the literature as being validated approaches for determination 

of mitochondrial biogenesis.  

 

Screening: mitochondrial function.  Evaluation of functional endpoints for 

mitochondrial biogenesis is an effective approach for both the screening and/or 

validation.  High throughput assays have been developed, as described Beeson, et 

al., utilizing the Seahorse Biosciences extracellular flux analyzer (XF96), which 

uses maximal oxygen consumption rates (uncoupled respiration) as an output to 

evaluate mitochondrial biogenesis as well as toxicity of pharmacologically active 

compounds [146].  The XF96 instrument uses fluorescent detectors to measure 

oxygen consumption rates (OCR) and determine mitochondrial function.  Injection 

of the proton ionophore carbonylcyanide p-trifluoromethoxyphenyl-hydrazone 

(FCCP) uncouples the mitochondrial membrane potential from the production of 

ATP, increasing the OCR.  

 

Their realization that maximum respiratory capacity (FCCP-OCR) could be used as 

a screening tool for the identification of mitochondrial biogenic compounds has 

revolutionized this field of drug discovery not only because of its adaptability to 

high throughput screening, but also the flexibility in the type of cell line used, 

which translates to identification of mitochondrial biogenic compounds for all 

tissue cells types, theoretically.  
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There are also assays developed that evaluate mitochondrial function based on 

intracellular ATP levels, which can also correlate with an increase in mitochondrial 

numbers.  It is important to note either of these measurements may only conclude 

that the mitochondria are functioning more efficiently in one sample set versus 

another, or that increases in function may be related to more efficient 

mitochondria, as opposed to more mitochondria.  Therefore, it is imperative to 

perform validation experiments with the discovered pharmacological “hits” 

identified from screening.  

	
  
	
  

Mitochondrial DNA (mtDNA) content.  As previously described in the section 

mitochondrial structure and function, mitochondria posses their own genome.  Each 

mitochondrion contains approximately 2 to 10 copies of their genome and each cell 

can have hundreds to thousands of mitochondria [147].  Since the mitochondrial 

genome contains genes unique to the mitochondria, primers can be designed 

for these genes for use in quantitative real-time polymerase chain reactions (qPCR) 

that measure the abundance of mtDNA.  Thus, if there is more mtDNA then one 

could infer that there are more mitochondria.  Given that the ratio between mtDNA 

and mitochondria is not directly proportional, data from these experiments should be 

view as a precise, but not completely accurate in the measurement of mitochondrial 

abundance.   

	
  
Mitochondrial biogenic machinery.  Evaluation of the expression of components 

involved with mitochondrial biogenic machinery can be used as an indicator for 

the presence of mitochondrial biogenesis.  Given that the upregulation of specific 
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components of the mitochondrial biogenic machinery (see section “entitled 

nuclear control of mitochondrial biogenesis”) or subunits of the ETC (i.e.-

NDUFB8, COX I, ATPβ, etc.) is an indication of activation of the mitochondrial 

biogenic process, their expression can be used as a tool to infer the presence of 

mitochondrial biogenesis.   Experimentally, this can be carried out via qPCR 

(genes) or immunoblotting (proteins).  With both of these techniques the relative 

expression levels can be compared to a control group to determine if treatment 

with a specific drug was efficacious in stimulating mitochondrial biogenesis.   

 

Protein synthesis is highlighted because the transcription of DNA to mRNA, 

which is the first step in this process followed by translation into protein.  

Therefore, it is important to evaluate both gene and protein expression of the 

specific target because successful synthesis of necessary proteins can serve as a 

negative feedback modulator for gene expression, therefore expression can occur 

non-simultaneously.  Meaning, one might observe no change when evaluating just 

one parameter when in fact a change may exist in the other.    

 

Often a response can be maximized based on exposure to the optimal dose, which 

can be discovered by treatment with a comprehensive range of doses, aka a dose 

response.  Both qPCR and immunoblotting can be utilized to evaluate expression 

of key mitochondrial components after exposure to a range of doses.  It is also 

important to consider the time point at which samples are analyzed because a 

response also depends on the amount of time a drug has had to elicit an effect 
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(i.e.-receptor occupancy, drug half-life, conversion to the active form in case of 

prodrugs, etc.).  Therefore, it is most beneficial to run in parallel experiments 

assessing a dose response at relevant time points. 

 

Microscopy.  Determination of mitochondria volume/number by microscopy is a 

commonly used technique that broadly falls into one of two categories: fluorescent 

microscopy or  transmission electron microscopy (TEM).  Fluorescent microscopy is 

the more commonly used of the two methods and utilizes potentiometric dyes such 

as tetramethylrhodamine methyl ester (TMRM), rhodamine 123 and JC-1 are 

membrane-potential-dependent dyes incorporated into the mitochondrial 

membrane and fluoresce in the presence of polarized mitochondria.  As described 

in the previous section “mitochondrial structure and function”, healthy 

mitochondria are polarized; therefore these dyes are exceptional tools for 

evaluating mitochondrial health.   Visualization of mitochondria can be observed 

in real-time in either cultured cells or living tissue in situ.  These dyes are not 

accurate tools for the quantification of mitochondria, as it is established that JC-1 

and Rhodamine 123 are “washed out” in non-respiring mitochondria [148].  Mito 

Tracker® (10-N-nonyl acridine) dyes are commercially available dyes, which 

fluoresce upon entering the mitochondria and are thought to be resistant to washing 

out due to the linking of thiol groups in the cardiolipin of the mitochondrial 

membrane [149].  However, Gohil, et al., reported this may not be correct when 

using stains of yeast [150].  Nevertheless, it is also beneficial for use in 

experiments in which multiple labeling diminishes mitochondrial function 
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[149].   Fluorescent techniques are beneficial in drug discovery as they can be 

adapted for high throughput screens identifying pharmacological agents that are 

mitochondrial toxic.   

 

Transmission electron microscopy is an established method for the quantitation of   

mitochondria.  The preparation of samples for TEM is more laborious than the 

aforementioned techniques as it requires fixation, dehydration, sectioning, and 

staining of sections [148].  Furthermore, TEM is limited to small intracellular 

fields of view and does not allow for entire cell imaging, which would be optimal 

in post-hoc analysis evaluating mitochondrial biogenesis   Taken together, the 

arduous sample preparation and inability to comprehensively identify the existence 

new mitochondria prevents TEM from being an effective drug screening tool.  
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Chapter 2: 
	
  
	
  
	
  

Renal Mitochondrial Biogenesis Via A1 Adenosine Receptor 

Activation 

 

ABSTRACT 

Mitochondria remodel via autophagy, fission/fusion, and biogenesis. Dysfunctional 

mitochondria are removed and replaced via biogenesis under control of peroxisome 

proliferator-activated receptor gamma coactivator-1α (PGC-1α), a “master regulator” of 

mitochondrial biogenesis most tissues. In an effort to identify small molecules that induce 

mitochondrial biogenesis, we screened a compound library using an established, 

phenotypic mitochondrial biogenesis assay based on respiration of RPTC. Positive “hits” 

from the library were clustered according to chemical similarity and pharmacophores 

were defined. One of the pharmacophores corresponds to adenosine receptor (AR) 

agonists. Several specific A1 AR agonists were subsequently shown to induce 

mitochondrial biogenesis in RPTC and mice as measured by increased PGC-1α, 

respiratory function, mitochondrial protein expression, and mitochondrial DNA content. 

Metabolic stress in the kidney increases extracellular adenosine and subsequent signaling 

via adenosine receptors (AR). Activation of the AR (A1, A2A, A2B, and A3) tunes 

metabolic load via modulation of filtration and transport rates, the major ATP-demanding 

processes. There have been no reports suggesting that AR signaling also affects 

mitochondrial biogenesis but adenosine is ideally suited to be a biogenic trigger.  
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Our preliminary studies demonstrate that A1 AR signaling converges on PGC-1α 

activation in the kidney to drive mitochondrial biogenesis suggesting a possible 

therapeutic strategy for treatment of acute kidney injury (AKI). 

 

INTRODUCTION 

Cells replace old and dysfunctional mitochondria through fission, fusion and 

mitochondrial biogenesis. Cells and tissues that experience increased energy demand 

respond via production of new mitochondria. Therefore, the maintenance of 

mitochondrial number and functions are indispensable for cellular homeostasis during 

different environmental conditions. Because the mitochondrial genome only encodes 13 

proteins, the biogenesis of mitochondria requires the coordinated expression of nuclear 

and mitochondrial genes. The nuclear encoded 92 kDa protein, PGC-1α is considered a 

major regulator of mitochondrial biogenesis; during various physiological conditions it 

targets genes involved in the maintenance of mitochondrial architecture and function 

[151].  Originally, PGC-1α was identified as a transcriptional co-activator of the nuclear 

receptor PPARγ, a key component of several transcription factors (SP1, YY1, CREB, 

MEF-2/E-box, mtTFA) and nuclear respiratory factors (NRF-1, -2, REBOX/OXBOX, 

MT-1 to -4) involved in the activation and regulation of mitochondrial biogenesis [152]. 

 

Several groups have developed strategies designed to increase the expression and activity 

of PGC-1α [142, 145].  For example, Spiegelman and colleagues demonstrated that 

microtubule and protein synthesis inhibitors alter PGC-1α expression [153].  We reported 

that a number of differentially substituted isoflavone derivatives promote mitochondrial 
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biogenesis through a SIRT1-mediated pathway leading to PGC-1α activation [126, 145].  

However, such responses only occurred with high concentrations or long exposure times, 

and these compounds have low bioavailability.  Although it has been reported that 

SRT1720 induces mitochondrial biogenesis, a recent report suggests that SRT1720 has 

numerous “off-target” effects [126, 154].  While these compounds do not harbor 

significant therapeutic potential, they illustrate the potential for pharmacological-induced 

mitochondrial biogenesis.  

 

Immortalized cell lines have been used extensively to study mitochondrial physiology 

and biogenesis.  Two severe limitations of these cells are the loss of differentiated 

functions and high rates of glycolysis with limited respiration.  A number of years ago we 

modified the culture conditions of primary cultures of RPTC to provide polarized cells 

with a greater retention of differentiated functions; and the cells exhibited respiration and 

gluconeogenesis rates comparable to the rates measured in vivo [155, 156].  We recently 

published results to demonstrate that several classes of compounds produce 

mitochondrial biogenesis in RPTCs using multiple endpoints such as basal and uncoupled 

oxygen consumption rates (OCR), ATP levels, PGC-1α activation, mtDNA content and 

mitochondrial protein levels [126, 145].  Using the XF instrument, these validated 

compounds and other compounds known to produce mitochondrial biogenesis (e.g., 

AICAR, metformin), were used to demonstrate that FCCP-uncoupled respiration is a 

sensitive marker of mitochondrial biogenesis in these cells [146].  It is important to note 

that the FCCP uncoupled rate is not increased by addition of additional metabolic 

substrates and, thus, the uncoupled rate is limited only by the capacity of the electron 
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transport chain.  Under these conditions, increases in the uncoupled rate reflect increased 

mitochondrial capacity, which is usually only achieved via biogenesis.  The use of these 

uniquely optimized primary RPTC with the XF96 respirometry platform represents the 

first high-through-put assay to measure phenotypic mitochondrial biogenesis [146].  

 

Using respirometry assay, we subsequently screened a chemical library for inducers of 

mitochondrial biogenesis using the FCCP uncoupled OCR as the endpoint. A number of 

molecules were identified as hits and these were subsequently validated as biogenic 

agents using secondary assays for PGC-1α activation, mitochondrial protein message & 

expression, and mtDNA content. One of the pharmacophores identified overlaps with 

adenosine and several known AR ligands. We tested AR-specific ligands and determined 

that A1 AR-specific agonists, and in particular, partial agonists induce mitochondrial 

biogenesis both in vitro and in vivo.  Given that recent reports have demonstrated 

improved recovery from AKI in mice treated with the mitochondrial biogenesis inducer 

formoterol [157], these results provide an intriguing new approach to development of a 

new class of therapeutic treatments for AKI.   

 

EXPERIMENTAL PROCEDURES 

Animal Dosing 

Eight-week-old male C57BL/6 mice weighing 25–30 g were dosed via intraperitoneal 

(i.p.) injections every 8 hours for a total of 24hrs with CCPA (Tocris) (0.1mg/kg), vehicle 

(n.s.), or CVT-2759 per dosing regimen outlined in table 2.  After 24hrs animals were 

euthanized and tissue was flash frozen.   
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All procedures involving animals were performed with approval from the Institutional 

Animal Care and Use Committee (IACUC) in accordance with the NIH Guide for the 

Care and Use of Laboratory Animals.   

 

Immunoblot analysis 

Renal cortical tissue from flash frozen kidneys was lysed in RIPA buffer containing 

cocktail protease and phosphatase inhibitors.  Forty micrograms of total protein were 

loaded into SDS-PAGE gels and immunoblots were performed as previously 

described.[130]  Antibodies used for immunoblot studies were obtained from the 

following vendors: GAPDH (Fitzgerald Antibodies), COX I and NDUFB8 (Invitrogen), 

PGC-1α (Calbiochem), and KIM-1 (R&D Systems).  

 

Quantitative Real-Time Polymerase Chain Reaction (qPCR)   

Total RNA was extracted from renal cortex tissue and RPTC samples using TRIzol 

reagent (Invitrogen, Grand Island, NY) according to the manufacturer’s protocol. cDNA 

was synthesized via reverse transcription using the iScript Advanced cDNA synthesis kit 

(Bio-Rad, Hercules, CA) with 5 µg of RNA. qPCR analysis was performed with cDNA. 

qPCR was carried out using 5 µl of cDNA template combined with Brilliant II SYBR 

Green master mix (Stratagene, La Jolla, CA) at a final concentration of 1× and primers 

(Integrated DNA Technologies, Inc., Coralville, IA) at a concentration of 400 nM.  

mRNA expression of all genes was calculated using the 2-ΔΔCT method normalized to 

β-actin. Primer sequences are as follows: 

 PGC-1α (EX2) (FW: TGA TGT GAA TGA CTT GGA TAC AGA CA, REV: GCT CAT 
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TGT TGT ACT GGT TGG ATA TG) 

COX I (FW: TAA TGT AAT CGT CAC CGC ACA, REV: ATG TCA GGA GCC CCA ATT 

ATC) 

NDUFB8 (FW: GGC GAT CCC AAC AAA GAA CC, REV: TTT CTA GGA TTG AAG 

GAG TC) 

β-actin (FW: GGG ATG TTT GCT CCA ACC AA, REV: GCG CTT TTG ACT CAG GAT 

TTA) 

 

Respirometry Assay 

The oxygen consumption rate (OCR) measurements were performed by using a Seahorse 

Bioscience XF-96 instrument according to the protocol outlined in Beeson et al., (2010) 

[146].  Each experimental plate was treated with vehicle controls (DMSO <0.5%), a 

positive control (Cilostamide, 10 µM), blank controls, and the appropriate concentration 

of the compound of interest. The XF-96 protocol consists of five measurements of basal 

OCR (1 measurement/1.5 min), injection of p-trifluoromethoxyphenylhydrazone (FCCP) 

(0.5 µM), and three measurements of uncoupled OCR (1 measurement/1.5 min).  The 

consumption rates were calculated from the continuous average slope of the O2 

partitioning among plastic, atmosphere, and cellular uptake [158].  

 Quality-control evaluations considered the basal and uncoupled rates of the vehicle 

control, positive control, and variances between duplicate treatment wells.  
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Pharmacophore modeling 

Three of the most chemically similar hits from the screen as defined via closeness on a 

Tanimoto coefficient-based cladogram were selected to develop a pharmacophore. The 

three hit molecules were aligned manually to give maximal overlap of physicochemical 

features in which the smaller size of the meshed spheres indicates tightness of spatial 

overlap.  

 

Statistical Analysis. 

Data are presented as means ± S.E.M. and were tested for normality.  Data that were 

confirmed to have a normal distribution were subjected to one-way analysis of variance. 

In the absence of normally distributed data with a sample size greater than n=5, a 

Kruskal-Wallis one-way analysis of variance on ranks was conducted.  Multiple means 

were compared to the vehicle at each concentration and a Dunn's post hoc test was used 

to evaluate statistical significance.  Data points were considered statistically different at 

 P < 0.05.  RPTC isolated from a single animal represented an individual experiment  

(n = 1) and were repeated until n ≥ 4 was obtained. Rodent studies were repeated until n 

≥ 3 was obtained. 

 

RESULTS 

The previously validated respirometric mitochondrial biogenesis assay [146] was used to 

screen a diverse chemical library for inducers of mitochondrial biogenesis using FCCP-

uncoupled OCR as the endpoint. As the first phenotypic screen for mitochondrial 

biogenesis inducers using a platform that is only moderately high-throughput, we chose 
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to use the “classic” LOPAC 1280 compound library available from Sigma-Aldrich that 

has been used as a test case for many other screens. Because of our own internal success 

with the ChembridgeTM DIVERset library that contains 50K structurally diverse, ‘drug-

like’ small molecules, we randomly chose 476 compounds to give a a total of 1746 

molecules for the first screen. The RPTC were treated with 10 µM compound for 24 h 

and then were assayed for basal and FCCP-uncoupled OCR (1 µM). As shown in Fig. 2-1 

PGC-1α, the rank order distribution of FCCP-uncoupled OCR (normalized to vehicle 

control) demonstrated that a surprising number of compounds had little effect. Although 

not shown, the basal rates and cell counts assessed from automated microscopic counting 

of Hoechst 33342 stained nuclei were largely unaffected.   
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Figure 2-1. A respirometric screen of 1756 structurally diverse molecules identifies 
mitochondrial biogenesis inducers and mitochondrial toxicants.  RPTC were treated 
with 10 µM of library compound or vehicle control (0.05% dmso) for 24 h after which a 
Seahorse Biosciences XF96 instrument was used to measure basal and FCCP-uncoupled 
OCR (1 µM). Numbers of live versus dead cells were measured separately via automated 
microscopy (not shown). A. Shown are the FCCP uncoupled rates normalized to vehicle 
control where error bars are s.e.m. for n = 5 where n is defined as testing on a separate 
rabbit preparation of RPTC. Subsequent statistical analyses indicated that compounds 
that produce uncoupled rates ≥ 1.15 are possible mitochondrial biogenesis inducers and 
that compounds producing uncoupled rates ≤ 0.85 are likely to be mitochondrial 
toxicants. B. Shown are the rates for potential mitochondrial biogenesis inducers based 
on the OCR ≥ 1.15 of vehicle control. The specific molecules and their rates are listed in 
Table 1.   
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A small number of treatments caused either increases or decreases in FCCP-uncoupled 

rates not associated with changes in cell number or hypertrophy. Based on prior statistical 

analyses, we have shown that mitochondrial biogenesis is linked to increases in treated 

OCR relative to vehicle control of ≥ 1.15 [146].  Indeed, in a related screen we found that 

the best hits were adrenergic ligands and we subsequently demonstrated that β2-

adrenergic ligands induce potent and efficacious mitochondrial biogenesis in vitro and in 

vivo [132, 159].  Perhaps not surprisingly, the molecules that induced losses in FCCP-

uncoupled OCR of ≤ 0.85 (with no cytotoxicity) are mitochondrial toxicants and it was 

shown that these molecules can be integrated via structural similarities to define 

‘toxicophores’ that are conceptually related to pharmacophores but describe molecular 

features of molecules that disrupt mitochondrial function [160]. 

 

Upon examination of the data ,illustrated in Fig. 2-1A, 49 molecules were identified as 

putative inducers of mitochondrial biogenesis (Fig. 2-1B and Table 2-1). 
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Structure 
Average % 

Control 

Standard 

Error 
CAS Name (CAS) 

 

 142.62 10.88 
2750

0-84 

Ro 41-1049 

Hydrochloride 

 

 131.44 7.96 

1627

60-

96-5 

WAY-100635 

Maleate 

 

 130.67 8.96 

8266

8-

33-5 

U-99194A maleate 

 

 129.90 7.07 

5980

3-

98-4 

UK 14,304 

 

 
129.22 9.20 

501-

36-0 
Resveratrol 

 

 127.77 9.91 
58-

98-0 

Uridine 5’-

diphosphate 

sodium 

 

 
126.99 3.46 

500-

44-7 

L-Mimosine from 

Koa hoale seeds 
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 126.47 7.64 

7247

09-

68-6 

Psora-4 

 

 
125.98 4.50 

8396

89-

71-3 

Propanamide, 2,2-

dimethyl-N-(2-

phenyl-5-

benzoxazolyl)- 

 

 125.45 6.02 

2992

5-

17-5 

Ro 20-1724 

 

 125.43 4.05 

1514

88-

11-8 

L-162,313 

 

 125.40 0.82 

1706

32-

47-0 

YC-1 

 

 
125.35 3.68 

8302

7-

13-8 

AMN082 
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 124.99 3.45 

2359

3-

75-1 

Clotrimazole 

 

 124.14 8.69 

3147

76-

92-6 

BP 897 

 

 
123.78 8.66 

8396

95-

65-7 

Acetamide, N-[2-

(4-ethoxyphenyl)-

2H-benzotriazol-

5-yl]- 

 

 

123.77 3.66 

8906

02-

33-2 

1H-Azepine-1-

carboxamide, N-

(5-chloro-2-

methylphenyl)hex

ahydro- 

 

 

122.95 5.47 

6897

41-

80-8 

Pentanamide, N-

[4-[4-(2-

methylbenzoyl)-1-

piperazinyl]phenyl

]- 
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 122.75 5.59 

1444

25-

84-3 

L-703,606 oxalate 

salt hydrate 

 

 122.68 1.81 

4419

-39-

0 

Beclomethasone 

 

 122.35 0.31 

1824

85-

36-5 

TPMPA 

 

 

121.65 6.76 

8396

96-

52-5 

1-

Naphthalenecarbo

xamide, N-[4-

(acetylamino)phen

yl]-5-chloro- 

 

 121.52 3.71 

5781

7-

89-7 

Stevioside 

 

 121.27 4.00 
50-

49-7 

Imipramine 

hydrochloride 

 

 120.98 7.25 

2031

5-

68-8 

6-Methoxy-

1,2,3,4-tetrahydro-

9H-pyrido[3,4b] 
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indole 

 

 120.66 4.54 
865-

21-4 

Vinblastine sulfate 

salt 

 

 120.51 2.17 

6850

6-

86-5 

Vigabatrin 

 

 
120.22 5.54 

1166

79-

83-5 

Hexahydro-sila-

difenidol 

hydrochloride, p-

fluoro analog 

 

 
120.17 5.94 

8992

99-

77-5 

Benzamide, N-[4-

(acetylamino)phen

yl]-3-(1-

methylethoxy)- 

 

 120.15 1.95 

5317

9-

07-0 

Nisoxetine 

hydrochloride 

 

 120.10 7.38 

3279

5-

44-1 

N-

Acetylprocainami

de hydrochloride 
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 119.95 4.98 

8116

7-

16-0 

Imiloxan 

hydrochloride 

 

 119.62 4.04 

8301

5-

26-3 

Tomoxetine 

 

 
118.73 4.29 

61-

54-1 

Tryptamine 

hydrochloride 

 

 

118.28 10.71 

1004

717-

09-2 

Piperazine, 1-

methyl-4-[2-[2-(2-

propen-1-

yloxy)phenoxy]eth

yl]- 

 

 117.54 0.71 

3650

5-

84-7 

Buspirone 

hydrochloride 

 

 117.42 6.66 

7112

5-

38-7 

Meloxicam 

sodium 

 

 117.30 3.83 

7895

0-

78-4 

S(-)-8-Hydroxy-

DPAT 

hydrobromide 
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117.23 1.57 

51-

71-8 
Phenelzine sulfate 

 

 

116.07 3.66 

9034

37-

90-1 

1-Propanone, 2-(4-

chloro-3-

methylphenoxy)-

1-(hexahydro-1H-

azepin-1-yl)- 

 

 116.04 8.26 
608-

07-1 

O-

Methylserotonin 

hydrochloride 

 

 
115.20 6.40 

5598

5-

32-5 

Nicardipine 

hydrochloride 

 

 
114.91 8.07 

8396

96-

09-2 

Piperidine, 1-[2-

[4-(2-propen-1-

yloxy)phenoxy]eth

yl]- 

 

 

114.75 3.53 

8396

97-

58-4 

Methanone, [4-(3-

chlorophenyl)-1-

piperazinyl][3-(2-

propen-1-

yloxy)phenyl]- 
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    Table 2-1.  Structures, nomenclature, and rates for potential mitochondrial                       
 biogenesis inducers based oxygen consumption rate (OCR).   
 

 

 

 
114.36 7.38 

1001

605-

77-1 

Morpholine, 4-[2-

[2-

(phenylmethoxy)p

henoxy]ethyl]- 

 

 114.20 0.67 
553-

12-8 

Protoporphyrin IX 

disodium 

 

 

113.05 8.07 

9034

70-

16-6 

Methanone, [4-(2-

fluorophenyl)-1-

piperazinyl][4-(2-

methylpropoxy)ph

enyl]- 

 

 112.70 4.23 

1301

7-

69-1 

CCG-2046 

 

 
111.84 4.00 

1619

0-

55-9 

Pentanamide, N-

(2-

methoxyphenyl)-

2-propyl- 
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The molecules were examined for structural similarity and it was found that three in 

particular had close structural and biochemical similarity (Fig. 2-2A). Alignment of the 

chemical structures for these three structures defined an A1 AR ligand pharmacophore 

(Fig. 2-2B).  
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Figure 2-2. Alignment of chemically similar hits in the mitochondrial biogenesis 
screen produces an adenosine receptor pharmacophore. A. Three of the most 
chemically similar hits as defined via closeness on a Tanimoto coefficient-based 
cladogram were selected to develop a pharmacophore.  B. The three hit molecules were 
aligned manually to give maximal overlap of physicochemical features in which the 
smaller size of the meshed spheres indicates tightness of spatial overlap. Key: yellow = 
hydrophobic, cyan = acceptor, magenta = donor.   
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To identify a role for AR signaling in RPTC mitochondrial biogenesis, and the specific 

AR involved, RPTC were treated with a number of AR-selective agonists for 24 h and 

respirometric analysis determined. The kidney expresses all four AR isoforms (A1, A2A, 

A2B, and A3) [161], but none have been evaluated for having a role in mitochondrial 

biogenesis. Also, it is well known that there are significant inter-species structural 

differences between the AR as measured by the affinities and Ki values of agonist and 

antagonist ligands, respectively [162, 163].  Thus, we chose AR agonists with highly 

selective affinities for both human and rodent A1 and A3 AR. CCPA is a A1 AR agonist 

with an A1 AR KD/EC50 = 1 nM, and it is 40-fold more selective for A1 than A3. There 

are no A2-selective agonists. 2-Cl-IB-Meca, IB-Meca, and Hemado are A3 AR agonists 

with KD/EC50 of 0.3 nM and 1 nM, and are 2,500- and 327-fold selective for A3 

compared to A1.   

 

Treatment with escalating doses of CCPA (3, 5, 10, and 20 nM) resulted in increased 

primary RPTC FCCP-uncoupled rates indicative of mitochondrial biogenesis, whereas 

2Cl-IB-MECA, IB-MECA and Hemado had no measurable effects (Fig. 2-3A).  

Importantly, the biogenesis induced via CCPA was blocked by low concentrations of the 

A1 AR-specific antagonist DPCPX (Fig. 2-3B). These results suggest that A1 AR 

activation selectively induces mitochondrial biogenesis in RPTC.  
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Figure 2-3.  CCPA specifically induces functional mitochondrial biogenesis in 
RPTC.  FCCP-uncoupled oxygen consumption rate (OCR) was measured in RPTCs 
exposed to 3, 5, 10, and 20nM concentrations of the ADOR agonists, CCPA, IB-Meca, 
2CI-IB, Hermado (A), and co-treatment of A1R antagonist, DPCPX, with CCPA (B) for 
24 hours using the Seahorse Extracellular Flux (XF) Analyzer.  Rates are expressed as a 
percentage change relative to vehicle (DMSO) treatment.  Data points are mean +/- sem; 
N≥6; *p<0.05. 
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To characterize mitochondrial biogenesis at the molecular level, the expression of 

nuclear- and mitochondrial-encoded genes and proteins (nuclear = ATP synthase b, 

NDUFB8; mitochondrial = COX1, ND6) were determined by qPCR and immunoblots, 

respectively, as previously described [126, 128].  It was found that treatment of primary 

RPTC with 3 nM CCPA for 24 h promoted significant increases of the message for PGC-

1α (Fig 2-4).   
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Figure 2-4.  CCPA treatment induces increased expression of mitochondrial 
biogenetic markers in renal proximal tubular cells.  CCPA was dosed in RPTC (3nM) 
for 24hrs.  After 24 expressions of mitochondrial and nuclear encoded genes were 
analyzed via real-time PCR. Relative mRNA expression levels of the genes PGC-1α , 
NDUFB8, COX I, ATPββ and ND6 was measured in RPTC.  Data points are mean +/- 
sem; N≥4; *p<0.05. 
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To demonstrate A1 AR mediated mitochondrial biogenesis in vivo, C57BL/6 mice were 

treated with 0.1 mg/kg CCPA intraperitoneally (5%DMSO in 0.9% saline) every 8 h for 

24 h.  An exhaustive literature search found that the range of CCPA used in mice is  

0.05 – 0.5 mg/kg [164, 165].  In our studies we used 0.1 mg/kg CCPA, a commonly used 

dose in the literature.  The kidneys of treated animals were removed and the cortex was 

homogenized, solubilized, and lysed for qPCR analyses (Fig 2-5).  Gene expression of 

PGC-1α was increased 1.5 fold, ND6 nearly 2-fold, and NDUFB8 was increased above 

2.5 fold.  In addition, evaluation of protein expression for OXPHOS components revealed 

COX I (mitochondrial-encoded) was increased approximately 1.5 fold with only a minor 

increase in NDUFB8 (nuclear-encoded) (Fig. 2-6).  
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Figure 2-5.  CCPA treatment induces increased expression of mitochondrial 
biogenetic markers in renal cortical tissue.  CCPA was dosed in naïve C57BL/6 mice 
(0.1mg/kg) every 8 hours for 24hrs.  After 24 h expressions of mitochondrial and nuclear 
encoded genes were analyzed via real-time PCR. Relative mRNA expression levels of the 
genes PGC-1α , NDUFB8, COX I, ATPββ and ND6 was measured in RPTC.  Data points 
are mean +/- sem; N=6; *p<0.05. 
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Figure 2-6.  CCPA treatment induces increased protein expression of mitochondrial 
biogenetic markers in the renal cortical tissue of mice.  C57BL/6 mice were subjected 
to either  CCPA (0.1mg/kg ) or vehicle (n.s.) via  i.p. injections every 8 hours for a total 
of 24hrs.  After 24 hours the kidneys were harvested, the renal cortical tissue was 
removed, and subjected to protein isolation. Representative immunoblots for COXI, 
NDUFB8, and GAPDH from the renal cortices of both vehicle and CCPA treated mice 
(A), Relative densitometry units COX I (B) and NDUFB8 (C). Data points are mean +/- 
sem; N=6; *p<0.05. 
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Furthermore, since CCPA acts as a global A1AR agonist and the role of receptor agonism 

has been evaluated as a potential therapy in type 2 diabetes [166], Alzheimer’s disease 

[167], and, overall, is arguably the most potent and widespread presynaptic modulator in 

the CNS [168-170]; we therefore also evaluated the liver, frontal cortex, and 

hippocampus for alterations in gene expression of PGC-1α, COX I, and NDUFB8 as 

described above.  These genes were increased in all tissues with COX I expression being 

the most robust in liver and hippocampus, while the frontal cortex showed an increased in 

PGC-1α of 1.5 fold, approximately (Fig. 2-7).   
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Figure 2-7. CCPA treatment induces mitochondrial biogenesis various tissues of 
mice.  C57BL/6 mice were dosed via intraperitoneal (i.p.) injections every 8 hours for a 
total of 24hrs with either CCPA (0.1mg/kg) or vehicle (n.s.).  After 24hrs the frontal 
cortex, hippocampus, and liver were removed, subjected to RNA and isolation, and 
relative expression of mitochondrial and nuclear genes were analyzed via real-time PCR. 
Rates are expressed as a percentage change relative to vehicle treatment.  Relative mRNA 
expression levels of the genes PGC-1α , NDUFB8, and COX I in frontal cortex (A), 
Hippocampus (B), and Liver (C). Data points are mean +/- sem; N=3; *p<0.05. 
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Highly specific A1 AR antagonists have been evaluated in the clinic for management of 

heart failure patients with renal impairment.  However, three clinical trials of the A1 AR 

antagonists KW3902 (rolofylline) and BG9928 (tonapofylline) have been terminated 

because of side effects [171-173].  Agonism of A1 AR has also been evaluated for 

therapeutic treatment of arrhythmias, type-2 diabetes, and angina [166].  The most 

advanced A1 AR agonist therapeutics, selodenoson, and tecadenoson, are administered 

via IV bolus infusion to control ventricular rates [174].  A1 AR agonists also reduce 

triglyceride and non-esterified fatty acid levels in models of type-2 diabetes [175].  The 

A1 AR agonist ARA was evaluated as a potential anti-diabetic agent in humans, but there 

was a rapid onset of tolerance [176, 177].  The potential for cardiovascular effects, and 

agonist-mediated tolerance, has stimulated the development of A1 AR partial agonists.  

For example, the partial agonists CVT-3619 and CVT-2759 are devoid of cardiovascular 

effects and do not exhibit tolerance induction [175, 178].  

 

We chose to evaluate the CVT-2759 partial agonist for mitochondrial biogenesis 

induction given that it is the more characterized and developed of the two.  In vivo, 

treatment with CVT-2579 exhibited a good dose response for mitochondrial biogenesis 

activity (see Table 2-2 for dosing schedule) (Fig. 2-8A).  Evaluation of CVT-2579 in vivo 

demonstrated that it is extremely potent and efficacious in inducing mitochondrial 

biogenesis the kidney of C57BL/6 mice and, thus, partial agonism of the A1 AR appears 

to be an appealing approach to treatment of AKI (Fig. 2-8B).  
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Table 2-2.  CVT-2759 dosing concentrations and frequencies used to define optimal 
dose for stimulating mitochondrial biogenesis.  C57BL/6 mice were subjected to CVT-
2759 via i.p. injections as described in the above table for a total of 24hrs at which time 
they were euthanized.  Once daily (qd), twice daily (bid), and three times daily (tid).  
Total daily dose (single injection concentrations) are as follows: 0.02 (0.01) mg/kg, 0.03 
(0.01) mg/kg, 0.09 (0.045) mg/kg, 0.15 (0.15) mg/kg, 0.3 (0.3) mg/kg. 
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Figure 2-8.  CVT2759 treatment induces mitochondrial biogenesis in renal cortical 
tissue of mice. Dose response for CVT-2759 in C57BL/6 mice (A). Animals were dosed 
via i.p. injections with the dosing regimen defined in table 1 for a total of 24hrs. C57BL/6 
mice were dosed via i.p. injections every 12 h for a total of 24 h with either 0.045mg/kg 
(total daily dose= 0.09) of CVT2759 or vehicle (n.s.) (B).  After 24 hrs the kidneys were 
harvested, the renal cortical tissue was removed, subjected to RNA isolation, and relative 
expression of mitochondrial and nuclear genes were analyzed via real-time PCR. Relative 
mRNA expression levels of the genes PGC-1α , NDUFB8, COX I, ATPβ, and ND6. Data 
points are mean +/- sem; N=6; *p<0.05. 
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In particular, a pharmacophore developed on CCPA, and the two CVT compounds 

creates a much clearer image of the needed structural features to best achieve 

mitochondrial biogenesis via activation of the A1 AR in kidney (Fig. 2-9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
  
101	
  

 

 

Figure 2-9.  Alignment of CCPA, CVT2579 and CVT3619 produces a well-defined 
A1AR agonist/partial-agonist pharmacophore.  The three A1AR ligands were aligned 
manually to give maximal overlap of physicochemical features in which the smaller size 
of the meshed spheres indicates tight, spatial overlap. Key: green = hydrophobic, cyan = 
acceptor, magenta = donor, brown = acceptor/donor.   
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DISCUSSION 

Adenosine is a tissue hormone normally present in the extracellular milieu, in the 

cytoplasm and within intracellular organelles.  It is generated from intracellular and 

extracellular nucleotidases and its concentration reflects the balance between ATP 

utilization and production.  Its primary role in most tissues is to regulate hemodynamics 

and thereby match local blood flow with energy demand.  The differential adenosine-

mediated functional responses are achieved, in part, via the existence of the four AR (A1, 

A2A, A2B, A3) that vary in their distribution, ligand affinities and utilization of small G-

protein coupling partners.  For example, the A2A and A2B AR are Gs coupled and mediate 

cAMP formation whereas the A1 AR are Gi/0 coupled and inhibit cAMP formation.   The 

A1 AR regulates tubular absorption while the A2 AR regulates medullary vasodilation to 

balance GFR to metabolic load.  

 

The rich pharmacology of renal AR has resulted in the generation of varied therapeutic 

approaches to modulate renal dysfunction.   The general lack of highly selective A2A/A2B 

AR agonists and antagonists, and their pleiotropic action in different tissues, has limited 

their use as therapeutic targets.  In contrast, studies with A1 AR knockout mice suggest 

that modulation of A1 AR signaling has therapeutic potential in treating renal injury.  I/R-

induced renal injury was potentiated in the A1 AR knock-out mice, or in wild type mice 

treated with the A1 AR-selective antagonist DPCPX [179].  Treatment with the A1 AR-

selective agonist attenuated I/R-induced renal injury in WT mice.  Renal injury due to 

hepatic I/R and septic peritonitis was also potentiated in the A1 AR knock-out mice [165]. 

In all of these cases the oxidant mediated renal injury is primarily at the level of tubular 
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epithelial cell death and the protective effect of A1 AR has been attributed to enhanced 

Akt activation, p38/AP2 MAPK signaling, and/or increased expression of HSP27 [180-

182].  Although the A1 AR knock-out mice used in these studies have confounding non-

renal deficits, it has been shown that kidney-selective delivery of A1 AR-expressing 

lentivirus in the knock-out mice reduces renal injury due to either renal or hepatic I/R 

[183, 184].  Finally, it has also been reported that A1 AR agonism can produce a 

preconditioning phenotype that is protective from hypoxia [185, 186].  None of these 

studies have attempted to discriminate the role of A1 AR on prevention of AKI injury 

versus recovery.  

 

Metabolic stress in the kidney increases extracellular adenosine and subsequent signaling 

via adenosine receptors.  Activation of the AR (A1, A2A, A2B, and A3) tunes metabolic 

load via modulation of filtration and transport rates, the major ATP-demanding 

processes.  There have been no reports suggesting that AR signaling also affects 

mitochondrial biogenesis but adenosine is ideally suited to be a biogenic trigger.  Our 

studies demonstrate that A1 AR signaling converges on PGC-1α activation in the kidney 

to drive mitochondrial biogenesis.  

 

Mitochondrial dysfunction observed in vivo can be reproduced in cellular models 

subjected to diverse stresses [187-189].  For example, RPTC mitochondrial dysfunction 

is easily measured in response to cisplatin and oxidants such as hydrogen peroxide and t-

butylhydroperoxide [129, 190].  In these studies, the injured RPTC exhibit mitochondrial 

dysfunction with decreased respiration and ATP levels that recover over the course of six 



	
  
104	
  

days.  The recovery is temporally associated with the return of RPTC confluence 

suggesting that mitochondrial function is central to the overall restoration of cellular 

ultrastructure and function [129].  Although, the mechanisms mediating recovery of 

mitochondrial function have not been fully established, we have shown that 

mitochondrial biogenesis inducers can improve recovery from AKI in mice suggesting 

that mitochondrial function could be key to functional recovery [157].  

 

AKI is a serious disease state associated with many complications and co-morbidities, 

and nearly half of those who develop the disease do not survive.  Despite a growing body 

of knowledge concerning the causes and effects of AKI, treatment strategies remain 

largely supportive, and survival rates have remained unchanged for several decades. 

Mitochondrial dysfunction is a significant contributing factor to this disease state, and 

reversal of this dysfunction via mitochondrial biogenesis post-injury may be a potent 

therapy strategy for the treatment of severe organ injury.  We have shown that A1 AR 

agonists induce renal mitochondrial biogenesis in primary RPTC and mice.  Elucidation 

of a partial agonist A1 AR pharmacophore and the downstream signaling pathway 

responsible for this phenomenon will reveal additional targets for pharmacological 

intervention and treatment of AKI.  
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Chapter 3: 
 
 

FORMOTEROL RESTORES MITOCHONDRIAL AND RENAL 
FUNCTION AFTER ISCHEMIC/REPERFUSION INJURY 

	
  
 
ABSTRACT 

Mitochondrial biogenesis may be an adaptive response necessary for meeting the 

increased metabolic and energy demands during organ recovery after acute injury and 

renal mitochondrial dysfunction has been implicated in the pathogenesis of AKI. 

We proposed that stimulation of mitochondrial biogenesis 24 hours after ischemia/ 

reperfusion (I/R)–induced AKI, when renal dysfunction is maximal, would accelerate 

recovery of mitochondrial and renal function in mice. We recently showed that 

formoterol, a potent, highly specific, and long-acting β2-adrenergic agonist, induces 

renal mitochondrial biogenesis in naïve mice. Animals were subjected to sham or I/R 

induced AKI, followed by once-daily intraperitoneal injection with vehicle or formoterol 

beginning 24 hours after surgery and continuing through 144 hours after surgery.  

Treatment with formoterol restored renal function, rescued renal tubules from injury, and 

diminished necrosis after I/R-induced AKI. Concomitantly, formoterol stimulated 

mitochondrial biogenesis and restored the expression and function of mitochondrial 

proteins.  

 

*Data from this work is published under: Jesinkey,	
  S.R.,	
  et	
  al.,	
  Formoterol	
  restores	
  

mitochondrial	
  and	
  renal	
  function	
  after	
  ischemia-­‐reperfusion	
  injury.	
  J	
  Am	
  Soc	
  Nephrol,	
  2014.	
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Taken together, these results provide proof of principle that a novel drug therapy to treat 

AKI, and potentially other acute organ failures, works by restoring mitochondrial 

function and accelerating the recovery of renal function after injury has occurred.  

 

Introduction 

Acute kidney injury (AKI) is a clinical disorder characterized by a rapid decrease in 

kidney excretory function and subsequent retention of nitrogenous waste products, 

metabolic acids, and increased potassium and phosphate concentrations [191].  Acute 

kidney injury AKI incidence is increasing with prevalence of approximately 60% in 

patients during intensive care admission and in the past 50 years mortality rates have 

remained unchanged ranging from 50%-70% [17, 191, 192].  In addition, AKI is costly to 

treat and is a significant financial burden on the healthcare system [18].  Current 

treatments are limited to mechanical support by dialysis. Historically, the vast majority of 

drug research efforts for AKI have focused on pretreatment.  However, clinical 

translation of the outcomes obtained from this approach is limited, as AKI primarily 

presents with an unpredictable acute onset. Taken together the high mortality rates, 

financial burden, and limitations in treatment demonstrate a significant clinical need for 

discovery of novel approaches to therapeutics that promote recovery of renal function 

following AKI.  
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A common etiology of AKI is ischemia reperfusion (I/R) injury and it is now recognized 

that tubular mitochondrial dysfunction contributes to oxidative stress, persistent energy 

depletion, impairment of energy dependent repair mechanisms, and cell death in AKI 

[129, 191, 193-197].  Investigation into renal mitochondrial dysfunction in glycerol, 

sepsis, and I/R models of AKI in rodents revealed a persistent elevation in serum 

creatinine concomitant with continual suppression of mitochondrial- and nuclear-encoded 

genes and proteins of the electron transport chain (ETC) and mitochondrial function [194, 

198, 199]. 

 

Mitochondrial biogenesis (mitochondrial biogenesis) is a complex physiological process 

by which cells form new mitochondria to increase energy production in response to 

environmental stimuli or physiological stress [96].  Peroxisome proliferator-activated 

receptor-gamma coactivator 1 alpha (PGC-1α) is referred to as the master regulator of 

mitochondrial biogenesis and is abundantly expressed in those tissues with high 

metabolic demand (e.g. heart, skeletal muscle, and kidneys) [70, 100, 101, 200].  It is 

highly inducible by physiological and pathological stimuli, including exercise, caloric 

restriction, sepsis, and hypoxia [201-204].  The ability of PGC-1α to respond to 

numerous stimuli and alter the metabolic profile of the cell makes it a target for 

pharmacological intervention in a variety of disease states. 

 

Our laboratory previously demonstrated in oxidant-induced renal proximal tubular cell 

(RPTC) injury that PGC-1α is up-regulated after injury and that over-expression of PGC-

1α post injury promotes the recovery of mitochondrial and cellular functions [128, 130].  
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Tran, et al reported that renal specific PGC-1α null mice subjected to sepsis-induced AKI 

were unable to recover from injury in contrast to their wild-type littermates [198].  Other 

evidence from in vivo studies supports the hypothesis that induction of PGC-1α and 

subsequent mitochondrial biogenesis is a crucial adaptive response aimed at sustaining 

metabolic and energy demands required for recovery from acute organ injury [205, 206].   

 

A recent high throughput screen performed by our laboratory revealed that the specific 

and long-acting beta-2 adrenergic receptor (β2-AR) agonist formoterol was a potent 

inducer of mitochondrial biogenesis in RPTC and in the kidneys of mice [207].  

Subsequently, using RPTC, the ability a structurally diverse panel of β2-adrenoceptor 

agonists to stimulate mitochondrial biogenesis was assayed and cheminformatic profiling 

elucidated four essential chemical moieties to stimulate mitochondrial biogenesis, which 

was shared by formoterol [208].  Here, we carried out experiments evaluating the 

efficacy of formoterol to restore mitochondrial and kidney function after an ischemic 

insult in a mouse model of I/R-induced AKI.   

 

Experimental procedures 

Ischemia/reperfusion model of AKI 

Eight-week-old male C57BL/6 mice weighing 25–30 g were subjected to bilateral renal 

pedicle ligation for 20 min as described previously [194].  Dosing was initiated 24 h after 

reperfusion and mice were given either a daily injection of 0.3 mg/kg of formoterol 

fumarate dihydrate (Sigma F9952) or vehicle (0.3% DMSO in n.s.) via i.p. injection.   

 



109 	
  

All procedures involving animals were performed with approval from the Institutional 

Animal Care and Use Committee (IACUC) in accordance with the NIH Guide for the 

Care and Use of Laboratory Animals.   

 

Assessing renal function 

Blood was collected by retro-orbital eye bleed. Serum was isolated from each blood 

sample and serum creatinine levels were measured using a Quantichrom Creatinine 

Assay Kit (BioAssay Systems, Hayward, CA) according to the manufacturer’s protocol.  

 

Immunoblot analysis  

Renal cortical tissue from flash frozen kidneys was lysed in RIPA buffer containing 

cocktail protease and phosphatase inhibitors.  Forty micrograms of total protein were 

loaded into SDS-PAGE gels and immunoblots were performed as previously 

described.[130]  Antibodies used for immunoblot studies were obtained from the 

following vendors: GAPDH (Fitzgerald Antibodies), COX I and NDUFB8 (Invitrogen), 

PGC-1α (Calbiochem), and KIM-1 (R&D Systems).  

 

Immunohistochemistry 

Kidney sections approximately 5-6 microns from animals at 144 h after I/R or sham 

surgery were stained with H&E and PAS, and the degree of morphological changes was 

determined by light microscopy in a blinded fashion. The following parameters were 

chosen as an indication of morphological damage to the kidney after treatment with either 

vehicle or formoterol: proximal tubule dilation, brush border damage, proteinaceous 



110 	
  

casts, interstitial widening, and necrosis. These parameters were evaluated on a scale 

from 0 to 4, which ranged from not present (0), mild (1), moderate (2), severe (3), and 

very severe (4).   

 

Mitochondrial isolation and oxygen consumption 

Kidney mitochondria were isolated from male C57BL/6 mice. The whole kidney was 

minced and homogenized in ice-cold isolation buffer (250 mM sucrose, 1 mM EGTA, 10 

mM HEPES, 1 mg/ml fatty acid-free BSA, pH 7.4, 300 mOsm/kg H2O). Nuclei and 

cellular debris were pelleted by centrifugation at 1,000 x g for 10 min. The supernatant 

was centrifuged at 10,000 x g for 5 min, resulting in a crude mitochondrial pellet. The 

pellet was washed once in ice-cold isolation buffer and resuspended in assay buffer (220 

mM mannitol, 70 mM sucrose, 5 mM MgCl2, 5 mM KH2PO4, 10 mM HEPES, 1 mg/ml 

fatty acid-free BSA, pH 7.4, 330 mOsm/kg H2O). Crude mitochondria were then diluted 

1/10 to 1/100 in buffer B (137 mM KCl, 2 mM KH2PO4, 2.5 mM MgCl2, 20 mM 

HEPES, 0.5 mM EGTA, 0.2% FA-free BSA, pH 7.4, 330 mOsm/kg H2O) and 180 µl 

diluted mitochondria were added to triplicate wells of a Seahorse XF96 assay plate on 

ice.  The plate was spun down at 3,000 xg for 7 min at 4°C and immediately loaded into 

the XF96 Bioanalyzer. Oxygen consumption rate was normalized to mitochondrial 

protein per well. 

 

Statistical Analysis 

Results were expressed as means +/-SEM, N=3-7.   
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Data were analyzed by using a one-way ANOVA and post hoc tests (Student-Newman-

Keuls or Fisher’s least-significant difference where noted in the figure legend) were used 

to compare I/R untreated and sham and I/R compound-treated groups to vehicle. The 

level of significance was set at P < 0.05.    

 

RESULTS 

C57BL/6 mice were divided into four groups that were subjected to either sham or I/R 

surgery followed by once daily intraperitoneal (i.p.) administration with either formoterol 

(0.3 mg/kg) or vehicle (0.3% DMSO in n.s.) between 24 h and 144 h post-reperfusion.  

Prior to injury, serum creatinine (SCr) was approximately 0.2 mg/dL in all animals and 

increased to approximately 1.3 mg/dL 24 h after I/R (Fig 1A).  Treatment was randomly 

initiated 24 h post-reperfusion when SCr was maximally elevated; therefore, intervention 

was not initiated until after there was established AKI.  Following I/R, there was partial 

recovery of SCr in mice receiving vehicle treatment (IR+Veh); however, SCr was 

persistently elevated compared to pre-injury levels at approximately 0.7 mg/dL at 144 h 

post-reperfusion indicating persistent injury.  In contrast, after five daily doses of 

formoterol following I/R (IR+Form), there was complete recovery of SCr by 144 h (Fig. 

3-1A).  SCr did not change following sham operation in either vehicle (Sham+Veh)- or 

formoterol (Sham+Form)-treated animals. 

 

Kidney injury molecule-1 (KIM-1) is a highly sensitive and specific biomarker of renal 

tubular injury, which is minimally detected in healthy kidneys [209].   
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In cortical lysates from IR+Veh kidneys, KIM-1 protein was elevated compared to sham 

animals at 144 h and formoterol treatment attenuated KIM-1 protein expression to levels 

of the control animals (Fig 3-1B).    
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Fig 3-1. Treatment with formoterol restored kidney function and mitigated 
proximal tubule injury. Mice were subjected to either sham or I/R surgery and 
subsequent treatment with vehicle or formoterol.  Kidney function was assessed via 
serum creatinine (A) and tubular injury via KIM-1 immunoblot analysis.  (B) Kim-1 
protein was measured in kidneys from mice 144 h after injury and quantified by 
densitometry.  Samples were analyzed via one-way analysis of variance (ANOVA) 
followed by a Student-Newman-Keuls post hoc test to evaluate differences between 
groups. Data points are bars with different superscripts are significantly different from 
one another, mean (+/- SEM), N=5, P<0.01. 
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Renal histopathology was assessed using Periodic acid-Schiff (PAS) and hematoxylin 

and eosin (H&E) staining.  Kidneys from IR+Veh and IR+Form mice displayed proximal 

tubule dilation, brush border damage, and the presence of proteinaceous casts.  Kidneys 

from IR+Veh mice displayed evidence of persistent tubular necrosis at 144 h, which was 

attenuated with formoterol treatment (Fig 3-2B).  Additionally, there was evidence of 

interstitial widening, an early sign of renal fibrosis, in IR+Veh kidneys which was not as 

prevalent in IR+Form mice (Fig 3-2C).   
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Fig 3-2.  Treatment with formoterol (Form) improved tubule histology. Mice were 
subjected to either sham or I/R surgery, treated with vehicle or formoterol 24 h after and 
euthanized 144 h after surgery. (A) PAS stain at X10 magnification of representative 
slides of renal cortical tissue. Scoring of (B) tubular necrosis and (C) interstitial 
widening. Samples were analyzed via one-way analysis of variance (ANOVA) followed 
by a Student-Newman-Keuls post hoc test to evaluate differences between groups. Bars 
with different superscripts are significantly different from one another, mean (+/- SEM), 
N=5, P<0.05. 
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Using our I/R model, we have previously shown that essential components of the ETC, 

NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 8 (NDUFB8) and mitochondrial 

cytochrome c oxidase subunit I (COX I), decreased within 24 h of I/R and remain 

decreased through 144 h [194].  If the improved renal function and decreased tissue 

injury stimulated by formoterol is the result of renal mitochondrial biogenesis, then renal 

mitochondrial proteins should be restored and mitochondrial function improved 

compared to I/R mice. At 144 h, there was no change in PGC-1α protein expression with 

treatment or after injury (Fig 3-3A); however, nuclear-encoded NDUFB8 and 

mitochondrial-encoded COX I ETC proteins were decreased 144 h after reperfusion in 

IR+Veh kidneys (Fig 3B).  Treatment with formoterol after I/R restored NDUFB8 and 

COX I protein abundance to levels of the control animals (Fig. 3-3B).  
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Fig 3-3. Formoterol restored mitochondrial protein expression after I/R-induced 
AKI. Mice were subjected to either sham or I/R surgery and subsequent treatment with 
vehicle or formoterol.  Markers for mitochondrial biogenesis were evaluated via 
immunoblot 144 h after surgery. Renal cortical lysate PGC-1α (A) and mitochondrial 
ETC proteins (B) NDUFB8 (middle graph) and COX I (bottom graph).  Densitometric 
semi-quantification is shown below the representative blots. Samples were analyzed via 
one-way analysis of variance (ANOVA) followed by a Student-Newman-Keuls post hoc 
test to evaluate differences between groups. Bars with different superscripts are 
significantly different from one another. Data are presented as mean (+/- SEM) and are 
relative values compared to control, N=6, P<0.05. 
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Previous in vivo and in vitro research in hypoxic and I/R induced models of AKI 

identified dysfunctional mitochondria, in the presence of suppressed ETC protein 

expression, in reduced kidney function [194].  Renal mitochondria were isolated from 

mice at 144 h and mitochondrial function determined. State 2 (basal respiratory rate) was 

not altered under any conditions (Fig 4A). State 3 (ADP-stimulated respiratory rate) 

respiration was reduced in mitochondria from IR+Veh kidneys, which indicated sustained 

mitochondrial dysfunction (Fig 4B), and was restored in IR+Form kidneys (Fig 4B). 

These results demonstrate that formoterol induced mitochondrial biogenesis and restored 

mitochondrial function following I/R in concert with the return of renal function.  
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Fig 3-4. Formoterol restored mitochondrial function in the kidney after I/R-induced 
AKI.  Kidneys were excised followed by isolation of mitochondria.  Relative state 2 
respiration (non-ADP stimulated respiration) (A) and relative state 3 respiration (ADP-
stimulated respiration) (B). These results of respiration are expressed as the mean (+/-
SEM) and are relative values compared to control). Bars with different superscripts are 
significantly different from one another, N=7, P< 0.05. 
 

 

 

 



120 	
  

DISCUSSION 

Currently, there are no pharmacological therapies approved for AKI, and the majority of 

drug discovery research for AKI has historically focused on prevention.  Therefore, an 

animal model in which treatment is initiated after AKI is established is more relevant 

clinically [191, 192].  In the current study, we sought to discover a pharmacotherapeutic 

approach focused on accelerating recovery of kidney function in a mouse model of AKI.    

 

A number of studies have demonstrated that mitochondrial dysfunction is a key 

component of AKI [129, 195-197] and more recent studies have shown persistent 

mitochondrial dysfunction after injury [194, 198].  Previous proof-of-principal studies 

were conducted using oxidant injury in RPTC and demonstrated that over-expression or 

pharmacological activation of PGC-1α after oxidant injury accelerated recovery of 

mitochondrial and cellular function [128, 193].  Furthermore, formoterol, a FDA-

approved, long-acting, specific β2-AR agonist, was shown to induce mitochondrial 

biogenesis in RPTC and mice [207]. 

 

Treatment with formoterol after I/R-induced AKI completely restored kidney function, 

attenuated tubule injury, and reduced renal cell necrosis.  Concurrently, formoterol 

induced mitochondrial biogenesis and restored mitochondrial proteins and function after 

injury.  These data define formoterol as a first-in-class agent, which successfully 

promotes full recovery of renal function after maximal injury.  Furthermore, since 

mitochondrial dysfunction is common in many acute organ injuries/failures, our approach 

may extrapolate to other tissues.   
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In this model and others, renal function, as measured by serum creatinine, improves over 

several days following I/R [194], but does not fully recover by 6 days.  Interestingly, 

formoterol treatment resulted in the complete return of renal function and recovery of 

renal proximal tubular injury as measured by KIM-1, which was associated with the 

recovery of mitochondrial function.  Thus, we speculate recovery of mitochondrial 

function is critical for complete recovery of the proximal tubule and kidney function.  In 

addition, because the extent of AKI and subsequent prolonged injury to the proximal 

tubules have been linked to the development of chronic kidney disease (CKD) [210, 211], 

assuagement of proximal tubule injury by formoterol after AKI may not be limited to 

short-term benefits by restoring kidney function, but may also have long-term benefits by 

modulating the progression to CKD due to a reduction in both extent and duration of 

proximal tubule damage.   
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                                                    Chapter 4: 
	
  

ATOMOXETINE PREVENTS DEXAMETHASONE-INDUCED 
SKELETAL MUSCLE ATROPHY IN MICE 

 
 

 

ABSTRACT 

Skeletal muscle atrophy remains a clinical problem in numerous pathological conditions. 

β2-adrenergic receptor agonists, such as formoterol, are capable of inducing 

mitochondrial biogenesis (mitochondrial biogenesis) and preventing skeletal muscle 

atrophy. Recently, atomoxetine, an FDA-approved norepinephrine reuptake inhibitor, 

was positive in a cellular assay for mitochondrial biogenesis.  We used a mouse model of 

dexamethasone-induced skeletal muscle atrophy to investigate the efficacy of 

atomoxetine to prevent the loss muscle mass and resolve the signaling pathways of 

formoterol and atomoxetine.  Mice were administered dexamethasone once daily in the 

presence and absence of 0.3 mg/kg of formoterol, 0.1mg/kg of atomoxetine or sterile 

saline. Animals were euthanized at 8, 16, 24 h and 7 days later. Gastrocnemius muscle 

weights; changes in mRNA and protein expression of PGC-1α1/4 isoforms, ATP 

synthase β, Cox 1, NDUFB8, ND1 (mitochondria), IGF, myostatin, MuRF-1 (muscle 

atrophy), phosphorylated (p)-FoxO3a, Akt, mTOR, and rp S6 (muscle hypertrophy) in 

naïve and muscle atrophy mice were determined.  Atomoxetine had no effect on any of 

the above biomarkers except for an acute increase in p-mTOR at 24 h after treatment in 

naïve mice. In contrast, formoterol robustly activated PGC-1α4-IGF1-Akt-mTOR-rp S6 

pathway and increased p-FoxO3a as early as 8 h and repressed myostatin at 16 h. Chronic 

treatment of atomoxetine increased p-Akt, p-FoxO3a, and sustained PGC-1α and muscle 
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mass in skeletal muscle of dexamethasone-treated mice, comparable to formoterol.  In 

conclusion, chronic treatment with a low dose of atomoxetine prevented the loss of 

skeletal muscle mass by activating non-canonical mechanisms and supports its potential 

use in muscle atrophy conditions.	
  	
  

	
  

INTRODUCTION 

Skeletal muscle is remarkably malleable, allowing phenotypic adaptions to functional 

demands. Exercise training is known to induce muscle hypertrophy and is characterized 

by growth of existing myofibrils [212].  Skeletal muscle atrophy is defined as a decrease 

in muscle mass and occurs when rates of protein degradation exceed those of synthesis 

[213].  Glucocorticoids (GC) are well-established inducers of catabolism and numerous 

pathological conditions characterized by muscle atrophy (cachexia, chronic kidney 

disease, metabolic acidosis, sepsis, diabetes, etc.) are associated with increases in 

circulating glucocorticoid levels, suggesting a potential role in the development of 

atrophy [214, 215].  Clinically, severe muscle atrophy, especially when concomitant with 

other chronic disease states, is associated with increased rates of morbidity and mortality 

[216-218]. Currently, there is no FDA approved drug to treat muscle atrophy, 

highlighting the importance of not only identifying novel drug entities capable of 

preventing skeletal muscle atrophy, but also elucidating the associated signaling 

pathways. 

 

Several recent reports describe an intricate network of signaling pathways that operate in 

muscle cells to regulate the size of myofibers and muscle performance [219]. These 

different pathways crosstalk and modulate one another at different levels, coordinating 
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protein synthesis and degradation simultaneously. Major pathways that lead to atrophy 

are activation of forkhead box protein O (FoxO3a), myostatin, and nuclear factor kappa B 

(NFκB), which result in accelerated protein degradation primarily through activation of 

muscle atrophy F-box/muscle-specific ubiquitin E3-ligases atrophy gene-1 

(MAFbx/atrogin-1) and muscle RING-finger protein-1 (MuRF1) [219-224]. On the other 

hand, a major signaling pathway that regulates skeletal muscle growth is the insulin-like 

growth factor 1 (IGF-1)-Akt-mammalian target of rapamycin (IGF-1-Akt-mTOR) [225-

228]. Akt stimulates protein synthesis by activating mTOR and its downstream effector 

ribosomal protein S6 (rp-S6) [219, 226, 227].  In addition, Akt can also prevent muscle 

protein degradation by phosphorylating the FoxO3a protein; thereby, preventing entry 

into the nucleus and activating transcription of MuRF-1 [229, 230]. 

 

Previous in vivo and in vitro models have established interactions between these atrophy 

and hypertrophy-related modulators with peroxisome-proliferator activated receptor-

gamma coactivator 1 alpha (PGC-1α) [219].  Recently, alternative splice variants of the 

PGC-1α gene have been identified [131].  Each of the characterized PGC-1α isoforms 

elicits discrete gene programs; whereby, induction of the PGC-1α (now called PGC-1α1) 

isoform promotes mitochondrial biogenesis (mitochondrial biogenesis), regulates 

mitochondrial OXPHOS genes, and inhibits activation of the FoxO3a and NFκB proteins 

[101, 118, 231-233].  However, the PGC-1α4 isoform specifically activates the 

expression of IGF-1 and represses myostatin, which was demonstrated to increase muscle 

mass, strength, and resistance to muscle wasting in a model of cancer cachexia [131].  
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Several studies have established the benefits of therapeutic intervention by β2-adrenergic 

receptor (β2-AR) agonists in animal models of muscle atrophy [234]. The IGF-1-Akt 

pathway controls protein synthesis and β2-AR agonists such as clenbuterol and 

formoterol are considered pro-growth and anti-atrophic drugs [235]. In this regard, 

formoterol has been recently shown to induce skeletal muscle hypertrophy through 

activation of Akt-mTOR-rp S6 pathway and prevent protein degradation [236].  

However, chronic administration of high doses of these drugs resulted in adverse 

cardiovascular effects in several animal models of muscle atrophy [234]. Therefore 

development of drugs that prevent muscle atrophy with fewer adverse cardiovascular 

effects is desirable.  

 

Atomoxetine, also known as atomoxetine, is a FDA-approved drug to treat attention 

deficit hyperactivity disorder (ADHD) and the mechanism of action of atomoxetine is 

thought to be norepinephrine re-uptake inhibition (NRI) [237]. As part of our drug 

discovery program in mitochondrial biogenesis, we initiated a high throughput screen, 

which revealed atomoxetine and β2-adrenergic receptor agonists as potent inducers of 

mitochondrial biogenesis [132].  Therefore, the goal of this study was to examine the 

efficacy of atomoxetine to prevent skeletal muscle atrophy in a commonly used mouse 

model and identify the associated signaling pathways.  Furthermore, formoterol was 

included in this study since it has been used in this model and its actions have been well 

characterized. 
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EXPERIMENTAL PROCEDURES 

Dexamethasone induced model of skeletal atrophy 

Male C57BL/6 (Jackson Laboratories, Bar Harbor ME), 6-8 weeks of age (25-30 g), were 

housed in temperature-controlled conditions under a light/dark photocycle with food and 

water supplied ad libitum.  

 

Acute treatment details: Groups of naive mice were injected intraperitoneally with a 

single dose of sterile saline, 0.3 mg/kg of formoterol fumarate dihydrate (Sigma,	
  St. 

Louis, MO) or 0.1 mg/kg atomoxetine (Tocris Bioscience, Bristol, UK). Animals were 

euthanized at 8, 16, and 24 h after treatments.   

 

Chronic treatment details: Three groups of naive mice were injected intraperitoneally 

with sterile saline, 0.3 mg/kg of formoterol and 0.1 mg/kg atomoxetine, respectively, 

daily for 7 days. Animals were euthanized on the 8th day.   

 

Assessing skeletal muscle atrophy 

 One group of mice was co-injected intraperitoneally with sterile saline daily for 7 days. 

Three groups of mice were co-injected intraperitoneally with 25 mg/kg water-soluble 

dexamethasone (Sigma, St. Louis, MO) followed by a second injection of sterile saline 

(second), 0.3 mg/kg of formoterol (third), or 0.1 mg/kg atomoxetine (fourth), 

respectively, daily for 7 days. Animals were euthanized on the 8th day.  
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Gastrocnemius and body weights were determined and gastrocnemius muscle was flash 

frozen for further mRNA and protein analysis.   

 

All animal and treatment protocols were in compliance with the Guide for Care and Use 

of Laboratory Animals as adopted and promulgated by the US National Institutes of 

Health and were approved by our Institutional Animal Care and Use Committee 

(IACUC).  

 

mRNA analysis 

Total RNA was extracted from mouse gastrocnemius tissue samples using TRIzol reagent 

(Invitrogen, Grand Island, NY) according to the manufacturer’s protocol. cDNA was 

synthesized via reverse transcription using the iScript Advanced cDNA synthesis kit 

(Bio-Rad, Hercules, CA) with 5 µg of RNA. qPCR analysis was performed with cDNA. 

qPCR was carried out using 5 µl of cDNA template combined with Brilliant II SYBR 

Green master mix (Stratagene, La Jolla, CA) at a final concentration of 1× and primers 

(Integrated DNA Technologies, Inc., Coralville, IA) at a concentration of 400 nM.  

mRNA expression of all genes was calculated using the 2-ΔΔCT method normalized to 

β-actin. Primer sequences are as follows: 

Total PGC-1α (EX2) (FW: 5’-TGA TGT GAA TGA CTT GGA TAC AGA CA-3’, REV: 

5’-GCT CAT TGT TGT ACT GGT TGG ATA TG-3’),  

PGC-1α1 (FW: 5’-GGA CAT GTG CAG CCA AGA CTC T-3’, REV: 5’-CAC TTC 

AAT CCA CCC AGA AAG CT-3’),  

PGC-1α4 (FW: 5’-TCA CAC CAA ACC CAC AGA AA-3’, REV: 5’-CTG GAA GAT 



128 	
  

ATG GCA CAT-3’),  

Myostatin (FW: 5’-AGT GGA TCT AAA TGA GGG CAG T-3’, REV: 5’-GTT TCC 

AGG CGC AGC TTA-3’),  

IGF-1 (FW: 5’-TGC TCT TCA GTT CGT GTG-3’, REV: 5’-ACA TCT CCA GTC TCC 

TCA G-3’),  

β-actin (FW: 5′- GGG ATG TTT GCT CCA ACC AA-3′, REV: 5′-GCG CTT TTG ACT 

CAG GAT TTA-3′).  

 

Mitochondrial DNA Content.  

The qPCR method was used to determine the relative quantity of mtDNA in mouse 

gastrocnemius tissue samples. After treatment, DNA was extracted from tissue using the 

DNeasy Blood and Tissue Kit (QIAGEN, Valencia, CA) and 5 ng of DNA was used for 

qPCR. ND1 (FW: 5′-TAG AAC GCA AAA TCT TAG GG-3′, REV: 5′-TGC TAG TGT 

GAG TGA TAG GG-3′) was used as the mitochondrial gene and expression was 

normalized to nuclear-encoded β-actin expression. 

 

Immunoblot analysis.  Mouse gastrocnemius skeletal muscle tissue was homogenized in 

5 volumes of protein lysis buffer (1% Triton X-100, 150 mM NaCl, 10 mM Tris-HCl, pH 

7.4; 1 mM EDTA; 1 mM EGTA; 2 mM sodium orthovanadate; 0.2 mM 

phenylmethylsulfonyl fluoride; 1 mM HEPES, pH 7.6; 1 µg/ml leupeptin; and 1 µg/ml 

aprotinin) using a Polytron homogenizer. The homogenate was stored on ice for 10 min 

and then centrifuged at 7500g for 5 min at 4°C.  The supernatant was collected and 

protein was determined using a bicinchoninic acid kit (Sigma, St. Louis, MO) with 



129 	
  

bovine serum albumin as the standard. Proteins (50–75 µg) were separated on 4 to 20% 

gradient SDS-polyacrylamide gels and transferred to nitrocellulose membranes. 

Membranes were blocked either in 5% dried milk or BSA in TBST (0.1% Tween 20 in 

1× Tris-buffered saline) and incubated with 1:1000 antibody dilutions of MuRF1 (ECM 

Biosciences, Versailles, KY); anti-PGC-1α (EMD, Billerica, MA); anti-ATP synthase β, 

COX-1 (Abcam, Cambridge, MA); anti-NDUFB8 (Invitrogen, Grand Island, NY); total 

and phosphorylated anti-FoxO3a, Akt, mTOR, rp S6 (Cell Signaling Technologies, 

Danvers, MA); and anti-GAPDH (Fitzgerald, Acton, MA) overnight at 4oC. After 

incubation for 2 h at room temperature with secondary antibodies (1:2000) conjugated 

with horseradish peroxidase, membranes were detected by chemiluminescence.  

 

Statistical Analysis. 

Data are expressed as means ± S.E.M. (n = 4–5) for all experiments. Multiple 

comparisons of normally distributed data were analyzed by one-way analysis of variance, 

as appropriate, and group means were compared using the Student-Newman-Keuls post 

hoc test. Single comparisons were analyzed by Student's t test where appropriate. The 

criterion for statistical differences was p ≤ 0.05 for all comparisons. 

 

RESULTS 
 
Acute treatment with formoterol, but not atomoxetine, differentially modulates PGC-1α 

isoform expression in skeletal muscle of naïve mice.  The canonical role of the PGC-1α 

protein, now called PGC-1α1, is to function as the “master regulator” of mitochondrial 

biogenesis and target mitochondrial OXPHOS genes; formoterol is a potent inducer of 
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PGC-1α gene expression [238-240].  In contrast, PGC-1α4, a recently discovered PGC-

1α splice variant, induces a discrete gene program resulting in muscle hypertrophy and 

not mitochondrial biogenesis [131]. It is important to note that all alternatively spliced 

variants of the PGC-1α gene identified by Ruas, et al contain the exon 2 (EX2) region. 

Therefore, primer sequences, which contain this region, are to be interpreted as total 

PGC-1α marker for total PGC-1α expression. Since identification of the specific PGC-1α 

isoform induced by formoterol or atomoxetine, has yet to be determined, we evaluated 

the effects of acute treatment with formoterol or atomoxetine on the PGC-1α isoforms 

mRNA in skeletal muscle of naïve mice. Formoterol caused a 12-fold induction of total 

PGC-1α (EX2, representative of both PGC-1α isoforms) at 8 h post treatment, which 

decreased and returned to baseline at 24 h (Fig. 4-1A).  We then evaluated the expression 

of PGC-1α1 and PGC-1α4. PGC-1α1 gene expression was maximally suppressed at 8 h 

post treatment with formoterol and returned to control levels by 24 h (Fig. 4-1B). 

Formoterol induced PGC-1α4 gene expression maximally at 8 h after treatment (6-fold 

increase over vehicle) and returned to control levels by 24 h (Fig. 4-1C). In contrast, 

atomoxetine had no effect on EX2 or PGC-1α1 and expression of PGC-1α4 was 

decreased 20-25% at 16 and 24 h after treatment (Figs. 4-1D-F).   
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Fig. 4-1. PGC-1α isoform gene expression in skeletal muscle of naïve mice following 
formoterol and atomoxetine treatment.  Naïve mice were subjected to a single 
intraperitoneal (i.p.) dose of either formoterol (0.3 mg/kg), atomoxetine (0.1 mg/kg), or 
sterile saline (veh) and euthanized at 8, 16, and 24 h. Gastrocnemius muscle was excised 
from animals at each time point and RNA was isolated for qPCR analysis.  Total PGC1α 
(EX2), PGC1α1, and PGC1-1α4 at 0, 8, 16, and 24 h after treatment with formoterol (A, 
B, C) or atomoxetine (D, E, F). Data were normalized to vehicle and represented as a 
relative fold change. Data are expressed as mean ± SE (n = 5). * Significantly different 
from untreated mice (p ≤ 0.05).  
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Formoterol but not atomoxetine treatment acutely increases IGF-1 gene expression and 

suppresses myostatin in skeletal muscle of naïve mice.  PGC-1α4 regulates a discrete 

gene program responsible for inducing skeletal muscle hypertrophy via induction of IGF-

1 and suppression of myostatin [131].  Formoterol increased IGF-1 gene expression by 2-

fold at 8 h post treatment, which returned to baseline at 24 h (Fig. 4-2A).  In addition, 

formoterol suppressed myostatin gene expression by 50% at 16 h post treatment (Fig. 4-

2B).  In contrast, atomoxetine did not alter IGF-1 or myostatin (Figs. 4-2C, D). 
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Fig. 4-2. IGF-1 and myostatin gene expression in skeletal muscle of naïve mice 
following formoterol and atomoxetine treatment. Mice were treated as described in 
Figure 1. Expression of IGF-1 and myostatin at 0, 8, 16, and 24 h after treatment with 
formoterol (A, B) or atomoxetine (C, D). Data were normalized to vehicle and 
represented as a relative fold change. Data are expressed as mean ± SE (n = 5). * 
Significantly different from untreated mice (p ≤ 0.05).  
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Atomoxetine acutely increases p-mTOR protein expression in the naïve mouse. 

The mechanism by which formoterol induces skeletal muscle hypertrophy has been well 

characterized as signaling through the phosphorylation of all components of the AKT-

mTOR-rp S6 pathway [236, 241]. In addition it prevents muscle atrophy via 

phosphorylation of FoxO3a [230, 233].  Formoterol increased protein expression of p-

FoxO3a, p-Akt, p-mTOR and p-rp S6 8 h after treatment (Figs. 4-3A-E). Atomoxetine 

increased p-mTOR protein expression 24 h after treatment without altering rp S6 

phosphorylation (Figs. 4-3F-J).   
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Fig. 4-3A-E. Acute effects of atomoxetine and formoterol on protein synthesis 
signaling mechanisms in skeletal muscle of naïve mice. Mice were treated as described 
in Figure 1. Representative immunoblots for markers of muscle protein homeostasis: 
Total and phosphorylated forms of Akt-mTOR-rp S6 axis and FoxO3a at 0, 8 and 24 h 
after formoterol (A); densitometric analysis of FoxO3a (B), Akt (C), mTOR (D) and 
ribosomal protein rp S6 (E) ± formoterol. Data were normalized to vehicle and 
represented as relative fold change. Data are expressed as mean ± SE (n = 4). * 
Significantly different from untreated mice (p ≤ 0.05). 
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Fig. 4-3F-J. Acute effects of atomoxetine and formoterol on protein synthesis signaling 
mechanisms in skeletal muscle of naïve mice. Mice were treated as described in Figure 
1. Representative immunoblots for markers of muscle protein homeostasis: Total and 
phosphorylated forms of Akt-mTOR-rp S6 axis and FoxO3a at 0, 8 and 24 h after 
atomoxetine (F).  Densitometric analysis of FoxO3a (G), Akt (H), mTOR (I) and 
ribosomal protein rp S6 (J) ± atomoxetine. Data were normalized to vehicle and 
represented as relative fold change. Data are expressed as mean ± SE (n = 4).  
* Significantly different from untreated mice (p ≤ 0.05). 
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These results demonstrate that acute formoterol treatment initiates the hypertrophy 

pathway by increasing PGC-1α4, suppressing PGC-1α1, increasing IGF-1 expression, 

decreasing myostatin (MYSTN) expression, and increasing p-FoxO3a, p-Akt, p-mTOR 

and p-rp S6.  In contrast atomoxetine had minimal or no effects on these pathways except 

for an increase in p-mTOR at 24 h.  A summary diagram depicting the gene and protein 

changes observed with acute formoterol treatment can be found in figure 4-4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



138 	
  

 

 

Fig. 4-4.  Proposed mechanisms for acute treatment with formoterol in the skeletal 
muscle of mice.  This diagram depicts the changes observed in gene and protein 
expression following acute treatment with formoterol (Form). Treatment with formoterol 
executes a discrete gene program associated with the PGC-1α4 isoform involving 
subsequent increases in IGF-1 gene expression and the phosphorylation (represented by 
“P”) status of the Akt-mTOR-rp S6 axis, indicating activation. Concomitantly, 
inactivation is depicted by increased phosphorylation of FoxO3a with suppression of 
myostatin (MYSTN) gene expression. Solid shapes represent proteins (name displayed in 
white), helices within the nucleus represent genes (name displayed in black below 
helices), solid black arrowed lines are pathways conferred by our data and dotted arrowed 
lines are potential pathways not evaluated by our study. Both represent activation. Except 
for the arrowed line from Akt to FoxO3a, where phosphorylation inactivates FoxO3a.  
Akt phosphorylation can result from numerous downstream interactions associated with 
the activation of the β2-AR, which are not evaluated by our study.  Therefore, we do not 
know what else might play a role in phosphorylating Akt and chose to represent this 
interaction with “question mark” and a dotted line.  Lines that are blunted at the end 
represent inhibition. 
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Chronic treatment with atomoxetine does not induce muscle hypertrophy, but increases 

phosphorylation of Akt in the naïve mouse.  Given that the muscle atrophy model 

involves administration of 7 daily doses, chronic treatment studies with formoterol and 

atomoxetine were initiated in naïve mice to serve as a comparison. After 7 daily 

treatments with formoterol, increases in protein expression were observed in p-Akt, p-

FoxO3a, and p-rp S6 (Fig. 4-5B) and muscle mass by 15%. However, chronic treatment 

with atomoxetine had no effect on muscle mass (Fig. 4-5A). Atomoxetine increased p-

Akt but had no effect on the downstream effector proteins p-FoxO3a, p-mTOR, or p-rp 

S6 (Figs. 4-5C-F). 
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Fig. 4-5A. Chronic effects of atomoxetine and formoterol on muscle mass and protein 
synthesis signaling mechanisms in skeletal muscle of naïve mice. Mice were treated as 
described in Figure 1. (A) Normalized gastrocnemius muscle mass 7 days after the 
treatment of naïve mice with saline, formoterol or atomoxetine.  Data are expressed as 
mean ± SE (n = 4-5). * Significantly different from either saline-treated controls or all 
other groups of mice (p ≤ 0.05).  
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Fig. 4-5B-F. Chronic effects of atomoxetine and formoterol on muscle mass and 
protein synthesis signaling mechanisms in skeletal muscle of naïve mice. Mice were 
treated as described in Figure 1. (B). Densitometric analysis of FoxO3a (C), Akt (D), 
mTOR (E) and ribosomal protein rp S6 (F) after saline, formoterol and atomoxetine. 
Data were normalized to vehicle and represented by relative fold change. Data are 
expressed as mean ± SE (n = 4-5). * Significantly different from either saline-treated 
controls or all other groups of mice (p ≤ 0.05).  
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Chronic treatment with formoterol and atomoxetine restores mitochondrial proteins, 

increases hypertrophy markers and restores gastrocnemius muscle mass in mice with 

dexamethasone-induced muscle atrophy.  Using a previously described model of skeletal 

muscle atrophy [242], chronic treatment with dexamethasone caused a 17% reduction in 

gastrocnemius muscle mass in mice.  Low doses of formoterol and atomoxetine 

prevented the loss of skeletal muscle mass (Fig. 4-6A). After 7 daily doses, treatment 

with neither dexamethasone nor atomoxetine had any effect on relative gene expression 

of PGC-1α1.  However, formoterol significantly increased expression of PGC-1α1 (Fig. 

4-6B).  
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Fig. 4-6A. Chronic effects of atomoxetine and formoterol on skeletal muscle mass and 
mitochondrial proteins in dexamethasone-treated mice. Mice were co-administered with 
daily dose of 25 mg/kg water soluble-Dexamethasone ± 0.3 mg/kg of formoterol / 
0.1mg/kg of atomoxetine or sterile saline, i.p. for 7 days. Appropriate saline controls 
were maintained throughout the experiment. Animals were euthanized after 7 days and 
gastrocnemius muscle was isolated from both right and the left hind limbs.  
(A) Normalized gastrocnemius muscle mass 7 days after the treatment of dexamethasone-
treated mice with saline, formoterol or atomoxetine.  Data were normalized by GAPDH. 
Data are expressed as mean ± SE (n = 4-5). * Significantly different from either saline-
treated controls or all other groups of mice (p ≤ 0.05). # Significantly different from 
dexamethasone-treated mice (p ≤ 0.05).  
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Next, we determined if this increase was associated with a change in mtDNA or protein 

expression of nuclear and mitochondrial-encoded proteins, both markers of mitochondrial 

biogenesis. mtDNA copy number, as measured by ND1 gene expression, was not altered 

in any of the treatment groups (Fig. 4-6C).  However, treatment with dexamethasone 

significantly decreased PGC-1α protein expression one week after treatment and both 

formoterol and atomoxetine prevented the loss of PGC-1α (Figs. 4-6D-E).  ATP synthase 

β and mitochondrial cytochrome c oxidase subunit I (COX I) protein expression were 

increased following treatment with formoterol in dexamethasone-treated mice while there 

was no effect on NDUFB8 (Fig. 4-6D). Atomoxetine did not alter mitochondrial protein 

expression in dexamethasone-treated mice (Fig. 4-6E).  
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Fig. 4-6B-C. Chronic effects of atomoxetine and formoterol on skeletal muscle mass 
and mitochondrial proteins in dexamethasone-treated mice. Mice were co-administered 
with daily dose of 25 mg/kg water soluble-Dexamethasone ± 0.3 mg/kg of formoterol / 
0.1mg/kg of atomoxetine or sterile saline, i.p. for 7 days. Appropriate saline controls 
were maintained throughout the experiment. Gene expression analysis for PGC-1α1 (B) 
and ND1 (C).  Data are expressed as mean ± SE (n = 4-5). * Significantly different from 
either saline-treated controls or all other groups of mice (p ≤ 0.05). # Significantly 
different from dexamethasone-treated mice (p ≤ 0.05).  
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Fig. 4-6D. Chronic effects of atomoxetine and formoterol on skeletal muscle mass and 
mitochondrial proteins in dexamethasone-treated mice. Mice were co-administered with 
daily dose of 25 mg/kg water soluble-Dexamethasone ± 0.3 mg/kg of formoterol / 
0.1mg/kg of atomoxetine or sterile saline, i.p. for 7 days. Appropriate saline controls 
were maintained throughout the experiment. Representative immunoblots and respective 
densitometry for mitochondrial proteins: Total PGC1α1, ATP synthase β, COX-1 and 
NDUFB8 7 days after formoterol (D). Data were normalized by GAPDH. Data are 
expressed as mean ± SE (n = 4-5). * Significantly different from either saline-treated 
controls or all other groups of mice (p ≤ 0.05). # Significantly different from 
dexamethasone-treated mice (p ≤ 0.05).  
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Fig. 4-6E. Chronic effects of atomoxetine and formoterol on skeletal muscle mass and 
mitochondrial proteins in dexamethasone-treated mice. Mice were co-administered with 
daily dose of 25 mg/kg water soluble-Dexamethasone ± 0.3 mg/kg of formoterol / 
0.1mg/kg of atomoxetine or sterile saline, i.p. for 7 days. Appropriate saline controls 
were maintained throughout the experiment. Representative immunoblots and respective 
densitometry for mitochondrial proteins: Total PGC1α1, ATP synthase β, COX-1 and 
NDUFB8 7 days after atomoxetine (0.1 mg/kg; E). Data were normalized by GAPDH. 
Data are expressed as mean ± SE (n = 4-5). * Significantly different from either saline-
treated controls or all other groups of mice (p ≤ 0.05). # Significantly different from 
dexamethasone-treated mice (p ≤ 0.05).  
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IGF-1 gene expression was increased with formoterol in dexamethasone-treated mice 

despite a significant decrease in PGC-1α4 isoform (Figs. 4-7A-B).  However, 

atomoxetine had no effect on PGC-1α4, IGF-1, or myostatin in dexamethasone-treated 

mice (Figs. 4-7A-C). Formoterol and atomoxetine both consistently increased 

phosphorylation of Akt in dexamethasone-treated mice (Figs. 4-8A-D).  However, only 

formoterol showed increases in Akt phosphorylation and increased mTOR 

phosphorylation (Fig. 4-8B).  Surprisingly, formoterol decreased p-rp S6 and 

atomoxetine did not affect phosphorylation levels of mTOR and rp S6 (Fig. 4-8A-D).  

However, formoterol decreased MuRF-1 in dexamethasone-treated mice (Figs. 4-9A). 

Atomoxetine suppressed MuRF-1 protein expression in dexamethasone-treated mice 

(Figs. 4-9B).  
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Fig. 4-7. Chronic effects of atomoxetine and formoterol on hypertrophy and atrophy 
associated proteins in skeletal muscle of dexamethasone-treated mice. Mice were 
treated as described in Figure 5.  qPCR analysis of gene expression for proteins of muscle 
hypertrophy, PGC-1α4 (A) and IGF-1 (B), and atrophy, myostatin (MYSTN) (C).  Data 
were normalized to vehicle and represented as a relative fold change. Data are expressed 
as mean ± SE (n = 5). * Significantly different from untreated mice (p ≤ 0.05). 
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Fig. 4-8A-B. Chronic effects of atomoxetine and formoterol on protein synthesis 
signaling mechanisms in skeletal muscle of dexamethasone-treated mice. Mice were 
treated as described in Figure 5. Representative immunoblots and densitometric analysis 
for markers of muscle protein homeostasis: Total and phosphorylated forms of FoxO3a, 
Akt, mTOR and ribosomal protein rp S6 at 8 days after respective treatments with either 
formoterol (BD 0.3 mg/kg; A, B). Data were normalized to vehicle and represented as a 
relative fold change. Data are expressed as mean ± SE (n = 4-5). * Significantly different 
from either saline-treated controls or all other groups of mice (p ≤ 0.05). 



151 	
  

 
 
Fig. 4-8C-D Chronic effects of atomoxetine and formoterol on protein synthesis 
signaling mechanisms in skeletal muscle of dexamethasone-treated mice. Mice were 
treated as described in Figure 5. Representative immunoblots and densitometric analysis 
for markers of muscle protein homeostasis: Total and phosphorylated forms of FoxO3a, 
Akt, mTOR and ribosomal protein rp S6 at 8 days after respective treatments with either 
formoterol (BD 0.3 mg/kg; A, B). Data were normalized to vehicle and represented as a 
relative fold change. Data are expressed as mean ± SE (n = 4-5). * Significantly different 
from either saline-treated controls or all other groups of mice (p ≤ 0.05). 
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Fig. 4-9. Chronic effects of atomoxetine and formoterol on muscle atrophy markers in 
skeletal muscle of dexamethasone-treated mice. Mice were treated as described in 
Figure 5. Representative immunoblots and densitometric analysis for markers of skeletal 
muscle protein breakdown: MuRF-1 at 7 days after respective treatments with either 
formoterol (BD 0.3 mg/kg; A) or atomoxetine (0.1 mg/kg; B). Data were normalized by 
GAPDH. Data are expressed as mean ± SE (n = 4-5). * Significantly different from 
saline-treated controls (p ≤ 0.05). # Significantly different from dexamethasone-treated 
mice (p ≤ 0.05).  
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DISCUSSION 

Recently, alternative splice variants of the PGC-1α gene have been identified [131].  The 

PGC-1α isoforms differ in function due to their respective target set of genes; whereby, 

induction of the PGC-1α1 isoform regulates mitochondrial biogenesis and PGC-1α4 

induces hypertrophy [131].  A low dose of formoterol (0.3 mg/kg), a long acting β2-AR 

agonist, stimulated alternative splicing of the PGC-1α gene resulting in an increase in 

PGC-1α4 expression and suppression of PGC-1α1.  As a result, the discrete gene 

program associated with PGC-1α4 was elicited, the IGF-1–Akt-mTOR-rp S6 axis and 

suppressed myostatin in the acute naïve animal model.  Finally, chronic treatment with 

formoterol in naïve animals caused skeletal muscle hypertrophy and a similar activation 

of the Akt-mTOR-rp S6 axis and p-FoxO3a protein expression. Thus, low dose 

formoterol stimulates anabolism and prevents catabolism in skeletal muscle. 

 

Despite differences in animal models with regards to dose, animal, and tissue type the 

observed increases in phosphorylation of FoxO3a and the activation of the Akt-mTOR-rp 

S6 axis is similar to what has been previously reported [239, 243].  Prior to the discovery 

of the PGC-1α4 isoform, Pearen et al. reported an increase in PGC-1α, now called PGC-

1α1, gene expression approximately 8 h post treatment with formoterol and no change in 

myostatin in the tibialis anterior of naïve C57BL/6 mice [238, 239].  In contrast, we 

determined that the up-regulation in total PGC-1α (exon 2) gene expression observed at 8 

h was driven primarily by PGC-1α4 and not the PGC-1α1 isoform. Given that PGC-1α4 

is an inducer of IGF-1 [131], which then functions as a negative regulator of myostatin, 

myostatin gene expression decreased.  The fact that all of the PGC-1α splice variants 
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contain EX2, the disparity in the results between our studies and Pearen et al. may be 

explained by the incorporation of a sequence for exon 2 in the PGC-1α primer used for 

their studies.  Alternatively, the discrepancy could be the dissimilarities in the model 

including type of skeletal muscle tissue analyzed.  

 

Recently, we reported that atomoxetine, an FDA approved NRI to treat ADHD, 

stimulates mitochondrial biogenesis in a high throughput screening assay in renal 

proximal tubules cells (RPTC) [132] and previous studies have reported that the 

pharmacological effects of atomoxetine may be through the β-adrenergic receptor system 

[244, 245].  Subsequent cheminformatic profiling of β2–AR agonists nisoxetine and 

atomoxetine was further carried out and elucidated four chemical moieties which are 

shared by atomoxetine and formoterol [132].  Despite chemical similarities, neither acute 

nor chronic treatments with atomoxetine in the naïve animal increased phosphorylated 

FoxO3a, activated the Akt-mTOR-rp S6 axis, or induced skeletal muscle hypertrophy.  In 

addition, atomoxetine did not appear to modulate PGC-1α1/4 gene expression in 

gastrocnemius muscle, either acutely or chronically.  However, in comparison to 

formoterol there was a similar increase in p-Akt protein expression after chronic 

treatment with atomoxetine.  While the interpretation of this isolated finding is difficult 

given that there are numerous upstream modulators and downstream effectors of Akt 

activation [246], Akt phosphorylation is associated with skeletal muscle hypertrophy 

[227].   
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Therefore, we can infer from this observation that either atomoxetine is not an activator 

of the canonical signaling associated with direct β2–AR agonist or its elicits downstream 

signaling through an alternative pathway due to its pharmacological profile as a NRI. 

 

In the atrophy model, treatment with formoterol stimulated muscle hypertrophy and 

atomoxetine was efficacious in preventing skeletal muscle atrophy. As expected, 

treatment with dexamethasone suppressed PGC-1α1 expression at 8 days; however, 

concomitant treatment with either formoterol or atomoxetine maintained PGC-1α1 levels 

equal to that of controls. Despite sustained expression of PGC-1α1, there was no 

evidence for mitochondrial biogenesis.  It is important to note that PGC-1α1 and p-Akt 

prevent the de-phosphorylation of p-FoxO3a; thereby, limiting its entry to the nucleus 

and operating as a transcription factor to induce transcription of MuRF-1 [233].  This is 

supported by the observed increase in p-FoxO3a and decreased MURF-1 protein 

expression post treatment with either atomoxetine or formoterol as compared to 

dexamethasone treatment alone, further supporting evidence that atomoxetine possesses 

anti-atrophic properties.  Finally, a summary diagram illustrating our findings in the 

dexamethasone study are summarized for both formoterol (Fig. 10) and atomoxetine  

(Fig. 11). 
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Fig. 10.  Proposed mechanisms preventing muscle atrophy associated with chronic 
treatment of formoterol in skeletal muscle of dexamethasone-treated mice.  This 
diagram depicts the changes observed in gene and protein expression following chronic 
treatment with formoterol (Form) in skeletal muscle of dexamethasone (DEX)-treated 
mice.  Chronic treatment with formoterol sustained PGC-1α1 gene and protein expression 
leading to an increase in OXPHOS proteins.  IGF-1 gene expression is increased, but it is 
unclear what is driving expression (denoted by “question mark” above IGF-1 gene).  
Formoterol was capable of sustaining an increase in the phosphorylation status of the 
Akt-mTOR axis, indicating activation and a possible mechanism for protein synthesis. 
We report concomitant inactivation of FoxO3a, depicted by increased phosphorylation 
with suppression of MuRF-1 gene expression, potentially blocking a major mechanism 
for protein degradation. In addition, the increase in PGC-1α1 observed with treatment 
may also be responsible for blocking the transcription of MuRF-1 and represent an anti-
atrophic mechanism.  The red lines shown are the proposed mechanisms for protein 
degradation in our study via treatment with dexamethasone.  Solid shapes represent 
proteins (name displayed in white), helices within the nucleus represent genes (name 
displayed in black below helices), solid black lines are pathways conferred by our data, 
and dotted lines are potential pathways not evaluated by our study.  Akt phosphorylation 
can result from numerous downstream interactions associated with the activation of the 
β2-AR, which were not evaluated by our study.  Therefore, we do not know what else 
might play a role in phosphorylating Akt represented by a “question mark” and a dotted 
line. Lines that are blunted at the end represent inhibition. 
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Fig. 11.  Proposed mechanisms preventing muscle atrophy associated with chronic 
treatment of atomoxetine in skeletal muscle of dexamethasone-treated mice.  This 
diagram depicts the changes observed in gene and protein expression following chronic 
treatment with atomoxetine (Atomox) in skeletal muscle of dexamethasone (DEX)-
treated mice. Atomoxetine is capable is sustaining p-Akt, but not activating the entire 
axis.  We report concomitant inactivation of FoxO3a, depicted by increased 
phosphorylation with suppression of MuRF-1 gene expression, potentially blocking a 
major mechanism for protein degradation. In addition, the increase in PGC-1α1 observed 
with Atomox treatment may also be responsible for blocking the transcription of MuRF-1 
and represent an anti-atrophic mechanism.  The red lines shown are the proposed 
mechanisms for protein degradation in our study via treatment with dexamethasone.  
Solid shapes represent proteins (name displayed in white), helices within the nucleus 
represent genes (name displayed in black below helices), solid black lines are pathways 
conferred by our data, and dotted lines are potential pathways not evaluated by our study.  
Akt phosphorylation can result from numerous downstream interactions associated with 
the activation of the β2-AR or the unidentified receptor for Atomox, which are not 
evaluated by our study.  Therefore, we do not know what else might play a role in 
phosphorylating Akt and chose to represent this interaction with “question mark” and a 
dotted line. Lines that are blunted at the end represent inhibition. 
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Since atomoxetine is a NRI and norepinephrine has been demonstrated to modulate PGC-

1α1 through the β2-AR [101], it is plausible that indirect β2-AR agonism of atomoxetine 

through norepinephrine as a possible mechanism for our observed results. However, 

norepinephrine is a less potent stimulator of the β2-AR than formoterol and the 

downstream signaling events may be more susceptible to internal regulation.  This would 

explain the lack of observable changes in the naïve models. 

   

In summary, the present study identifies formoterol as a potent inducer of skeletal muscle 

hypertrophy, which is associated with concomitant increases in PGC-1α4 and IGF-1, 

down regulation of myostatin, and activation of the Akt-mTOR-rp S6 axis.  Formoterol 

also prevented catabolism, as evident by a decrease in MuRF-1.  In addition, we report 

atomoxetine, used at a dose lower than what is clinically approved for ADHD, was 

efficacious in the prevention of skeletal muscle atrophy in a model of dexamethasone 

induced muscle atrophy.  Furthermore, atomoxetine prevented muscle atrophy through 

sustained PGC-1α1 expression, Akt activation, increased p-FoxO3a and subsequent 

decrease in MuRF-1 protein expression.  

 

While β2-AR agonists are potent catabolic agents, their potential clinical success to 

combat skeletal muscle atrophy is blunted by their potential side effects of altering 

cardiac muscle structure and function [239, 247-249].  In the naïve model, atomoxetine 

was unable to stimulate skeletal muscle hypertrophy.  In addition, we report in the 

atrophy model that atomoxetine is not catabolic, but rather anti-atrophic.   
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These characteristics in combination with the hypertrophic cardiovascular events 

associated with formoterol makes atomoxetine a potential drug to prevent skeletal muscle 

atrophy.      

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



160 	
  

       Chapter 5: 
 
 
 

CONCLUSIONS AND FUTURE DIRECTIONS 
	
  
	
  
	
  
	
  

CONCLUSIONS 
	
  

Acute kidney injury is characterized by a decrease in renal organ function.  Injury to 

the proximal tubule epithelium is a primary component of AKI contributing to 

overall organ deterioration.  Subcellular damage to the epithelium’s mitochondria is 

a major pathophysiological mechanism driving the presence of malfunctioning 

proximal tubules.  Successful recovery of renal function post AKI is dependent on 

restoration of the tubular epithelium.  Thus, the mitochondrion represents a 

fundamental biological target upon which therapies can be developed for the 

improvement of renal function post AKI.   

	
  
	
  

Studies simulating sublethal oxidant injury with the model oxidant TBHP in RPTC 

have established that within 24 h of injury mitochondrial function is maximally 

declined and slowly recovers over 6 days [128].  In addition, this study determined 

that overexpression of PGC-1α in RPTC after injury accelerated recovery of 

mitochondrial and cellular functions, inferring the process of mitochondrial 

biogenesis is crucial to the successful recovery of injured cells [128].   A follow-up 

study was performed using the same oxidant model followed by post-treatment with 

the sirtuin 1 (SIRT1) activator and inducer of mitochondrial biogenesis, SRT1720.  

This compound was reported to accelerate the recovery of mitochondrial and 
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cellular function following oxidant injury [126].  Furthermore, in vivo experiments 

using two non-lethal rodent models inducing AKI, confirmed that there is a persistent 

disruption of mitochondrial homeostasis and sustained tubular damage after AKI 6 

days after injury, even in the presence of mitochondrial recovery signals and improved 

glomerular filtration [95].   Despite the diverse nature of these approaches their findings 

support the hypothesis that the recovery of mitochondrial function is central to the 

overall restoration of cell structure and function in AKI.  Given that no therapy 

currently exists in the clinic to promote recovery of kidney function, these novel 

findings established mitochondrial-targeted therapy, specifically the biogenic 

machinery, as a promising approach to restoring kidney function after acute kidney 

injury.  

 

Very few pharmacological agents have been identified that can stimulate mitochondrial 

biogenesis.  Therefore, our laboratory executed a drug discovery program to identify 

pharmacological compounds capable of inducing mitochondrial biogenesis.  As part of 

this program, a unique high throughput screen was developed, which utilized 

primary RPTC and the Seahorse Biosciences extracellular flux analyzer (XF96) to 

evaluate the Sigma 1280 compound Library of Pharmacologically Active 

Compounds (LOPAC).   

 

From this screen our laboratory identified multiple molecular hits.  In particular, 

one of the hits was further investigated based on the receptor it targeted, the A1 AR.  

We explored both agonists and antagonists of the A1 AR and concluded that only 
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the agonists were capable of stimulating mitochondrial biogenesis.  Interestingly, 

we determined that the A1 AR partial agonist CVT-2759, at a lower dose, was more 

efficacious in the promotion of mitochondrial biogenesis than the full agonist 

CCPA.  This is a significant finding as it not only demonstrates the Gi/o receptor 

family as being capable of stimulating mitochondrial biogenesis, but additionally 

because it describes fine biochemical tuning to maximize the response with CVT-

2759, an agent that is also superior to CCPA to in its side effect profile. Given the 

complex and arduous nature of the characterization process for these compounds, 

our efforts were put into formoterol; one of the most potent hits identified from this 

screen to further develop and evaluate in an I/R induced model of AKI.  However, 

we can conclude from theses studies involving CCPA and formoterol that our drug 

discovery approach is effective in identifying pharmacological agents capable of 

stimulating mitochondrial biogenesis and with that comes the identification of 

relevant biological drug targets.   

 

As previously described, formoterol is a specific long-acting β2-AR agonist 

approved by the FDA to treat asthma.  Validation studies using RPTC revealed that 

low nanomolar doses of formoterol were potent for stimulating mitochondrial 

biogenesis [159].  In addition, further in vivo validation for mitochondrial 

biogenesis was achieved when male C57BL/6 mice were exposed to a single 

formoterol dose (0.1 mg/kg) over a 24 h time period and had a robust increase in 

mitochondrial biogenic machinery [159].   This effect was blocked in vitro when 

pretreated with both a non-specific β-AR and specific β2-AR antagonist [159].   
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The conclusion from these results was that formoterol, through the β2-AR, is a 

potent inducer of mitochondrial biogenesis in RPTC and healthy mice. 

 

The aforementioned findings lead us to execute a series of experiments evaluating 

the efficacy of formoterol to restore kidney function after insult in an established 

model of I/R induced AKI.  As reported in Chapter 3, treatment with formoterol 

restored renal function, rescued renal tubules from injury, and diminished necrosis 

after I/R-induced AKI.  Concomitantly, formoterol stimulated mitochondrial 

biogenesis and restored the expression and function of mitochondrial proteins. 

Ultimately, from these data we successfully the proof of principle that a novel drug 

therapy to treat AKI, and potentially other acute organ failures, works by restoring 

mitochondrial function and accelerating the recovery of renal function after injury 

has occurred. 

 

There are many other conclusions and new questions that can be derived from this 

work.  To start we have validated that normophysiological mechanisms, which 

stimulate the mitochondrial biogenesis process, can be used for target identification 

and exploited pharmacologically to stimulate biogenesis.  For example, it is 

established that cold exposure, in mammals, triggers a thermogenic response 

involving catecholamine-mediated activation the β-AR family of GPCRs, which 

subsequently stimulates the mitochondrial biogenic machinery.  Thus, given the 

mechanism of action associated with formoterol we have confirmed the β2-AR as a 

viable target for future drug discovery efforts aimed at rapid recovery from 
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maximal renal dysfunction.  Beyond target validation, we have established a point 

of origin for drug development whereby the formoterol pharmacophore now serves 

as a lead chemical structure that can be optimized through medicinal chemistry in 

obtainment of a novel molecular agent with greater efficacy.     

 

With regards to our target, the β2-AR, it can be concluded that it plays a major role 

in orchestrating cellular repair responses, as evident by the robust down regulation 

of KIM-1.  Since KIM-1 is a sensitive and highly selective biomarker for proximal 

tubule injury, it is reasonable to infer that the associated repair mechanism(s) is 

responsible for recovery of overall renal function.  Though mitochondrial 

biogenesis occurs concomitantly with renal repair, it is important to note that at this 

time our data is corollary and not causal.  Therefore, “opening the doors” for future 

discovery elucidating how the signaling from the β2-AR stimulates recovery 

mechanisms decreasing KIM-1 expression and if those mechanisms are dependent 

on mitochondrial biogenesis.  Thereby potentially identifying new biological drug 

targets.  

 

Finally, previous studies established formoterol as an effective agent against 

skeletal muscle hypertrophy and the proposed mechanism was thought to be 

through mitochondrial biogenesis.  A recent study published by our laboratory 

identified the structure of atomoxetine, an FDA approved NRI, to be composed of 

essential moieties capable of mitochondrial biogenesis.  Therefore, we tested if 

atomoxetine was capable of also capable of preventing skeletal muscle atrophy. 
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We concluded that formoterol selectively induces PGC-1α isoform expression in a 

tissue specific and time dependent manner.  In contrast to renal cortical tissue, 

skeletal muscle responded to acute treatment with formoterol by robustly inducing 

the expression of the PGC-1α4 isoform upon acute exposure to formoterol, which 

executed a discrete gene program resulting in skeletal muscle hypertrophy.  We 

determined that hypertrophy was mediated through the induction of IGF-1 and 

suppression of myostatin and not mitochondrial biogenesis.   Concomitantly, there 

was no change in expression of OXPHOS components.  Therefore, we concluded 

that short-term exposure to formoterol (i.e.-24 h) does not alter skeletal muscle 

metabolism.  However, in response to chronic formoterol exposure (i.e.-7 days) 

skeletal muscle induces mitochondrial biogenic components such as PGC-1α1 and 

components of the OXPHOS system.  Therefore, long-term exposure to formoterol 

may affect metabolism.   We were also able to determine that chronic formoterol 

exposure does not only produce hypertrophy, but is also anti-atrophic as PGC-1α1 

expression may also be working within a pathway involving Akt activation, 

increased p-FoxO3a and subsequent decrease in MuRF-1 protein expression.  These 

mechanisms are beneficial in the prevention of skeletal muscle atrophy.   

 

However, because formoterol is both hypertrophic and anti-atrophic it is associated 

with deleterious side effects such as cardiac hypertrophy.  Alternatively, we 

proposed that chronic treatment with atomoxetine prevented skeletal muscle 

atrophy through the PGC-1α1 expression may also be working within a pathway 

involving Akt activation, increased p-FoxO3a and subsequent decrease in MuRF-1 
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protein expression PGC-1α1 and p-Akt prevent the de-phosphorylation of p-

FoxO3a; thereby, limiting its entry to the nucleus and operating as a transcription 

factor to induce transcription of MuRF-1. 

 

FUTURE DIRECTION 
 
Gene expression experiments have been carried out in the I/R animal groups 

described in chapter 2, which shows a marginal increase in transcriptional 

expression of total PGC-1α in the I/R + formoterol vs. I/R + vehicle groups, and 

insignificant differences between gene expression of NDUFB8 and COX I in the 

I/R animals (Fig. 5-1), but a complete restoration of NDUFB8 and COX I protein 

expression only in I/R animals subjected to formoterol treatment  (Fig. 3-3) suggest 

that post-transcriptional modification(s) preventing protein translation and not 

transcriptional regulation, as a possible mechanism driving the disparity in ETC 

protein expression.  

	
  

 
 
 



167 	
  

Fig.  5-1. Formoterol restores ETC protein expression and mitochondrial function 
after I/R injury. Mice were treated with formoterol (0.3 mg/kg) i.p. daily for five days 
starting 24 h after I/R euthanized at 144 h post surgery. Gene expression of PGC-1α, 
NDUFB8, and COX I were assessed in the kidney via RT-PCR. P<0.5, N=6. 
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A possible post-transcriptional modification is the presence of microRNA 

(miRNA) targeting of NUFB8 and COX I mRNA in the I/R + vehicle group, 

preventing protein translation.  There are hundreds of  miRNAs that have been 

defined in the literature, which decrease ETC subunit protein expression.  Picking 

the correct one to evaluate is complex.  Similar results, with regards to a decrease 

in COX I  gene expression in the presence of normal to high protein expression, 

were obtained in cardiomyocytes when miR181c was over expressed [250].  It has 

also been shown that miR210 degrades NDUFB8 expression [251].  However, 

evaluation of expression of either of these isoforms in 144 h post I/R injury in 

tissue samples revealed there was no change in miR expression (Fig. 5-2).  Future 

experiments should be carried out, which are more comprehensive in design and 

seek to obtain a comprehensive analysis of possible miR targets.  
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Fig.  5-2. miR181c and miR210 expression after I/R injury. Mice were treated with 
formoterol (0.3 mg/kg) i.p. daily for five days starting 24 h after I/R euthanized at 144 h 
post surgery. Gene expression of miR181c and miR210 were assessed in the kidney via 
qPCR. P<0.5, N=6. 
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Despite 5 days of reperfusion post ischemic insult, chronic hypoxia may still exist as 

defined by the chronic hypoxia hypothesis formulated by Fine et al [252]. Their 

hypothesis postulated that primary glomerular injury leads to reduced post-glomerular 

flow, which culminates in peritubular capillary loss. This creates a hypoxic environment 

that produces a fibrotic response that further propagates injury by affecting adjacent 

unaffected capillaries [252].  In hypoxic physiologic conditions, such as ischemia, the 

hypoxia-inducible factor 1 alpha (HIF-1α) separates from its binding partner the von 

Hippel-Lindau (VHL) protein, becomes activated, and promotes the synthesis of the 

mitochondrial protease LON. It is established in the literature that LON expression is 

induced by activation of HIF-1α during hypoxia and is known to degrade the COX I 

subunit of complex IV in the ETC, while increasing the expression of COX 2 [253]. The 

lab of Gregg Semenza hypothesize this phenomenon to be a pro-survival mechanism 

which allows optimization of election transfer through and reduction of reactive oxygen 

species (ROS) from the ETC [253].   In addition, miR181c activity also causes a shift 

from COX I to COX 2 protein expression [250].  This mechanism may also explain the 

reduction observed in NDUFB8 expression post I/R injury.  Therefore, LON and HIF-1α 

expression was evaluated in 144 h renal cortical lysate samples and there was no change 

in LON and a complete depletion of the HIF-1α protein in the I/R + veh  group (5-3).  

Given the results from the miR181c experiments and those on Fig. 5-3, this pathway 

should not be further evaluated, but future experiments should confirm the results with 

the HIF-1α protein data, as this is the opposite of what one would expect.  However, 

degradation by proteases or the proteasome should not be ruled out.   
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Fig.  5-3. LON and HIF-1α expression after I/R injury. Mice were treated with 
formoterol (0.3 mg/kg) i.p. daily for five days starting 24 h after I/R euthanized at 144 h 
post surgery. Gene expression of miR181c and miR210 were assessed in the kidney via 
qPCR. P<0.5, N=6. 
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Several groups have shown PGC-1α to be degraded by the proteasome during times of 

oxidative stress.  Previous work in our laboratory has shown the half-life of PGC-1α to be 

approximately 37 min, however, degradation is dependent on post-translational 

modifications [254].  Even though the abundance in genes or proteins of PGC-1α in the 

presence of I/R + vehicle versus I/R + formoterol was equal, blocking protein translation 

and evaluating PGC-1α protein expression can provide insight not only into if gene 

expression or proteasomal degradation is responsible for accumulation, but also why the 

presence of ETC proteins are higher in animals treated with formoterol after I/R injury. 

Further analysis focusing on the degradation of NDUFB and COX I should be carried out 

to elucidate if the accumulation in these proteins is regulated by mechanisms other than 

the state of PGC-1α and canonical mitochondrial biogenesis signaling.   
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