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KATHRYN BREYEL SPENCER. The role of FMRP in ethanol-induced 
homeostatic plasticity in the hippocampus.  
(Under the direction of L. Judson Chandler). 
 
 
 Exposure to chronic ethanol induces homeostatic alterations in 

glutamatergic signaling and actin polymerization that may have an important role 

in the development of ethanol-seeking behaviors. Acute ethanol exposure 

promotes excitation and dampens inhibition while extended periods of exposure 

induce long-term adaptations in neuronal function that require new protein 

synthesis to maintain homeostasis. These adaptations include not only 

transcription and somatic protein synthesis, but also local dendritic protein 

translation. One of the major mediators of activity-dependent translation is the 

mTORC1 signaling pathway and its downstream substrates that include kinases 

and mRNA-binding proteins, such as p70 S6 kinase 1 (S6K1) and fragile X 

mental retardation protein (FMRP). FMRP is an mRNA-binding protein that 

interacts with mRNAs to suppress translation. FMRP also interacts with several 

different mRNAs that code for proteins that are necessary for synaptic plasticity, 

and it may also have an important role in regulating ethanol-induced alterations 

in homeostasis in dendrites and dendritic spines. This dissertation addresses the 

hypothesis that FMRP is necessary for activity-dependent homeostatic 

alterations in protein expression and spine morphology following chronic ethanol 

exposure. First, western blot analysis was used to investigate ethanol-induced 

alterations in expression of FMRP and proteins that are key mediators of 
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dendritic excitability. These studies revealed an increase in FMRP 

phosphorylation as well as alterations in the A-type K+-channel Kv4.2, KChIP3 

and NMDA receptor subunits. Further studies examining changes in FMRP 

interactions with Kv4.2, KChIP3, and NMDA mRNAs showed chronic ethanol-

induced changes in FMRP-mRNA binding. Additionally, inhibition of FMRP 

phosphorylation prevented these alterations in protein expression and FMRP-

mRNA interactions following chronic ethanol exposure. Studies included in this 

dissertation also addressed whether alterations in protein expression are 

accompanied by changes in actin polymerization and spine morphology. These 

experiments utilized two different sub-strains of C57BL/6 mice with different 

polymorphisms in cyfip2, a protein regulating actin polymerization that is also 

implicated in regulation of protein translation. A two-bottle choice/CIE exposure 

paradigm revealed alterations in ethanol consumption between the two strains as 

well as differences in ethanol-induced changes in protein expression and spine 

morphology. Taken together, this dissertation reveals an integral role for FMRP 

in mediating ethanol-induced alterations in homeostatic protein expression, and 

that these alterations may influence actin polymerization and drinking behaviors. 

 

 

 



 

 

Chapter 1 

 

 

 

Background and Significance 
 
 
 
 
 
 

Impact of ethanol dependence 

 

 In many industrialized nations, alcohol is consumed on a daily basis to 

relieve stress and for its effects on positive mood states (Grant et al 2004). Like 

coffee or nicotine, it has become a cultural norm at many social events. However, 

overuse of alcohol presents several issues that have lasting effects on societal 

as well as individual levels, and alcohol addiction continues to be a major social, 

economic, and medical burden to communities worldwide. According to the 
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World Health Organization, alcohol is the third-largest risk factor for health 

burden, and is the number one risk factor for middle-income countries (Dawson 

and Grant 1998; Grant et al 2004; Bouchery et al 2011). In the United States, 

alcohol use disorders are among the most prevalent mental health disorders 

regardless of ethnicity or socioeconomic status and are the third leading cause of 

death (Goetze et al 2003; Grant et al 2004). Economically, it has a significant toll 

on the overall cost to society and the individual. The latest data available for 

2006 revealed that alcohol accrued a total cost over $220 billion, owning to loss 

of productivity, cost to the government, and expenses related to healthcare costs 

and criminal activity (Bouchery et al 2011). 

 On the individual level as of 2006, approximately half of adults have a family 

member with an alcohol use disorders (Boucher et al 2011; Dawson and Grant 

2011). Addiction and the development of addictive behaviors involve a complex 

gene x environment interaction that culminates in a pathology that is costly, 

poorly understood, and difficult to treat (Goetze et al 2003; Grant 2000). Toxicity 

from long-term, heavy drinking affects many different body systems and organs 

from the liver and pancreas to the brain (Grant et al 2004; Bouchery et al 2011). 

Without a discrete mechanism of action, it is difficult to elucidate the mechanisms 

driving addictive behaviors and long-term effects of alcohol abuse, and therefore, 

makes it difficult to treat. 
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Ethanol’s effect on the hippocampus 

 

Ethanol and hippocampal circuitry 

 

 Ethanol acts on a number of different organ systems, including the central 

nervous system. In the brain, ethanol interacts with several brain regions, altering 

neuronal function resulting in behavioral changes, following both acute and 

chronic ethanol use (Gulick and Gould 2007; Zorumski et al 2014). These 

behavioral effects are mediated not only by brain regions associated with reward 

and executive function, such as the nucleus accumbens (Nac), ventral 

tegemental area (VTA), and prefrontal cortex (PFC), but also areas mediating 

emotion and memory, such as the amgydala and hippocampus, respectively 

(Figure 1-1) (Zhou et al 2007; Heinz et al 2009; Bailey et al 2015).  The 

interconnectivity of the hippocampus with other brains regions and its role in 

learning and memory make this region an important intersection of reward and 

cognition (Lynch 2003; Adcock et al 2006; Zorumski et al 2014). In other drugs of 

abuse, differences in hippocampal function mediate not just acquisition of drug-

taking, but also alters the time needed to induce reinstatement and relapse 

(Castilla-Ortega et al 2015, Mague et al 2015). In alcohol abuse disorders, one of 

the principal cognitive effects is the attenuation of learning and memory (Fadda 

and Rossetti 1998; Roberto et al 2002; Spanagel 2009). This attenuation can 

have lasting effects on the individual and a significant impact, both socially and 

economically (Grant 2000; Grant et al 2004; Bouchery et al 2011). 
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Ethanol’s effect on memory 

 

 Acute episodes of binge drinking that are accompanied by a rapid increase 

in blood ethanol concentration can interfere with hippocampal-mediated episodic 

memory formation (White et al 2000; Zorumski et al 2014). Following a binge-

drinking episode, individuals can participate in salient and emotionally-charged 

situations in the present, but cannot remember events that occurred shortly after 

the drinking episode (Miller et al 1978; White et al 2000). Although most 

Figure'1)1'Hippocampal)VTA)Loop:)Connec2on)to)memory,)reward,)and)
salience)
Adapted'from'Heinz'et'al'2008'
)
The)hippocampus)is)necessary)for)the)forma2on)and)encoding)of)longterm)memories.)
Connec2ons)with)dopminergic)reward)circuitry)affect)ethanol)craving.))Increasing)
salience)of)s2muli)associated)with)ethanol)memories)may)be)protec2ve)or)contribute)to)
relapse.)'

Entrorhinal)
Cortex)

II'
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Dentate'

CA3'

CA1' Subiculum'
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individuals do not sustain long-term complications after a period of prolonged 

abstinence, some alcoholics do in fact develop permanent disabilities that require 

lifetime care (Sullivan et al 1995, Makris et al 2008; Zorumski et al 2014). These 

include memory-related disorders such as ethanol-induced persistent amnesia 

caused by Wernicke-Korsakoffs syndrome. Although this loss of function was 

originally attributed to thalamic and mammillary bodies dysfunction, more recent 

studies implicate the hippocampus (Squire et al 1990, Sullivan and Marsh 2003, 

Kurth et al 2004, Beresford et al 2006). Specifically, the loss of adult 

neurogenesis and reduction in functional efficiency of the hippocampus in 

processing information from other regions (Sullivan and March 2003; Adcock et 

al 2006; Makris et al 2008). Wernick-Korsakoffs syndrome is the most well-

characterized long-term deficit resulting from chronic ethanol exposure, other 

more subtle deficits in hippocampal-dependent memory may also exist (Walter et 

al 1980; Beresford et al 2006; Spanagel 2009). In adult men with a history of 

long-term heavy alcohol use, total hippocampal volume was significantly reduced, 

and this reduction is independent of total brain or intracranial volumes (Beresford 

et al 2006; Makris et al 2008). This shrinkage was drastically increased among 

Wernicke-Korsakoffs patients compared to non-amnesic alcoholics (Walker et al 

1980; Agartz et al 1999; Sullivan and Marsh 2003).   

 The role for the hippocampus in ethanol-induced memory deficits and its 

contribution to alcohol dependence is also an active area of preclinical alcohol 

research studies. In nonhuman primates given free access to alcohol, 

hippocampal volume was inversely correlated with drinking behaviors (Zhou et al 



 6 

2007; Kroenke et al 2014). Studies in rodent models of alcohol exposure show a 

decrease in newly formed neurons in adult animals, suggesting in addition to 

white matter, alcohol use may also alter cell proliferation and survival (Herrera et 

al 2003; Anderson et al 2012; Talani et al 2013). Behaviorally, in rodent models, 

alcohol-preferring rats show deficits in spatial learning during the Morris Water 

Maze task (Santin et al 2000; White et al 2000). Although the hippocampus is not 

generally thought of as mediating ethanol-mediated behaviors in terms of 

ethanol-seeking or motivation, its role in salience and memory, along with the 

long-term effects of chronic alcohol use, indicate an important overall role in 

ethanol-induced short- and long-term behavioral deficits (Santin et al 2000 Gulick 

and Gould 2007).  

 A number of environmental changes may induce alterations in the brain at 

the behavioral, regional, and cellular level that allow for adaptation and 

maintenance of homeostasis (Spanagel, 2009; Thomas et al 2013; Bailey et al 

2015). In the hippocampus, like other areas of the brain, these cellular alterations 

involve both pre- and postsynaptic events to remodel synaptic function to fit 

these environmental changes (Davies et al 1989; Bliss and Collingridge 1993; 

Bellot et al 2014). This includes reestablishing a balance between excitation and 

inhibition to prevent hyperexcitability while also preserving proper neuronal 

function, and actin polymerization and cytoskeletal remodeling to accommodate 

alterations in cellular activity (Sutton et al 2006; Gal-Ben-Ari et al 2011; Thomas 

et al 2013; Labno et al 2014; Baily et al 2015). In pyramidal neurons in the 

hippocampus, this balance includes excitatory glutmatergic systems, inhibitory 
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GABAergic influences, as well as local inhibitory proteins in axons, dendrites, 

and dendritic spines (Lei et al 2008; Lei et al 2010; Enoch et al 2012; Korkotian 

et al 2013). 

 

The hippocampus as a model system  

 

 The hippocampus is often used in studies as a model system for exploring 

the cellular mechanisms driving neuronal activity in different experimental 

conditions. It is an essential component of learning and memory, and can have 

significant effects on global brain function (Pastalkova et al 2006; Simons et al 

2009). The hippocampus is also one of the brain regions that is highly 

susceptible to damage, and its function is impaired in many different brain 

diseases, including addiction, making it a useful region to study several aspects 

of cellular function (Holopainen 2005; Korkotian et al 2013). The utility of this 

region as a model system is due to the neuroanatomy, connectivity, and 

cytoarchitecture (Turner 1959; Hsia et al 1998; Knierim 2002). Although the 

hippocampus receives input from several brain regions, the main input 

mechanism lies with the perforant pathway. This is a ‘one way’ circuit through the 

perforate pathway to the dentate gyrus, then CA3 to the CA1 followed by the 

major output through the subliculum (Hsia et al 1998; Knierim 2002). In vivo 

models can readily assess hippocampal deficits with behavior paradigms, such 

as the Morris water maze (Morris 1981; Vorhees and Williams 2006). In vitro 

experiments can address neuronal mechanisms driving these behaviors. In 
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organotypic hippocampal slice cultures the intra-regional connectivity, and 

mature cytoarchitecture are preserved, and can be used for several weeks 

(Stoppini et al 1991; Holopainen 2005). Taken together, these features make the 

hippocampus a useful tool in elucidating and manipulating the cellular 

mechanisms driving learning and memory as well as alcohol use disorders. 

 

Glutmatergic signaling and NMDA receptors 

 

NMDA receptor structure and kinetics 

 

 Ethanol directly interacts with a number of different cellular mechanisms 

and proteins, including NMDA receptors, that induce alterations in neuronal 

homeostasis (Lovinger et al 1990; Hendrickson et al 2004; Nagy 2008). NMDA 

receptors, along with AMPA and kainate receptors are glutamate receptors that 

promote excitation in the brain (Keinanen et al 1990; Nakanishi 1992; Dingledine 

et al 1999). They are heteromeric ligand-gated ion channels that pass both Na+ 

and Ca+2 ions, but NMDA receptors are five to ten times more permeable to 

calcium than sodium (Hume et al 1991; Koh et al 1995; Mori and Mishina 1995; 

Rosenmund et al 1998). The NMDA receptor itself is composed of two GluN1 

subunits and two of GluN2A-D subunits. The GluN1 subunit is necessary for 

trafficking to the membrane and contains the binding site for the co-agonist 

glycine or D-serine (Benveniste and Mayer 1991; Mori and Mishina 1995; 

Dingledine et al 1999; Hawkins et al 2004). GluN2 subunits determine channel 
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kinetics and contain the glutamate-binding site (Hume et al 1991; Flint et al 1997; 

Zhang et al 2013; Hansen et al 2014). Each channel has an extracellular domain 

that contains a modulatory and ligand binding region for association with the 

agonist and co-agonist, a membrane domain contributes to the channel that 

conveys the high permeability to calcium, and the extensive cytoplasmic domain 

that contains residues for direct modification by different kinases to alter channel 

function and localization (Kuner et al 1996; Fong et al 2002; Hawkins et al 2004; 

Chen and Roche 2007; Goebel-Goody et al 2009; Zhang et al 2013). These 

channels may localize to the postsynaptic density or the extrasynaptic space 

(Groc et al 2006; Goebel-Goody et al 2009; Groc et al 2009; Gladding and 

Raymond 2011). Composition of the receptor and the stage of brain development 

dictate the localization (Flint et al 1997; Barria and Malinow 2002; Groc et al 

2007; Gladding and Raymond 2011). As the brain develops into adulthood, there 

is the addition of GluN2A containing NMDA receptors, with GluN2A typically 

trafficked to the postsynaptic density and GluN2B shuttled to the extrasynaptic 

space (Ehlers et al 1995; Groc et al 2006; Akashi et al 2009; Groc et al 2009; 

Gladding and Raymond 2011). 

 In addition to both an agonist and co-agonist, NMDA receptors also have a 

voltage-gated Mg2+ ion site that blocks the channel pore (Mayer et al 1984; 

Nowak et al 1984). For activation, the NMDA receptor must bind both glutamate 

and glycine that is typically released from the presynaptic neuron while the 

postsynaptic membrane is depolarized to remove the Mg2+ block (Mayer et al 

1984; Nowak et al 1984; Seeberg et al 1995). Requiring both of these 
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circumstances to occur pairs pre- and postsynaptic activity, and it is thought to be 

important in coincidence detection; that is the coincidence of presynaptic 

glutamate release and postsynaptic depolarization (Bliss and Lomo 1973; Davies 

et al 1989; Kullman and Nicoll 1992; Markram et al 1997; Lauri et al 2007). The 

concept of coincidence detection may have an important influence over neuronal 

information by forming associations between two separate neuronal events that 

are spatially separated, but temporally close that converge on a common point 

(Davies et al 1989; Kullmann and Nicoll 1992; Bliss and Collingridge 1993). At 

the cellular level, the paired mechanism for NMDA receptor activation may 

represent the persistent activation needed to trigger the strengthening of 

synapses between two neurons, and may also provide a potential synaptic model 

for memory in the formed long-term potentiation (LTP) (Bliss and Lomo 1973; 

Davies et al 1989; Bashir et al 1991; Bliss and Collingridge 2002; Lauri et al 

2007).  

 

 LTP in the hippocampus 

 

 LTP is one of the most prominent hypothesized mechanisms for adaptive 

synaptic plasticity, and is widely associated in the hippocampus with learning and 

memory (Bliss and Collingridge 1993; Bliss and Colingridge 2013). As mentioned 

previously, NMDA receptors are coincidence detectors and have important 

implications for LTP and learning and memory (Davies et al 1989; Bashir et al 

1991; Tsien et al 1996; Luthi et al 2001; Pastalkova et al 2006). This process has 
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three properties: cooperativity, associativity, and specificity (Bliss et al 1977; 

McNaughton et al 1978; Levy and Steward 1979; Bliss and Colingridge 1993; 

Bliss and Collingridge 2013). Cooperativity describes the intensity of the 

threshold needed to induce LTP (McNaughton et al 1978; Davies et al 1989; 

Bliss and Collinridge 1993). While weak stimulation of a single pathway is 

insufficient to produce LTP, it relies on appropriate threshold and timing of the 

stimulus for LTP induction to occur (Bliss and Lomo 1973; Bliss and Collinridge 

1993). Associativity of LTP states that a weak stimulus can be potentiated if a 

separate, stronger signal converges on a single postsynaptic site (McNaughton 

et al 1978; Levy and Steward 1979). Lastly, specificity refers to LTP input. That is, 

LTP is specific for the active synapse, and synapses that are not active at the 

same time and do not experience the appropriate stimulation will not induce the 

mechanisms of LTP (Andersen et al 1977; Lynch et al 1977; Bliss and Collinridge 

1993). These three properties are all under the assumption that this stimulation 

occurs on an area of the dendrite that is already depolarized (Bliss and 

Collinridge et al 1993; Lisman and Spruston 2005)  

 LTP can be divided into two different phases. The early phase in NMDA-

dependent LTP involves the opening of NMDA receptors and an influx of calcium 

into the postsynaptic neuron, but does not require transcription or new protein 

synthesis (Alford et al 1993; Bliss and Collingridge 1993; Emptage et al 1999). 

This influx of calcium is the critical event for the induction of LTP (Alford et al 

1993; Spruston et al 1995; Emptage et al 1999; Torras-Garcia 2005). However, 

activation and calcium influx from NMDA receptors alone may not be enough to 
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produce LTP. The NMDA receptor antagonist, AP-V inhibits LTP, but treatment 

with thapsigarin also prevents LTP induction, suggesting that intracellular calcium 

is also important (Harvey and Collingridge 1992; Mody and MacDonald 1995; 

Emptage et al 1999).  

 Throughout this early phase, calcium-induced activation of 

Ca2+/calmodulin-dependent protein kinase II (CaMKII) leads to increased 

phosphorylation of NMDA receptors (Gnegy 2000; Hayashi et al 2000; Fong et al 

2002; Lee et al 2009). This, in turn, causes an increase in surface-expressed 

AMPA and increases the sodium permeability of the receptor that alters 

membrane potential and kinetics (Malinow 2003; Fleming and England 2010; 

Lisman et al 2012; Luscher and Malenka 2012). After the initial phosphorylation 

of CaMKII, activation persists due to autophosphorylation (Giese et al 1998; 

Lucic et al 2008). The late phase of LTP, unlike the early phase, requires 

transcription of new mRNAs and somatic and dendritic translation of new protein 

(Krug et al 1984; Frey et al 2001; Adams and Dudek 2005). Inhibition of protein 

synthesis with the polyribosome inhibitor ansiomycin blocks late-phase LTP, but 

does not alter LTP induction (Krug et al 1984; Bailey et al 2015).  

 This switch from early- to late-phase LTP involves the activation of several 

different intracellular signaling cascades that are needed to shift from the 

induction to the maintenance phase. These include both transcription and 

translation factors that are necessary for the new protein synthesis needed 

during late-phase LTP. Late-phase LTP activates CREB and corresponds with an 

increase in CRE-mediated gene targets (Riccio and Ginty 2002; Panja et al 2014; 
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Bailey et al 2015). Additionally, several downstream substrates of the ERK 

pathway are also upregulated or activated (Kim et al 2005; Ivanov et al 2006; 

Gladding and Raymond 2011). One of the main pathways responsible for local 

dendritic translation is also activated, PI3-K, the upstream kinase for Akt and 

mTORC1, is unregulated in the shift from early to late LTP (Tang et al 1999; 

Gong et al 2006; Bekinschtein et al 2007; Dibble and Cantley 2015). Blockade of 

PI3-K blocks the maintenance, but not induction of LTP (Brami-Cherrier et al 

2002; Takei and Hiroyki 2014; Dibble and Cantley 2015). 

 In the hippocampus, the behavioral manifestations of LTP have been 

heavily investigated. Inhibition of LTP, either early- or late-phase, is associated 

with blockade of hippocampal-dependent behaviors (Torras-Garcia 2005; 

Kleykamp et al 2010). Rats injected with AP-V perform poorly on the Morris water 

maze compared to vehicle controls, and this attentuation of spatial learning 

corresponds to the blockade of cellular activity associated with LTP (Morris et al 

1986, Zalutsky and Nicoll 1990; Hanse and Gustafsson 1992; Tsien et al 1996). 

However, blockade of NMDA receptors seems particularly important during the 

acquisition phase of memory. Pretraining on the Morris water maze does not 

produce inhibition of LTP or impair performance, but lack of experience prevents 

memory acquisition (Bannerman et al 1995). It also appears that NMDA-

dependent LTP is particularly important for certain types of memory. NMDA 

activation is the main receptor responsible for induction of LTP in most, but not 

all areas of the brain (Johnston et al1992; Torras-Garcia 2005). Mice with 

increases in total NMDA receptor protein or increased GluN2B subunit 
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expression show enhanced LTP (Tang et al 1999; Rinaldi et al 2007; Wang et al 

2009). Disruption of LTP via inhibition of NMDA receptor activity leads to normal 

tone-dependent fear learning that is not dependent on hippocampal function, but 

impairments of context fear learning, which does rely on the hippocampus (Stiedl 

et al 2000; Torras-Garcia 2005; Kim et al 2006: Robert and Hunt 2015). 

Additionally, inhibition of other components downstream of the initial acquisition 

phase of LTP and learning also impair LTP and hippocampal-dependent memory 

(Zhao et al 2005; Lynch 2003; Niewoehner et al 2007). Inhibition or deletion of 

CaMKII produces hippocampal-dependent learning deficits in spatial memory 

and impairs LTP (Strack et al 2000; Kasai et al 2003; Bliss and Collingridge 

2013).  

 Enhancement of LTP and memory is also associated with alterations in the 

actin cytoskeleton and spine morphology (Fukazawa et al 2003). LTP causes 

spine enlargement and is associated with long-term spine stabilization to a 

mature phenotype (Tolias et al 2005; Hill and Zito 2013; Bellot et al 2014; 

Cingolani and Goda 2008; Lemphrecht 2014). This change in morphology may 

have an important role in maintaining the strengthened synapses (Spacek et al 

1997; Lynch 2003; Nageri et al 2004; Bellot et al 2014). This change can be 

characterized by alterations in spine shape, number, and density, and throughout 

most of the hippocampus, these changes are dependent on NMDA activation 

and induction of late phase LTP (Engert and Bonhoeffer 1999; Hill and Zito 2013; 

Lamprecht 2014). Like the electrophysiological properties of LTP, CaMKII is also 

an important regulator of spine morphology during LTP (Okamoto et al 2007; 
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Kasai et al 2003). CaMKII mediates several actin-binding proteins, and CaMKII 

knockout animals or knockdown of CaMKII with shRNA produces deficits in not 

only LTP and learning, but also induces an immature spine phenotype that is 

resistant to activity-dependent changes in morphology (Sobczyk et al 1995; 

Strack et al 2000; Okamoto et al 2007; Cingolani and Goda 2008). 

 

NMDA receptors and chronic ethanol use 

 

 Glutamatergic synapses, LTP, and dendritic spines are all important 

components of hippocampal-mediated behavior and are also altered following 

chronic ethanol exposure (Lovinger et al 1990; Nestler 2001; Nagy 2011). NMDA 

receptors in particular are susceptible to ethanol-induced alterations in 

expression and activity. In the context of alcohol use, these receptors have 

differential responses to acute and chronic ethanol, and may have an important 

role in ethanol-induced hyperexcitability (Lovinger 1993; Tsai and Coyle 1998; 

Gulick et al 2007). Acutely, ethanol dose-dependently inhibits NMDA receptors to 

rapidly decrease peak-current amplitude and accelerates the rate of current 

desensitization, decreases open channel probability, and these changes occur in 

a dose-dependent manner (Lovinger et al 1989; Gass and Olive 2008; 

Moykkynen and Korpi 2012). Previous studies indicate preferential inhibition for 

either GluN2A- or GluN2B-containing NMDA receptors (Blevins et al 1997; Nagy 

2011). However, this may also be region specific, as other studies indicate 

preferences for GluN2B-containing receptors (Masood et al 1994; Du et al 2011). 
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Inhibition of NMDA receptors with MK-801 potentiates acute ethanol-induced 

impairment in memory tasks (Camarini et al 2000). Although ethanol partially 

blocks NMDA receptors, this is effective in producing the ‘blackouts’ seen with 

acute exposure as well as longer, deficits in LTP and behavioral tasks examining 

hippocampal-dependent memory (Miller et al 1994; Lukoyanov et al 2000; 

Kleykamp et al 2010; Bisby et al 2015; Robert and Hunt 2015). In addition, dose-

dependent effects on pyramidal cell NMDA suppression correlates with dose-

dependent effects on episodic memory in rodent studies (Santin et al 2000; 

White and Best 2000; Tokuda et al 2007). Rats exposed to ethanol also have 

impaired performance on hippocampal-dependent memory tasks, such as the 

Morris water maze (Lukoyanov et al 2000; Schulteis et al 2008; Robert and Hunt 

2015).  

 Clinical studies also show that this effect on NMDA receptors alters not only 

hippocampal-dependent memory, but also translates into effects in neuronal 

function. Individuals with long-term ethanol use show a selective increase in 

mRNA levels for the NMDA glutamate receptor in the hippocampus (Hall and 

Zador 1997; Birnir et al 2014; Jin et al 2014). Other preclinical studies in rats and 

mice exposed to chronic intermittent ethanol have shown an increase in surface-

expressed GluN2B- containing NMDA receptors and NMDA-mediated current 

during chronic ethanol exposure (Trevisan et al 1994; Follesa and Ticku 1996; 

Kumari and Ticku 2000). This increase is characterized by a shift in GluN2B-

containing NMDA receptors from the extrasynaptic space into the postsynaptic 

density (Carpenter-Hyland et al 2004; Akashi et al 2009). Functionally, this may 



 17 

have an important role in ethanol-induced hyperexcitability and lead to toxicity 

and neuronal death upon ethanol-withdrawal (Mody and MacDonald 1995; 

Hendricson et al 2007; Lau and Zukin 2007; Haft et al 2014). 

 Ethanol’s effect on NMDA receptors also effects ethanol-induced 

excitotoxicity during acute withdrawal after cessation of ethanol use following 

chronic exposure. Ethanol dependence that results in withdrawal can occur even 

after short bouts of chronic ethanol abuse (Macey et al 1996; Hall and Zador 

1997). This withdrawal syndrome is characterized by both behavioral and cellular 

effects that increase excitability (Roberto et al 2002; Anderson et al 2012) 

Repeated bouts of ethanol withdrawal potentiates withdrawal hyperexcitability in 

the hippocampus and results in ‘kindling’ of withdrawal seizures (Duka et al 2004; 

Pawlak et al 2005). Previous studies have found that withdrawal toxicity due to 

chronic ethanol use is associated with an increase in NMDA receptor expression 

and function (Roberto et al, 2001, Hendricson et al, 2007). This includes an 

increase in GluN1 expression in dendritic spines in the CA1 (Pian et al 2010). 

Activation of NMDA receptors is necessary for seizure activity; blockade of the 

receptor with AP-V or MK-801 prevents ethanol-induced withdrawal (Chandler et 

al 1993; Camarini et al 2000; Hendricson et al 2007). 
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Proteins regulating glutamatergic signaling 

 

Role of Kv4.2 Channels in Neuronal Excitation 

 

 In addition to proteins regulating excitatory input, ethanol also alters 

proteins that balance excitation with inhibition. One important mediator of 

neuronal excitation in dendrites and dendritic spines is the voltage-gated K+- 

channel Kv4.2. Kv4.2 is a sub-threshold channel that carries A-type current that 

is part of the Shal-family of K+-channels (Birnbaum et al 2004; Jerng et al 2004; 

Leung 2010; Barros et al 2012) Like all A-type K+- channels, Kv4.2 produces an 

outward, transient K+- current that rapidly inactivates, and inactivation and 

recovery occur at sub-threshold membrane potential (Jerng et al 2004; Barros et 

al 2012; Carrasquillo et al 2012). These channels form either homo- or 

heteromultimeric complexes with the alpha subunits forming the pore of the 

channel and modulatory beta subunits creating a complete channel. Kv4.2 has 6 

transmembrane domains with a conserved P-loop, which is shared by many K+-

channels and function in K+ recognition, while the fourth transmembrane domain 

serves as the voltage sensor (Serodio and Rudy 1998; Orlova et al 2003; 

Birnbaum et al 2004; Jerng et al 2004; Ren et al 2005). 

 Shal-family K+- channels are expressed throughout the central nervous 

system as well as the heart, where they also help to modulate excitation and 

maintain function (Rasmusson et al 1998; Jerng et al 2004; Zhou et al 2004; 
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Kaufmann et al 2012; Carraquillo et al 2012). Expression of Kv4.2 channels in 

the hippocampus increases with distance from the soma, and are highly 

concentrated around dendritic branch points in the extrasynaptic space (Cai et al 

2004; Kim et al 2007; Kerti et al 2012, Nester and Hoffman 2011; Kaufmann et al 

2012). The location and kinetic properties of these channels make them 

important regulators of back propagating action potentials, compartmentalization 

of activity in dendrites, firing frequency, and spike repolarization (Serodio and 

Rudy 1998; Kim et al 2007; Carrasquillo et al 2012).  

 Kv4.2 channels also form complexes with auxiliary proteins that modulate 

channel surface expression and kinetics to form a fully functional channel. Each 

auxiliary subunit conveys different kinetic properties to the channel. One auxiliary 

subunit, dipeptidyl-aminopeptidase-like protein 6 (DPP6), interacts with Kv4.2 

near the first transmembrane domain, and accelerates channel recovery time 

(Rhodes et al 2004; Ren et al 2005, Leung 2010; Barros et al 2012; Lin et al 

2014; Bezerra et al 2015; Kitazawa et al 2015). Another group of proteins known 

as K+-channel interacting proteins 1-4 (KChIP 1-4), and are particularly important 

for Kv4.2 expression and function, especially in the hippocampus, interact with all 

Shal-family K+- channels (An et al 2000; Lin et al 2004; Li et al 2006; Lin et al 

2010; Kunjilwar et al 2013). These proteins determine not only inactivation time, 

but also rate of depolarization, and promote K+-channel surface expression (Lin 

et al 2004; Menegola et al 2006; Ruiz-Gomez et al 2006; Lin et al 2010; Norris et 

al 2010). Although these channels do not require these auxiliary components for 

surface expression, Kv4.2 must interact with at least one of two subtypes of 
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proteins for the channel to function (Rhodes et al 2004; Li et al 2006; Attali et al 

2009; Lin et al 2010; Norris et al 2010; Kitazawa et al 2015).  

 In addition to auxiliary subunits, Kv4.2 activity is also mediated through 

post-translational modifications that fine tune channel function based on intra- or 

extracellular changes in activity (Anderson et al 2000; Jerng et al 2004; Barros et 

al 2012). Phosphorylation of Kv4.2 at different sites by different kinases alters 

different components of channel function, and these changes are also 

determined by cellular location, such as distance from the soma (Varga et al 

2004; Hammond et al 2008; Kerti et al 2012; Nestor and Hoffman, 2012). 

Phosphorylation by CaMKII increases Kv4.2-mediated A-type current through an 

increase in Kv4.2 surface expression (Varga et al 2004; Labna et al 2014). Kv4.2 

has three potential regulatory sites for phosphorylation via the ERK/MAPK 

pathway (Adams et al 2000; Schrader et al 2002; Schrader et al 2006; Lin et al 

2010). At one threonine site, phosphorylation decreases current (Adams et al 

2000; Schrader et al 2006; Labno et al 2014). At another site, Kv4.2 current is 

increased, but this requires the inclusion of KChIP3 specifically in the 

macromolecular complex (Schrader et al 2006; Kim et al 2007; Kunjilwar et al 

2013). As previously mentioned, Kv4.2 distribution varies, depending on distance 

from the soma (Cai et al 2004; Kerti et al 2012, Nester and Hoffman 2011; 

Kaufmann et al 2012). This distance also dictates turnover rate of the channel. 

Increasing the distance also increases the turnover rate through phosphorylation 

by PKA, and this turnover rate is activity-dependent (Schrader et al 2002; 

Hammond et al 2008, Monaghan et al 2008; Nester and Hoffman 2011).   
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 Kv4.2 channels, LTP, and learning 

 

 Kv4.2 channels also have an important influence over NMDA receptors in 

controlling hyperexcitability, especially in the hippocampus. Deletion of Kv4.2 in 

knockout animals or through viral knockdown increases the expression of 

GluN2B-containing NMDA receptors and the induction of LTP (Chen et al 2006, 

Kaufmann et al 2012; Lugo et al 2012). Conversely, an increase in A-type current 

through activation of Kv4.2 channels decreases GluN2B-containing NMDA 

receptors (Kaufmann et al 2012; Korkotian et al 2013). This increase in Kv4.2 

activation is dependent on calcium influx through NMDA receptors specifically 

and the activity of CaMKII, and can be blocked by inhibition of GluN2B- but not 

GluN2A- containing NMDA receptors (Jung et al 2008, Lei et al 2010, Kaufmann 

et al 2012; Labna et al 2014). NMDA receptors may also mediate Kv4.2 

expresssion. Downregulation of Kv4.2 channels is dependent on GluN2B-

containing NMDA receptors (Lei et al 2008; Lei et al 2010). As such, Kv4.2 may 

remodel synapses and this balance between excitation an inhibition may have an 

influential role in ethanol-induced hyperexcitability. 

 This effect on GluN2B-containing NMDA receptors may have an important 

role in altering learning and hippocampal-dependent behaviors, such as spatial 

memory and temporal lobe epilepsy (Leung et al 2010, Kaufmann et al 2012, 

Labna et al 2014). Kv4.2 channels in the hippocampus are of great interest due 

to their role in regulating NMDA-mediated hyperexcitability and LTP (Lei and Xu 

2008; Lei et al 2010).  Previous studies have shown both deficient and enhanced 
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LTP in Kv4.2 knockout animals (Chen et al 2006; Kaufmann et al 2012). These 

studies revealed that deletion of Kv4.2 results in deficits in the learning phase of 

the Morris water maze, and these deficits are not attributed to differences in 

GABAergic function (Lugo et al 2012). Blockade of Kv4.2 also impairs 

performance on the radial arm maze task, and this performance is restored after 

channels are fully functional (Labna et al 2014). In addition, learning 

hippocampal-dependent memory tasks have been shown to promote an increase 

in expression of Kv4.2 mRNA in dendrites and dendritic spines (Petrecca et al 

2000; Gross et al 2011; Trucket et al 2012). Interestingly, this is not associated 

with an increase in total protein expression, but rather may ensure maintenance 

of protein expression and activity-dependent changes throughout the learning 

process (Ruschenschmidt et al 2006; Trucket et al 2012; Labno et al 2014).  

 At the cellular level, it is hypothesized that Kv4.2 channels alter long, but 

not short term plasticity (Andrasfalvy et al 2008; Truchet et al 2012). Their 

influence over NMDA-dependent LTD may modulate signal to noise ratios to 

optimize the appropriate synaptic connections to facilitate learning and memory 

and fine-tune excitability in neuronal networks (Lei and Xu 2008; Labno et al 

2014). Selective increases or decreases in Kv4.2 expression or function in 

certain populations of neurons may be key for proper function in the learning and 

memory network, and may be an essential component of hippocampal-

dependent memory tasks and cognition (Shen et al 2008; Prince and Ring 2011; 

Truchet et al 2012). Due to its role in excitability, Kv4.2 is also an important 

mediator of other hippocampal-dependent behaviors and diseases. Formation of 
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Kv4.2 complexes and proper channel function are necessary for proper 

integration of synaptic signaling and activity-induced neuroplasticity (Lin et al 

2004; Jung et al 2008; Leung 2010; Labna et al 2014).  

 As a therapeutic target in neurodegenerative disorders, blockade of Kv4.2 

prevents the loss of K+, decreases intracellular apoptotic processes, and 

decreases neuronal cell death (Ruschenschmidt et al 2006; Leung et al 2010). 

Temporal lobe epilepsy is associated with long-term decreases in Kv4.2, and this 

change in expression parallels the acquisition of recurrent seizures (Monaghen et 

al 2008; Su et al 2008). Therapeutic agents that enhance channel opening are 

effective in altering epileptic seizures and decreasing interictal activity (Lugo et al 

2008; Aronica et al 2009; Leung et al 2010). Animal models with both pilocarine- 

or kainic acid- induced seizures, show a long-term decrease in surface-

expressed Kv4.2 channels (Jung et al 2008, Su et al 2008). Kv4.2 knockout mice 

have increased pilocarpine-induced seizures and are prone to excitotoxic 

neuronal death (Barnwell et al 2009).  

 

KChIP3’s regulation of Kv4.2 

 

 As mentioned above, Kv4.2 channels require auxiliary proteins for optimal 

channel function. Both DPPX and KChIPs interact with Kv4.2, but KChIP 

interactions with the channel have a larger effect on channel kinetics and function 

(An et al 2004; Lin et al 2004; Rhodes 2004; Callsen et al 2005; Kitazawa et al 

2015). KChIPs are EF- hand calcium sensors, and subtypes 1-4 contain 4 



 24 

calcium sensor domains on the conversed C-terminus and a divergent N-

terminus (Spreafico et al 2001; Callsen et al 2005; Barghann et al 2008; Woo et 

al 2008; Mikhaylova et al 2011). Of particular interest in regulating excitability and 

activity-dependent hippocampal function is KChIP3. Each KChIP has its 

‘preferred’ binding partner, and has a somewhat discrete regional and cellular 

expression pattern (Rhodes et al 2004; Xiong et al 2004; Menegola et al 2006). 

Although, KChIP2 is the most widely expressed of the four subtypes, based on 

results from co-immunoprecipitation studies, KChIP3 is the preferential binding 

partner of Kv4.2 (Xiong et al 2004; Han et al 2006; Menegola et al 2006). The 

difference in the N-terminus of the four KChIPs is responsible for the variation in 

Shal-family channel kinetics with different KChIPs (Callsen et al 2005; Barghann 

et al 2008; Raghuram et al 2012). Phosphorylation of KChIP3 induces KChIP3-

Kv4.2 interaction, but this alone is not enough to induce Kv4.2 to be trafficked to 

the membrane, and palmitoylation of KChIP3 is also required for localization to 

the surface (Takimoto 2002).  

 Functionally, KChIP3 binds to Kv4.2 as an intracellular auxiliary unit to 

convey specific gating properties, channel kinetics, and promote surface 

expression (Shibata et al 2003; Menegola et al 2006; Woo et al 2008; Norris et al 

2010). The conserved C-terminus of the KChIPs, in addition serving as the 

calcium-binding region, also interact with the alpha pore-forming subunit Kv4.2 

(Spreafico et al 2001; Shibata et al 2003; Han et al 2006). However, the N-

terminus gives different properties to the channel (Hopkins et al 1994; Callsen et 

al 2005; Han et al 2006). KChIP3 interaction with Kv4.2 produces more rapid 
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depolarization and faster inactivation, compared with other KChIP subtypes 

(Kunjilwar et al 2004; Norris et al 2010). Decreasing KChIP3 expression through 

viral knockdown decreases Kv4.2 channel surface expression and Kv4.2-

mediated A-type current, even in the presence of KChIP2 (Menegola et al 2006; 

Norris et al 2010). Likewise, decreasing Kv4.2 expression in the hippocampus is 

also associated with a reduction in KChIP3 expression (Menegola and Trimmer 

2006). The other auxiliary subunit, DPP6, does not produce a surface-expressed 

channel with optimal function without KChIP3 interaction (Norris et al 2010). They 

retain the ability to pass current, but are significantly reduced in the absence of 

KChIPs. However, KChIP3 interaction alone with Kv4.2 channels, results in a 

current that is lower in amplitude than that of a channel possessing both DPP6 

and KChIP3 (Norris et al 2010; Kitazawa et al 2015). Functionally, this interaction 

between KChIP3 and Kv4.2 has important implications in behavior and pathology. 

KChIP3 knockout animals have decreased Kv4.2-mediated A-type current as 

well as decreased performance on memory tasks such as novel object 

recognition (Wu et al 2008; Alexander et al 2009). 

 In addition to its role with Kv4.2, KChIP3 was also discovered in two other 

fields of research. It was independently discovered as downstream regulatory 

element antagonist modulator (DREAM) and calsenilin (Buxbaum et al 1998; 

Carrión et al 1999). DREAM in a transcriptional regulator that binds to 

downstream regulatory elements (DRE) to suppress transcription (Carrion et al 

1999; Mellstrom et al 2001; Mellstrom et al 2014). The C-terminus of DREAM 

serves as the DRE-DREAM interaction domain with DRE, and binding of calcium 
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induces dimerization of DREAM and translocation to the nucleus (Carrion et al 

1999; Osawa et al 2001; Woo et al 2008; Ramachandran et al 2012). In the 

nucleus, DREAM must drop off the bound calcium to all three EF-hand domains 

(Craig et al 2002; Woo et al 2008; Mellstrom et al 2014). DREAM has also been 

shown to be an important regulator of a number of different mRNAs, including 

prodynorphin and cFos (Spreafico et al 2012; Alexander et al 2009). Mice 

overexpressing a calcium insensitive form of DREAM (tg-DREAM), have 

increased levels of prodynorphin compared to knockouts, and have an response 

to activity-dependent changes in cFos protein expression (Spreafico et al 2001; 

Dierssen and Naranjo 2012).  

 Due to its role as a dynorphin regulator, DREAM was intensively studied as 

a potential therapeutic target for chronic pain (Cheng et al 2002; Costigan and 

Woolf 2002, Cheng and Penninger 2004). DREAM knockout mice have a higher 

pain tolerance compared to control mice that accompany this increase in 

dynorphin expression (Cheng et al 2002). However, the complexity of its 

involvement in other activity-dependent mechanisms, and its diffuse nuclear and 

somatodendritic expression pattern makes it difficult to manipulate as a 

pharmacological target for a phenotype that is limited to only one of its functions 

(Cheng and Penninger 2004; Woo et al 2008; Alexander et al 2009). Although all 

four KChIP proteins have a conserved C-terminus and are capable of binding 

DRE sequences, none of the other subtypes localize to the nucleus. In yeast-two 

hybrid studies, when any of the four subtypes are expressed in the nucleus, all 

show DRE sequence interactions and serve as a transcriptional repressor 
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(Pruunslid and Timmusk 2005; Raghuram et al 2012). However, animal models 

show knockdown of KChIP3, not the other three subtypes, alter mRNAs whose 

corresponding gene contains the specified DRE sequence (Woo et al 2008; 

Pruunslid and Timmusk 2012).   

 In addition to DREAM, KChIP3 was also described separately as calsenilin. 

Calsenilin interacts with presenilin, the active subunit of the enzyme gamma 

amlyase, which synthesizes beta amyloid (Buxbaum et al 1998; Lilliehook et al 

2003). Through interaction with this subunit, calsenilin regulates the rate of 

conversion and the type of beta amyloid made (Fontan-Lozano et al 2009; Craig 

et al 2013). The role of calsenilin in beta amyloid production has lead to an 

interest in its role in the pathology of Alzheimer’s disease (Dong-Gyu et al 2004; 

Alexander et al 2009; Craig et al 2013). Calsenilin also interacts with other 

intracellular mediators to regulate apoptosis and intracellular Ca2+ release from 

the endoplasmic reticulum (Leissring et al 2000; Lilliehook et al 2002). 

 Localization of KChIP3 within the cell is important in regulating cellular 

processes and behavior. In animals overexpressing a calcium-insensitive 

KChIP3 it is unable to act as a transcription factor, and as a result there is less 

localization to the nucleus (Dierssen and Naranjo 2012). While these animals 

show normal LTP, they display enhanced contextual fear conditioning (Wu et al 

2010, Alexander et al 2009). However, in patients with Alzheimer’s disease, 

KChIP3 expression is elevated which may be associated with a decline in 

cognitive function as well as an increase in apoptosis (Lilliehook et al 2002; Craig 

et al 2013). In the context of epilepsy, there is a decrease in KChIP3 in the 
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hippocampus of post mortem seizure patients (Hong 2003). These conflicting 

pathologies indicate that localization and regulation of KChIP3 is highly 

dependent on intracellular signaling pathways that intricately coordinate and 

balance the function of KChIP3.  

 

Role of KChIP3 in regulating NMDA receptor function 

 

 In the context of hyperexcitability and hippocampal-dependent deficits in 

behavior, KChIP3 is a potentially important component of the balance between 

excitation and inhibition. In addition to its role in promoting Kv4.2 expression and 

function, KChIP3 also modulates glutamate receptor trafficking. KChIP3 interacts 

with the GluN1 subunit of NMDA receptors to decrease surface expression and 

NMDA-mediated current (Zhang et al 2010). Additional research also indicates 

KChIP3 may interact with GluN2B as well, and may preferentially modulate 

GluN2B-containing NMDA receptors (Zhang et al 2010; Wu et al 2010). This 

interaction with GluN1 is calcium-dependent. The binding of each EF-hand 

calcium sensor to a calcium ion results in a progressive reduction of current 

(Zhang et al 2010; Wang and Wang 2012). Other studies in the calcium 

insensitive overexpressing KChIP3 mice indicate that even in the absence of 

calcium, KChIP3 can still inhibit NMDA receptors. However, this occurs through 

interaction with the anchor protein PSD-95, and does not alter NMDA-mediated 

current, but instead decreases surface expression (Wu et al 2010; Wang and 

Wang 2012). As a result, KChIP3 can not only alter cellular function though the 
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regulation of ion channels to dampen excitation, but also directly interact with 

glutamate receptors to further decrease intracellular calcium levels and 

glutamatergic receptor function. 

 KChIP3 may have an important role in ethanol-induced hyperexcitability in 

the hippocampus. Its dual role in regulating both NMDA and Kv4.2 surface 

expression and function creates the possibility that KChIP3 is part of a 

homeostatic mechanism that balances local excitation and inhibition during 

chronic ethanol exposure.  

 

  

Activity-dependent translation in dendrites 

 

 

 Different proteins at glutamatergic synapses are important for the balance 

of excitation and inhibition, and to maintain homeostasis during activity-

dependent alterations in the intra- and extracellular environment (Sutton et al 

2006). Long-term maintenance of neuronal activity requires the induction of more 

permanent mechanisms that induce transcription and translation of new protein 

in dendrites and dendritic spines in an activity-dependent manner (Gardiol et al 

1999; Kang and Schuman 2004; Holt and Bullock 2009; Zukin et al 2009; Dieck 

et al 2014). 
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Review of translation 

 

 In the brain, translation of new protein is a key step in synaptic plasticity and 

in the processing and retention of required information (Cajigas et al 2010; 

Darnell and Richter 2012; Holt and Schuman 2013). Typical activity-dependent 

translational regulation is necessary not only to maintain proper synaptic function, 

but also has important behavioral consequences (Sutton and Schuman 2006; 

Costa-Mattioli et al 2009; Holt and Schuman 2013). Translation in dendrites and 

dendritic spines, like axonal or somatic translation, is cap-dependent and relies 

upon the unwinding of the 5’ cap for protein synthesis (Levy et al 1991; Steward 

and Schuman 2001; Sutton and Schuman 2006). The process is divided into 

three steps: initiation, elongation, and termination (Figure 1-2).  
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 Initiation is the most well characterized step in protein synthesis, and is also 

the rate-limiting step for translation due to the number of components necessary 

for the pre-initiation and initiation complexes  (Nakamoto and Kalokfsky 1966; 

Davis and Squire 1984; Holz et al 2005; Pestova et al 2007). This assembly 

involves recruitment of eukaryotic initiation factors (eIFs) and coordinated activity 

of different ribosomal subunits. After trafficking to the synapse, the eIF4E binds 

the 5’ cap of the mRNA (Levy et al 1991; Pinkstaff et al 2001; Scheper and Proud 

2002; Pestova et al 2007). Next, eIF4G acts a scaffolding protein for assembly of 

the rest of the initiation complex (Oberer et al 2005; Hinnebusch and Lorsch 

2012). The last initiation factor in this complex is eIF4A, which is the active 
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helicase that unwinds structures in the 5’ untranslated region of the mRNA to 

facilitate translation (Tsokas et al 2005; Sonenbergy and Dever 2003). 

Collectively these three initiation factors eIF4E, -G, and -A along with eIF4H are 

known as eIF4F once they are assembled into an active complex (Sonenberg 

and Dever 2003; Oberer et al 2005; Hoeffer et al 2013). After assembly of eIF4F, 

another initiation factor, eIF3 recruits the 40S small ribosomal subunit to the 

assembled complex (Hinnebusch 2006). This subunit acts as a scaffold for 

appropriate alignment and initial association of the tRNA with the other 

components assembled for initiation (Colombo et al 1968; Erzberger et al 2014; 

Korostelev 2014).  

 After assembly of the entire complex, the 40S subunit scans the 

untranslated region as it unwinds until it reaches the start codon, AUG, which 

codes for methionine (Colombo et al 1968; Revel et al 1968; Hussain et al 2014). 

tRNA is responsible for bringing the appropriate amino acid to the polyribosome 

based on the mRNA triplet base pairings. This methionyl- tRNA serves as a 

specialized initiator for translation. GTP-bound eIF2 brings the methionyl-tRNA to 

the 40S subunit (Clark and Marcker 1966; Revel et al 1968; Cheung et al 2007; 

Erzberger et al 2014; Hussain et al 2014). Hydrolysis of GTP bound to eIF3 to 

GDP signals for the dissociation of the small 40S subunit, which is replaced by 

the large 60S ribosomal subunit (Holland et al 2004; Hinnebusch and Lorsch 

2012; Gamalinda et al 2014). 

 Following initiation with the assembly of the necessary components and the 

addition of the first amino acid, the rest of the mRNA is translated into protein 
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through elongation. Elongation is a widely conserved process that is mediated by 

eukaryotic elongation factors (eEFs) (Hinnebusch and Lorsch 2012; Sala 2014). 

Like the final stage of initiation, this involves tRNAs bringing the appropriate 

amino acid to the ribosome for addition on the translated protein (Dresios et al 

2006). The elongation factor eEF1A in GTP-bound form separates the amino 

acid from the tRNA. However, this process requires the GEF eEF1B to maintain 

a certain rate of function for activity-dependent translation to occur (Rogers et al 

2001; Kapp and Lorsch 2004; Cao et al 2014). After each amino acid addition, 

the large 60S subunit slides down the mRNA via hydrolysis of the GTP bound to 

eEF2 (Ryazanov and Davydova 1989; Kapp and Lorsch 2004; Heise et al 2014).  

 The final step in protein translation is termination. This step is not well 

studied, and the components and the exact process are not completely 

understood, compared to that of the two previous steps. However, like initiation 

and elongation, termination also utilizes separate proteins that are eukaryotic 

release factors (eRFs) for release of the finished peptide (Zhouravlev et al 1995; 

Kapp and Lorsch 2004). Once the assembled polyribosome encounters the 

consensus stop code, UAG, hydrolysis of GTP-bound to eRFs releases the 

finished peptide and promotes disassembly of the current active complex to allow 

the components to return to the pool of available subunits (Dever and Green 

2012).  

 Most protein synthesis occurs in the soma, and the proteins are then 

transported to different neuronal processes via molecular motors (Kanai et al 

2004). However, more recent studies have followed lines of research focusing on 
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the role of local dendritic protein synthesis and its relevance to synaptic plasticity, 

particularly in the hippocampus (Kang and Schuman 1996; Asaki et al 2003; 

Govindarajan et al 2011). While most of this production is somatic, dendritic 

protein translation is necessary, in some circumstances, to maintain long-term 

activity-dependent changes (Huber et al 2000; Martin et al 2000; Asaki et al 

2003; Sutton and Schuman, 2006; Govindarajan et al 2011). Elimination of 

dendritic translation through mutation of the mRNA dendritic targeting element 

produced deficits in the spatial recognition and contextual learning (Kang and 

Schuman 1996; Morris et al 2002; Sutton and Schuman; 2006). Typically, this 

local translation involves a highly coordinated series of events with not only 

mRNAs, but also assembly of the polyribosome for translation and intracellular 

regulatory processes each component (Liu-Yesucevitz et al 2011; Parysan et al 

2011; Korostelev 2014). Regulation of translation can occur at each of the three 

stages.  

 Due to its function as the rate-limiting step and as the first point of contact 

for mRNAs, the initiation step has several different components that alter both 

the initiation and rate of translation at the polyribosome (Rogers et al 2001; 

Dobrikov et al 2013). One of the most well-studied proteins involved in translation 

is the cap-binding protein eIF4E (Raught and Gingras 1999; Rogers et al 2001; 

Scheper and Proud 2002; Sonnenberg and Dever 2003; Gkogkas et al 2013; 

Sonenberg and Hinnbusch 2009). This is the first protein to interact with mRNAs 

and represents the first element in the rate-limiting step (Parysan et al 2013;. 

Phosphorylation of eIF4E decreases the affinity for capped mRNA, which in turn, 
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slows the rate of translation (Raught and Gingras 1999; Waskiewicz et al 1999). 

This protein also interacts with 4 eukaryotic initiation-binding proteins (4E-BPs). 

These regulate translation by binding to eIF4E and inhibiting interaction with the 

5’ cap (Levy et al 1991; Rogers et al 2001). This includes 4E-BP2, nuclear FMRP 

interacting protein (NuFIP) and cytoplasmic interacting proteins (Cyfips) that 

convey long-term inhibition of total protein expression. These act as linker 

proteins between the polyribosome and larger macromolecular complexes that 

often include other proteins and noncoding RNAs to not only block the cap-

binding protein but to stall out the polyribosome to prevent cap-independent 

translation (Bardoni et al 2003; Napoli et al 2008; Pathania et al 2014). Although 

these act as translational repressors, they are important in the coordination of 

activity-dependent protein synthesis. Knockout or dysfunction of these proteins 

leads to aberrant synaptic plasticity, and deficits in hippocampal-dependent 

learning tasks (Banko et al 2007; Liu-Yesucevitz and 2011; Santini et al 2012; 

Pathania et al 2014). Activity of the alpha helicase is another component of 

initiation that affects the rate of translation. The poly(A)-binding protein (PABP) 

interacts with the 3’ end to circularize the mRNA (Le et al 2000; Atkins et al 2004; 

Kahvejian et al 2005). This enhances unwinding of the helix and drastically 

enhances the rate of translation (Atkins et al 2004; Dieck et al 2014). 

 The process of mRNA and protein elongation is regulated through 

phosphorylation of elongation factors. Binding of GTP to eEF1A is relatively slow 

without the GEF activity of eEF1B (Tsokas et al 2005; Cao et al 2014). 

Phosphorylation of either of these elongation factors by PKC or casein kinase 
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alters the rate at which elongation of the protein occurs (Price et al 1991; 

Redpath and Proud 1993). Phosphorylation by PKC decreases the ability of 

eEF1A to bind GTP and slows translation (Redpath and Proud 1993; Ryazanov 

et al 1988; Tsokas et al 2005). However, phosphorylation of either protein by 

casein kinase enhances the rate of translation (Price et al 1991). The larger 

ribosomal subunit 60S slides down the mRNA and connects the appropriate 

amino acids brought by the tRNA (Gamalinda et al 2014). This is controlled by 

eEF2, which is subject to both acute and longer-term regulation (Ryazanov and 

Davydova 1989). Acutely, calcium-activated eEF2 kinase (eEF2K) prevents 

hydrolysis of GTP by eEF2, and inhibits movement of the larger subunit down the 

mRNA (Ryazanov et al 1988). However, eEF2K is only activated by acute influx 

of calcium at the synapse; inhibition lasts around 30 minutes following the influx 

of calcium (Ryazanov and Davydova 1989; Sala 2014). Dephosphorylation of 

eEF2 by PP2A occurs after activation of other intracellular signaling pathways 

(Sonenberg and Dever 2003; Im et al 2009). 

 Although little is known about the process of termination of translation, this 

is also regulated by phosphorylation of release factors that alter GTP hydrolysis 

and the rate of release. However, more regulatory steps occur during the first two 

steps, initiation and elongation, where mRNA stability, assembly of the complex, 

and rate of synthesis are affected.  

 Another important component regulating translation does not necessarily 

alter the rate of translation, but rather the mRNAs that are translated. mRNA-

binding proteins are a large class of proteins that can form macromolecular 
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complexes to regulate mRNA interaction with the polyribosome. These proteins 

are important in trafficking, localization, and stability of mRNAs after transcription 

(Zalfa et al 2006; Bramham and Wells 2007; Bolognani and Perrone-Bizzozero 

2008).  These proteins contain multiple binding regions for RNAs; however, each 

region interacts with a specific mRNA sequence. This gives these proteins the 

ability to bind to several different targets while also giving target specificity (Jones 

2003; Shan et al 2003). They are often regulated by post-translational 

modifications, with the three main types being phosphorylation, arginine 

methylation, and small ubiquitin-like modification (SUMO) (Glisovic et al 2008). 

These change activity and RNA binding affinities, induce the formation of 

ribonucleoprotein complexes (RNP), and creates conformational changes that 

alter mRNA binding and transport (Shan et al 2003; Darnell and Richter 2012; 

Hinnebusch and Lorsch 2012). Many of these proteins, like fragile X mental 

retardation protein (FMRP) are translational repressors that prevent interaction 

with the ribosome (Laggerbauer et al 2001; Darnell et al 2011). However other 

proteins such as the Staufen family of RNA-binding proteins, are important in 

processed mRNA transport down microtubules and into dendrites (Heraud-

Farlow and Kiebler 2014). Other proteins, such as Smaug, are important in RNA 

destabilization and degradation (Tadros et al 2007; Bologani and Perrone- 

Bizzozero 2008; Gotez and Wahle 2015. However, these proteins also form RNP 

complexes that contain mRNAs and multiple mRNA-binding proteins to properly 

regulate trafficking, localization, stability, and translation activity (Braham and 

Wells 2007; Bologani and Perrone-Bizzozero 2008; Darnell and Richter 2012). 
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NMDA receptors and dendritic translation 

 

 Translation of new protein is a finely tuned process with several regulatory 

elements that alter not only assembly of the complex and mRNA binding, but 

also the rate at which mRNAs are translated. In dendrites, the process of local 

translation is an essential component of the maintenance of adaptive activity-

dependent changes to neuronal activity (Ostroff et al 2002; Costa-Mattioli et al 

2009; Holt and Schuman 2013). NMDA receptors are a key component for 

initiating activity-dependent translation, and NMDA-dependent processes, such 

as NMDA-dependent LTP, require protein synthesis to occur (Marin et al 1997; 

Im et al 2009; Costa-Mattioli et al 2009). These receptors activate different 

downstream components that alter local translation in different ways, and 

regulate all three stages of protein synthesis. 

 During initiation, several components of the initiation complex are subject to 

activity-dependent regulation through phosphorylation of different kinases in 

order adjust the rate of translation to the current cellular conditions. In vivo and in 

vitro studies have outlined a role for NMDA-dependent ERK activation in altering 

specific components of the initiation complex. Downstream substrates MAP 

kinase signal interacting kinases (Mnk1 and Mnk2) phosphorylate the cap-

binding protein eIF4E (Raught and Gingras 1999; Perkinton et al 2002). This 

phosphorylation enhances activity and the general rate of translation by pulling 

mRNAs more quickly to the ribosome. Activation of ERK and Mnk kinases via 

NMDA receptor activity and this subsequent increase in eIF4E activity promotes 
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new protein synthesis to sustain late phase LTP in the mouse hippocampus 

(Knauf et al 2001; Perkinton et al 2002; Carriere et al 2011). Mutation at the 

eIF4E phosphorylation does not alter the induction of LTP, but hippocampal 

neurons do not maintain LTP activity (Topisirovic et al 2004; Im et al 2009). As 

previously mentioned, PI3-K is activated during the transition from early to late 

phase LTP, and induces ERK-independent translational changes via the 

mTORC1 pathway (Perkinton et al 2002; Shahbazian et al 2006). This regulatory 

pathway alters several downstream components that are necessary to coordinate 

activity-dependent translation.  

 During the elongation phase of translation, activation of NMDA receptors 

continues to regulate the rate of protein synthesis. However, unlike initiation, this 

regulation occurs during early phase LTP as well as late phase (Im et al 2009). 

The eEF2 kinase eEF2K operates via a calcium-dependent mechanism that 

facilitates binding to eEF2 to slow GTP hydrolysis and the rate of translation 

(Browne and Proud 2004; Im et al 2009). This paradoxical coupling of both 

inhibition and activation of translation at different stages represents a finely 

regulated process that facilitates the necessary cellular functions to 

accommodate the different requirements of both early and late phase LTP (Im et 

al 2009). Although NMDA receptor activation enhances the initiation process, it 

inhibits elements that are downstream to slow translation. However, this inhibition 

is transient and spatially restricted (Ryazanov and Davydova 1989; Martin et al 

2000; Govindarajan et al 2011). Persistent activation of NMDA receptors 

produces transient blockade of translation via eEF2 inhibition, despite the 
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presence of calcium at the synapse (Marin et al 1997; Browne and Proud 2004; 

Im et al 2009). Additionally, eEF2K phosphorylation is restricted to the activated 

synapses and does not alter translation outside of dendritic spines (Ryazanov 

and Davydova 1989).  

 This initial repression of translation may coordinate LTP in different ways. It 

may serve as a mechanism to allow coordinated mRNA transport and synaptic 

arrangement to produce the necessary protein needed to maintain LTP (Costa-

Mattioli et al 2009; Sossin and Lacaille 2010; Thomas et al 2013; Bailey et al 

2015). This may allow for mRNA-specific inhibition of translation, rather than a 

blanket, general blockade of all translational mechanisms (Doench and Sharp 

2004; Bramham and Wells 2007, Dieck et al 2014). At the same time, general 

protein translation is repressed following NMDA receptor activity, and the 

expression of certain locally translated proteins, such as CaMKII, are increased 

(Pinkstaff et al 2001; Asaki et al 2003; Costa-Mattioli et al 2009). 

 NMDA-dependent LTP is characterized by not only alterations in synaptic 

activity, but also the production of new protein (Kapp and Lorsch 2004; Klann 

and Richet 2007; Kim et al 2013). As such, studies have confirmed that NMDA 

receptor activity is important in the regulation and coordination of activity-

dependent translational mechanisms. This process involves several components 

of the translation machinery that both promote and inhibit local activity-dependent 

translation (Klann and Richet 2007). With defined deficits in NMDA-dependent 

LTP in the hippocampus resulting from chronic ethanol exposure, translational 
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mediators and components controlling the rate of translation are likely candidate 

proteins for homeostatic regulation in CIE. 

 

mTORC1 translational pathway 

 

 Local regulation of dendritic translation requires the convergence and 

coordination of several different proteins to allow for fluid, effective activity-

dependent translation. However, many of these components, those that both 

promote and inhibit translation, are part of a common regulatory pathway. In 

dendrites and dendritic spines, one of the most well characterized pathways 

regulating activity-dependent translation is the Akt-mTORC1 pathway (Brown et 

al 1995; Gingras et al 2001; Dibble and Cantley 2015). This is a large, diverse 

pathway with downstream components that control dendritic and somatic 

translation, and both promote and inhibit protein translation through activation of 

different substrates (Figure 1-3) (Browne and Proud 2003; Holz et al 2005).  
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 Phosphorylation of phosphoinositide 3-kinase (PI3-K) initiates activity of 

protein kinase B (Akt). In turn, Akt phosphorylates the 2164 threonine residue to 

induce assembly mTORC1. Active mTORC1 involves the addition of the catalytic 

subunit Raptor to the complex (Kim et al 2002; Dibble and Cantley 2015). 

Following raptor assembly into the complex, the p70 ribosomal protein S6 kinase 

1 (S6K1) is phosphorylated (Brown et al 1995; Kim et al 2002). Like mTORC1, 

S6K1 has a myriad of downstream proteins that control translation in the soma, 

axons, dendrites, and dendritic spines that both promote and inhibit activity-

dependent translation, depending on the localization and function in the neuron 

(Burnett et al 1998; Gingras et al 2001; Holz et al 2005; Im et al 2009; Ma and 

Blenis 2009). Some of these substrates include the cap-binding protein eIF4E, 
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the alpha-helicase eIF4A, and the ribosomal subunit S6; these are all 

components of the active polyribosome that are necessary for translation (Hara 

et al 1997; Hara et al 1998; Gingras et al 2001; Ma and Blenis 2009). However, 

S6K1 also activates other substrates including mRNA-binding proteins like FMRP, 

that serve as a translational repressors, Smaug, which facilitates mRNA 

degradation, and Cyfip1, which is a 4E-BP that halts all mRNA association with 

the polyribosome (Burnett et al 1998; Czaplinski and Singer 2006; Ma and Blenis 

2009; Chen and Joseph 2015). Activation of these downstream components 

follows discrete regulatory mechanisms that tailor activation of each component 

to the particular change in activity to compensate in both a short- and long-term 

fashion (Holz et al 2005; Ma and Blenis 2009). Not all downstream proteins are 

activated simultaneously or even phosphorylated at all during mTORC1 or S6K1 

activation (Holz et al 2005). 

 mTORC1 activity is regulated through a number of different mechanisms, 

and controls a number of activity-dependent cellular functions in addition to 

translation including cell growth and apoptosis. In addition to mTORC1, Akt also 

activates mTORC2 (Urbanska et al 2012). These two complexes differ in their 

assembly, activity, and sensitivity to rapamycin. mTORC1 is composed of the 

mTOR and mTOR-associated protein (Ma and Blenis 2009). The recruitment of 

the catalytic subunit Raptor activates the complex to phosphorylate downstream 

substrates (Ma and Blenis 2009; Urbanska et al 2012). While dephosphorylation 

causes dissociation of this subunit and ceases activity; exactly how it 

differentially regulates activity of each of its downstream substrates is not known.  
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NMDA-dependent regulation of mTORC1 

 

 In addition to ERK/Mnk regulation of translation, NMDA receptor activity 

also regulates mTORC1 activity to control local translation. In this context, it 

triggers the translation of mTORC1 substrates including p70 ribosomal S6 

kinases 1 and 2 as well as p90 ribosomal S6 kinases 1 and 2 (Rsk1 and 2)(Lenz 

and Avruch 2005; Gong et al 2006; Carriere et al 2011). This is completely 

independent of ERK activity and is blocked by treatment with rapamycin (Carriere 

et al 2011; Dibble and Cantley 2015). Additionally, activation of other 

downstream mTORC1 substrates can regulate initiation and elongation. eIF4E 

and other components of the initiation complex are regulated in an mTORC1-

dependent manner (Hara et al 1997; Hara et al 1998; Gingas et al 2001; 

Shahbazian et al 2006). This alteration in activity of mTORC1 substrates 

corresponds to an increase in S6K1 phosphorylation and activity (Hara et al 

1998; Holz et al 2009; Fenton et al 2011). Other studies also suggest the nature 

of mTORC1 activity in NMDA-dependent regulation of translation (Marin et al 

1997; Lenz and Avruch 2005; Gong et al 2006; Meng et al 2013). Stimulation of 

NMDA receptors and subsequent activation of mTORC1 and S6K1 leads to the 

suppression of specific substrates that are key in balancing dendritic excitation, 

such as Kv1.1 (Raab-Graham et al 2006; Meng et al 2013). Treatment with 

rapamycin abolished this NMDA-induced decrease in Kv1.1. Additionally, 

treatment with rapamycin abolishes late-, but not early-phase LTP in the 

hippocampus, suggesting that its activation is key for synthesis of new that are 



 45 

necessary to maintain but not intiate LTP (Raab-Graham et al 2006; Bekinschtein 

et al 2007; Russo et al 2013). In the context of ethanol-seeking behaviors, 

mTORC1 activation is necessary for the reduction in ethanol-seeking behaviors 

in rats treated with the NMDA receptor antagonist, ketamine (Sabino et al 2013).  

  

mTORC1 in dendritic spines and its role in behavior 

 

 The role of mTORC1 as a translational regulatory pathway is well studied. 

However, long-term differences or dysfunction of dendritic translation is 

associated with differences in dendritic spine density and morphology (Hoeffer et 

al 2012; Bowling and Klann 2014; Tang and Sulzer 2014). In animal models of 

autism spectrum disorders, hyperactive mTORC1 is correlated with aberrant 

spine morphology compared to controls (Huber et al 2002; Bowling and Klann 

2014). However, the connection between mTORC1-mediated translation and 

actin polymerization and spine formation is not well characterized, but there are 

studies showing correlations between alterations in mTORC1 activity and 

alterations in dendritic spines (Hoeffer et al 2012; Tang and Sulzer 2014). 

Neurodegenerative disorders that exhibit decreases in mTORC1 activity also 

show deficits with activity-dependent maintenance of actin polymerization and 

differences in spine formation (Urbanska et al 2012; Takei and Hiroyki 2014; 

Tang and Sulzer 2014) 

 Due to its well-characterized role in protein translation, mTORC1 is also 

studied in behaviors that have previously been shown to rely on LTP. Inhibition of 
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mTORC1 via treatment with rapamycin in the dorsal hippocampus prevented 

consolidation and reconsolidation of contextual fear conditioning (Bekinschtein et 

al 2007). Inhibitory avoidance tasks significantly increased mTORC1 and S6K1 

phosphorylation and activity. Inhibition of mTORC1 prevented this increase in 

S6K1 phosphorylation and hippocampal-dependent learning (Im et al 2009; 

Fenton et al 2011). 

 Previous studies have shown that long-term exposure to ethanol 

preferentially up or down regulates specific proteins at glutamatergic synapses. 

In particular, proteins necessary for NMDA receptor signaling, such as CaMKII 

and PSD-95, are upregulated (Barak et al 2013; Sabino et al 2013). Additional 

components of the mTORC1 pathway that are key for appropriate, proficient 

activity-dependent translation, such as 4E-BP1 and S6K1, exhibit enhanced 

activity following chronic self-administration of ethanol (Nesta et al 2010; Barak et 

al 2013). Treatment with rapamycin not only inhibited these cellular changes in 

protein expression, it also prevents reinstatement of ethanol-seeking behaviors 

during cue-induced reinstatement. This inhibition of reinstatement was present 

after two weeks of rapamycin treatment (Barak et al 2013).  

 Included in the mTORC1 pathway are downstream components of S6K1 

that serve as mRNA-binding proteins (Zalfa et al 2006; Chen and Joseph 2015). 

As previously discussed, these proteins, although translational repressors, are 

essential components for coordinated translation. Of these, the translational 

repressor fragile X mental retardation protein (FMRP) has previously been shown 

to have a key role in regulating de novo protein synthesis in response to changes 
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in activity at glutamatergic synapses (Zalfa et al 2006; Darnell et al 2011; Henry 

et al 2011; Darnell and Klann 2013; Fernandez and Bagni 2013).  

 

Role of FMRP in activity-dependent translation 

 

FMRP in dendritic translation 

 

 The mRNA-binding protein FMRP is of particular importance in the 

regulation of local translation in dendrites and dendritic spines (Bardoni et al 

2001; Darnell et al 2011; Zalfa et al 2006). FMRP is a translational repressor that 

binds to mRNAs and prevents mRNA interaction with the cap-binding protein 

eIF4E (Laggerbauer et al 2001; Fernandez and Bagni 2013; Sala et al 2014). It is 

one of the necessary components for activity-dependent translation in dendrites 

in the hippocampus and is also needed to maintain homeostatic basal protein 

levels (Bardoni et al 1997; Henry 2011; Fernandez and Bagni 2013). It has been 

most well studied in the context of neuronal development and fragile X syndrome, 

and there are fewer studies investigating the role of FMRP in typical activity-

dependent neuronal function (Sutherland 1979; Weiler et al 2004; Henry 2011; 

Schaeffer et al 2012). FMRP is encoded by the fmr1 gene that is highly 

conserved throughout the animal kingdom, from drosophila to human (Bardoni et 

al 1997; Laggerbauer et al 2001; Usdin and Kumari et al 2015). It codes for 

seven different isoforms of FMRP, with isoform 6 being the most commonly 

expressed. However, it is of note that each isoform varies in the mRNA binding 
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regions and potential differences in mRNA binding and activity have not been 

characterized (Usdin and Kumari et al 2015). 

 Structurally, FMRP contains several binding regions for both coding and 

noncoding RNAs as well as proteins that regulate the function of FMRP and 

residues that undergo post-translational modification to mediate FMRP activity 

(Schaeffer et al 2012; Adams-Cioaba et al 2010). For regulation of mRNA 

translation, FMRP contains two KH domains as well as an RGG rich segment 

(Figure 1-4) (Bardoni et al 1997; Adams-Cioaba et al 2010; Chen and Joseph 

2015; Usdin and Kumari 2015). These regions contain ubiquitous sequences that 

allow FMRP to interact with 3-4% of total mRNAs in hippocampal pyramidal 

neurons (Jones 2003; Darnell et al 2012). These include proteins that modulate 

the balance of excitation and inhibition such as Kv4.2, KChIP3, and the NMDA 

receptor subunits (Darnell et al 2011, Gross et al 2011; Jan et al 2011; Lee et al 

2011). However, each mRNA binding region tends to interact with specific 

sequences on mRNAs. This allows FMRP to have specificity for specific mRNAs 

while multiple regions maximizes binding partners (Brown et al 1995; Bardoni et 

al 1997; Jones 2003; Darnell et al 2011; Schaeffer et al 2012). FMRP activity is 

mediated by phosphorylation at three different serine residues, S496, S499, and 

S503, located in the RGG-rich region (Bardoni et al 1997, Ceman et al 2003; 

Edbauer et al 2010). Of interest in the context of mRNA activity is S499 (Bartley 

et al 2014). This is a highly conserved site for post-translational modification that 

alters FMRP’s mRNA binding activity (Jones et al 2001; Bhattacharya et al 2012; 

Bartley et al 2014). Increases in phosphorylation at S499 via S6K1 increases 
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FMRP activity (Ceman et al 2003; Holz et al 2005; Fenton and Grant 2011; 

Bhattacharya et al 2012; Bartley et al 2014). This increase in activity causes an 

increase in mRNA-FMRP interaction and therefore a decrease in protein 

synthesis of that mRNA (Laggerbauer et al 2001; Ceman et al 2003; Darnell and 

Klann 2013; Usdin and Kumari 2015). 

 FMRP also interacts with various proteins, noncoding RNAs, and miRNAs 

that regulate its function. Two proteins, nuclear FMRP interacting protein (Nufip) 

and cytoplasmic FMRP interacting protein 1 (Cyfip1), bind with FMRP to serve as 

linker proteins of larger macromolecular complexes that may not only regulate 

translation, but also mRNA localization and stability (Bardoni et al 2003; Napoli et 

al 2008; Pathania et al 2014). In dendrites, Cyfip1 interacts with FMRP at sites 

adjacent to the mRNA-binding KH regions. Once bound to FMRP, Cyfip1 also 

interacts with the eIF4E to prevent all translation at that ribosome (Napoli et al 

2008). This binding with the polyribosome may also serve to regulate the 

translation of specific mRNAs. As seen in Figure 1-4, FMRP has different 

binding regions for mRNAs and Cyfip1, and may interact with both Cyfip1 and 

mRNA simultaneously (Zalfa et al 2006; Fernandez and Bagni 2013; Usban and 

Kumari 2015). If so, the interaction of Cyfip1 and FMRP with the ribosome may 

also serve to coordinate translation by holding certain mRNAs near ribosomes for 

quick de novo protein synthesis (Zalfa et al 2006; Napoli et al 2008). FMRP also 

binds noncoding RNAs, such as BC1 that interact with the ribosome to inhibit 

translation (Zalfa et al 2003; Napoli et al 2008).  
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 In addition to translation, FMRP may also regulate RNA trafficking at the 

synapse. Increases in phosphorylation at S503 increases FMRP binding to Dicer-

processed miRNAs (Ceman et al 2003; Jin et al 2004). Dicer cuts pre-miRNAs 
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into shorter strands for insertion into the RNA-induced silencing complex (RISC) 

(Hayashi-Takagi et al 2010). In this capacity, FMRP aids Dicer by interacting with 

processed miRNAs through one of the KH domains and acts as an acceptor 

protein to localize and traffic the miRNA to the other RISC components (Jin et al 

2004; Zalfa et al 2006; Hayashi-Tagaki et al 2010). Outside of this capacity, there 

is some controversy as to whether FMRP alters trafficking of mRNAs or holds 

them at specific synapses in the dendrite. Studies from different groups have 

produced contradictory results. In fmr1-/- mice, two different studies in the same 

preparation have reported opposite results for the same mRNA. One study 

implicated FMRP in Kv4.2 mRNA trafficking (Gross et al 2011). However, 

another study examining the FMRP-mRNA binding domains showed that 

mutation of the binding site on either FMRP or Kv4.2 mRNA did not produce any 

alteration in mRNA trafficking down the dendrite (Lee et al 2011). However, it 

was postulated that mRNAs may still be trafficked down the dendrites, but 

without FMRP interaction these mRNAs are unstable (Gross et al 2011). 

 

FMRP and synaptic plasticity 

 

 As an mRNA-binding protein, FMRP has numerous targets of interest 

related to maintenance of homeostasis and glutamatergic signaling. These 

include PSD-95, CaMKII, Arc, Kv4.2, KChIP3, and NMDA receptor subunits 

(Brown et al 1995; Muddashetty et al 2007; Jones et al 2012; Niere et al 2012; 

Darnell et al 2013). FMRP is also implicated in regulation of specific mRNAs that 
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are translated with relatively low efficiency. These are 5’- TOP mRNAs, which are 

mRNAs that contain an unusual terminal oligopyramidine tract at the 5’ 

untranslated region (Levy et al 1991; Jefferies et al 1997). Most of the proteins 

directly involved in the assembly of the initiation and translation complexes, as 

well as several proteins necessary for regulation of ribosome assembly, are TOP 

mRNAs (Levy et al 1991; Brown et al 1995; Zalfa et al 2006). These mRNAs are 

transcripted, transported down into neuronal processes where they are 

sequestered in inactive ribonucleoprotein complexes (Bardoni et al 2003; Antar 

et al 2005; Zalfa et al 2006). The association of these proteins with active 

polyribosomes is significantly lower than other proteins whose mRNAs are 

trafficked out to the synapse under basal conditions (Levy et al 2991; Jefferies et 

al 1997). Typically, in non-neuronal cell types, activation of these mRNAs 

involves trafficking back to active translation sites in response to growth factor 

stimulation (Bardoni et al 2003; Castets et al 2005). However, in mature neurons, 

this also occurs in response to activity-dependent changes in synaptic plasticity. 

Another aspect of these mRNAs that is very different from other transcripts is that 

these mRNAs have an almost ‘all or none’ translational efficiency (Levy et al 

1991; Aloni et al 1992; Jefferies et al 1997). Under basal state conditions, 

practically none of these mRNAs are translated, but, after synaptic stimulation, 

the overwhelming majority of the mRNAs present near active synapse are 

trafficked to active polyribosomes for translation. Due to this sudden shift in 

translation, FMRP may play a significant role in tethering these proteins near 

active polyribosomes in dendrites and dendritic spines to stabilize the mRNA 
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transcript and promote immediate translation as needed (Levy et al 1991; Aloni 

et al 1992). Translation of these mRNAs is also almost exclusively dependent on 

mTORC1/S6K1 activation. Treatment with rapamycin almost completely ablates 

de novo protein synthesis of these mRNAs, even with strong synaptic stimulation 

or growth factors (Jefferies et al 1997). Since these TOP mRNAs are transcripts 

of necessary components in all three stages of translation, such as eIF4E, eIF4A, 

eEF2, and eRF2, dysregulation of translation of these mRNAs directly alters the 

ability to the facilitate protein translation and maintain changes in synaptic 

plasticity, such as LTP (Levy et al 1991; Brown et al 1995; Schaeffer et al 2012). 

 FMRP is a key mediator of activity-dependent translation of numerous 

mRNAs in dendrites and dendritic spines (Ramocki and Zoghbi 2008). These 

mRNAs include several that code for proteins that are essential in mediating 

synaptic excitability (Brown et al 1995; Jones 2003; Darnell et al 2013). In 

disorders characterized by hyperexcitability, such as fragile X syndrome and 

epilepsy, dysfunctional FMRP creates an aberrant basal state and dysregulated 

activity-dependent translation (Krueger and Bear 2011; Vislay et al 2012). Fragile 

X syndrome is characterized by the expansion of the regulatory CpG region that 

recruits transcriptional regulators that promote hypermethylation and silencing of 

the gene (Bardoni et al 1997; Usdin and Kumari 2015). Therefore, many 

individuals with fragile X syndrome completely lack FMRP (Sutherland 1979; 

Laggerbauer et al 2001). This lack of FMRP leads to increases in basal state 

protein levels, including Kv4.2 and KChIP3 (Brown et al 1995; Darnell et al 2011; 

Gross et al 2011; Schaeffer et al 2012). In individuals with fragile X syndrome 
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and in fmr1-/- mice, synaptic plasticity is limited and while induction of activity-

dependent mechanism is unaffected, these processes cannot be maintained. 

Although FMRP is a translational repressor, it has an important role in 

coordinating and fine-tuning mRNA interactions to produce the necessary 

increases in protein expression to maintain activity-dependent processes, such 

as LTP or LTD (Ostroff et al 2002; Niere et al 2012; Maurin et al 2014). Complete 

lack of FMRP has greater effects on LTD compared to LTP, but this effect may 

be age-dependent, vary by brain region, and depend on the knockout mouse 

model (Eadie et al 2010; Niere et al 2012). In the nucleus accumbens, adult 

fmr1-/-  mice display impaired NMDA-dependent plasticity (Neuhofer et al 2015). 

Additionally, in more recent mouse models of fragile X, NMDA-dependent LTP is 

also impaired in the hippocampus (Mittman 2009; Eadie et al 2010)  

 FMRP may also control excitability by altering the polyribosome itself. As a 

regulator of 5’ TOP mRNAs, FMRP activity alters protein expression of the 

obligatory subunits for active ribosomes (Levy et al 1991). Lack of FMRP in 

animal models has shown deficiencies in activity-dependent translation of these 

proteins. Although basal protein expression levels remain unchanged compared 

to control animals, these mRNAs are trafficked to the ribosome with low 

efficiency during activity-dependent synaptic plasticity, despite relatively normal 

levels of other mRNA- binding proteins (Levy et al 1991; Jefferies et al 1992). 

This suggests that FMRP not only regulates proteins that directly mediate 

synaptic function, but also those necessary for maintenance of synaptic plasticity. 
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 Studies evaluating protein translation during epileptigenesis show that, 

although there is no change in total protein expression of FMRP, there is 

aberrant regulation of FMRP activity. Proteins that balance local glutamatergic 

inputs, such as Kv4.2 and KChIP3, are downregulated in both clinical patients 

and mouse models of temporal lobe epilepsy (Muddashetty et al 2007; Lee et al 

2011; Fernandez and Bagni 2013; Maurin et al 2014). In some of these mouse 

models, FMRP total protein expression remains unaffected, but trafficking and 

FMRP-mRNA interactions are altered compared to controls, indicating a role for 

FMRP in activity-dependent protein translation in epilepsy (Mittman 2009; Lee et 

al 2011; Neuhofer et al 2015). 

 Due to its previously described role in regulating basal protein levels and 

activity-dependent translation of proteins altered by chronic ethanol exposure, 

FMRP is a likely candidate for mediating ethanol-induced hyperexcitability in the 

hippocampus. Blockade of upstream components of FMRP prevent the ethanol-

induced alterations in protein expression. In other pathologies characterized by 

hyperexcitability, these alterations in protein expression and upstream kinases 

correspond to alterations in FMRP expression and activity. 

 

FMRP and actin dynamics 

 

 Alterations in protein expression are often accompanied by changes in actin 

polymerization and spine morphology. Patients with fragile X syndrome who lack 

FMRP, have increased density of immature stubby dendritic spines and a 
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significant decrease in long/thin spines (Hoeffer et al 2012). In drosophila, FMRP 

interacts with a Cyfip protein that is a regulator of actin polymerization and 

synapse development (Schenck et al 2003; Henry 2011; Zhao et al 2013). In 

rodent models, fmr1-/- also display impaired spine development (Dictenberg et al 

2008; Henry 2011). Conversely, Cyfip+/- mice show a behavioral phenotype 

characterized by deficits in hippocampal-dependent learning and increases in 

basal protein expression, similar to fmr1-/- mice (Antar et al 2003; Pathania et al 

2014; Han et 2015). However, this connection between spine development and 

protein translation has not been well characterized. Cyfip proteins provide a 

potential link to activity-dependent actin polymerization and translational changes 

associated with synaptic plasticity (Lee and Jan 2012). 

 

Spine morphology and activity-dependent translation 

 

Overview of actin dynamics 

 

 Regulation of actin dynamics and morphology of dendritic spines involves a 

coordinated, highly regulated activity-dependent mechanism that balances the 

acting polymerization with functional changes at the synapse.  

 Actin cytoskeletal dynamics are essential to maintain proper neuronal 

function. One particular regulatory element is the WAVE complex. The WASP-

family veropolin homologous protein (WAVE) is found in nearly all cells, including 

neurons, and is active in a number of different cellular processes (Bompard 
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2004; Stradal et al 2004; Kim et al 2006; Pollitt and Insall 2009). The WAVE 

complex consists of WAVE1, Arp2/3, Hem1, Abi1, and either Cyfip1 or 2.  While 

the complex is inactive when completely assembled, dissociation of Cyfip/Hem1 

allows for its activation via Arp2/3 nucleation of actin filaments. When assembled 

into the WAVE complex, Cyfip blocks the Arp2/3 activating domain (VCA region) 

and prevents activity-dependent actin polymerization. In order to facilitate actin 

polymerization, Arp2/3 must have a free VCA region and be activated by an F-

actin filament (Smith and Rong 2004; Stradal et al 2004; Kim et al 2006).  

 Arp2/3-mediated polymerization of G-actin to F-actin filaments is a four step 

process. The first step is dissociation of the Cyfip/Hem1 inhibitory complex, 

which exposes the VCA region (Kim et al 2006; Pollitt and Insall 2009). The next 

step requires the uninhibited Arp2/3 protein to bind to a preformed actin filament. 

Following filament binding, Arp2/3 tethers a free actin monomer to the existing 

filament. The final step is elongation of the actin chain with the addition of other 

actin monomers. Initiation of this process of actin polymerization is ATP-

dependent (Suetsugu et al 1999; Innocenti et al 2004; Kim et al 2006). Hydrolysis 

of ATP bound to Arp2 serves as a timing mechanism to promote dynamic actin 

networks that can easily and readily respond quickly to activity-dependent 

changes. ATP hydrolysis is stimulated by interaction with either the actin 

monomer or filament (Smith and Rong 2004; Innocenti et al 2004). Therefore, 

hydrolysis may occur before the polymerization step is complete. However, the 

rate of nucleation of actin monomers matches the rate of ATP hydrolysis. 

Phosphate dissociation does not immediately induce disassembly of the F-actin, 
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but does allow for factors such as cofilin that facilitate the breakdown of 

filamenteous actin into actin monomers to interact with the newly formed chain 

(Kasai et al 2003; Okamoto et al 2007; Pilpel and Segal 2005; Bellot et al 2014).   

 

The role of Cyfip in activity-dependent spine changes  

 

 Dissociation of Cyfip from the WAVE complex is the first step that is 

necessary for WAVE activation and subsequently actin polymerization (Kim et al 

2006; Bellot et al 2014). Previous studies have shown a role for Rac1 signaling in 

regulating WAVE-mediated actin polymerization. However, Rac1 does not 

directly interact with the WAVE complex (Miki et al 1998; Rao and Craig 2000; 

Tolias et al 2005). More recent studies have shown that Rac1 interacts with Cyfip 

to facilitate dissociation and disinhibition of the VCA region (Figure 1-5). GTP-

bound Rac1 induces Cyfip/Hem1 to dissociate from the rest of the WAVE 

complex (Miki et al 1998: Tolias et al 2005; Bongmba et al 2011). This 

dissociation relieves the Cyfip-mediated block on the VCA region of Arp2/3 

(Machesky et al 1999; Eden et al 2002; Choi Et al 2005). Following this 

disinhibition, Arp2/3 can polymerize actin monomers to filamentous actin, and 

hydrolysis of GTP allows for Cyfip to reassociate with WAVE and prevent further 

cytoskeletal remodeling via WAVE. The binding of GTP Rac1 requires GEF 

activity. However, it is unclear which GEF is involved in this process, and how it 

is regulated. Unlike many Rac1-mediated processes, this is independent of Rho 

A activity and it is not affected by Cdc4 activation (Suetsugu et al 1999; Eden et 
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al 2002; Tolias et al 2005). Regulation of spine morphology and actin dynamics 

may have significant functional implications. Decreases in protein translation are 

associated with immature spine development and impairment of synaptic 

plasticity. This difference in spine morphology may have a contribution to the 

synaptic compartmentalization and the development or maintenance of LTP 

(Dahl et al 2003; Soderling et al 2003; Maurin et al 2014). 
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 As mentioned above, the inactive WAVE complex contains either Cyfip1 or 

2. These two proteins, although 88% homologous, are encoded by different 

genes, and have a key role in dendritic translation and actin dynamics (Antar et 

al 2003; Billuart et al 2003; Schenck et al 2003; Abebkhouhk and Bardoni 2014). 

Yeast-two hybrid studies show both Cyfip proteins were found to interact with 

FMRP (Napoli et al 2008). However, in vivo studies have shown preferential 

interaction of Cyfip1 with FMRP over Cyfip2 (Antar et al 2003). Cyfip2 was found 
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to localize to the WAVE complex and alter actin polymerization over protein 

translation (Antar et al 2003; Bongmba et al 2011; Abekhoukh et al 2014). 

Clinical studies show that aberrant function of both proteins may produce similar 

phenotypes. Unregulated Cyfip1 mRNA is present in some patients with autism 

spectrum disorders, which is often a comorbid diagnosis with fragile X syndrome 

(Sutherland 1979; Turner et al 1980; Hoeffer et al 2012). Additionally, some 

clinical populations with autism spectrum disorder or fragile X syndrome also 

have increased Cyfip2 mRNA and protein expression (Hoeffer et al 2012). This 

suggests that protein translation and actin dynamics may be connected, and that 

alterations in either process produces a similar pathology. 

 Alterations in actin dynamics and spine morphology occur as a result of 

activity-dependent changes at glutamatergic synapses. However, like protein 

translation, changes in spine morphology involves a highly coordinated pathway 

with several components that regulate actin polymerization. As a key regulator of 

the WAVE complex, Cyfip2 was recently found to have a role in drug-induced 

alterations in spine morphology. Kumar et al found a naturally occurring 

polymorphism between two lines of commercially available C57BL/6 animals. 

This polymorphism did not alter total Cyfip2 expression, rather it changed the 

stability of the protein. In the C57BL/6N animals, Cyfip2 showed a decreased 

half-life compared to C57BL/6J mice. This created a higher turnover in protein, 

and these animals also showed decreased spine density in the nucleus 

accumbens. This decrease in density was due to a decrease in both mature 

long/thin spines, and immature stubby spines. Additionally, these 6N did not 
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show the typical behavioral responses to acute or chronic cocaine administration. 

Passive injection of cocaine did not elicit the increase in locomotor activity in 6N 

animals that was seen with 6J mice. 6N mice were also resistant to reinstatement 

following a cocaine prime. This is likely due to the Cyfip2 polymorphism, as 

experiments using a knockin on a C57BL/6J background produced the same 

results (Kumar et al 2013).  

 Atlerations in spine morphology may have a direct or indirect role in 

modulating protein translation and cellular function. Translation and actin 

dynamics might represent a coupled mechanism that must occur in tandem to 

have functional changes in synaptic plasticity. 

 

Summary 

 

 Ethanol affects many areas of the brain including reward circuitry and 

memory systems, which include the hippocampus. While acute exposure to 

ethanol dampens excitation while promoting inhibition, chronic ethanol exposure 

induces activity-dependent changes to accommodate the persistent decrease in 

excitation (Carpenter-Hyland and Chandler 2006; Zhou et al 2007; Enoch et al 

2012; Zorumski et al 2014). In dendrites and dendritic spines, this is 

characterized by an increase in excitation and a decrease in local inhibition. 

However, the mechanisms driving these changes are not fully understood. 

 It has previously been shown that chronic ethanol increases NMDA receptor 

activity and expression. But, regulation of excitatory inputs in dendritic spines 
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also includes proteins that mediate inhibition. Of the proteins regulating excitation 

in dendrites and dendritic spines, Kv4.2 and its auxiliary protein KChIP3 are 

viable candidates for ethanol-induced homeostatic changes in inhibition. Kv4.2 is 

an A-type K+- channel that is one of the main regulators of backpropagating 

action potentials and excitotoxicity (Kim et al 2007; Kaufmann et al 2012; Labno 

et al 2014). Other disorders characterized by hyperexcitability show decreases in 

Kv4.2 expression and function (Hong et al 2003; Monaghan et al 2008; Aronica 

et al 2009). Additionally its interacting protein KChIP3 not only enhances 

inhibition by promoting Kv4.2 surface expression and function, but also inhibits 

NMDA-mediated current and protein expression (Kunjilwar et al 2004; Lin et al 

2004; Norris et al 2010; Zhang et al 2010; Wang et al 2012). These proteins 

exhibit inverse activity-dependent changes in expression and function. As NMDA 

receptors are activated, Kv4.2 expression decreases. Taken together, Kv4.2 and 

KChIP3 may have an influential role in mediating the homeostatic changes 

induced by neurons in the hippocampus to balance increased NMDA receptor 

expression and function. 

 Previous studies have shown hippocampal-dependent behaviors rely on the 

synaptic mechanism of LTP to execute learned behaviors that involve long-term 

memory, and this process may be altered by chronic ethanol exposure. 

Maintenance of LTP requires the induction of de novo protein synthesis in 

dendrites and dendritic spines (Pastalkova et al 2006; Govindarajan et al 2011; 

Hill et al 2013). The process of new protein synthesis relies on coordinated 

activity to increase or decrease expression of specific proteins. The factors in 
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dendrites and dendritic spines that mediate this activity-dependent translation 

have not been identified, they are components of the mTORC1 pathway and its 

downstream substrate FMRP is a likely candidate protein (Ma and Bliss 2009; 

Hoeffer 2012; Nesta 2014). As an mRNA-binding translational repressor, FMRP 

interacts with several mRNAs whose proteins are altered following chronic 

ethanol exposure, as well as the proteins of interest including Kv4.2, KChIP3, 

and NMDA receptor subunits (Jones 2003; Darnell et al 2012; Schaeffer et al 

2012). FMRP is also one of the key proteins mediating activity-dependent 

changes in protein homeostasis and is necessary for maintenance of basal 

protein levels (Antar et al 2005; Zalfa et al 2006; Henry 2011; Darnell and Richter 

2012). However, the role FMRP may have in regulating specific mRNAs during 

chronic ethanol exposure is completely uncharacterized. Studies in this 

dissertation seek to determine whether FMRP expression or activity is altered 

following chronic exposure, and if these changes correspond to alterations in 

FMRP-mRNA binding. 

 Long-term changes in protein expression at glutamatergic synapses is also 

accompanied by changes in dendritic spines. Disorders with disrupted 

translational regulation, such as fragile X syndrome show aberrant spine 

distribution and morphology (Jones 2003; Antar et al 2005; Castets et al 2005; 

Dictenberg et al 2008; Han et al 2015). It is not clear how these two processes 

are connected and how ethanol may alter both to maintain neuronal homeostasis. 

Cyfip2 is not only an interacting protein of FMRP, but also is necessary for 

appropriate actin polymerization (Pilpel and Segal 2005; Kim et al 2006; Chen et 
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al 2014). As seen with translational deficits, dysfunction of Cyfip2 induces 

alterations in protein translation, and these alterations correspond to resistance 

in developing drinking behaviors (Nesta et al 2012; Barak et al 2013; Han et al 

2015). Therefore, the question remains: how does chronic ethanol facilitate 

activity-dependent homeostatic changes in dendrites and dendritic spines?  The 

overarching hypothesis of this dissertation is that FMRP is necessary for 

activity-dependent homeostatic changes in protein expression and spine 

morphology following chronic ethanol exposure (Figure 1-6) 

 

Specific Aims 

 

Specific Aim 1: Test the hypothesis that exposure to chronic ethanol alters 

downstream substrates of FMRP at dendritic spines.  As key regulators of 

excitability and plasticity, Kv4.2, KChIP3, and NMDA receptor subunits are likely 

targets for homeostatic changes in protein expression to reestablish balanced 

neuronal signaling. These proteins are also downstream targets of FMRP, one of 

the main mediators of activity-dependent translation in dendrites and dendritic 

spines in the hippocampus. Studies under this aim will establish the nature of 

activity-dependent homeostatic alterations in protein expression following chronic 

ethanol exposure, and examine how ethanol may alter FMRP expression and 

function to drive these changes. 
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Specific Aim 2:  Test the hypothesis that inhibition of FMRP 

phosphorylation prevents ethanol-induced translational changes in the 

hippocampus. Although ethanol may alter FMRP activity through changes in 

phosphorylation, total protein expression, or binding partners, it may not be an 

essential component of ethanol-induced homeostasis. As a potential major 

regulatory element in the translational mechanism of ethanol-induced changes, it 

is necessary to determine the nature of FMRP-mediated changes in the 

hippocampus during chronic ethanol exposure. The hypothesis tested under this 

aim is whether blockade of FMRP activity alter ethanol-induced, homeostatic 

changes in protein expression. 

 

Specific Aim 3: Test the hypothesis that ethanol-induced alterations in 

FMRP-mediated translation are accompanied by changes in spine 

morphology. Previous studies have shown that alterations in FMRP-mediated 

protein expression are accompanied by changes in dendritic spine morphology. 

These alterations appear to be mediated by Cyfip2. A naturally occurring genetic 

polymorphism in two different C57BL/6 mouse lines provides the opportunity to 

examine the connection between actin polymerization and protein translation. 

Experiments conducted under this aim will discern whether these two processes 

are linked in chronic ethanol exposure of if they can occur independently of one 

another. 
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Chapter 2 

 

 

Exposure to chronic ethanol alters downstream 
substrates of FMRP at dendritic spines 

 
 
 

 

 

 

Background and Significance 

 

 Alterations at glutamatergic synapses in dendrites and dendritic spines in 

the hippocampus during exposure to chronic ethanol function to reestablish 

neuronal homeostasis (Calabrese et al 2006; Ramocki and Zoghbi 2008; Caljigas 

et al 2010; Haft et al 2014). Evidence suggests that during chronic ethanol 

exposure, prolonged inhibition of NMDA receptors induces homeostatic 

mechanism to maintain proper neuronal function (Lovinger et al 1990; Kumari 

and Ticku 2000; Carpenter-Hyland et al 2004; Hendrickson et al 2004; Tokuda et 
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al 2007; Nagy 2008; Gladding and Raymond 2011) This long-term exposure 

requires a less transient, more lasting change to balance excitation and inhibition 

(Kumari and Ticku 2000; Jung et al 2008; Nagy 2008; Pian et al 2010). However, 

the nature of these changes in the hippocampus, and how they are achieved are 

not well understood. 

 Disorders defined by hyperexcitable states such as epilepsy and fragile X 

syndrome provide evidence of a role not only for NMDA receptors, but also 

inhibitory proteins responsible for dampening local excitatory inputs 

(Ruschenschmidt et al 2006; Monaghan et al 2008; Henry 2011; Fernandez and 

Bagni 2008; Meng et al 2013; Russo et al 2013). In pyramidal neurons in the 

hippocampus, the A-type K+- channel Kv4.2 and its auxiliary protein KChIP3 are 

two of the main proteins that regulate glutamatergic inputs and balance excitation 

(Lin et al 2004; Kim et al 2007; Carrasquillo et al 2012; Kunjilwar et al 2013; 

Labno et al 2014). As some of the main regulators of excitability in dendrites and 

dendritic spines in the hippocampus, these proteins are important for balancing 

local glutamatergic inputs with the intracellular environment to prevent 

hyperexcitability and neurotoxicity (Ruiz-Gomez et al 2006; Kim et al 2007; 

Andrasfalvy et al 2008; Barnwell et al 2009; Carrasquillo 2013) 

 Maintaining long-term changes in homeostasis, in addition to alterations in 

function, it also likely involves adjusting local protein expression. This requires 

alterations in signaling cascades regulating protein synthesis and the 

translational machinery itself to make the necessary adjustments to 

glutamatergic function (Krug et al 1984; Klann and Richter 2007; Mercaldo et al 
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2009; Sossin and Lacaille 2010; Kim et al 2013; Thomas et al 2013). Previous 

studies indicate a potential role for substrates in the mTORC1 translational 

pathway and one of its downstream components, the mRNA-binding translational 

repressor protein, FMRP (Weiler et al 2004; Raab-Graham 2006; Costa-Mattioli 

et al 2009; Ma and Blenis 2009; Darnell and Klann 2013). Treatment with the 

mTORC1 inhibitor, rapamycin, blocks FMRP-mediated decreases in Kv4.2 

expression in the hippocampus and prevents homeostatic increases in other 

proteins at glutamatergic synapses, namely PSD-95 and CaMKII, in rat models of 

chronic ethanol exposure (Gross et al 2011; Lee et al 2011; Barak et al 2013; 

Takei and Hiroyki 2014).   

 FMRP expression and function is an important modulator of activity-

dependent changes in homeostatic signaling as well as overall basal protein 

levels for a number of downstream targets, including those affected by ethanol 

(Ramocki and Zoghbi 2008; Cajigas et al 2010; Henry et al 2011; Darnell et al 

2013). As such, FMRP likely contributes to the homeostatic mechanism inducing 

intracellular changes to compensate for the long-term effects of ethanol at 

glutamatergic synapses. However, how FMRP alters translation, and which 

proteins regulated by FMRP are altered by chronic ethanol exposure are not 

known. 

 Studies presented in this chapter focused on determining which targets of 

FMRP are altered by chronic ethanol exposure in the in vivo CIE mouse model 

and in vitro organotypic hippocampal slice cultures. These studies also examined 

the effect of chronic ethanol on FMRP activity and total protein levels in the 
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hippocampus and investigate whether these ethanol-induced changes in protein 

expression are consistent with alterations in FMRP-mRNA interactions during 

long-term ethanol exposure. 

Methods 

  

Organotypic hippocampal slice culture ethanol exposure  

 Hippocampal slice cultures were prepared from P6-P8 Sprague-Dawley rats 

as described in Mulholland et al 2014. In brief, pups were euthanized using either 

ice or isofluorane, sacrificed, and both hippocampi dissected out on cold 

dissecting media (500 ml Eagle’s Basal, 25 mM HEPES, 100 µg/ml Streptomycin, 

2 mM Glutamax). Next hippocampi were sliced into 400 µm coronal sections and 

placed with four slices per well onto an organotypic cell culture membrane in 

culture media (50 ml Dissecting media, 36 mM glucose, 25% v/v Earle’s 

Balanced Salt Solution, and 25% v/v heat inactivated horse serum). Cultures 

were incubated with 7.5% CO2 at 37 oC in culture media for at least eight days, 

and media was changed every 4 days. Following eight days of incubation, slices 

were treated with 75 mM ethanol in regular culture media or media alone in 

sealed vapor chambers. All experiments adhered to NIH Animal Care Guidelines 

and were approved through the IACUC. 

 

Protein Assay 

 Organotypic hippocampal slice cultures or hippocampal lystates from CIE-

treated mice were sonicated in 2% LDS. A BCA protein assay kit (Pierce) was 
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used to determine total protein content. Following sonication, standards with a 

blank (0, 0.25, 0.5, 0.75, 1.0, 1.5, and 2.0) and samples at 1:10 ratio with LDS 

were loaded in triplicate in a 96 well plate. Once complete, 9.8 ml of Reagent A 

and 200 µl of Reagent B were mixed, and 200 µl of the combined solution was 

added to each well. The plate was then incubated in the dark at 37 oC for 30 

minutes. The concentration for each well was calculated using the Bio-Rad 550 

MicroPlate Reader.  

 

Western blot analysis   

 Protein samples were mixed using the NuPage Invitrogen western system 

and then heated at 70 oC for 10 min. Proteins were separated via electrophoresis 

on a 7.5% Bis-Tris gel, transferred onto a PVDF membrane using the Bio-Rad 

semi-dry transfer, and a reversible Swift total protein stain was used to evaluate 

loading and for normalization of the data. Following the total protein stain, 

membranes were blocked in 4% non-fat milk, and incubated in primary antibody 

at 4 oC overnight. Primary antibodies used for these experiments are 

phosphorylated S499 FMRP (1:1000), FMRP total protein (1:2000), KChIP3 

(1:500), Kv4.2 (1:1000), GluN1 (1:3000), and GluN2B (1:3000). After primary 

antibody incubation, membranes were incubated in secondary antibody, KChIP3 

goat anti-rabbit and Kv4.2, GluN1, and GluN2B goat anti-mouse, for 1 hour at 

room temperature. After secondary antibody incubation, membranes were 

exposed to enhanced chemillumiscience using ChemicDoc MP Imaging System.  
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Co-immunoprecipitation (co-IP) and RT-qPCR    

 Following treatment with ethanol, PF-4708671 (PF) or ethanol and PF-

4708671 concurrently (PF + EtOH), cultures were processed for either western 

blot analysis or co-IP and RT-qPCR. Co-IP with mRNA solutions were adapted 

from the procedures described by Lee et al 2011 and the protocol of the Pierce 

Co-IP Kit. Using the resin and coupling spin columns from the Pierce Co-IP kit, 6 

µg of FMRP antibody was used for every mg of beads, with 6-7 mg of beads per 

spin column used for resin pre-clearing and antibody immobilization. AminoLink 

coupling resin was added to the spin column followed by coupling buffer washes 

(10 mM NaH2PO4, 150 mM NaCl in nuclease free water). Antibody for coupling 

was added to the spin columns in coupling buffer and incubated at room 

temperature for 120 minutes while slowly rotating. Following antibody coupling 

incubation, quenching buffer (1 M Tris-HCl) was added to ensure proper coupling. 

Hippocampal lysates were also pre-cleared with coupling buffer for 1 hr prior to 

co-IP. Slice cultures were homogenized with a needle and syringe with RNase 

and protease inhibitors in homogenization buffer (1.28 M sucrose, 40 mM Tris-

HCl pH 7.5, 20 mM MgCl2, and 1% NP-40, with ~ 2 ug/ml of RNasin Plus 

inhibitors, and 1X cOmplete Mini EDTA-Free Protease Inhibitor).  Hippocampal 

lysates were cleared with control agarose resin (80 µl for every 1 mg of lysate). 
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For lysate clearing, new columns were coated with coupling buffer, then lysate 

and control resin were incubated in the column for 1 hour at 4 oC with gentle 

mixing. Flow-through by centrifugation provided cleared lysate for co-IP 

experiments. After antibody and lysate preclearing, co-IP with mRNA was 

performed (all steps performed 4 oC).  Antibody-cleared spin columns were 

rinsed with wash buffer (0.1M PBS, 200 mM NaCl, and 2µl/ml of RNase Plus and 

1X protease inhibitor,), pre-cleared lysate added to spin column, and incubated 

overnight at 4 oC. Columns were then rinsed with wash buffer, and FMRP-

mRNAs were eluded from the column with Elution Buffer from Pierce kit, and 

mRNAs were then dissociated from FMRP with a TRIzol- chloroform extraction 

(Lee et al 2011). In brief, 200 µl of chloroform per 1 ml of TRIzol was added to 

each tube (1 ml TRIzol for every 75 mg of tissue), and incubated for 3 min at 

room temperature. After incubation, samples were centrifuged at 12,000 xg for 

15 min at 4 oC. The upper aqueous phase containing the mRNA was then 

transferred to a separate tube.  

 mRNA was purified using the Qiagen RNeasy Mini Kit and nonspecific 

cDNA was transcribed using the Applied Biosystems High Capacity RNA- to –

cDNA Kit (4387406). The reverse transcription reaction used a total volume of 20 

µl at 37 oC for 60 minutes, 95 oC for 5 minutes, and a 4 oC hold (Bio-Rad C1000 

thermocycler).  For qPCR, a Sybr Green qPCR kit on a Bio-Rad CFX 96 

thermocycler was used with an initial denaturation of 2 min at 94 oC followed by 

40 cycles with a 15 sec denaturation at 94 oC and 1 min of annealing and 



 75 

extension at 60 oC and a 4 oC hold. All primer sequences used are shown in 

Table 1. A schematic of the co-IP protocol is provided in Figure 2-1.  
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mRNA Primer Sequence

GAPDH 5’- AAGGCTCATGACCA 

3’- CAGGGATGATGTTCT

HPRT 5’ TTGGATACAGGCCAGACTTTGTT  

3’ CTGAAGTACTCATTATAGTCAAGGGCATA

FAAH 5’- ATGAACCCGTGGAAGCCCTC 

3’- CGCCGATGTCAGTGCCTAAAC

GluN1 5’- CTCTAGCCAGGTCTACGCTATCC 

3’- GACGGGGATTCTGTAGAAGCCA

GluN2B 5’- CTGGAGTTCTGGTTCCTTACTG 

3’- ATTCTCCTATCTTGCCCGGA

KChIP3 5’ CACCTATGCACACTTCCTCTTCA    

3’ ACCACAAAGTCCTCAAAGTGGAT

Kv4.2 5’-GCCTTCGTTAGCAAATCTGG

3’ GTGACATAAGGACACTGGG

Table 1. Primer sequences for RT-qPCR.

Figure'2)1!Co$IP!Experimental!Paradigm.!
!
Organotypic!hippocampal!slice!cultures!are!treated!using!an!8$day!
exposure!paradigm.!Following!exposure,!FMRP!is!immunoprecipitated!
with!mRNAs.!The!purified!samples!then!undergo!a!nonspecific!reverse!
transcripFon!and!a!quanFtaFve!PCR!with!cDNA$specific!primers.!!'

FMRP%mRNA)Interac1ons)Following)Chronic)Ethanol)Exposure))

8"Day"EtOH"Treatment"

Co1"IP"FMRP"and"
mRNAs"

RNA"purifica@on"and"RT"

qPCR"
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Chronic intermittent ethanol 

 Male C57BL/6J mice, approximately 9 weeks of age at the start of the 

experiment, were housed in a climate-controlled vivarium with a 12-hour 

light/dark cycle. Beginning approximately 3 hours into the dark cycle, mice were 

exposed to either ethanol or air vapor for 14 hours, followed by an 8-hour 

withdrawal period. This cycle of intermittent ethanol exposure was repeated for 

four days. Following the last 14-hour exposure period of a 4-day cycle, animals 

experienced a 72-hour withdrawal. All animals included in the study completed 

four of these weeklong cycles of CIE exposure and withdrawal. 

 

Statistical Analysis 

 Western blots were quantified using ImageJ software (National Institutes of 

Health). Density of the appropriate band for each antibody was measured. 

Background for each lane was subtracted from the band density and variations in 

protein sample loading were normalized with a total protein stain, as previously 

mentioned. Student t-tests were used to test for significant differences between 

control and ethanol groups. Four-day timepoints are paired t-tests; samples from 

each group for each n were taken from the same animal. 

 RT-qPCR experimental cDNAs were normalized against GAPDH for each 

sample. Student t-tests were again used to evaluate significant differences 

between the fold change for control and ethanol groups. 
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Results 

 

Homeostatic changes in protein expression at glutamatergic synapses 

 

 Acute ethanol decreases NMDA receptor function and local excitatory 

inputs to dendritic spines in the hippocampus. In contrast, prolonged exposure to 

ethanol induces mechanism to counteract the chronic inhibition and maintain 

proper excitatory function (Lovinger et al 1990; Kumari and Ticku 2000; Nagy 

2008; Korkotian et al 2013; Talani et al 2013). However, the nature of these 

changes has not been characterized.   

 To evaluate changes in protein expression at glutamatergic synapses, 

western blot analysis was used to define differences in NMDA receptor subunit 

expression in chronic intermittent ethanol (CIE)-exposed mice. Whole 

hippocampal homogenates were tested for GluN1 and GluN2B expression. As 

shown in Figure 2-2, in mice exposed to CIE, hippocampal tissue showed an 

increase in total GluN1 receptor expression as well as increases in GluN2B 

expression (GluN1: t test, t(20)= 2.146, * p< 0.05, n= 11; GluN2B: t test, t(20)= 

2.132, * p< 0.05, n=11). 
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 In addition to changes in NMDA glutamate receptors, balance in excitation 

also involves alterations in proteins that mediate hyperexcitability; this includes 

the A-type K+-channel Kv4.2 and its auxiliary protein KChIP3. Again, western blot 

was used to evaluate changes in Kv4.2 and KChIP3 protein expression in the 

same CIE mouse model. Immunoblot analysis of total protein expression showed 

a decrease in Kv4.2 expression (Figure 2-3). Blots for KChIP3 also revealed a 

decrease in protein expression, suggesting ethanol alters both excitatory and 

inhibitory proteins to maintain neuronal homeostasis (Kv4.2: t test, t(16)=2.121, 

*p<0.05, n = 9; KChIP3: t test, t(18)=2.123, *p<0.05, n= 10).  
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 In order to further investigate the mechanisms driving these changes, 

protein expression in the organotypic hippocampal slice culture model was 

evaluated to confirm consistency with the CIE in vivo paradigm. As before, using 

western blot, NMDA receptor subunit expression was measured by western blot. 

At a dose of 75 mM ethanol, GluN1 protein levels were increased, thus 

replicating the observations obtained in CIE- exposed mice. This increase 

occurred after 8 days of exposure, but it was not seen with an acute exposure 

period of 24 hours with the same dose. Although there was a slight increase in 

GluN1 subunit expression after 4 days of exposure, this was not significant 

(Figure 2-4; GluN1:  24 hr: t test, t(4)=1.217, p= 0.2903, n= 5; 4-day: t test, 

t(3)=2.822, p= 0.0667, n= 6, 5; 8-day: t test, t(10)=2.997, *p<0.05, n= 6). In 

addition to GluN1, GluN2B protein levels were also measured. A time-course 
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treatment with 75 mM ethanol also induced an increase in GluN2B. Similar to 

GluN1, this increase was not seen after 24 hours of ethanol exposure, but was 

significantly increased following both 4- and 8-day exposure paradigms (Figure 

2-4; GluN2B:  24 hr: t test, t(4)=1.295, p= 0.1325, n= 5; 4-day: t test, t(4)=2.796, 

*p<0.05, n= 5; 8-day: t test, t(12)=2.612, *p<0.05, n= 7).  

 As with the in vivo model, western blot was also used to evaluate changes 

in total protein levels of Kv4.2 and KChIP3. These proteins also mimicked results 

from CIE animals and exhibited a decrease in protein expression after both 4 and 

8 days of ethanol exposure. Time course experiments revealed that these 

changes were limited to the longer exposure periods of 4 and 8 days (Figure 2-5; 

Kv4.2:  24 hr: t test, t(4)=0.2454, p= 0.4091, n= 5; 4-day: t test, t(4)=2.960, 

*p<0.05, n= 5; 8-day: t test, t(12)=2.174, *p<0.05, n= 7;  KChIP3:  24 hr: t test, 

t(4)=1.405, p= 0.1163, n= 5; 4-day: t test, t(5)=3.588, *p<0.05, n= 5,6; 8-day: t 

test, t(10)=3.016, *p<0.05, n= 6). 
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Ethanol-induced changes in FMRP expression and function 

 

 Chronic ethanol drives homeostatic changes at glutamatergic synapses to 

maintain optimal excitatory signaling. However, the mechanism underlying these 

changes remains unknown. One potential candidate in this process is the mRNA-

binding protein FMRP. FMRP has previously been shown to regulate translation 

of Kv4.2, KChIP3, and NMDA receptor subunits (Jones 2003; Henry et al 2011; 

Darnell et al 2011). Increases in phosphorylation of FMRP at S499 are 

associated with an increase in FMRP-mRNA interaction, and therefore, a 

decrease in protein expression (Laggerbauer et al 2001; Ceman et al 2003; Zalfa 

et al 2006; Darnell and Klann 2013; Bartley et al 2014). 

 To evaluate total and phosphorylated FMRP protein expression, western 

blot analysis was used in CIE-exposed mouse hippocampal tissue. A phospho-

specific antibody for S499 revealed an increase in expression of phospho-FMRP 

protein in the ethanol-exposed mouse hippocampus compared to controls. 

However, there was no change in total FMRP protein levels (Figure 2-6; 

phospho-FMRP: t test, t(40)=2.382, *p<0.05, n= 21; FMRP: t test, t(35)=0.0997, 

p=0.9211, n= 18,19). In the in vitro model culture system, western blot was also 

used to determine changes in phosphorylated and total FMRP protein following 

different ethanol exposure time points. Similar to changes observed following in 

vivo exposure, there was an increase in phosphorylated FMRP in cultures 

treated with ethanol, but again no change in total FMRP protein expression. 

However, unlike observations with NMDA receptor subunits proteins, this 
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increase was seen acutely after only 24 hours of exposure and persisted 

throughout the longer exposure periods of 4 and 8 days (Figure 2-7; phospho-

FMRP:  24 hr: t test, t(6)=2.474, *p<0.05, n= 6; 4-day: t test, t(3)=2.848, *p<0.05, 

n= 5, 6; 8-day: t test, t(5)=3.149, *p<0.05, n= 6; 8-day+24 hr withdrawal: t test, 

t(6)=2.635, *p<0.05, n= 6). Additionally, 8 days of ethanol exposure followed by 

24 hours of acute withdrawal produced the opposite effect, with a significant 

decrease in phosphorylated FMRP protein while total protein levels remain 

unchanged (Figure 2-7 FMRP:  24 hr: t test, t(4)=0.2356, p= 0.4191, n= 5; 4-day: 

t test, t(4)=0.2356, p= 0.4191, n= 5; 8-day: t test, t(5)=0.7408, p=0.4921, n= 6; 8 

–day+24 hr withdrawal: t test, t(6)=0.8217, p=0.4427, n= 6). This increase was 

represented by an increase in phosphorylated FMRP, and not a general increase 

in total protein expression (Figure 2-8; t test, t(5)=2.672, *p<0.05, n= 3). 
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FMRP-mRNA interactions 

 

 Although ethanol may 

increase FMRP 

phosphorylation at S499, the 

mRNAs interacting with FMRP 

under control and ethanol-

treated conditions influence 

whether FMRP mediates the 

changes in expression of these 

proteins. For these experiments, 

organotypic hippocampal slice 

cultures was used to investigate 

changes in FMRP- mRNA 

binding under control and ethanol-exposed conditions. Using co-IP and RT-

qPCR, FMRP with bound mRNAs were pulled down, purified, and amplified with 

cDNA-specific primers (Figure 2-1). Previous studies in rat models of chronic 

ethanol have confirmed increases in PSD-95 protein expression (Barak et al 

2013). As one of the first, and most widely researched FMRP targets, PSD-95 

mRNAs were used as confirmation that mRNA binding to FMRP was preserved 

using this paradigm, and western blot analysis was used to as a positive control 

to confirm successful pull down of FMRP (Figure 2-9; PSD-95: t test, t(5)=2.672, 

*p<0.05, n= 3).  It is important to note that decreased FMRP-mRNA associations 
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are indicative of an increase in translation, and therefore, an increase in protein 

expression. In the hippocampal slice cultures, PSD-95 mRNA binding to FMRP is 

significantly decreased following 8-day ethanol exposure. This suggests that 

FMRP may also mediate expression of other proteins implicated in ethanol-

induced homeostatic changes. 

 

 Examination of 

mRNAs coding for NMDA 

receptor subunits in the 

hippocampus indicated no 

change in GluN1 in 

ethanol-exposed slices 

compared to controls. 

However, analysis of 

GluN2B show a decrease 

in FMRP-GluN2B mRNA 

binding (Figure 2-10; GluN1: t test, t(7)=0.9546, p=0.3716, n= 8; GluN2B: t test, 

t(8)=2.402, *p<0.05, n= 9; Kv4.2:  t test, t(8)=2.340, *p<0.05, n= 9; KChIP3: t test, 

t(7)=2.561, *p<0.05, n= 6). In addition to these mRNAs, others coding for 

proteins that influence inhibitory signaling were also measured, including Kv4.2 

and KChIP3. Co-IP and subsequent RT-qPCR showed an increase in FMRP 

binding to both Kv4.2 and KChIP3 mRNAs. This increase in association indicates 

an increase in FMRP- mRNA interaction, and therefore an increase in inhibition. 
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This also suggests a decrease in Kv4.2 and KChIP3 mRNA translation and 

protein expression.  
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Figure'2)10'Ethanol(induced.altera0ons.in.FMRP(mRNA.
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mRNAs.of.KChIP3.were.also.significantly.increased.as.a.result.of.
chronic.ethanol.exposure.(n=.6,.*.p<.0.05)'

Ctrl EtOH
0.0

0.5

1.0

1.5

Fo
ld

 C
ha

ng
e 

(G
A

PD
H

-G
lu

N
1)

A"

Fo
ld

 C
ha

ng
e 

(G
A

PD
H

-G
lu

N
2B

 )

Ctrl EtOH
0.0

0.5

1.0

1.5

*"

B"

Ctrl EtOH
0.0

0.5

1.0

1.5

Fo
ld

 C
ha

ng
e 

(G
A

PD
H

-K
v4

.2
) *"

C"

Ctrl EtOH
0.0

0.5

1.0

1.5

Fo
ld

 C
ha

ng
e 

(G
A

PD
H
-K

C
hI

P3
) *"

D"



 91 

Discussion 

 

 The main findings of this chapter are that chronic ethanol exposure induces 

homeostatic, bidirectional changes in protein expression in dendrites and 

dendritic spines that may function to reestablish the balance between excitation 

and inhibition. Furthermore, these changes in protein translation correspond to 

alterations in FMRP activity and mRNA interactions. These results suggest that 

restoring homeostasis during exposure to chronic ethanol is a multifaceted, 

coordinated effort that requires adjustments in both excitation and inhibition. 

However, components of these systems may share a common translational 

pathway with FMRP, and increased FMRP activity may be an essential 

component of ethanol-induced changes in protein expression. 

 Previous results have shown that long-term ethanol exposure promotes 

excitation at glutamatergic synapses and dampens inhibition (Lovinger 1990; 

Hendricson et al 2007; Korkotian et al 2013; Zorumski et al 2014). This increase 

in glutamatergic signaling is not limited to increases in NMDA receptors, and 

likely involves a reduction in local inhibitory proteins in dendrites and dendritic 

spines. Results presented in this chapter confirm a chronic ethanol-induced 

increase in GluN1 and GluN2B subunit expression in the hippocampus following 

both in vitro and in vivo chronic ethanol exposure. Previous studies from our lab 

indicate that this increase in NMDA receptor expression is specific for GluN2B-

containing NMDA receptors, and GluN2A expression remains unchanged 

(Carpenter-Hyland et al 2004). Functionally, this shift may have important 
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implications in altered plasticity and excitability in response to chronic ethanol 

exposure. Previous studies in Huntington’s disease, fragile X syndrome, and 

epilepsy have shown that specifically GluN2B-containing NMDA receptors are 

important for the development of this hyperexcitable phenotype, and suppression 

of GluN2B dampens NMDA-mediated cell death in hippocampal primary cultures 

(Monaghan et al 2008; Lei et al 2010; Russo et al 2013). Taken together with 

these previous functional studies, in GluN2B-containing NMDA receptors may 

have a key contribution to the increased excitability induced by chronic ethanol 

exposure.  

 These results also suggest an important role for Kv4.2 and the auxiliary 

protein KChIP3 in mediating ethanol-induced hyperexcitability in the 

hippocampus. Results presented here confirm other studies from our lab found 

that shows a decrease in Kv4.2 channel expression following chronic ethanol 

exposure. Additionally, previously published work demonstrated a decrease in A-

type current following chronic ethanol that is not attributed to other A-type K+- 

channels, such as Kv1.4 (Mulholland et al 2014). As one of the main influences 

dampening excitatory inputs, Kv4.2 has a well-defined role in epileptogenesis 

and hyperexcitability in the hippocampus (Hong et al 2003; Monaghan et al 2008; 

Aronica et al 2009; Barnwell et al 2009). It is also of note, that Kv4.2 may have 

an important role in NMDA-mediated hyperexcitability. Interestingly, increases in 

GluN2B-containing NMDA receptors is associated with decreases Kv4.2-

mediated A-type current as well as Kv4.2 expression (Kim et al 2007; Lei et al 

2008; Lei et al 2010). As such, Kv4.2 likely has an integral role in maintaining 
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homeostatic increases in excitability and reduction in Kv4.2 expression that may 

reflect a coupled homeostatic response with the increase in GluN2B expression. 

 In addition to a reduction in expression of Kv4.2, our results also show a 

decrease in KChIP3 protein expression. Importantly, KChIP3 is integral in fine-

tuning Kv4.2 channel kinetics and is necessary for Kv4.2 channel surface 

expression (Shibata et al 2003; Lin et al 2004; Menegola et al 2006 Ruiz-Gomez 

et al 2006). Previous studies in our lab have shown that this ethanol-induced 

decrease in expression of Kv4.2 channels is limited to surface-expressed protein 

(Mulholland et al 2014). Taken together, this suggests that the decrease in 

KChIP3 contributes to the decreased surface expression of Kv4.2. In addition to 

Kv4.2, KChIP3 may also contribute to the increased excitation resulting from 

chronic exposure. KChIP3 interacts either directly with the GluN1 or GluN2B 

subunit to decrease NMDA surface expression, or indirectly by binding to PSD-

95 and decreasing NMDA-mediated current (Zhang et al 2010; Wang et al 2012). 

Therefore, this ethanol-induced decrease in KChIP3 may have an important role 

in both excitation and inhibition during chronic ethanol exposure. 

 These data also provide insight into how ethanol may alter neuronal 

homeostasis by mediating local translation in dendrites and dendritic spines. 

Ethanol exposure resulted in an increase in FMRP phosphorylation at S499 in 

both acute and long-term exposure paradigms with high dose ethanol. However, 

ethanol-induced changes in other proteins of interest were not seen after a short-

term 24-hour exposure period, only after a longer 8-day exposure. This increase 

in FMRP phosphorylation after acute ethanol exposure may reflect changes in 
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other FMRP-mediated translational mechanism for short-term adaptations. 

Studies in seizure disorders, such as epilepsy, have shown that although there is 

an increase in FMRP after 30 minutes. However, more sustained changes in 

protein expression of its binding partners may occur between 2 and 48 hours 

after the initial induction of seizure activity (Price and Ring 2011; Meng et al 

2013; Russo et al 2013). Conversely, phosphorylation at S499 was significantly 

decreased following a 24-hour withdrawal period after an 8-day ethanol treatment. 

Acute withdrawal periods following long-term exposure are characterized by 

increased NMDA-mediated hyperexcitability that can lead to withdrawal-induced 

seizures (Hall and Zador 1997; Duka et al 2004; Hendricson et al 2007). This 

decrease in phosphorylation may be indicative of the need for an immediate shift 

in translational mechanisms or protein expression to correct the imbalance 

caused by an acute withdrawal of ethanol. Taken together, these results suggest 

that FMRP may mediate both short-term and long-term, homeostatic changes in 

the hippocampus during ethanol exposure. 

 Increases in FMRP phosphorylation as a result of ethanol exposure are 

indicative of changes in activity. However, FMRP may regulate different aspects 

of translation, and it has a multitude of interacting partners in dendrites and 

dendritic spines (Laggerbauer et al 2001; Ascano et al 2012; Darnell and Richter 

2012). Therefore, it is informative to discern whether there is a difference in the 

mRNAs corresponding to the proteins of interest bound to FMRP during control 

and ethanol-treated conditions. Results in these studies revealed changes in 

FMRP- mRNA binding as a result of 8-day ethanol exposure. These experiments 
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show an increase in Kv4.2 and KChIP3 mRNAs bound to FMRP and a decrease 

in GluN2B, but not GluN1 following long-term ethanol treatment. These data 

suggest that FMRP directly modulates Kv4.2, KChIP3, and GluN2B translation 

during ethanol exposure. As previously mentioned, the composition of NMDA 

receptor subunits may affect not only NMDA-mediated hyperexcitability, but also 

Kv4.2 expression and function (Lei et al 2008; Kaufmann et al 2012). In these 

experiments, ethanol affects GluN2B, but not GluN1 FMRP-mRNA binding. 

During chronic ethanol exposure, FMRP may have a more pronounced effect on 

NMDA channel function by modulating subunit expression and therefore 

composition, rather than affecting overall NMDA receptor expression. 

 Experiments in this chapter have confirmed that multiple factors contribute 

to the maintenance of homeostasis at glutamatergic synapses. Increases in 

NMDA receptor expression promote excitability and glutamatergic signaling, 

while decreases in Kv4.2 and KChIP3 dampen excitation. Additionally both of 

these mechanisms may be mediated by FMRP activity. Further experiments 

presented in the next chapter will define whether FMRP activity is necessary for 

ethanol-induced alterations in protein expression. 
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Chapter 3 

 

 

 
Inhibition of FMRP phosphorylation prevents 
ethanol-induced translational changes in the 

hippocampus 
 

 

 

 

 

Background and Significance 

 

 FMRP protein expression and activity are important in maintaining basal 

protein levels and regulating activity-dependent translation in dendrites and 

dendritic spines (Bardoni et al 1997; Antar et al 2005; Dictenberg et al 2008; 

Henry et al 2011). The absence of FMRP causes an increase in basal protein 

levels as well as dysregulated synaptic plasticity in both clinical studies and fmr1-
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/- mouse models (Hagerman and Strafstorm 2009; Gross et al 2011; Krueger and 

Bear 2011; Lee et al 2011; Maurin et al 2014; Chen and Joseph 2015). The role 

of FMRP in regulating cellular function throughout development and in certain 

pathological states is relatively well characterized. However, how FMRP 

maintains basal protein levels and activity-dependent translation in a typically 

functioning adult brain is unknown. Studies in Chapter 2 of this dissertation 

demonstrated ethanol-induced changes in FMRP phosphorylation and alterations 

in FMRP-mRNA interactions, supporting the suggestion that chronic ethanol 

exposure induces an increase in FMRP activity. These results also implicated 

certain mRNA targets of FMRP in ethanol-induced synaptic plasticity that are key 

mediators of local excitation in dendritic spines, including Kv4.2, KChIP3, and 

NMDA receptor subunits. These changes in protein expression represent longer, 

homeostatic adaptations that are not induced by short-term exposure, even at 

high doses, and this longer exposure period causes significant changes in 

FMRP-mRNA interactions for these proteins of interest. Although FMRP activity 

is altered by chronic ethanol treatment, it is important to determine if these 

changes in FMRP phosphorylation and mRNA binding are necessary for the 

homeostatic alterations in protein expression, and to investigate how ethanol 

might induce these changes in FMRP function. Translation in dendrites and 

dendritic spines is a highly coordinated process that involves several 

components that are discretely regulated in order to maintain proper function at 

the synapse (Kapp and Lorsch 2004; Weiler et al 2004; Sossin and Lacaille 

2010; Hinnebusch and Lorsch 2012).  
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 One of the main intracellular pathways regulating local dendritic translation 

is the mTORC1 signaling cascade. Studies from other groups have 

demonstrated an important role for other mTORC1 substrates, namely p70 

ribosomal S6 kinase 1 (S6K1), in mediating changes in protein expression 

following chronic ethanol exposure in vivo (Holz et al 2005; Nesta 2010; Barack 

et al 2013). Results from these studies revealed disruption of mTORC1 activity 

during ethanol treatment prevents ethanol-seeking behaviors and memory 

deficits (Nesta et al 2010; Barak et al 2013; Nesta et al 2014). Rats exposed to 

chronic intermittent ethanol have significantly fewer active lever presses in a 

standard reinstatement paradigm when treated with the mTORC1 inhibitor 

rapamycin (Nesta et al 2010; Barak et al 2013) Additionally, rapamycin also 

blocked ethanol-induced changes in expression of other proteins in dendritic 

spines that are regulated by FMRP (Nesta et al 2010; Barak et al 2013). 

 Although these results suggest FMRP and its upstream mediators may play 

an integral role in mediating translational changes during chronic ethanol 

exposure, it is unclear if this change in activity is necessary for ethanol-induced 

translation. Since mTORC1 and its substrates comprise one of the main 

pathways regulating protein synthesis in response to changes in synaptic activity, 

components of this pathway, including S6K1 and FMRP, are likely mediators of 

ethanol-induced synaptic plasticity. During CIE, increased S6K1 activity via 

mTORC1 activation may regulate increased FMRP phosphorylation at S499. 

This increase in phosphorylation induces binding to select mRNAs to decrease 

translation of these specific proteins while other FMRP-mRNA interactions are 
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reduced, resulting in increased protein expression (Figure 3-1). Studies 

presented in this chapter investigated whether increased FMRP phosphorylation 

is necessary for ethanol-induced changes in protein expression, and whether 

these changes in phosphorylation are mediated through S6K1 activity. 

 

 

 

Methods 

 

Organotypic hippocampal slice culture ethanol exposure  

 Hippocampal slice cultures were prepared from P6-P8 Sprague- Dawley 

rats, as described in Chapter 2. After plating hippocampal slice cultures were 

incubated in culture media for at least eight days before treatment. All 

Figure'3)1!!CIE%induced!changes!in!FMRP!signaling.!!
!
S6K1!phosphorylates!FMRP!in!an!ac?vity%dependent!manner!to!maintain!the!necessary!
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increased!mTORC1!and!S6K1!ac?vity.!S6K1%mediated!phosphoryla?on!of!FMRP!at!S499!
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experiments adhered to NIH Animal Care Guidelines and were approved through 

the IACUC. Slice cultures were exposed to 75 mM ethanol, 6 uM PF-4708671 

(PF), or both for 8 days. 

 For S6K1 inhibition, a dose-response curve determined that 6 µM PF was 

the concentration that inhibited FMRP phosphorylation, but did not alter other 

downstream substrates. Therefore, this concentration was used in subsequent 

experiments. The inhibitor, PF-4708671 was added to culture media daily 

concurrent with ethanol exposure. After exposure, slices were scraped from the 

culture membrane, sonicated in 2% LDS, and prepared for either western blot 

analysis, or co- immunoprecipitation and RT-qPCR. See Chapter 2 for extended 

methods. 

 

Protein Assay 

 Organotypic hippocampal slice cultures were sonicated in 2% LDS. A BCA 

Pierce Protein Assay Kit was used to determine total protein content as 

described in Chapter 2.  

 

Western blot analysis   

 Both mouse hippocampal tissue and organotyipc hippocampal slice cultures 

were sonicated in 2% LDS. Protein samples were separated using 

electrophoresis, transferred to a PVDF membrane, and a reversible Swift total 

protein stain was used for normalization. Primary antibodies used were 

phosphorylated S499 FMRP (1:1000), KChIP3 (1:500), Kv4.2 (1:1000), GluN1 
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(1:3000), and GluN2B (1:3000). After primary antibody incubation, membranes 

were incubated in secondary antibody: phosphorylated FMRP and KChIP3 in 

goat anti-rabbit and FMRP, Kv4.2, GluN1, and GluN2B in goat anti-mouse for 1 

hour at room temperature. After secondary antibody incubation, membranes 

were exposed to an enhanced chemillumiscence and imaged with a ChemicDoc 

MP Imaging System (Bio-Rad, Hercules, CA). See Chapter 2 for extended 

methods. 

 

Co- immunoprecipitation (co-IP) and RT-qPCR    

 Following treatment with ethanol, PF, or both, cultures were processed for 

either western blot analysis or co-IP and RT-qPCR. Co-IP with mRNA solutions 

were adapted from Lee et al 2011 and Pierce co-IP Kit. For co-IP, 6 µg of FMRP 

total protein antibody was used for every mg of beads, with 6-7 mg of beads per 

spin column. AminoLink coupling resin was added to spin column followed by 

coupling buffer washes. Antibody for coupling was added to the spin columns in 

coupling buffer and incubated at room temperature for 120 minutes with slow 

rotation. Hippocampal lysates were also pre-cleared prior to co-IP. After antibody 

and lysate preclearing, co-IP with mRNA was performed (all steps kept at 4 oC).  

Columns were then rinsed with wash buffer, and FMRP-mRNAs were eluded 

from column with Elution Buffer from the Pierce kit, and mRNAs were dissociated 

from FMRP with a TRIzol- chloroform extraction (Lee et al 2011). Next, mRNA 

was purified using the Qiagen RNeasy Mini Kit and nonspecific cDNA was 

transcribed using the Applied Biosystems High Capacity RNA- to –cDNA Kit. For 
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qPCR, the Sybr Green qPCR kit was used on a Bio-Rad CFX 96 thermocycler 

with an initial denaturation of 2 min at 94 oC followed by 40 cycles with a 15 sec 

denaturation at 94 oC and 1 min of annealing and extension at 60 oC and a 4 oC 

hold. All experimental data were normalized to GAPDH. The primer sequences 

used are presented in Table 1; Chapter 2. Refer to Chapter 2 for detailed 

methods. 

 

Statistical Analysis 

 Experiments with control and either PF or Veh groups were analyzed with a 

student t-test with significance p < 0.05. For experiments with S6K1 inhibitor (PF-

4708671) and concurrent ethanol treatment, a one-way ANOVA was used to 

determine significance. 

 

Results 

 

Inhibition of specific S6K1 substrates 

 

 In the previous chapter, experiments addressed whether ethanol alters 

FMRP protein expression and activity. Results presented here address how 

ethanol may alter FMRP phosphorylation, and whether this increase in 

phosphorylation is necessary for the homeostatic changes in protein expression 

following chronic ethanol exposure. Specifically, these experiments investigate 

whether S6K1 phosphorylates FMRP at S499, and if blockade of FMRP 



 103 

phosphorylation through S6K1 inhibition will prevent ethanol-induced changes in 

FMRP-mRNA binding and protein expression. Importantly, treatment with the 6 

µM dose of the S6K1 inhibitor, PF-4786071, did not significantly alter other 

necessary downstream components of the S6K1 translational pathway. These 

include S6, which is required for assembly of the pre-initiation complex, and 

eIF4E, the mRNA cap-binding protein that is necessary to begin active 

translation (Figure 3-2; phospho-S6: t test, t(4)=0.3946, p= 0.7133 n= 3; eIF4E: t 

test, t(4)=1.081, p= 0.3403 n= 3; GluN1: t test, t(4)=0.8478, p= 0.4443 n= 3; 

GluN2B: t test, t(4)=0.2354, p= 0.8255 n= 3; Kv4.2: t test, t(4)=0.04028, p= 

0.9698 n= 3; KChIP3: t test, t(4)=0.3239, p= 0.7623 n= 3).   
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 Organotypic hippocampal slice cultures and western blot were used to first 

characterize the S6K1-specific inhibitor (PF) in both ethanol-treated and 

untreated neuronal cultures. In an 8-day ethanol exposure paradigm, treatment 

with PF or concurrent PF + ethanol treatment significantly decreased FMRP 

phosphorylation levels compared to ethanol only. However, neither group varied 

significantly compared to controls (Figure 3-3; phospho-FMRP: one-way ANOVA, 

F(3,12)= 6.174 p= 0.0062, Tukey post hoc, *p<0.05, n= 5).  
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Effect of S6K1 inhibition on protein expression 

 

 Using the same 8-day ethanol exposure paradigm, the effects of exposure 

to the S6K1 inhibitor were evaluated for ethanol-induced alterations in NMDA 

receptor subunits. Ethanol treatment alone produced the expected effect of an 

increase in GluN1 subunit expression (Figure 3-4; GluN1: one-way ANOVA, 

F(3,12)= 3.324 p= 0.0567, Tukey post hoc, *p<0.05, n= 5). However, PF alone 

and PF with 75 mM ethanol did not significantly decrease GluN1 protein levels 

compared to ethanol alone.  

 GluN2B total protein expression was also evaluated using western blot. 

Similar to GluN1, there was a significant increase in protein expression with 

ethanol treatment only. Addition of PF to the culture media alone did not 

significantly change expression levels from either control or ethanol-treated 

tissue. When PF and ethanol were added to hippocampal slices in combination, 

GluN2B protein expression decreased significantly compared to ethanol- treated 

tissue, but did not show a significant change compared to controls (Figure 3-4 

GluN2B: one-way ANOVA, F(3,12)= 5.665 p= 0.0.0272, Tukey post hoc, *p<0.05, 

n= 5). 
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 In addition to NMDA receptor subunits, Kv4.2 and KChIP3 protein levels 

were also investigated with inhibition of FMRP phosphorylation. Consistent with 

results from Chapter 2, ethanol alone caused a significant decrease in 

expression of both Kv4.2 and KChIP3 (Figure 3-5; Kv4.2: one-way ANOVA, 

F(3,12)= 5.509 p= 0.0148, Tukey post hoc, *p<0.05, n= 5; KChIP3: one-way 

ANOVA, F(3,12)= 6.174 p= 0.0.146, Tukey post hoc, *p<0.05, n= 5). However, 

this decrease in Kv4.2 and KChIP3 expression was prevented by exposure to PF. 

Additionally, KChIP3 protein levels with S6K1 inhibition alone were significantly 

decreased compared to ethanol alone, but were not different compared to control 

slices. Kv4.2 expression with S6K1 inhibition, however, was unchanged 

compared to both controls cultures and ethanol-treated slices. 
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Alterations in FMRP-mRNA ethanol-induced interactions following S6K1 

inhibition 

 

 Changes in protein expression with inhibition of FMRP phosphorylation via 

decreases in S6K1-mediated activity is consistent with a potential role for FMRP 

in translational changes during chronic ethanol-induced plasticity. To further 

examine direct FMRP-mRNA interactions, we again used co-immunoprecipitation 

of FMRP-mRNA complexes followed by RT-qPCR analysis of GluN1, GluN2B, 

Kv4.2, and KChIP3. As shown in Figure 3-6, these results corresponded to the 

changes in protein expression. GluN1 mRNA bound to FMRP was not significant 

following ethanol treatment alone, confirming observations in Chapter 2. In the 
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western blot experiments with PF treatment, none of the other treatment groups, 

PF or PF + ethanol, were significantly different compared to controls or ethanol 

alone. However, as seen in previous experiments, GluN2B mRNA bound to 

FMRP in ethanol-treated cultures was significantly reduced compared to controls 

alone. Treatment with the S6K1 inhibitor blocked ethanol-induced decreases in 

GluN2B mRNAs. PF alone did not significantly alter mRNA levels compared to 

either control or ethanol alone (Figure 3-6; GluN1: one-way ANOVA, F(3,12)= 

0.3996 p= 0.7558, n= 5; GluN2B: one-way ANOVA, F(3,15)= 4.232 p= 0.0235, 

Tukey post hoc, *p<0.05, n= 6).  

 

 

 

Figure'3)6'!Changes!in!NMDA!receptor!subunit!mRNA!interac7ons!with!FMRP!with!
S6K1!inhibi7on!during!chronic!ethanol!exposure.!!
!
A.!Inhibi7on!of!S6K1!and!reduc7on!of!FMRP!phosphoryla7on!did!not!alter!FMRPFmRNA!
trafficking!for!GluN1!subunits!alone!or!with!ethanol!treatment!(n=!6,!*!p<!0.05).!B.!
Inhibi7ng!FMRP!phosphoryla7on!with!PF!treatment!prevented!ethanolFinduced!
decreases!in!FMRPFGluN2B!interac7ons.!(n=!6,!*!p<!0.05).!!!!
Ctrl:!Untreated!slices;!EtOH:!Ethanol!treatment!only;!PF:!S6K1!inhibitor!only;!PF+'EtOH:'
S6K1!inhibitor!and!ethanol!treatment.'

Ctrl EtOH S6K1i S6K1i +
EtOH

0.0

0.5

1.0

1.5

Fo
ld

 C
ha

ng
e 

(G
A

PD
H

-G
lu

N
1)

A"

Ctrl EtOH S6K1i S6K1i +
EtOH

0.0

0.5

1.0

1.5

Fo
ld

 C
ha

ng
e 

(G
A

PD
H

-G
lu

N
2B

) *
*

B"



 109 

 In addition to NMDA receptor subunits, other mRNAs bound to FMRP that 

are affected by chronic ethanol exposure were tested. Kv4.2 mRNA co-

precipitated with FMRP was increased following an 8-day ethanol treatment, 

replicating previous observations (Figure 3-7; Kv4.2: one-way ANOVA, F(3,12)= 

3.630 p= 0.0351, Tukey post hoc, *p<0.05, n= 5). Treatment with the S6K1 

inhibitor alone did not significantly change protein levels compared to either 

control or ethanol-treatment tissue. Addition of PF blocked ethanol-induced 

increases in Kv4.2 mRNA and FMRP binding.  

 Expression of the Kv4.2 auxiliary protein KChIP3 was also evaluated. As 

with Kv4.2, the addition of ethanol to the culture media caused an increase in 

KChIP3 mRNAs interacting with FMRP, again consistent with results presented 

Chapter 2. Importantly, treatment with PF in combination with ethanol prevented 

the ethanol-induced increase in interactions (Figure 3-7; KChIP3: one-way 

ANOVA, F(3,12)= 4.465 p= 0.0252, Tukey post hoc, *p<0.05, n= 5). While PF 

alone did not cause any change in protein expression compared to control tissue, 

there was a significant decrease mRNAs compared to controls. 
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Discussion 

 

 Data presented in this chapter demonstrated that ethanol-induced increases 

in FMRP phosphorylation at S499 underlie ethanol-induced homeostatic changes 

in protein expression in the hippocampus. These studies also suggest a 

mechanism by which ethanol causes these increases in FMRP phosphorylation 

through activation of S6K1.  

 Results from Chapter 2 suggest that FMRP is an integral component of 

activity-dependent translation by increases in phosphorylation of S499 of FMRP, 

changes in protein expression of downstream stream targets, and through 

differences in FMRP-mRNA interactions in control and ethanol-treated 
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hippocampal slices. Studies in this chapter addressed whether this increase in 

FMRP phosphorylation is necessary for ethanol-induced homeostatic changes 

NMDA receptors, Kv4.2, and KChIP3 protein expression, and whether blockade 

of FMRP phosphorylation will prevent these changes. Studies characterizing 

other disorders defined by hyperexcitability have shown that aberrant FMRP 

function dysregulates both basal state and activity-dependent translation, and 

that knockdown of FMRP in dissociated cultures corrects this phenotype (Jeon et 

al 2012; Russo et al 2013; Takei and Hiroyki 2014). Consistent with this, results 

presented here show that inhibition of FMRP phosphorylation can prevent 

ethanol-induced changes in both mRNA trafficking and protein expression of the 

GluN2B subunit and inhibitory proteins Kv4.2 and KChIP3. This suggests that 

FMRP phosphorylation is not only an integral component of synaptic plasticity in 

dendrites and dendritic spines, but that it is necessary for local activity-dependent 

alterations in protein expression.  

 As with previous results, FMRP phosphorylation did not affect GluN1 

protein expression or mRNA binding. These studies indicate that FMRP 

phosphorylation at S499 is not required for ethanol-induced increases in GluN1 

protein expression, and this is mediated by other activity-dependent mechanisms. 

Studies examining fragile X syndrome and epilepsy suggest that K+- channel 

deficits may contribute more to the hyperexcitable phenotype than NMDA 

receptor deficits (Henry 2008; Mercaldo et al 2009; Gross et al 2011; Lee et al 

2011). As such, in chronic ethanol exposure, FMRP may have a greater impact 

on proteins that are mediators of glutamateric signaling in dendritic spines, rather 
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than NMDA receptor expression directly. Other pathways implicated in alcohol 

use disorders, such as ERK and MAPK, are also key regulators of GluN1, and 

may have a greater influence on GluN1 translation (Perkinton et al 2002; Ivanov 

et al 2006). Our results also revealed that FMRP appears to play a significant 

role in modulating GluN2B subunit expression, suggesting that FMRP have a 

more influential role in NMDA receptor function through regulation of NMDA 

subunit expression rather than total protein expression of the receptor itself. 

Further studies investigating both signaling pathways are necessary to discern 

how NMDA receptors are regulated and trafficked during chronic ethanol 

exposure. 

 An important finding in these studies is that ethanol-induced changes in 

FMRP phosphorylation and activity are mediated by S6K1, and are likely part of 

the mTORC1 pathway. Work from other labs have shown that S6K1 

phosphorylation is increased following chronic ethanol exposure, and that this 

change in phosphorylation is essential to produce the long-term cellular and 

behavioral phenotype induced by heavy ethanol exposure (Nesta et al 2010; 

Barak et al 2013; Sabino et al 2013) Phosphorylation at S499 is not completely 

dependent on S6K1 in all activity-dependent mechanisms, and phosphorylation 

at this site may also be regulated by other mTORC1 substrates. Previous studies 

examining local dendritic protein translation have manipulated mTORC1 and 

showed changes in FMRP, rather than altering S6K1 directly. Results presented 

here implicate S6K1 specifically as the upstream regulator for activity-dependent 

increases in ethanol-induced FMRP phosphorylation at S499. This provides 
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insight into how ethanol may induce these activity-dependent changes in FMRP 

and its binding partners.  

 Experiments in these studies used a pharmacological intervention directed 

at the upstream kinase S6K1 to alter FMRP phosphorylation, rather than direct 

manipulation of the FMRP protein. The S6K1 inhibitor PF-4706871 affected 

some, but not all substrates in the translational pathway. It is important to note, 

that certain key proteins necessary for translation, namely S6 and eIF4E, were 

not altered by the dose used in these experiments. Additionally, other 

mechanism may compensate for low S6K1 activity, such as S6K2 and other 

kinases in the RSK family including p90 ribosomal proteins RSK1 & 2 

(Urbanaska et al 2012). This inhibitor also did not interfere with the ability of 

mTORC1 to phosphorylate S6K1, or any of the other downstream components, 

rather its action appears to be limited to S6K1 (Pearce et al 2010). Limiting 

inhibition to S6K1 was of particular importance for these sets of studies to ensure 

proper assembly of the polyribosome and to preserve the ability of neurons to 

induce activity-dependent translation. 

 Although fmr1-/- mice are available, the developmental phenotype that 

includes important cellular changes in activity, differences in circuitry and 

synaptic development, and the behavioral deficits in knockout animals as adults 

makes them a difficult model system in the context of these experiments (Zhao et 

al 2005; De Rubeis and Bagni 2011; Sidorov et al 2013). The goal of these 

studies was to determine whether FMRP has a role in the homeostatic changes 

at glutamatergic synapses using typical activity-dependent mechanisms. With the 
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established cellular and behavioral phenotype, fmr1-/- mice do not have typical 

activity-dependent translational mechanisms that include differences in basal 

Kv4.2 protein levels, and hippocampal-dependent memory tasks, and are not as 

useful for these studies (Gross et al 2011; Lee et al 2011; Darnell and Richter 

2012). 

 FMRP and S6K1 have previously been shown to be important in regulating 

hyperexcitability in the hippocampus (Hara et al 1998; Lenz and Avruch 2005; 

Fenton and Gout 2011; Lee et al 2011). Studies in this chapter reveal that not 

only is FMRP activity altered through S6K1-mediated phosphorylation in 

response to chronic ethanol exposure, but also that this increase in 

phosphorylation is necessary for ethanol-induced changes in translation. 

Blockade of FMRP phosphorylation also prevented alterations in mRNA 

trafficking and protein expression. In addition to differences protein translation, 

alterations in S6K1 and FMRP-mediated signaling pathways have been shown to 

alter spine morphology and actin polymerization (Calabrese et al 2006; Bongmba 

et al 2011; Bowling and Klann 2014). Experiments in the next chapter will 

address whether differences in spine morphology are linked to changes in protein 

expression and drinking behaviors. 
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Chapter 4 

 

 

 

Ethanol-induced alterations in FMRP-mediated 
translation are accompanied by changes in spine 

morphology 
 

 

 

 

 

Background and Significance 

 

 Data presented in the previous chapters focused on the role of ethanol-

induced alterations in FMRP-mediated translation in the hippocampus of proteins 

associated with homeostatic changes at glutamatergic synapses. However, 

changes in protein expression are often accompanied by alterations in spine 

morphology and actin polymerization (Fukazawa et al 2003; Kasai et al 2003; 
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Lebeau et 2011; Chen et al 2014). Following chronic ethanol exposure, previous 

studies have observed an increase in actin clusters and enlargement of dendritic 

spines (Carpenter-Hyland and Chandler 2006; Zhou et al 2007; Brigman et al 

2010). In a number of developmental disorders, dysregulation of translational 

mechanisms results in alterations in dendritic spine shape and distribution 

(Krueger and Bear 2011; Hoeffer et al 2012; De Rubeis et al 2013; Pathania et al 

2014; Han et al 2015; Neuhofer et al 2015). In fragile X syndrome and fmr1-/- 

animals, loss of FMRP resulted in an increase in spine density that is largely due 

to an increase in stubby spines (Krueger and Bear 2011; Hoeffer et al 2012; 

Neuhofer et al 2015).  

 Several mechanisms may regulate spine development and actin dynamics 

in the hippocampus. Of interest to these studies is the WAVE complex protein 

termed cytoplasmic FMRP interacting protein 2 (Cyfip2). As a binding partner of 

FMRP as well as a member of an actin regulatory complex, Cyfip2 may serve as 

a link between local activity-dependent translational changes and alterations in 

spine morphology (Smith and Rong 2004; Zhao et al 2013; Abekhoukh and 

Bardoni 2014). Fragile X patients exhibit an increase in Cyfip2 expression in the 

hippocampus, and fmr1-/- animal models also show increased Cyfip2 expression 

that accompanies the increase in immature stubby spines (Castets et al 2004; 

Hoeffer et al 2012). Cyfip2 regulates actin polymerization through direct 

interaction with the WAVE complex and inhibits WAVE activity and F-actin 

formation (Smith and Rong 2004; Pilpel and Segal 2005; Zhao et al 2013; Chen 

et al 2014). As illustrated in Figure 4-1, the binding of GTP-bound Rac1 to Cyfip2 
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induces dissociation between WAVE and Cyfip2, allowing for disinhibition and an 

active WAVE complex (Castets et al 2005; Zhao et al 2013; Chen et al 2014). 

 

 

 Recent work by Kumar et al 2013 demonstrated a potential role for Cyfip2 in 

regulating the morphological and behavioral changes resulting from drug abuse. 

In this study, a SNP polymorphism in the Cyfip2 gene of two substrains of 

C57BL/6 mice were identified in which a serine found in the C57BL/6J mice was 

substituted with a phenylalanine in the C57BL/6N mice (Kumar et al 2013) It was 

further observed that this SNP is found in all commercially available mice of the 
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6N substrain (Figure 4-2). This polymorphism codes for an unstable form of 

Cyfip2, and it was hypothesized that this instability disrupts proper coordinated, 

activity-dependent changes in spine morphology. Additionally, 6N animals were 

shown to be resistant to acute cocaine-induced increases in locomotor 

sensitization, displayed fewer active lever presses, and did not show 

reinstatement. Spine analysis showed an overall decrease in density, and a 

highly significant decrease in long/thin spines in the nucleus accumbens (Kumar 

et al 2013).  
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 Studies presented in this chapter aim to discern whether ethanol-induced 

alterations in local protein translation are accompanied by changes in spines 

morphology. Using two commercially available substrains of C57BL/6J or /6NJ, 

these experiments may provide insight into how chronic ethanol alters both 

protein expression and spine morphology in an activity-dependent manner. 
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Methods 

 

Animals 

 Animals used in these studies consisted of two different substrains of 

C57BL/6 mice: C57BL/6J and C57BL/6NJ. Both lines were obtained from 

Jackson Labs and will be referred to as 6J and 6N, respectively. Twenty-four 

male mice per genotype (48 animals total) arrived at 9 weeks of age, and were 

allowed to acclimate to the animal vivarium for 2 weeks. All animals were singly 

housed on a 12 hour light/dark cycle. Lights were off from 11am -11pm. Animals 

had access to food and water in the home cage throughout the entire experiment. 

Cages were changed and animals weighed weekly at least 48 hours after the 

end of the last 24-hour session. All experimental procedures were approved by 

the Animal Care and Use Committee and the National Institutes of Health. 

 

Two-bottle choice and chronic intermittent ethanol vapor exposure 

 For the two-bottle choice ethanol drinking procedure, mice were divided into 

two treatment groups: a Naive group that received tap water in both bottles, and 

an EtOH group that received one bottle containing 15% ethanol and another 

bottle containing only tape water. Groups represented in the study are 6J Naive, 

6N Naive, 6J EtOH, and 6N EtOH. Each bottle was assigned to a specific animal, 

and bottles were cleaned and refilled between each session, and all bottles were 

weighed before and after each session. Weight difference was converted to 

volume using the contributing density of ethanol. Volume was then converted to 
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grams per kilogram (g/kg). Mice gained and lost weight throughout both baseline 

drinking and chamber weeks, and the average of weights before and after each 

drinking week was used to calculate g/kg. Drinking sessions began 1 hour before 

the dark cycle, with bottle weights taken after 4 and 24 hours. After 4 consecutive 

24-hour drinking sessions, bottles were removed, and all animals were provided 

home cage tap water for 72 hours. 

 Following four weeks of baseline two-bottle choice drinking, mice then 

began the chronic intermittent ethanol vapor exposure paradigm. A member of Dr. 

Howard Becker’s lab kindly performed the vapor chamber exposure for these 

experiments. As illustrated in Figure 4-3, mice that received ethanol during the 

two-bottle choice drinking sessions underwent ethanol vapor exposure for 16 

hours followed by an 8 hour withdrawal as described previously in Becker and 

Lopez 2004, Lopez and Becker 2005, and Griffin et al 2014.  

 The water only group received air exposure for the 16-hour period and 

remained ethanol naive. Both groups received IP injections of pyrazole 

(1mmol/kg) and an ethanol prime injection (1.6 g/kg; 8% w/v). This 16-hour vapor 

session was followed by an 8-hour withdrawal period, and animals continued this 

cycle for 4 consecutive days. This was followed by a 72-hour withdrawal period. 

Blood was taken via retro-orbital bleed on either the 3rd or 4th day of each of the 

cycles for determination of blood ethanol concentration (BECs). After each week 

of ethanol exposure and withdrawal, mice began two-bottle choice drinking for 4 

days, and then another 72-hour withdrawal period. These two week cycles were 

repeated 4 consecutive times. Following the last day of two-bottle choice drinking 
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after the fourth cycle of vapor exposure, mice were euthanized with urethane 

(1.5g/kg) and were either perfused for spine analysis or brains were taken for 

western blot analysis.  

 

 

 

Diolistic labeling and spine analysis 

 Diolistic labeling of slices obtained from fixed brains was used to assess the 

effects of CIE and active drinking on dendritic spine morphology in the 

hippocampus as previously described (Kroener et al. 2012). In brief, 6 mice from 

each of the 4 experimental groups were anesthetized and perfused with 0.1 M 

phosphate buffer followed by 1.5% paraformaldehyde (PFA) in phosphate buffer 

and post-fixed in 1.5% PFA for 1 hour at room temperature. Brains were then 
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kept at 4oC in 0.1 M phosphate buffer until coronal sections of 150 µm were 

prepared on a vibratome. Tungsten particles (1.7 µm diameter) coated with DiI 

were delivered diolistically using a Helios Gene Gun (Bio-Rad) fitted with a 

polycarbonate filter (3.0 µm pore size; BD Biosciences). DiI was allowed to 

diffuse overnight at 4°C, and the slices were then post-fixed in 4% PFA for 1 hour 

prior to mounting. Images of the apical dendrites of the CA1 region of the 

hippocampus were collected in the Z-plane with a stack interval of 0.1 µm. A total 

of 8 z-stack images of 6-8 dendrites from 8 different cells per animal were 

collected. AutoQuant (MediaCybernetics, Rockville, MD) was then used to create 

deconvolved 3-D images. A filament of the dendritic shaft and spines was then 

created using Imaris XT (Bitplane, Zurich, Switzerland). Dendritic spines were 

classified as long, mushroom, stubby, or filopodia based on their length and neck 

and head width, where L is spine length, WH is spine head width, and WN is 

spine neck width. Long spines were identified as having a L≥0.75 µm and <3 µm, 

mushroom spines as a L<3.5 µm, WH>0.35 µm and a WH>WN, stubby spines 

had a L<0.75 µm, and filopodia were identified as having a L≥3 µm.  

Lysate preparation and protein assay 

 Six animals per group were euthanized and 1.0 mm coronal brains slices 

were prepared using a standard brain block. From these slices, 2.0 mm bilateral 

tissue punches of the hippocampus were homogenized by sonication in 4% LDS .  

Protein concentration was determined by the BCA procedure described in 

Chapter 2.  
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Western blot analysis   

 Western blots were performed as described in Chapter 2. Briefly, following 

electrophoresis and membrane transfer, a reversible Swift total protein stain was 

used to evaluate errors in loading and normalization. Following the total protein 

stain, membranes were blocked in 4% non-fat milk, and incubated in primary 

antibody at 4oC overnight. Primary antibodies included phospho-S499 S499 

FMRP (1:1000), FMRP total protein (1:2000), KChIP3 (1:500), Kv4.2 (1:1000), 

GluN1 (1:3000), and GluN2B (1:3000). After primary antibody incubation, 

membranes were incubated in secondary antibody: S499 FMRP, FMRP, and 

KChIP3 with goat anti-rabbit (1:2000) Kv4.2, GluN1, and GluN2B with goat anti-

mouse (1:2000), for 1 hour at room temperature. After secondary antibody 

incubation, membranes were exposed to an enhanced chemillumiscience with 

ChemicDoc MP Imaging System (Bio-Rad, Hercules, CA). 

 

Statistical Analysis 

 Two-bottle choice drinking data was analyzed using SPSS (IBM) with either 

a one- or two-way repeated measures ANOVA (* p< 0.05). Significance for 

animal weights was examined using student t-test, and the spine data were 

analyzed with SPSS using a general linear mixed model. Western blots were 

analyzed with a one-way ANOVA in GraphPad Prism.  
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Results 

 

Blood Ethanol Concentrations (BECs) 

 

 Following baseline two-bottle choice drinking, mice were exposed to four 

cycles of vapor exposure along with a two-bottle choice 24-hour access 

paradigm between each week of vapor exposure. As seen in Figure 4-4, blood-

ethanol levels steadily rose for both groups with each chamber cycle. While the 

reason for this increase is not clear, no significant differences were found 

between 6J and 6N animals throughout any cycle (one-way ANOVA, F(3,66) = 

0.2964, p> 0.05 n= 12). 
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Two-bottle choice 24-hour access 

 

 During two-bottle choice drinking, animals were divided into four groups 

with 6 animals per group as follows: 6J Naive- water only, 6J EtOH- ethanol and 

water, 6N Naive- water only, and 6N EtOH- ethanol and water. Mice were given 

free access to bottles for 24 hrs with time points taken after 4- and 24-hours 

during the two-bottle choice paradigm. Throughout the baseline period and most 

of the drinking days between ethanol vapor exposures, mice in the 6J EtOH 
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*
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group exhibited significantly higher ethanol intake (g/kg) in a 24-hour period 

compared to the 6N EtOH group (Figure 4-5A, two-way ANOVA, F(31, 682)= 

1.928 p= 0.0020, Sidak post-hoc, * p< 0.05, n= 12, 11). 6N and 6J groups also 

differed in their total daily water consumption. Not only did 6N mice consume less 

ethanol overall, they also consumed more water compared to 6J ethanol-drinking 

mice (Figure 4-5B, two-way ANOVA, F(31, 682)= 2.811 p= 0.0016, Sidak post-

hoc, * p< 0.05, n= 12, 11). Additionally, although 6N mice consumed less ethanol 

compared to the 6J group, both 6J and 6N mice exhibited an escalation in 

drinking following the final week of vapor exposure compared to their respective 

baseline levels (Figure 4-5C, two-way ANOVA; F(4,15)=5.085; p= 0.0163; Tukey 

post-hoc * p< 0.05, n= 12, 11). Therefore, both genotypes showed CIE-induced 

escalation in ethanol consumption. However, these two sub-strains varied in 

baseline overall ethanol intake. Total water intake for the ethanol-naïve 6J and 

6N mice did not significantly vary by genotype. (Figure 4-6, two-way ANOVA, 

F(31, 682)= 1.286 p= 0.1390, n= 12).  
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 The difference in water consumption between the 6J and 6N genotypes 

resulted in significantly lower total fluid intake over several 24-hour sessions for 

the 6J ethanol-drinking mice compared to 6N ethanol animals (Figure 4-7A, two-

way ANOVA, F(31, 682)= 3.040 p= 0.0030, Sidak post-hoc, * p< 0.05, n= 12, 11). 

Interestingly during two-bottle choice drinking between chamber exposures as 6J 

mice increased their ethanol intake, their water consumption decreased. Ethanol 

also accounted for a higher percent of total intake throughout most of the two-

bottle choice drinking paradigm (Figure 4-7B/C, B: two-way ANOVA, F(31, 682)= 

2.820 p< 0.0001, Sidak post-hoc, * p< 0.05, n= 12, 11; C: two-way ANOVA, F(31, 

682)= 3.438 p< 0.0001, Sidak post-hoc, * p< 0.05, n= 12, 11). However, the 6N 

group maintained their water intake throughout the entirety of the paradigm.  
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 Although 6J mice consumed more ethanol throughout most of the 24-hour 

drinking sessions, these studies also examined fluid consumption during the first 

four hours of each these 24-hour drinking days (Figure 4-8, EtOH: two-way 

ANOVA, F(31, 682)= 2.123 p= 0.0023, Sidak post-hoc, * p< 0.05, n= 12, 11; 

Water:  two-way ANOVA, F(31, 682)= 7.768 p< 0.0001, Sidak post-hoc, * p< 0.05, 

n= 12, 11). After 4 hours of two-bottle choice, the 6J group had significantly 

higher ethanol consumption for most of the baseline drinking phase compared to 

6N mice. However, following chamber exposure periods, 6J and 6N animals 

maintained similar levels of ethanol intake for the first four hours on most drinking 

days. As expected, 6N animals had significantly higher water intake compared to 

6J mice throughout the entirety of the paradigm. Additionally, following chamber 

exposure, as 6N mice increased their intake of ethanol, water consumption also 

increased, a trend that continued throughout the next 20 hours. In general, 6N 

mice consumed less ethanol and more water than 6J animals. However, unlike 

the four hours of drinking, there was no escalation in water consumption among 

the 6N group (Figure 4-9, EtOH: two-way ANOVA, F(31, 682)= 2.144 p= 0.0004, 

Sidak post-hoc, * p< 0.05, n= 12, 11; Water:  two-way ANOVA, F(31, 682)= 2.580 

p< 0.0001, Sidak post-hoc, * p< 0.05, n= 12, 11). Ethanol consumption also 

remained relatively consistent throughout most of the paradigm for the last 20-

hour period. As noted above, due to this increase in water consumption during 

the first four hours of the drinking sessions, total liquid intake increased in 6N 
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animals, especially during each bottle week following vapor chamber exposures. 

6J ethanol mice, however, remained relatively consistent during this time period. 
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 Throughout two-bottle choice drinking and CIE vapor exposure cycles, body 

weight for all mice was recorded immediately before and after each cycle. It was 

observed that both 6N naive and 6N ethanol groups lost weight following each 

CIE vapor exposure, but gained weight during each two-bottle choice week. 

Unlike the 6N genotype, minimal fluctuation in weight was observed for the first 

three cycles of CIE vapor and two-bottle choice drinking in both 6J naive and 6J 

ethanol mice. Following the fourth and final CIE chamber cycle, however, a 

decrease of 4-5 grams was observed in both 6J and 6N ethanol mice. Mice in the 

6J group had regained this weight at the time of sacrifice following the final two-

bottle choice drinking period. However, 6N ethanol mice did not experience any 

weight gain at the time of sacrifice (Figure 4-10). 
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Figure'4)10!Weight!differences!by!ethanol!treatment!in!6J!and!6N!mice.!
!
Each!bar!represents!the!weight!lost!or!gained!during!each!week!of!either!CIE!vapor!
chamber!exposure!or!twoBboCle!choice.!Therefore,!bars!represent!the!change!in!
weight!due!to!either!vapor!exposure!or!twoBboCle!choice.!
A.'6J!ethanolBtreated!mice!lost!and!gained!small!amounts!of!weight!depending!on!the!
treatment.!Vapor!exposure!was!associated!with!small!decreases!in!weight!while!twoB
boCle!choice!weeks!caused!small!increases!in!the!6J!ethanol!group.!However!the!final!
vapor!exposure!cycle!induced!a!larger!weight!loss!in!both!6J!and!6N!ethanolBtreated!
mice.!6J!mice!regained!this!weight!by!Ime!of!sacrifice,!but!6N!mice!did!not!B.!Weight!
of!mice!in!the!6J!naive!group!did!not!fluctuate!during!the!paradigm.!However,!6N!mice!
did!experiences!alteraIons!in!weight!depending!on!ethanol!cycle.!

6J Water 6N Water
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6

Treatment

gr
am

s

Vapor Exposure

Two-Bottle Choice

6J''Naive' Naive'

B' Water&Only&

6J EtOH 6N EtOH
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6

Treatment

gr
am

s

Vapor Exposure

Two-Bottle ChoiceA'
Ethanol.treated&

Cycle!1! Cycle!2! Cycle!3!

Cycle!4!

Cycle!1! Cycle!2!
Cycle!3!

Cycle!4!

Cycle!1! Cycle!2! Cycle!3! Cycle!4! Cycle!1!
Cycle!2! Cycle!3! Cycle!4!



 136 

Changes in protein expression in 6J and 6N mice following chronic ethanol 

exposure 

 

  Data presented in previous chapters of this dissertation have shown that 

chronic ethanol exposure alters expression of proteins associated with 

homeostatic plasticity in the hippocampus in both a CIE in vivo mouse model and 

in vitro hippocampal slice culture model. In the present chapter, hippocampal 

tissue from 6J and 6N naive and ethanol-exposed mice were analyzed using 

western blot for FMRP and other proteins of interest previously shown to be 

altered by chronic ethanol. Expression of the translational repressor protein 

FMRP was assessed for total protein and the previously identified 

phosphorylation site of interest (S499). Consistent with results from previous 

chapters, blots revealed an increase in phospho-FMRP protein expression in 

ethanol-exposed 6J mice compared to 6J naive animals. Additionally, the 6J 

ethanol group exhibited an increase in phosphorylated FMRP compared to both 

6N treatment groups. Importantly, the 6N ethanol mice did not show an increase 

in expression of either phosphorylated or total FMRP protein expression 

compared to either the 6J or 6N naive groups. As seen in previous studies, total 

FMRP protein expression did not vary between any of the groups tested (Figure 

4-11; phospho-FMRP: one-way ANOVA, F(3,20) = 5.152, p=0.0084, Tukey post-

hoc * p< 0.05 n= 6; FMRP: one-way ANOVA, F(3,20)= 0.1105, p=0.9528, Tukey 

post-hoc p> 0.05 n= 6). Of note, these data also show no difference between the 
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6J and 6N naive mice, indicating that the polymorphism in Cyfip2 does not lead 

to differences in basal levels of phosphorylated or total FMRP protein.  

 

 

 

 In the next set of experiments, NMDA receptor subunits were evaluated in 

both genotypes. As observed in Chapter 2, 6J mice exposed to chronic ethanol 

displayed increased levels of GluN1 protein expression compared to 6J ethanol 

naive animals (Figure 4-12; GluN1: one-way ANOVA, F(3,19) = 6.733, p=0.034, 

Tukey post-hoc * p< 0.05 n= 5, 6; GluN2B: one-way ANOVA, F(3,20) = 5.844, 

p=0.0049, Tukey post-hoc * p< 0.05 n= 6). Additionally, the 6J ethanol group also 

showed increases in GluN1 compared to 6N naive mice. There was a slight, non-

signficant increase in GluN1 in the 6N ethanol group. GluN2B protein levels were 

increased with 6J ethanol mice compared to both the 6J and 6N naive group. 
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However, 6N ethanol-exposed mice did not show any increase in GluN2B levels 

compared to either control group. Genotypic differences between the two naive 

groups did not result in any change with either GluN1 or GluN2B protein levels. 

Like FMRP, this indicates there is no difference in basal expression of either 

protein. 

 

 

 

 In addition to NMDA receptor subunits, Kv4.2 and KChIP3 protein levels 

were also assessed in both mouse lines (Figure 4-13; Kv4.2: one-way ANOVA, 

F(3,19) = 5.122, p=0.0104, Tukey post-hoc * p< 0.05 n= 6, 5; KChIP3: one-way 

ANOVA, F(3,20) = 6.248, p=0.0047, Tukey post-hoc * p< 0.05 n= 6). This 

analysis revealed both Kv4.2 and KChIP3 expression was decreased as a result 

of ethanol exposure in the 6J mice compared to both 6N and 6J ethanol naive 
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mice. However, protein levels in 6N ethanol-treated mice remained unchanged 

compared to both naive groups. Data also show no change between 6J or 6N 

naive mice. These observations also indicate no baseline differences in 

expression of these proteins between the two genotypes for either protein.  

 

 

 

Spine morphology in 6J and 6N naive and ethanol-treated mice 

 

 It has been previously reported that Cyfip2 function is associated with a 

reduction in overall spine density in the nucleus accumbens that was largely due 

to a decrease in thin and stubby spine density (Kumar et al 2013). This decrease 

in spine density was accompanied by a resistance to cocaine-induced locomotor 

sensitization and decreased cocaine-seeking behaviors. Previous studies have 
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also shown that ethanol-induced changes in actin polymerization result in 

enlargement of dendritic spines, and this enlargement may be dependent on 

changes in protein expression (Carpenter-Hyland and Chandler 2006; Zhou et al 

2007; Cingolani and Goda 2008; Akashi et al 2009). Therefore, the next set of 

studies examined the effect of ethanol exposure in hippocampal dendritic spine 

density and morphology between the 6J and 6N mouse lines. 

 Quantification of the spine density in the CA1 region of the hippocampus 

yielded results similar to previous finding in the nucleus accumbens (Kumar et al 

2013). 6N ethanol naive mice showed baseline differences in spine density 

compared to the 6J naive group. Exposure to chronic intermittent ethanol caused 

an increase in total spine density of 6J mice compared to both 6J and 6N naive 

groups as well as 6N ethanol-exposed animals (Figure 4-14; Total spines: 

F(2,18)= 5.156, * p <0.05, n= 6, 5; Classification of spines: F(3,85)= 2.254, * p< 

0.05, n= 6, 5). Classification of dendritic spines revealed that these alterations in 

total density were due specifically to changes in long/thin spines. Compared to 6J 

naive mice, the 6N naive group showed a significant decrease in long/thin spines, 

suggesting baseline differences in spine density and morphology between the 

two genotypes. Mice in the 6J ethanol group exhibited an increase in density 

compared to 6J naive mice, and this increase was also characterized by 

increased density of long/thin spines.  
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Discussion 

 

 The results of studies in this chapter revealed two important findings. The 

first that alterations in Cyfip2 function may correlate to a reduction ethanol 

consumption. However, the 6N mice carrying the phenylalanine SNP still 

exhibited CIE-induced escalation in drinking. Secondly, 6N animals do not show 

baseline differences in proteins implicated in synaptic plasticity, but do not induce 

mechanisms that allow for homeostatic changes in protein expression and spine 

morphology. Additionally, similar to previous results reported in the nucleus 

accumbens, 6N naive mice have baseline differences in spine density and 

morphology compared to the 6J strain in hippocampal CA1 pyramidal neurons 

(Kumar et al 2013) 

 These results further suggest that the polymorphism in the cyfip2 gene that 

alters protein stability may have a significant influence over synaptic plasticity in 

not only spine morphology, but also protein translation and drinking behaviors. 

Not only did 6N ethanol-exposed animals drink less ethanol, they also consumed 

more water, and this water intake increased as ethanol consumption increased. 

Both 6J and 6N animals consumed more ethanol in the first four hour period than 

the expected daily intake, assuming a constant rate of consumption over 24 

hours. 6N ethanol treated animals consumed more in the first four hours, 

indicating they drink more at the start of the dark cycle, but do not maintain this 

behavior throughout the 24-hour period. The drop off in consumption seen during 

the last 20 hours of the session is not likely a result of decreased ethanol 
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metabolism since BECs did not differ between the two genotypes following CIE 

exposure. Also, 6N animals did show escalation in drinking during two-bottle 

choice weeks following the final two weeks of chamber exposure, but did not 

escalate to the levels achieved by 6J mice.  Of note, the 6J animals drinking 

levels were relatively even throughout the first four hours during both baseline 

and chamber periods, suggesting that the escalation in drinking did not occur 

during the first part of the dark cycle, but 6N animals displayed the opposite 

behavior, increasing ethanol consumption in the first 4 hours. 

 As with previous chapters, differences in protein expression was also 

evaluated in naive and ethanol-exposed animals. In mice, decreased Cyfip2 total 

protein expression has been shown to cause a reduction in basal levels of FMRP 

total protein as well as cognitive deficits similar to fmr1-/-.  However, 6N naive 

mice that show decreased Cyfip2 activity did not exhibit baseline differences in 

FMRP phosphorylation or total expression, nor did they display any alterations in 

GluN1, GluN2B, Kv4.2,or KChIP3 expression compared to 6J naive mice. 

Additionally, ethanol treatment in the 6N group did not induce changes in protein 

expression. However, the expected increases or decrease in GluN1 and GluN2B 

or Kv4.2 and KChIP3, respectively, were observed in 6J ethanol mice compared 

to 6J naive. This suggests that differences in Cyfip2 activity do not affect basal 

protein expression, but may have an important role in activity-dependent 

changes in FMRP activity and protein translation. However, further experiments 

are necessary to investigate the mechanism by which chronic ethanol mediates 

both Cyfip2 and FMRP in response to alterations in homeostatic plasticity. 
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 The studies investigating structural differences in dendritic spines revealed 

that 6N mice exhibit a lower density of spines in the hippocampus compared to 

6J mice. Analysis of spine type indicated this difference was largely due to a 

decrease in the density of long/thin spines. This reduction in total density and thin 

spines is similar to results from studies in the nucleus accumbens (Kumar et al 

2013). Ethanol did cause a slight difference in 6N mice, but this did not vary 

significant from either 6J or 6N naive mice. Again, this difference is due to an 

alteration in long, thin spines. However, baseline differences in spine density and 

morphology in the 6N naive mice were not accompanied by alterations in basal 

protein levels. The 6N group was resistant to ethanol-induced changes in protein 

expression and spine morphology. This suggests that changes protein translation 

and actin polymerization that occur in tandem may be limited to activity-

dependent plasticity, and that basal protein translation and actin dynamics may 

be differentially regulated.  

 Drinking studies in this chapter indicate 6N mice with the polymorphism in 

cyifp2 consumed less ethanol that 6J mice. Although 6N mice did escalate their 

ethanol intake compared to baseline, consumption in the 6N ethanol group was 

still significantly less than 6J animals for several 24-hour time points. Studies with 

cocaine with a knock-in of the 6N SNP on a 6J background produced the same 

cellular and behavioral phenotype as the commercially available 6N mouse lines, 

suggesting that Cyfip2 activity has an important role in drug-induced behaviors. 

However, further studies are needed to determine how the polymorphism found 
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in 6N animals behavioral differences seen in response to chronic ethanol 

exposure.  

  A potential confound in these chronic intermittent ethanol studies was 

the observation that weight in both groups of 6N mice fluctuated throughout each 

cycle of CIE vapor and two-bottle choice following the first four weeks of baseline 

drinking. It is important to note that during the fourth and final chamber exposure, 

both animals experienced higher than expected blood ethanol levels. Following 

this vapor exposure cycle, mice in both 6J and 6N ethanol groups lost an 

average of 4-5 grams in weight. The 6J mice gained all of the lost weight back by 

the time of sacrifice; 6N mice, however, did not. This may have important 

implications for actin dynamics and spine morphology. Alterations in body weight 

are associated with either an increase or decrease in spine density, depending 

on brain region (Stranahan et al 2008; Stranahan et al 2009; Fan et al 2015). A 

reduction in spine density was observed in the 6N naive group. However, these 

data are consistent with previously published studies, showing this same 

decrease in the nucleus accumbens. 6N ethanol-treated mice showed a slight 

increase in spine density compared to the 6N naive group. It is difficult to 

speculate whether this sudden change in body weight contributed to the 

behavioral and cellular phenotype.  

 Results presented in this chapter reveal the importance of homeostatic 

mechanism in dendrites and dendritic spines for regulating protein expression, 

spine morphology, and drinking behaviors. With the polymorphism in Cyfip2 in 

6N animals, failure to induce appropriate mechanisms to maintain the necessary 
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activity-dependent changes in protein expression and actin polymerization in 

order to adapt to chronic ethanol exposure produced not only differences in 

baseline drinking, but also changes in escalation. Although there is no baseline 

difference in protein expression, as seen with spine density, this indicates that 

basal state protein expression may be regulated in a different manner. However, 

activity-dependent mechanisms may require the ability to change both protein 

expression and actin polymerization to reestablish homeostasis. 

 Studies in this chapter addressed whether changes in protein expression 

are also accompanied by changes spine morphology. The naturally occuring 

polymorphism in the cyfip2 gene between the -J and -N substrains of C57BL/6 

provides the opportunity to address how differences in spine morphology may 

affect both baseline and ethanol-induced activity-dependent dendritic protein 

synthesis. Further studies are needed to determine the nature of the connection 

between protein translation and spine morphology, and how these two processes 

may alter drinking behaviors. 
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Chapter 5 

 

 

 

 

Discussion and Future Directions 

 

 

 

 

 

Translational Changes and Plasticity 

 

 Synaptic plasticity is an essential process that allows for homeostatic 

neuronal adaptations in response to changes in the cellular environment in order 

to maintain balanced homeostatic function. Plasticity in the hippocampus is 

necessary for alterations in synaptic activity that have important implications for 

hippocampal function, including memory processing and consolidation 
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(Grosshans et al 2001; Fukazawa et al 2003; Hoeffer et al 2013; Bailey et al 

2015). Long-term maintenance of these adaptations requires alterations in 

protein homeostasis and translation of new proteins (Kang et al 1996; Klann and 

Richter 2007; Im et al 2009; Panja et al 2014). Cellular processes previously 

investigated that regulate activity-dependent protein synthesis have focused on 

transcription and somatic translation. However, more recent studies have 

demonstrated that maintenance of synaptic plasticity also requires alterations in 

local dendritic translation (Kang et al 1996; Klann and Richter 2007; Liu-

Yesucevitz et al 2011). Activity-dependent de novo protein synthesis requires a 

series of highly coordinated synaptic events that are tightly regulated at each 

step. Pathologies, such as fragile X syndrome, that are characterized by aberrant 

translational regulation leads to alterations in basal protein levels and deficits in 

maintaining synaptic plasticity (Li et al 2001; Hagerman and Stafstorm 2009; 

Darnell et al 2011; De Rubeis and Bagni 2011; Henry 2011). This insufficient 

regulation of translation is accompanied by cognitive deficits and developmental 

delays, and the investigation of the how these components are precisely 

regulated remains an active area of research. 

 Previous studies have identified the mTORC1 translational pathway as one 

of the main cellular mechanism regulating activity-dependent translation in 

dendrites. The sensitivity of synaptic plasticity and memory consolidation to 

inhibition of mTORC1 implies that coordinated activity of mTORC1 substrates is 

likely necessary for maintenance of homeostasis (Gong et al 2006; Bekinschtein 

et al 2007; Meng et al 2013; Russo et al 2013; Takei and Hiroyki 2014; Dibble 
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and Cantley 2015). In response to chronic ethanol exposure, studies with in vivo 

rat models revealed an increase in several downstream components as well as 

alterations in protein expression at glutamatergic synapses and in dendritic 

spines (Nesta et al 2010; Barack et al 2013; Nesta et al 2014). Components of 

this pathway include kinases, mRNA-binding proteins, and ribosomal subunits 

that control mRNA trafficking and stability, assembly of the active ribosome, and 

the rate of translation. Different substrates in this pathway are discretely 

activated to fine-tune protein synthesis that is necessary for alterations in 

synaptic activity (Ma and Blenis 2009; Urbanska et al 2012; Meng et al 2013; 

Takei and Hiroyki 2014). However, how the different proteins in the mTORC1 

pathway are tightly regulated is not known.  

 Studies examining mTORC1 signaling following chronic ethanol exposure 

have demonstrated that this signaling pathway and its substrates have an 

important role in maintaining ethanol-induced alterations in protein expression 

(Nesta et al 2010; Barak et al 2013; Sabino et al 2013). Studies in this 

dissertation revealed that ethanol-induced alterations in expression of proteins 

that are key mediators of neuronal excitability in dendrites and dendritic spines 

may also be regulated by mTORC1 pathway. Results in these experiments from 

both in vivo and in vitro studies show that chronic exposure to ethanol causes an 

increase in GluN1 and GluN2B subunit expression in the hippocampus but a 

reduction in Kv4.2 and KChIP3 protein levels. Together, these changes in protein 

expression may tip the equilibrium in cellular signaling toward excitability to 

reestablish neuronal homeostasis during chronic ethanol exposure. These 
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studies also provide evidence that FMRP, a downstream substrate in the 

mTORC1 pathway, may be an important mediator of alterations in NMDA 

receptor, Kv4.2, and KChIP3 protein expression. As an mRNA-binding protein, 

FMRP interacts with a variety of different mRNAs to inhibit their translation 

(Laggerbauer et al 2001; Jones 2003). Although FMRP is a translational 

repressor, its activity is necessary for maintenance of basal protein synthesis and 

activity-dependent translation in dendrites and dendritic spines (Zalfa et al 2006; 

Henry 2011; Schaeffer et al 2012). In the absence of FMRP, local dendritic 

translation is uncoordinated, leading to disorganization of translation with no de 

novo synthesis of the specific proteins that are required to maintained synaptic 

plasticity.  

 

FMRP and Ethanol Exposure 

 

Ethanol-induced changes in FMRP and its binding partners 

 

 Studies investigating alterations in synaptic plasticity in response to ethanol 

exposure have identified a role for protein translation in maintaining neuronal 

homeostasis (Nesta et al 2011; Barak et al 2013). Studies presented here 

revealed that not only does chronic ethanol exposure induce alterations in 

proteins that modulate synaptic activity, but they also provide insight into how 

ethanol may induce these changes in protein levels. Results from Chapter 2 

demonstrated an increase in FMRP phosphorylation following exposure to acute 
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and chronic ethanol with no change in expression. Additional experiments also 

showed alterations in FMRP-mRNA interactions in ethanol-treated slice cultures 

compared to control cultures. Studies in Chapter 3 then demonstrate that 

blockade of ethanol-induced increases in FMRP phosphorylation through 

inhibition of S6K1 activity prevent alterations in GluN2B, Kv4.2, and KChIP3 in 

response to chronic ethanol exposure. These observations suggest that ethanol 

exposure not only increases FMRP activity, but also alters FMRP-mRNA 

interactions. 

 Findings presented in Chapters 2 and 3 provide support to the suggestion 

that FMRP is an essential component of synaptic homeostasis during ethanol 

exposure, and that FMRP is necessary for coordinated activity-dependent 

translation in response to ethanol exposure. Previous studies have focused on 

mTORC1 as a global regulator of activity-dependent translation (Gong et al 2006; 

Nesta et al 2010; Barak et al 2013; Brewster et al 2013). In contrast, this 

dissertation provides insight into the role of a specific mTORC1 substrate in 

discrete regulation of proteins altered by chronic ethanol exposure. 

 It is important to note that inhibition of FMRP activity prevented ethanol-

induced increases in GluN2B, but not GluN1 protein expression. This suggests 

that FMRP activity does not have a critical role in regulating overall increases in 

NMDA receptor protein expression. Rather FMRP may indirectly influence NMDA 

receptor function or localization through regulation of receptor subunit 

composition.  
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 Another implication of these FMRP experiments is that these studies 

focused on FMRP in a typically developing brain. Research examining the role of 

FMRP in synaptic plasticity often utilize clinical populations with aberrant FMRP 

function, as seen in fragile X syndrome, or mouse models that lack the FMRP 

protein (Gross et al 2011; Lee et al 2011; Jeon et al 2012; Hoeffer et al 2013. 

Although these types of studies have provide important insight into the 

irregularities in cellular structure and function related to the loss of FMRP, there 

is little research in model systems with typical FMRP protein expression. 

Experiments in this dissertation focused on the role of FMRP in activity-

dependent protein synthesis when FMRP expression is regulated via normal 

cellular processes. Results from these studies may contribute to the 

understanding of basic FMRP function in dendritic translation.  

 

S6K1-mediated FMRP activity during chronic ethanol exposure 

 

 FMRP is part of a larger mTORC1 signaling pathway that mediates activity-

dependent translation (Holz et al 2005; Ma and Blenis 2009; Russo et al 2013). 

This pathway includes numerous downstream kinases that activate different 

components for proper coordination of translation. In vitro studies in Chapter 3 

demonstrated that both increased FMRP phosphorylation at S499 and alterations 

in FMRP-mRNA binding are regulated by S6K1 activity. Experiments in a rat 

model of chronic exposure also demonstrated an increase in S6K1 

phosphorylation as well as an increase in protein expression for other mRNAs 
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that are downstream substrates of FMRP (Nesta et al 2010; Barak et al 2013; 

Nesta et al 2014). Importantly, decreased S6K1 activity in vivo has been shown 

to prevent ethanol-seeking behaviors and ethanol-induced increases in protein 

expression (Barak et al 2013). Taken together, these results suggest that FMRP 

phosphorylation and activity are likely mediated by S6K1 during ethanol 

exposure. 

 FMRP contains multiple binding sites for mRNAs and regulatory proteins, 

and its activity can be regulated through different cellular pathways. S6K1-

mediated phosphorylation of S499 on FMRP provides important insight into how 

FMRP activity is regulated during ethanol exposure (Bardoni et al 1997; Brown et 

al 1995; Jones 2003; Bartley et al 2014). Phosphorylation at each of its three 

serine residues differentially regulates activity to induce binding to 4E-BPs and 

the ribosome to suppress translation, interaction with mRNAs, or interaction with 

miRNAs that inhibit FMRP function (Bardoni et al 1997; Li et al 2001; Jones 

2003; Chen and Joseph 2015). Regulation of FMRP through S6K1 suggests a 

potential mechanism by which neurons maintain protein homeostasis during 

chronic ethanol exposure. 
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Spine morphology and activity-dependent translation 

 

Regulation of WAVE through Cyfip2 activity 

 

 Long-term maintenance of protein homeostasis in dendrites is often 

accompanied by alterations in actin polymerization and spine morphology. As 

with protein translation, actin polymerization is a dynamic process that involves 

several discretely coordinated components. Regulation of F-actin formation 

through the WAVE complex is mediated through Cyfip2. Interaction between 

Cyfip2 and WAVE prevents actin polymerization, while Rac1-dependent 

activation of Cyfip2 induces disassociation from the complex (Miki et al 1998; 

Zhao et al 2003; Bongmba et al 2011; Bellot et al 2014). This disassociation of 

Cyfip2 from WAVE allows for disinhibition of the complex and active actin 

polymerization (Smith and Rong 2004; Pilpel et al 2005; Kim et al 2006). 

Decreased expression of Cyfip2 leads to dysregulated actin dynamics and an 

increase in immature dendritic spines (Hoeffer et al 2013; Bellot et al 2014). 

Additionally, this decrease in Cyfip2 is also correlated with an alteration in basal 

protein levels (Napoli et al 2008; Panthania et al 2014; Han et al 2015). Likewise, 

individuals with fragile X syndrome who lack FMRP and exhibit aberrant basal 

and activity-dependent protein expression, also have increases in Cyfip2 (Hoeffer 

et al 2013). This presents the possibility that chronic ethanol-induced alterations 

in protein expression may be connected to ethanol-induced differences in spine 
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morphology, and that FMRP and Cyfip2 both have an essential role in this 

process. 

 As shown in Chapter 4, C57BL/6N mice (6N) with a polymorphism 

substituting a phenylalanine in place of a serine residue in the cyfip2 gene 

exhibited a decrease in spine density characterized by a decrease in long/thin 

spines compared to C57BL/6J mice (6J). Exposure to chronic ethanol resulted in 

an increase in spine density in 6J mice but not 6N mice. Of note, this SNP does 

not affect the levels of Cyfip2 protein, but rather it decreases the half-life of the 

protein and likely an increase in Cyfip2 turnover (Kumar et al 2013). This 

increase in Cyfip2 turnover may interfere with discrete regulation of the WAVE 

complex. While Cyfip2 is an inhibitor of WAVE activity, this inhibition may be 

necessary to properly coordinate the different components needed for adaptive 

cytoskeletal remodeling. Without this coordination, actin dynamics may remain 

unregulated and unresponsive to alterations in synaptic activity. 

 Results from experiments in Chapter 4 suggest a connection between the 

regulation of spine morphology and activity-dependent protein translation. 

Although 6N mice had a reduced spine density, there was no difference in basal 

protein levels compared to the 6J mice. However, unlike 6J mice, the 6N group 

did not display ethanol-induced alterations in protein expression or FMRP 

phosphorylation. One potential interpretation of these data are that protein 

expression and spine morphology may be differentially regulated under basal 

conditions, but both processes must occur in tandem to develop sustained 

homeostatic adaptations to alterations in neuronal activity. 
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Importance of Cyfip2 and FMRP during ethanol consumption 

  

 Alterations in both protein expression and spine morphology in response to 

chronic ethanol exposure suggest that both of these processes are important for 

maintaining neuronal homeostasis in response to changes in synaptic plasticity. 

Data presented in Chapter 4 indicates that for activity-dependent adaptations to 

occur, both changes in spine morphology and protein synthesis are necessary. 

Results from these studies and others indicate that inhibition of either of these 

two mechanisms prevents ethanol-induced cellular changes. Additionally, these 

cellular changes may also influence behavioral phenotypes. As shown in Chapter 

4, 6N mice consumed less ethanol compared to 6J mice in a long-term CIE/two-

bottle choice drinking paradigm. Although other factors may contribute to this 

difference in consumption, when these drinking data are considered with activity-

dependent differences in protein expression and spine morphology, these data 

suggest that Cyfip2 function may have an important role in the development of 

drinking behaviors. These results also present the idea that the ability of neurons 

to induce specific homeostatic mechanisms is directly connected to the 

development of ethanol drinking and dependence. If 6N mice cannot initiate the 

appropriate mechanism to adapt to ethanol-induced alterations in homeostasis, 

does this contribute to the decreased ethanol intake? Conversely, are 6J mice 

more susceptible to acquiring high ethanol drinking behaviors because they can 

induce this specific homeostatic mechanism?  
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Future Directions 

 

 This project outlines some important findings regarding how ethanol may 

induce alterations in protein expression and spine morphology. Future studies to 

further investigate how homeostatic protein translation is mediated in ethanol 

exposure are needed. Results in Chapter 2 indicate that although protein 

expression in dendrites did not change after acute ethanol exposure, FMRP 

phosphorylation was increased after only 24 hours of ethanol treatment. Follow-

up experiments could focus on FMRP activity during this period. FMRP can 

regulate translation through several different means including interaction with the 

active ribosome or other mRNAs that encode proteins needed for short-term 

adaptations to ethanol. As a key mediator of 5’ TOP mRNAs, alterations in FMRP 

activity may also be important for translation of proteins that make up the active 

ribosome along with other mRNA binding proteins and key translational 

regulators (Jefferies et al 1997; Darnell et al 2013). As a result of this increase in 

phosphorylation, FMRP may have a significant role in mediating the transition in 

neuronal homeostasis that occurs during the shift from acute to chronic ethanol 

exposure. 

 An important direction for these future studies could focus on the questions 

presented above. For example, are specific cellular homeostatic mechanisms 

directly connected to drinking behavior, and how might activity-dependent protein 

translation and actin dynamics be regulated? Cyfip2 is also mediated by 
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upstream of Rac1 by S6K1 (Miki et al 1998; Castets et al 2005; Tolias et al 2005). 

Therefore, S6K1 may serve as the common element of each mechanism 

regulating both spine morphology and protein translation (Figure 5-1). Research 

in non-neuronal cell types indicate that inhibition of S6K1 decreases interactions 

between GTP-bound Rac1 and Cyfip, as well as preventing Cyfip2-mediated 

cytoskeletal remodeling (Castets et al 2005). These studies also demonstrate 

that Cyfip2-mediated actin dynamics are dependent on another downstream 

substrate of S6K1, specifically, the Rac1 GEF Tiam1 (Castets et al 2005; Tolias 

et al 2005). As with S6K1 inhibition, blockade of Tiam1 activity prevented 

cytoskeletal alterations due to Cyfip2 activity (Castets et al 2005).  Future 

experiments may also investigate these mechanisms in other brain regions 

implicated in alcohol addiction and ethanol-induced cognitive deficits. Both the 

S6K1 inhibitor used in these studies as well as a Tiam1-specific inhibitor are 

commercially available.  

 Studies comparing the behavioral and cellular phenotype of C57BL/6J to -

6N mice would build upon the body of work presented here. 6N mice consumed 

less ethanol compared to 6J mice, but like the 6J group, the 6N group 

demonstrated an escalation in ethanol intake following vapor chamber exposure. 

Investigation of ethanol-induced behavioral or cognitive deficits will further 

characterize the phenotypic differences that may exist as a result of this cyfip2 

polymorphism. Although these are two distinct substrains of mice, a group has 

created a knock-in of the 6N SNP on a 6J background, making the only 
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difference between the two strains the cyfip2 gene, eliminating one of the 

variables in these studies (Kumar et al 2013). 

 Interestingly, in 6N mice, both the water and CIE-exposed groups gained 

more weight by the end of the baseline-drinking period compared to 6J mice. 

Research in Prader-Willi phenotype, a form of obesity connected with fragile X 

syndrome, has implicated Cyfip2 in dysregulation of leptin signaling (Hoeffer et al 

2013). Additionally in preclinical obesity studies, 6N mice are prone to develop 

diet-induced obesity when given free access to food (Fan et al 2015). Future 

studies may investigate whether the genotypic differences in 6J and 6N mice 

affect reward choice. Results may reveal an interesting difference in 6N mice 

between natural rewards (food) and unnatural rewards (ethanol).  

 In conclusion, the work presented in this dissertation revealed that chronic 

ethanol exposure induces homeostatic alterations in protein translation that likely 

occur through modulation of FMRP activity. These alterations in translation were 

also accompanied by changes in dendritic spine density and spine morphology. 

The aim of these experiments was to examine the role of FMRP in activity-

dependent, homeostatic protein synthesis in dendrites and dendritic spines in 

response to chronic ethanol exposure. Additionally, these studies also 

investigated whether spine morphology is associated with these FMRP-mediated 

changes in translation and if these two processes have a potential role in 

mediating ethanol drinking behaviors. The mechanism driving these neuronal 

adaptations during ethanol exposure, and how this may affect behavior is not 

well understood. Results from these studies provide evidence of a specific 
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mechanism that may be essential for chronic ethanol-induced cellular 

adaptations.  
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