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Abstract 

Breast cancer is a heterogeneous disease that affects close to two million 

women each year. Of these women, seventy percent express estrogen receptor 

alpha, a member of the nuclear receptor subfamily that is activated in response to 

estrogen. Our research has shown an alternate mechanism by which estrogen 

receptor alpha is activated and subsequently elicits its cancer promoting effects.  

The process of glycation involves the non-enzymatic addition of sugar 

moieties to biological macromolecules which produce reactive metabolites known 

as advanced glycation end products (AGEs).  These metabolites have been shown to 

be responsible for many of the complications associated with diabetes because of 

their ability to interact with the Receptor for Advanced Glycation End Products 

(RAGE) and produce a chronic inflammatory phenotype. Similarly, this same effect 

has been shown in several different cancers including prostate, melanoma, and 

colorectal.  

Like other cancers, we observed greater levels of AGEs and RAGE within 

breast cancer tumor and serum samples and showed a correlation between tumor 

progression and intratumoral AGE concentration. Utilizing two ER positive breast 

cancer cell lines, T47D and MCF7, we have also identified a role for AGEs in the 

phosphorylation of the estrogen receptor at two different residues within the ligand 

independent activation domain: serine 118 and serine 167. By utilizing exogenous 

AGE treatment and inhibition with molecular inhibitors, we showed that, following 

exposure to AGEs, a signaling cascade occurs through Akt and ERK to phosphorylate 
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these two residues. Additionally, this signaling pathway produced a more 

proliferative phenotype in our cell lines. We were able to verify that AGE treatment 

was inducing this increase in proliferation through interaction with RAGE by using 

shRNA technology.  

Activation of the estrogen receptor at these particular residues has been 

shown to be indicative of tamoxifen resistance. We identified a role for AGEs in 

tamoxifen resistance by performing a cell viability assay and found that AGE treated 

cells were indeed less sensitive to drug treatment. Elucidating a role for AGE-RAGE 

signaling in breast cancer creates potential for improved therapies and preventative 

interventions for patients with the disease. 
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Introduction and Background 

Breast cancer: Breast cancer is a carcinoma (or sarcoma, in extremely rare cases) 

that originates in the breast; which is the structure responsible for milk production 

and transport following childbirth. The breast is comprised of milk producing 

lobules that are grouped together into 15-20 grape-like clusters known as lobes. 

During lactation, milk is transported from the lobes and out the nipple through a 

network of thin, tube-shaped structures called ducts (Figure 1). Fibrous tissue as 

well as fat surround the lobes and ducts to make up the bulk of the breast. 

Figure 1. Anatomy of the breast, showing the lobules and ductal system where most 
breast cancers originate. Figure adapted from “Three-Dimensional In Silico Breast 
Phantoms for Multimodal Image Simulations” by D. Mahr et al, 2012, IEEE 
Transactions on Medical Imaging. 31(3):10.1109/TMI.2011.2175401. Copyright 2012 
by The Institute of Electrical and Electronics Engineers. Adapted with permission (2).  
<EndNote><Cite><Author>Mahr</Author><Year>2012</Year><RecNum>127</Rec
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Additionally, the breast contains blood and lymphatic vessels which play a key role 

in tumor metastasis in breast cancer patients. Around 70% of all breast cancers 

begin within the ducts, whereas only around 10-15% begin within the lobules 

(American Cancer Society). Mammary cells are undifferentiated until lactation 

following childbirth and regress to a less differentiated state after menopause. This 

lack of differentiation causes the breast to be more susceptible to cancer promoting 

stimuli and tumorigenic transformation (7) 

There exist several different methods by which cancerous tissue is detected 

within the breast. Preventative screenings such as basic clinical breast exams and 

mammography are among the most widely used(8). These tests serve to examine 

and detect any abnormalities within the breast tissue. If a suspicious mass is found, 

a biopsy is then performed to determine malignancy status. Cancerous tumors are 

then further characterized using methods such as immunohistochemistry in order 

to classify the cancer into a variety of subtypes which will then warrant a specific 

treatment regimen(8). 

A key issue in treating breast cancer is its vast heterogeneity. A particular 

tumor will respond to treatment differently than others, emphasizing the need for 

more personalized treatment. Relatively recently, genomic analysis has allowed for 

tumors to be classified into molecular subtypes based on the expression of a variety 

of genes (BRCA1/2, ERBB2, TP53, etc.). Many unique subtypes have been identified 

such as the luminal cancers (A and B), HER2 Enriched, and Basal-like. While our 

knowledge base continues to expand, genetic testing  is expensive and not readily 
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available in the clinical setting(9). A key portion of the current diagnostic process in 

breast cancer is to determine a tumor’s receptor status using 

immunohistochemistry (IHC). IHC is relatively inexpensive and aims to characterize 

the tumor based on the expression of three different receptors: estrogen receptor 

(ER), progesterone receptor (PR), and the human epidermal growth factor receptor 

2 (HER2). Knowing a tumor’s receptor status is crucial in the formation of a 

patient’s treatment plan because receptor expression allows for targeted therapies 

that disrupt tumorigenic signaling, resulting in inhibition of cancer growth and 

survival. By characterizing these tumors, treatment is more personalized for the 

patient’s particular cancer, leading to an improved prognosis. 

 

Breast Cancer Incidence/Risk Factors: Breast cancer is a disease that affects post-

pubescent women of all ages. Annually affecting 1.7 million worldwide, the 

incidence of breast cancer has steadily increased within the past decade and is only 

expected to continue to rise (9). In the U.S. alone, over 200,000 new cases are 

diagnosed each year with around 40,000 deaths attributed to the disease (American 

Cancer Society).  Because of its breadth, breast cancer does indeed represent a 

substantial health burden and certain factors have been shown to modify a person’s 

risk of incidence, reoccurrence, and mortality of the disease.   

Non-Modifiable Risk Factors: The most influential risk factor associated 

with breast cancer development, other than gender, is age. Fewer than 10% 

of all invasive breast cancers are diagnosed in women under 40, with the 
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greatest risk present in post-menopausal women, peaking around age 70 (8). 

In addition to age, heritable genetic mutations have been shown to cause 

around 5-10% of all breast cancers (10). Research looking into the effects of 

gene mutations such as BRCA1, BRCA2, and TP53 (among many others) has 

allowed for preventative intervention and patient specific care. Another 

studied risk factor is race and ethnicity. Post-menopausal Caucasian women 

have the highest risk of breast cancer development. While the overall 

incidence is lower in the African American population, women of this race 

have an increased risk of developing a more aggressive disease at a younger 

age, resulting in a higher mortality rate (11). 

Lifestyle Risk Factors: Certain factors that are modifiable also influence the 

risk of disease development. There is evidence that suggests weight gain and 

obesity, particularly following menopause, increases the risk of incidence, 

reoccurrence, and mortality of breast cancer (12-14). Relatedly, diet has been 

associated with increased incidence as well, which will be discussed in 

further detail later. Other risk factors are attributed to either lack of 

differentiation (i.e. nulliparous, non-breastfeeding, etc.) which leaves the 

mammary tissue more susceptible to transformation, or to exogenous 

hormones found in oral contraceptives or hormone replacement therapy (15, 

16). 

 



5 
 

Estrogen Receptor Positive Breast Cancer: As stated previously, subtyping of 

breast cancers is imperative in developing the most effective treatment plan for 

patients. Genomic testing is not widely used in the clinic so IHC classification is a 

staple in the diagnostic process. Of all invasive breast cancers, around 70% express 

the estrogen receptor (17). These ER+ breast cancers are included in the Luminal 

molecular subtypes. Around 50-60% of breast cancers are Luminal A and have the 

best prognosis of all the subtypes. These tumors are generally ER+, PR+/-, and 

HER2- and have a low proliferation score, measured by Ki-67 staining. Luminal B 

tumors are generally ER+, PR+/- as well, but can also express the HER2 growth 

factor receptor. Additionally, these tumors usually have a high proliferation score, 

resulting in a worsened prognosis. While the correlation between pathological and 

molecular subtypes is not infallible, the overlap between the two diagnostic 

procedures allows for better insight into the characteristics of a patient’s specific 

tumor. ER+ breast cancers tend to have an improved prognosis, not only because 

these tumors generally present with lower histological grades and little-to-no lymph 

node involvement at diagnosis, but also because expression of the estrogen receptor 

makes a patient a candidate for targeted therapies (9, 18). In ER+ positive breast 

cancer, there are two main categories of treatment: anti-estrogens and aromatase 

inhibitors. Anti-estrogens, which block the functionality of the receptor, can be 

further subdivided into selective estrogen receptor downregulators (SERD) and 

selective estrogen receptor modulators (SERM). SERDs act as full antagonists 

toward the receptor by causing ER degradation, whereas SERMs can function in an 
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antagonistic or agonistic manner, depending upon the targeted tissue location. 

Aromatase inhibitors, which are most often prescribed secondary to anti-estrogens 

in post-menopausal women, block the functionality of the enzyme aromatase which 

is responsible for converting testosterone to estrogen. Blocking the production of 

the ligand therefore hinders ER mediated signaling. These aromatase inhibitors, 

while effective, do exhibit greater toxicity when compared to anti-estrogens, 

especially in premenopausal women (19).  

 

Estrogen Receptor Alpha: The estrogen receptors are a group of nuclear receptors 

that are included in the subfamily of ligand activated transcription factors (20). 

Currently, two receptors are known: ERα and ERβ. These receptors are the product 

of unique genes and differ in their functionality and structure. The ligand and DNA 

binding domains of these receptors have been evolutionarily conserved, resulting in 

a great amount of homology between the two receptors in these regions. The ligand 

independent region located at the N-terminus of each receptor, however, varies 

markedly (21, 22). Despite it being the subject of research for over a decade, the 

exact functionality of ERβ remains unknown (23). Because of this, ERα (Figure 2) is 

the isoform detected during immunohistochemical analysis and subsequently used 

for diagnostic and therapeutic purposes in breast cancer.  

Structurally, ERα consists of three main functional domains (Figure 2). 

Because of its transcription factor functionality, ERα contains a DNA binding domain 

(DBD). The DBD is responsible for binding to the estrogen response element (ERE) 
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Figure 2. Structure of estrogen receptor alpha. 

within the promoter sequence on the DNA of its target genes to enhance 

transcription. ERα also contains a ligand binding domain (LBD) where estrogens can 

interact and enhance DNA binding (21). This ligand dependent activation of ERα has 

been widely studied. Relatively recently, however, activation of ERα has been shown 

to occur independently of ligand via second messengers (20). These second 

messengers interact with the N-terminus of the receptor within the ligand 

independent domain to induce ERα DNA binding. 
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Estrogen Receptor Signaling:  

 

Genomic (classical) Action of ERα: Because estrogen is a steroid hormone, it is 

able to diffuse freely through the plasma membrane and interact with cytoplasmic 

estrogen receptors (Figure 3). Once estrogen binds, the receptor undergoes several 

conformational changes that allow it to dissociate from chaperone proteins and 

Figure 3. Classical and non-classical signaling of ERα. ERα is classically activated by 
estrogen which induces receptor dimerization, nuclear localization, and transcription 
of target genes. Additionally, growth factor signaling pathways can interact with the 
receptor to induce DNA binding. Adapted from “Neuroprotective effects of 17 beta-
estradiol rely on estrogen receptor membrane initiated signals” by M. Fiocchetti et al, 
2012, Frontiers in Physiology, 3:73. Copyright 2012 by Fiocchetti, Ascenzi and 
Marino. Adapted with permission in accordance with the Creative Commons License 
3.0. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3319910/ (3). 
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dimerize(19). Following translocation to the nucleus, the dimerized receptor can act 

in one of two ways. The receptor can bind directly to the estrogen response element 

(ERE) located on the promoter region of its target gene and recruit regulatory 

proteins such as AIB1 or SRC3,  or it can bind to transcription factor complexes such 

as AP-1 or NF-κB, thereby enabling it to enhance transcription of genes without an 

ERE(24). Target genes of ERα include several proliferative, pro-survival, and 

angiogenic factors such as c-myc, VEGF, IGF-1R, among several others(19). Estrogen 

mediated signaling is crucially important in the progression and survival of tumors 

in ER+ breast cancer. 

Estrogen Independent Activation: ERα contains two transcription 

activation functional domains: AF1 and AF2. Following estrogen binding to 

the ligand binding domain, AF2 (estrogen dependent) synergizes with AF1, 

allowing the receptor to change conformation and form a hydrophobic 

groove to promote coactivator binding (17). While the AF2 domain is only 

able to enhance transcription in the presence of estrogen, the AF1 domain 

can be phosphorylated via second messenger pathways which can then 

induce an agonistic or antagonistic conformational change. Phosphorylation 

of the receptor by either estrogen binding or through secondary kinases then 

induces dimerization and subsequent transcriptional activity as described in 

the previous section. Phosphorylation is necessary in order for ERα to 

influence transcription, regardless of whether or not estrogen is present 

(19). Because of the variance in mechanisms behind the different 
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phosphorylation sites, this particular post-translational modification has 

been studied to determine if there is an influence on clinical outcomes in 

patients (25).  

Non-Genomic Action of ERα: The nuclear action of ERα has been well established. 

Relatively recently, however, it has been discovered that ERα influences several 

signaling pathways throughout the cell. Membrane associated ERα has been shown 

to interact and directly phosphorylate membrane bound receptor tyrosine kinases 

such as the epidermal growth factor receptor (EGFR) and the insulin-like growth 

factor receptor (IGF-1R) following the binding of estrogen(26). In addition, ERα is 

able to directly interact with the p85 subunit of phosphoinositide-3 kinase (PI3K) 

leading to the activation of the pro-survival Protein kinase B (Akt)(21). While the 

mechanisms by which these interactions occur is still controversial, it is evident that 

there exists a bi-directional cross-talk between ERα and growth factor signaling 

leading to alterations in proliferation and cell survival, especially in breast cancer. 

 

Tamoxifen: As stated previously, treatment for ER+ breast cancer falls under two 

categories: anti-estrogens and aromatase inhibitors. Anti-estrogens are most often 

the first line of defense following resection of the primary tumor. Among the most 

effective anti-estrogens given to patients with ER+ breast cancer is tamoxifen. 

Tamoxifen is a selective estrogen receptor modulator that, when metabolized by the 

liver, is converted to 4-hydroxy tamoxifen and N-desmethyl 4-hydroxy tamoxifen 

which have up to 100 times greater affinity for the estrogen receptor than tamoxifen 
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itself (19). These reactive species then compete with estrogens to bind to the 

receptor. When tamoxifen binds to the receptor, dimerization and DNA binding still 

occur, but the AF2 domain remains inactive and the conformational change required 

for the binding of cofactors does not occur (Figure 4). Transcription of estrogen 

receptor target genes is inhibited, resulting in decreased estrogen-mediated tumor 

growth. Because tamoxifen is considered a SERM, it possesses a dual 

functionality(17). It can function as an agonist in the endometrium and bone while 

acting as an antagonist in the mammary tissue of the breast. The efficacy of 

tamoxifen in the treatment of ER+ breast cancer has been well established, and 

because it has relatively low toxicity and is able to be given to both pre- and post-

menopausal women, it has become the drug of choice for most patients(6). 
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Tamoxifen resistance: Despite encouraging results in many patients, around 30% 

of women taking tamoxifen will not receive benefit from treatment despite still 

expressing the estrogen receptor and are considered de novo resistant. In addition 

to de novo resistance, almost all patients with metastatic disease will eventually 

acquire a resistance to tamoxifen, usually relapsing within 1-2 years (25-27). These 

patients are then given second- and third-line treatments in the form of SERDs 

Figure 4. Tamoxifen mechanism of action. Tamoxifen competes with estrogen to 
bind to ER leading to dimerization and DNA binding. The AF2 domain remains 
inactive, inhibiting interaction with transcriptional cofactors.  Adapted from 
“Tamoxifen (‘Nolvadex’): a Review by M. Clemons and A. Howell, 2002, Cancer 
Treatment Reviews, 28(4): 165-180. Copyright 2002 by Elsevier Science Ltd. 
Adapted with permission (6). 
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and/or aromatase inhibitors, but even then, these tumors will most often still 

acquire a resistance to these drugs (28). Because of the prevalence of ER+ breast 

cancer, it is imperative to identify the mechanism behind the development of 

tamoxifen resistance in order to better improve first-line therapies for these 

patients. Identification of this mechanism is widely studied but very controversial 

and currently there are four theories as to how this resistance occurs: 1) resistance 

to specific anti-estrogens (i.e. inability to convert tamoxifen to reactive metabolites), 

2) loss of ERα expression, 3) altered ERα signaling, and 4) ligand independent 

activation of ERα (28, 29). Phosphorylation within the AF1 domain of ERα 

independent of estrogen is thought to contribute to tamoxifen resistance because 

transcription is still able to occur despite the absence of ligand.  Among the most 

widely studied phosphorylation sites within the ligand independent activation 

domain are serine 167 and serine 118. These two residues are emerging as potential 

predictive markers for patient response to tamoxifen because of their influence on 

the structure and functionality of ERα.  Ser118 has been shown to be 

phosphorylated in response to the activation of several kinase pathways including 

the mitogen activated protein kinases (MAPK) ERK 1/2 and p38 (30). Functionally, 

phosphorylation of ERα at ser118 by MAPK serves to not only enhance binding of 

cofactor SRC-3, but also causes the receptor to become hypersensitive to estradiol, 

therefore lowering its affinity for tamoxifen(17). Furthermore, one study utilized a 

tamoxifen resistant breast cancer cell line and found that MAPK activity was 

significantly increased (31). This activation of MAPK (and subsequent ERα 
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phosphorylation) can either be estrogen dependent or estrogen independent (25). 

Ser167 is also phosphorylated by a variety of kinases, most notably by Protein 

Kinase B (Akt) within the PI3K signaling pathway (30). Like ser118, 

phosphorylation at this residue can occur with or without the estrogen ligand 

making it a potential contributor to tamoxifen resistance. While the specific 

mechanism by which ser167 influences tamoxifen resistance is currently 

understudied, investigators have shown that phosphorylation of this residue by Akt 

results in the increased recruitment of cofactors to ERα resulting in enhanced 

transcription (30, 32). The MAPK and PI3K signaling cascades are frequently 

upregulated in several cancers because of their proliferative and pro-survival 

effects. This could potentially be leading to an upregulation of ERα mediated 

signaling, independent of estrogen. In an effort to combat tamoxifen resistance, 

inhibitors of these pathways in combination with endocrine therapies have been 

tested and some have proven to be relatively effective (33). The sheer complexity of 

ERα signaling, however,  allows the tumor the ability to adapt to even the most 

effective drugs (34).  Because of this, understanding the complete mechanism by 

which tumors become resistant is important in identifying an appropriate and 

effective drug target.  
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Breast Cancer, Obesity, and Diet: As stated previously, poor diet and obesity are 

modifiable risk factors contributing to the incidence, reoccurrence, and mortality of 

breast cancer in women. Several epidemiological studies have shown an association 

between increased adiposity and poorer prognoses, increased incidence, and a 

greater mortality rate, especially among post-menopausal women (15). This is 

potentially caused by the dual functionality of adipose tissue in both metabolism 

and hormone production (Figure 5). Whereas pre-menopausal women produce 

Figure 5: Interaction between obesity and breast cancer progression. Adipose tissue 
possesses endocrine functionality, resulting in increased circulating estrogen which 
can promote tumorigenic signaling in ER+ tumors. Adapted from “Obesity and breast 
cancer prognosis: weight of the evidence” by F. Sinicrope and A. Dannenberg, 2011, 
Journal of Clinical Oncology, 29(3): 4-7. Copyright 2011 by the American Society of 
Clinical Oncology. Adapted with permission (4).  
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estrogen primarily in the ovaries, postmenopausal women are restricted to 

peripheral sources of estrogen production. Adipose tissue contains aromatase, 

which is a complex of enzymes that is responsible for converting androgens 

produced in the adrenal gland into estrogen(35). Increased adipose tissue leads to 

greater amounts of circulating estrogen, which is a major fuel for ER+ breast 

cancers. In addition to production of estrogen, obesity can also cause insulin 

resistance leading to glucose intolerance and increased production and secretion of 

pro-inflammatory markers such as IL-6 and TNFα (36).  

It is no secret that one of the primary causes of obesity is a poor diet. Because 

of this, several types of diets (i.e. high fat, high carbohydrate, Mediterranean, etc.) 

have been studied to determine what diet in particular has the greatest effect on 

breast cancer development and prognosis. Of particular interest for this proposal is 

a study utilizing the Italian portion of the European Prospective Investigation into 

Cancer and nutrition (EPIC) cohort that looked at the effects of  diets with a high 

glycemic load on breast cancer incidence in over 26,000 women over eleven years. 

After controlling for several external factors such as menopausal status and total 

energy intake, the investigators found that women consuming diets high in 

carbohydrates, measured by glycemic load, had a significantly increased incidence 

of breast cancer development(37). Glycemic load measures both the quality and 

quantity of a particular food (unlike glycemic index which just measures quality) 

making it a more accurate estimation of post-prandial circulating glucose and 

insulin demand. This is especially relevant for cancer because of insulin’s ability to 
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interact with transmembrane receptors and increase proliferation. Furthermore, as 

stated previously, activated receptor tyrosine kinases (including IGFRs) can result in 

estrogen-independent activation of ERα (15). In addition to the EPIC cohort study, 

other epidemiological studies have also looked at glucose metabolism in breast 

cancer incidence, including one study investigating fasting blood glucose in a cohort 

of over 10,000 women. After a five year period, 144 breast cancer cases were 

matched with 4 control participants who did not develop breast cancer over the 

examination period. The investigators found that in post-menopausal women, 

glucose, insulin, and IGF-1 were all associated with increased breast cancer 

incidence, leading the investigators to conclude that altered glucose metabolism is a 

risk factor for breast cancer development (38).   

 

Advanced Glycation End Products: Persistently high levels of glucose within the 

blood, often resulting from a carbohydrate-rich diet, not only alters insulin mediated 

signaling, but also leads to the increased formation of reactive metabolites known as 

advanced glycation end products (AGEs)(39).  

 

AGE Formation: This heterogeneous, complex group of molecules is formed 

during normal metabolism, classically through what’s known as the Maillard, 

or browning, reaction (40) (Figure 6). This AGE-forming reaction occurs in a 

series of three phases. The first step is glycation, which is the non-enzymatic 

addition of reducing sugars to the amino groups on biological 
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macromolecules such as proteins, lipids, or nucleic acids to form Schiff bases. 

This first step is reversible and its initiation is heavily dependent upon sugar 

concentration. The second step of the Maillard reaction involves the Schiff 

base undergoing a series of rearrangements over the course of a few days to 

form Amadori products, or early glycation products. Glycated hemoglobin, or 

HbA1C, is an example of an Amadori product that is a widely used 

measurement of long-term blood glucose concentration in diabetic patients. 

These products are more stable than Schiff bases, but the total reaction is still 

reversible at this point. Accumulation of Amadori products, however, causes 

an even further series of rearrangements that can take several weeks and 

irreversibly forms the reactive, cross-linking proteins known as AGEs (1, 41).  

While the Maillard reaction is the classical pathway for AGE formation 

within the body, there exist other mechanisms capable of producing these 

reactive metabolites. Α-oxoaldehydes (glyoxal, methyglyoxal, etc.) formed 

from the autooxidation of monosaccharides or the peroxidation of lipids can 

interact with monoacids to form AGEs in high oxidative stress environments 

(1). Additionally, these α-oxoaldehydes can be formed through the polylol 

pathway in which glucose is converted to fructose intermediates (Figure 6). 

The variety of precursors and reactions responsible for the formation of 

AGEs are what give this group of reactive metabolites their heterogeneity in 

both structure and pathogenic functionality(42). 
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One of the key internal mechanisms inhibiting AGE formation is the 

glyoxalase system (GLO). GLO is responsible for detoxifying methylglyoxal, a 

reactive carbonyl and AGE precursor (43). This is accomplished by catalyzing 

the conversion of methylglyoxal to lactate and is a process that has been 

shown to be very active in cancer because of the high rate of glycolysis and 

glucose consumption that is characteristic of the tumor microenvironment 

(44).  

Figure 6. Formation of AGEs. Endogenous formation of AGEs can occur through a 

variety of mechanisms. Classical formation occurs through the Maillard (Browning) 

reaction but AGEs can also be formed through autooxidation of glucose, peroxidation 

of lipids, and the polyol pathway. Adapted from “Dietary Advanced Glycation End 

Products and Aging” by C. Luevano-Contreras and K. Chapman-Novakofski, 2010, 

Nutrients, 2(12):1247-1265. Copyright 2010 by C. Luevano-Contreras and K. 

Chapman-Novakofski. Adapted with permission in accordance with the Creative 

Commons License 4.0,  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3257625/ 

(1). 
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Exogenous Sources of AGEs: In addition to normal metabolism, AGEs are 

naturally present in uncooked, animal derived foods. Furthermore, particular 

food preparations can increase the AGE content of a food by driving AGE 

forming reactions. Cooking methods involving dry heat such as grilling, 

broiling, and searing induce the greatest AGE forming effect (40). Thermal 

processing for food safety and/or preservation purposes can also increase 

the AGE content of a particular food. AGEs themselves can even be added to 

food in order to enhance taste, appearance, and color (45, 46).  

The western diet generally refers to a diet high in fat, sugar, and 

processed foods and is a key contributor in the dramatic increase in rates of 

both obesity and type 2 diabetes. These foods, coincidentally, are also high in 

AGE content. The exact fraction of exogenous AGEs being successfully 

absorbed remains controversial, but several studies have found a post-

prandial increase in serum AGE levels several days following consumption of 

an AGE rich meal, suggesting that these reactive molecules can indeed 

contribute to overall AGE accumulation with the body (47). Because cellular 

and renal clearance of AGEs is inefficient, increased consumption of these 

foods leads to an increase in the deleterious effects associated with this 

reactive species that can potentially worsen overtime (40, 42).  
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Receptor for Advanced Glycation End 

Products (and pathogenic signaling): 

AGEs can contribute to pathogenesis in one 

of two ways. They can act independently of a 

receptor and cause damage to protein 

structure and function, particularly within 

the extracellular matrix by causing collagen 

crosslinking, or by acting as a ligand for the 

receptor for advanced glycation end 

products (RAGE) (1). RAGE is a 

transmembrane, pattern recognition 

receptor that is part of the immunoglobulin 

superfamily (48) (Figure 7). It is expressed 

in relatively low levels in all tissues on 

multiple cell types throughout the body, but 

is found to be greatly increased in pathophysiological settings (i.e. hypoxic and 

inflammatory environments) (49). Structurally, RAGE contains a variable domain 

that is responsible for ligand binding, two constant domains, a transmembrane 

domain, and a cytoplasmic domain responsible for carrying out RAGE intracellular 

signaling. In addition to binding AGEs, RAGE also interacts with a variety of other 

ligands including the S100 family of proteins and High Mobility Group Box Protein 1 

Figure 7: RAGE structure showing 
functional domains. Adapted from 
“Receptor for Advanced Glycation 
End Products and Atherosclerosis: 
from Basic Mechanisms to Clinical 
Implications” by G. Basta, 2008, 
Atherosclerosis, 196(1):9-21. 
Copyright 2008 by Elsevier Science 
Ltd. Adapted with permission (5). 
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(HMGB1). Because of the variety of its ligands, RAGE signaling encompasses several 

different pathways involved in the inflammatory and immune responses (42).  

A key effector in the propagation of the inflammatory response following 

injury is the activation of the transcription factor NF-κB (Figure 8). After AGE binds 

RAGE, several downstream signaling pathways are activated including the 

phosphatidylinositol-3-kinases (PI3K) and mitogen activated protein kinases 

(MAPK) which lead to translocation of NF-κB to the nucleus (1). The transcription 

factor then enhances production and subsequent release of inflammatory cytokines, 

growth factors, and adhesive molecules which serve to recruit more leukocytes to 

the site of injury or infection (Figure 8). Additionally, NF-κB also enhances 

transcription of RAGE itself, causing a positive feedback loop with enhanced AGE-

RAGE signaling, resulting in a chronic inflammatory phenotype (1). Because of its 

role in inflammation, AGE signaling has been implicated in the progression and 

complications of a variety of diseases including diabetes, cardiovascular disease, and 

Alzheimer’s (41).  
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AGE-RAGE Signaling in Cancer: It has been suggested that a pro-

inflammatory environment can serve to promote tumorigenesis (49-51). This 

functionality is partly due to the ability of cytokines released during the 

inflammatory response to promote un-controlled proliferation(52). Relatively 

recently, several studies have shown that AGEs are increased and RAGE is 

upregulated in a variety of cancers including prostate, colorectal, and gastric (53). In 

Figure 8. Pro-inflammatory AGE-RAGE signaling axis. Following ligand 

binding, PI3K and MAPK are activated downstream causing translocation to 

of NF-κB to nucleus resulting in enhanced transcription and subsequent 

release of inflammatory markers. Adapted from “Dietary Advanced Glycation 

End Products and Aging” by C. Luevano-Contreras and K. Chapman-Novakofski, 

2010, Nutrients, 2(12):1247-1265. Copyright 2010 by C. Luevano-Contreras and K. 

Chapman-Novakofski. Adapted with permission in accordance with the Creative 

Commons License 4.0,  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3257625/  

(1). 
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addition, AGE-RAGE signaling has been implicated in several cancer-associated 

signaling pathways that are pro-survival and contribute to increased proliferation, 

migration, and invasion, leading to a more aggressive phenotype with greater 

metastatic potential (54). As stated previously, AGE binding RAGE leads to the 

activation of the PI3K and MAPK pathways. Interestingly, these two pathways are 

also known to be upregulated or altered in a variety of cancers. Protein kinase B 

(Akt), within the PI3K pathway, promotes survival by inhibiting apoptosis and cell 

cycle arrest within cancerous cells (55). RAGE binding AGEs can also activate 

several different proteins within the MAPK pathway including ERK1/2, JNK, and 

p38 which are heavily involved in the growth potential of malignant tumors (48). 

The activation of PI3K, MAPK, as well as NADPH oxidase by AGE-RAGE signaling 

then activates NF-κB which, as stated previously, causes the enhanced transcription 

of not only several inflammatory cytokines and growth factors, but RAGE as well. 

This causes a feed-forward, pro-tumorigenic loop, leading to a more aggressive 

phenotype in cancer (1). 

 

Clinical Implications of AGEs Implicating AGEs in the progression of several 

diseases has led to attempts at identifying a way to utilize these reactive metabolites 

in the clinic.  

Inhibition of AGEs: It has been widely studied that AGEs are poor 

prognostic markers for complications in inflammatory diseases, especially in 

diabetes. Relatively recently, however, it has been suggested that AGEs could 
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potentially be successful drug targets by either blocking their formation or 

inhibiting intracellular signaling. (56).  Drugs such as Metformin, which 

inhibits formation of AGEs are already being clinically utilized for treatment 

of other chronic diseases and could be potentially helpful as a dual therapy in 

AGE-associated cancer (57).   

AGEs as a biomarker: In diabetes and cardiovascular disease, assessing AGE 

content in patient serum and tissue has proved valuable in predicting 

complications associated with these diseases. In diabetes, high levels of AGEs 

are shown to be predictive of microvascular complication and nephropathy 

(58). Interestingly, AGEs seem to have greater predictive capacity for these 

complications when compared to glycated hemoglobin, an AGE precursor 

and already established risk factor for diabetic complications. This may be in 

part due to AGEs’ ability to assess overall metabolic stress, rather than just 

glucose metabolism (58).  

Disease Prevention: The pathogenic functionality of AGEs is increased in 

obese individuals. This could be the result of a combination of factors: 

hyperglycemia, hyperlipidemia, increased consumption of AGE-rich foods, 

etc (43). Obesity is, of course, a major risk factor for a variety of chronic 

diseases, including breast cancer. Therefore, reduction of AGEs either 

through decreased consumption of AGE-rich foods or through AGE/RAGE 

inhibitors could have potential preventative implications in the development 

and prognosis of several diseases. 
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RESEARCH PLAN 

Overall Rationale: Because of its pro-inflammatory nature, the AGE-RAGE signaling 

axis has been previously implicated in the complication and progression of a variety 

of chronic diseases including diabetes, cardiovascular disease, rheumatoid arthritis, 

along with many others (54, 59). Only recently, however, has RAGE signaling been 

shown to have tumorigenic effects in several different types of cancer. RAGE 

signaling is able to activate a variety of kinase pathways including PI3K and MAPK 

which are known to enhance proliferation and cell survival in cancer. Our lab has 

previously shown an association between AGEs, RAGE, and disease progression in 

prostate cancer (60). Because of this, we believe that AGE-RAGE signaling may be 

serving this same functionality in breast cancer. Identifying a role for AGEs in breast 

cancer may have potential therapeutic and preventative implications for patients 

because of our ability to consume exogenous AGEs in the form of high fat, high 

sugar, and thermally processed foods. Additionally, because a high AGE diet 

promotes weight gain and obesity, implicating AGEs in breast cancer could 

potentially explain the increase in incidence, reoccurrence and mortality that is 

already known to be associated with obesity (43). 

 Around 70% of all invasive breast cancers express the estrogen receptor 

(17). Activation of this receptor is the driving force behind the progression of these 

types of cancer. Tamoxifen, which is often the first line of adjuvant therapy for these 

patients, is an effective drug that combats the ability of the estrogen receptor to 

enhance transcription of its target genes.  A third of patients taking tamoxifen, 
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however, will not respond to the drug and most who initially respond will develop 

resistance. Several studies have attempted to find a molecular cause for this 

acquired resistance by investigating specific, estrogen-independent 

phosphorylation sites on the receptor itself (17, 25, 

32, 61). Two sites in particular, ser167 and ser118 

within the ligand independent activation domain, 

have been suggested to influence tamoxifen 

resistance. Ser167 and ser118 are phosphorylated 

by the second messenger kinase pathways, PI3K and 

MAPK, respectively. Because RAGE signaling has 

already been shown to activate these signaling 

cascades in other diseases, we believe that AGEs 

could be a potential factor contributing to tamoxifen 

resistant tumors by causing phosphorylation of the estrogen receptor at these two 

residues through the PI3K and MAPK pathways. We are therefore proposing AGE-

RAGE signaling (Figure 9) as a potential mechanism of progression and tamoxifen 

resistance in estrogen receptor positive breast cancer.  

 

 

 

Figure 9: Proposed 
pathway by which AGEs 
signal through RAGE to 
influence ER+ breast 
cancer progression and 
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Hypothesis: We hypothesize that AGE levels are increased in breast cancer and 

cause activation of cancer associated signaling pathways and contributes to the 

development of tamoxifen resistance in estrogen receptor positive breast cancer.  

 

Specific Aim #1: Determine whether or not presence of AGEs and RAGE are 

indicative of disease progression in breast cancer. The RAGE signaling axis has 

been implicated in a variety of diseases including diabetes, Alzheimer’s, and 

cardiovascular disease. Additionally, RAGE signaling has been previously shown to 

activate pro-survival and proliferative pathways in several types of cancer causing 

its presence (along with AGEs) to be associated with increased grade and disease 

progression in prostate, colorectal, and gastric cancers. Because of its pro-

tumorigenic ability, we believe identifying the RAGE signaling cascade as a marker 

of increased breast cancer aggression will help elucidate its functional role in tumor 

development and survival. 

Task #1: Quantify AGE levels in breast cancer tissue and serum samples to 

define: 

1) Differences between normal, benign, and cancerous samples 

2) Correlation between AGEs and level of differentiation as an 

indicator of disease progression. 

Task #2: Quantify RAGE levels in breast cancer tumor samples to define: 

1) Differences between normal, benign, and cancerous samples 
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2) Correlation between RAGE protein level and tumor 

differentiation as an indicator of disease progression. 

 

Experimental Design 

Biological Samples. Human serum samples (n=39) were obtained from MUSC’s 

Tissue Biorepository. Tissue microarray was obtained from US BioMax (Rockville, 

MD) and contained 96 samples of normal, benign, and cancerous tissue from 48 

patients. Demographic data such as age and race were included. Pathological data 

available from each patient included: tumor grade and receptor status (some).  

 

AGE ELISA. In order to quantify AGE levels in serum samples from breast cancer 

patients, a competitive ELISA assay was utilized to determine concentration of 

circulating AGEs and comparisons were made based on level of tumor 

differentiation as well as ER status. The OxiSelect™ Advanced Glycation End Product 

Competitive ELISA kit was purchased from Cell Biolabs, Inc. (San Diego, CA). The 

wells of the provided 96 well plate were coated with 5 ug/mL BSA-AGE conjugate 

and incubated at 4°C overnight. Wells were then washed twice (250uL each) with 

phosphate buffered saline (PBS) using an automatic plate washer (Bio-Tek 

Instruments, Inc. Winooski VT). Plate was then blocked to prevent non-specific 

binding using 200uL of assay diluent and incubated on an orbital shaker at room 

temperature for one hour. After removal of diluent, 50uL of BSA-AGE standards or 

serum samples were added to the wells in triplicate. Ten standards were prepared 
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according to the manufacturer’s instructions to produce serial dilutions ranging 

from 1.56 ug/mL to 100 ug/mL. After addition of the sample, the plate was then 

incubated at room temperature with light agitation for 10 minutes. 50uL of diluted 

anti-AGE antibody (Cell Biolabs, Inc. San Diego, CA) was then added to each well and 

allowed to incubate at room temperature with light agitation for 1 hour. Wells were 

washed with 250uL of 1X wash buffer three times (Cell Biolabs, Inc. San Diego, CA) 

using an automatic plate washer and thoroughly dried using absorbent strips. 

100uL of diluted secondary antibody-horseradish peroxidase (HRP) conjugate (Cell 

Biolabs, Inc. San Diego, CA) was added to each well and again allowed to incubate 

for one hour at room temperature with light agitation. Plate was then washed in the 

same manner described previously. 100uL of the substrate solution (Cell Biolabs, 

Inc. San Diego, CA), after being warmed to room temperature, was added to each 

well and incubated in the dark for fifteen minutes on an orbital shaker. To stop 

enzymatic reaction, 100uL of stop solution (Cell Biolabs, Inc. San Diego, CA) was 

added to each well and absorbance was read immediately on microplate reader 

(Bio-Tek Instruments, Inc. Winooski, VT) using 450nm as the primary wavelength.  

 

AGE/RAGE IHC. Quantification of AGEs within the tumors themselves was 

accomplished using immunohistochemical (IHC) staining of the TMA. Because RAGE 

is a transmembrane protein, expression levels are only quantifiable using IHC in 

tumor samples. Tissue microarrays contained 96 total punched, paraffin embedded 

samples, each 1mm in diameter mounted on glass slides 2mm apart. Removal of 
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paraffin was accomplished by incubating slides at 60°C for 30-45 minutes. A series 

of washes were then utilized in order to rehydrate the tissue samples: 2-xylene for 

20 minutes each; 2-100% ethanol, 2-95% ethanol, 1-70% ethanol, and 1-50% 

ethanol for ten minutes each; 3-distilled water for five minutes each. Vector 

unmasking solution (Vector Labs, Burlingame, CA) was then used at a 1:100 dilution 

for antigen retrieval. Slides were placed in a pap jar containing the diluted 

unmasking solution and placed in a vegetable steamer, also containing diluted 

unmasking solution, at 90°C for 30 minutes. The slides were then allowed to cool to 

room temperature and placed in pap jar containing 0.3% hydrogen peroxide (Fisher 

Scientific, Fair Lawn, NJ) for 30 minutes to remove any endogenous peroxidase 

activity. The slides were then washed in 1x tris buffered saline containing 0.01% 

Tween-20 (TBST) (Fisher Scientific, Fair Lawn, NJ) for 5 minutes on an orbital 

shaker. In order to prevent solution run-off in the following steps, tissue samples 

were outlined using a hydrophobic pen. Slides were then incubated in 

VECTASTAIN® horse serum (Vector Labs, Burlingame, CA) to block non-specific 

binding for 30 minutes at room temperature in a humidified chamber. Primary 

antibodies for AGE and RAGE (Abcam, Cambridge, MA) were both diluted 1:50 using 

horse blocking serum diluted with TBST and applied to respective slides and 

allowed to incubate overnight at 4°C in a humidified chamber. Primary antibody 

was then removed by washing 3 times in TBST for five minutes on an orbital shaker. 

Slides were incubated with VECTASTAIN® secondary antibody solution (Vector 

Labs, Burlingame, CA) for thirty minutes at room temperature in a humidified 
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chamber. Slides were then washed as described previously. Next, slides were 

incubated with immPACT™ NovaRED™ substrate solution (Vector labs, Burlingame, 

CA) for 8 minutes and then placed in distilled water to stop enzymatic reaction. 

Following a five minute wash in distilled water, slides were dehydrated in: 1-50% 

ethanol for five minutes; 1-70% ethanol for five minutes; 2-95% ethanol for 5 

minutes each; 2-100% ethanol for five minutes each; 2-xylene for 10 minutes each. 

Glass cover slips were then mounted on top of slides using Permount® (Fisher 

Scientific, Fair Lawn, NJ). Imaging was performed using an Olympus BH-2 

microscope and DP 70 digital camera (Olympus American, Inc. Center Valley, PA). 

Quantification of the staining of advanced glycation end products (AGEs) was 

completed using a 0 to 4+ scoring method by a single pathologist. Each separate 

tissue on the microarray was scored individually based on staining intensity where 

0 was no staining of the cells of interest and 4+ was intense cytoplasmic staining.  

The lowest score any tissue received in this series was 1+.  To gain a score of 4+ the 

staining had to be diffuse across the cells of interest.  Each tissue was given a score 

for both the epithelial component and the stromal component, when a stromal 

component was present. Visual scoring for RAGE was used to quantify the staining 

intensity in each IHC core sample. Reference samples were chosen and given a score 

of 1 through 4 with 1 being the lowest and 4 being the highest staining intensity. 

Scores were then assigned based upon the four reference samples. 
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Analyses outlined in the tasks above were then performed in order to investigate 

whether or not AGEs and RAGE are associated with a more aggressive disease in 

breast cancer. 

 

RNA Extraction and GLO1 mRNA Analysis. In order to quantify glyoxalase mRNA 

in a panel of breast cancer cell lines and to gain insight into tumor detoxification of 

AGE precursors, quantitative real time PCR was used. Cells were cultured on 10cm 

plates and once 75% confluency was reached, media was aspirated and cells were 

washed with 5mL of PBS. 1mL of Trypsin was then added to the plate and allowed to 

incubate for five minutes to disrupt cell adhesion. 4mL of media was added in order 

to neutralize the trypsin and then collected into a 15mL tube. The tube was 

centrifuged at 1,000 RPM for 5 minutes to pellet the cells. The supernatant was then 

aspirated and the cells were again washed with PBS. The tube was centrifuged once 

more and again the supernatant was removed leaving only the pellet of cells. Total 

RNA was extracted from the cell pellet using RNeasy® Plus Mini Kit (Qiagen, 

Valencia, CA). 1ug of RNA was then reverse transcribed to produce cDNA using 

iScript (BioRad, Hercules, CA) according to manufacturer’s instructions. The cDNA 

was then diluted 1/20 using molecular grade water (Roche, Nutley, NJ). The cDNA 

was used as a template for probe based, quantitative real-time PCR (RT-PCR) to 

measure the total quantity of GLO1 mRNA (and GAPDH mRNA as control). Primers 

were diluted 1/5 using molecular grade water (primer sequences shown in Table 1).  

Probes for each mRNA transcript were obtained from the universal probe library 
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(UPL) and RT-PCR was ran in a LightCycler480 (Roche, Nutley, NJ) with the 

following conditions: after pre-incubation to 95°C, amplification occurred in a series 

of 50 cycles of 5 seconds at 95°C then 30 seconds at 60°C. After 50 cycles, the plate 

was cooled to 40°C.  Each sample was run in triplicate and with corresponding 

negatives (no cDNA in reaction mixture). The relative mRNA levels were quantified 

using the Ct value measured against an internal standard curve using the software 

provided by the instrument manufacturer (Roche, Nutley, NJ). Glyoxalase 1 mRNA 

data obtained was then normalized to GAPDH mRNA data and analyzed.  

 

 

 

 

 

 

 

 

 

 

Gene 5' Primer 3' Primer Probe #

RAGE ggtcatcttggcaaag cctcctcttcctcctggtt 23

Glyoxalase 1 cccagtaccaaggattttct tgggaaaatcacatttttgga 84

GAPDH agccacatcgctcagacac gcccaatacgaccaaatcc 60

Table 1: Primer Sequences for probe-based qRT-PCR
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Results and Discussion 

AGEs exist in greater quantities in well differentiated serum samples: ELISA 

assay data (Figure 9) suggests that well differentiated breast cancer patients have 

higher circulating AGE levels when compared to the patients with a more 

progressive, less differentiated disease. While this is not as we expected, a potential 

explanation could be a difference in glyoxalase 1 activity in more aggressive 

diseases. A recent paper cited that more aggressive, triple negative tumors exhibited 

lower concentrations of AGE precursors, but greater glyoxalase 1 activity in both 

tumor and tissue(62). Glyoxalase 1, as discussed previously, is an internal 

detoxification mechanism that serves to lower concentrations of reactive carbonyls 

within the cell. To attempt to verify this cited correlation between GLO1 and cancer 

aggression, we quantified GLO1 mRNA in a panel of 8 breast cancer cell lines (Figure 

11). On average, triple negative tumors had a greater level of GLO1 mRNA. Because 

triple negative tumors are more aggressive than other subtypes, this data suggests 

that more aggressive tumors are compensating rising AGE levels by increasing GLO1 

activity. As can be seen in Table 2, the majority of the well differentiated serum 

samples, as expected, were ER+/PR+/HER2- (Luminal). The poorly differentiated 

samples however contained more samples with higher expression of HER2 (poor 

prognostic factor) and more triple negative subtypes. As can be seen in the bottom 

of Figure 10, when classified based on ER status, expression of the receptor is 

indicative of a greater concentration of circulating AGEs in our patient samples. 
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Table 2. Receptor status of serum samples used for ELISA assay AGE 
quantification. Well differentiated were mostly ER+ whereas poorly 
differentiated samples were more heterogeneous in subtype. 

  Well Differentiated  
(n=20) 

Poorly Differentiated 
(n=19) 

ER+/PR+, HER2 - 12 4 

ER+/PR+/HER2+ 0 3 

ER-/PR-/HER2+ 0 3 

Triple Negative 1 2 

Unknown 7 7 

Figure 10 AGEs are increased in patients with well 
differentiated, ER+ disease. ELISA assay data 
quantifying circulating AGE levels in breast cancer 
patient serum samples, classified based on level of 
differentiation (top) and ER receptor status (bottom) 
(n=39) (**, p<0.01). 
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AGEs and RAGE are increased in cancerous tumor samples: 

Immunohistochemical staining of the tumor microarray for AGEs and RAGE 

revealed that, on average, invasive carcinomas exhibited greater levels of AGEs and 

RAGE protein within the tumor epithelium (Figure 12). Representative images are 

shown in Figure 13. More intense staining was found in the tumor epithelium with 

only slight staining within the tumor stroma for both AGE metabolites and RAGE 
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Figure 11 GLO1 mRNA is increased in triple negative breast 
cancer. qRT-PCR data quantifying glyoxalase 1 mRNA in panel of 8 
breast cancer cell lines. Increased GLO1 is associated with more 
aggressive, triple negative cell lines 
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protein. These data indicate that AGEs and RAGE are present and may potentially be 

associated with increased malignancy in breast cancer.  
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Figure 12 AGEs and RAGE are increased in cancerous tumor 
samples. Quantification of immunohistochemical staining for AGEs 
and RAGE in normal (n=3), benign breast hyperplasia (n=3), and 
invasive breast cancer (n=29) shows increase in AGEs and RAGE with 
increased malignancy. (****, p<0.0001, **, p<0.01) 
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AGEs and RAGE are increased in poorly differentiated tumors: 

Immunohistochemical staining of the tumor microarray for AGEs and RAGE 

revealed that, on average, AGEs were indicative of less differentiation within the 

tumor. Moderate and poorly differentiated tumors exhibited greater levels of AGEs 
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Figure 13 AGEs and RAGE are present in greater quantity in breast 
cancer. Immunohistochemical staining of normal (top), benign 
hyperplasia (middle), and invasive ductal carcinoma (bottom) for AGEs 
(middle column) and RAGE protein (right column) with 20x magnification 
(Inset-4x magnification). Highest level of AGEs are present in invasive 
cancer when compared to benign conditions. RAGE protein is also 
increased in cancerous tissue.  
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within the tumor epithelium (Figure 14). Representative images are shown in 

Figure 15. More intense staining was found in the tumor epithelium with only slight 

staining within the tumor stroma for AGE metabolites. RAGE protein seemed to 

trend towards being increased in more aggressive tumors but values were not 

statistically significant. Again, these data indicate that AGEs (and potentially RAGE) 

are indicative markers of a more advanced disease in breast cancer. 
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Figure 14 AGEs and RAGE are associated with decreasing tumor 
differentiation. Quantification of immunohistochemical staining for AGEs and 
RAGE in malignant tumors separated by level of differentiation: well differentiated 
(n=3), moderately differentiated (n=12), and poorly differentiated (n=16). Data 
shows increase in AGEs with more advanced disease (*, p<0.05). RAGE seems to 
trend toward same conclusion despite being statistically insignificant. 
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Figure 14 AGEs and RAGE increase with lack of differentiation. 
Immunohistochemical staining of breast carcinomas with varying levels of 
differentiation for AGEs (middle column) and RAGE protein (right column) 
with 20x magnification (Inset-4x magnification). Highest level of AGEs are 
present in poorly differentiated tissue when compared to better 
differentiated tissues. RAGE protein is also increased (to lesser extent) in 
poorly differentiated cancerous tissue indicating both are potentially 
associated with a more progressive disease. 
.  
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Figure 15 AGEs and RAGE increase with lack of differentiation. 
Immunohistochemical staining of breast carcinomas with varying levels of 
differentiation for AGEs (middle column) and RAGE protein (right 
column) with 20x magnification (Inset-4x magnification). Highest level of 
AGEs are present in poorly differentiated tissue when compared to better 
differentiated tissues. RAGE protein is also increased (to lesser extent) in 
poorly differentiated cancerous tissue indicating both are potentially 
associated with a more advanced disease.  
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Discussion and alternative approaches 

 In this aim, we showed that AGEs are present in greater levels in serum 

samples from patients with a less aggressive disease. Additionally, by looking at 

tumor samples from breast cancer patients, we were able to show an increase 

intratumoral AGEs and RAGE in cancerous tissue when compared to normal breast 

and benign hyperplasia. Level of differentiation was also investigated and AGEs 

were associated with more advanced tumors. RAGE showed a similar trend, but was 

not statistically significant despite RAGE levels already having been shown to 

correlate with a worsened prognosis in other cancers such as gastric and prostate 

(63, 64). There are numerous possible explanations for the differences observed 

between AGE serum and tumor correlations.  One potential explanation is that the 

tumors themselves are producing AGEs. This is plausible because of the high 

glycolytic rate that is characteristic of malignant tumors and, as stated previously, 

glycolytic intermediates are often precursors to AGE formation. This would explain 

why we do not observe high AGE levels in more aggressive serum, but we see the 

expected increase in the tumors themselves. 

Observing AGEs and RAGE in greater levels within the malignant tumor when 

compared to benign and normal breast tissue suggests that AGE-RAGE signaling 

may be potentially contributing disease progression. This is reinforced in our data 

showing increasing AGE levels in the moderate and poorly differentiated tumors 

compared to the less progressed, well differentiated tumors. All of this data together 
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suggests a possible role in breast cancer disease progression, but many more tasks 

must be accomplished before reaching a final conclusion.  

Identifying a role for AGEs in breast cancer could have potential preventative 

implications. As can be seen in Table 2, the majority of the samples from patients 

with well differentiated tumors were ER+ and exhibited higher AGE levels when 

compared to the poorly differentiated tumors. As stated previously, ER+ positive 

patients are often given the drug tamoxifen and many develop resistance. Specific 

Aim 2 investigates AGEs in tamoxifen resistance and, by showing AGEs are 

increased in serum for these patients, a low AGE diet and/or dual treatment with 

AGE inhibitors may be beneficial for these patients.   

 A caveat with the experimental design in this specific aim is our small sample 

size. While a tissue microarray allows for the testing of several tumor samples at 

once, each sample is only a small representation of the tumor as a whole. The tumor 

microenvironment is incredibly diverse and it is absolutely possible that AGEs and 

RAGE are present and functioning in one part of the tumor to a greater extent than 

in the remaining portion.  A future direction for this aim would be to perform these 

same tests in a much larger and more diverse sample size in order to gain a better 

insight into the role of AGEs and RAGE in breast cancer tumor progression. Matched 

serum and tumor samples would also be helpful in identifying a correlation between 

circulating AGEs and intratumoral AGEs in a patient-specific manner. Additionally, 

quantification of IHC staining is undoubtedly imperfect and it is important to keep in 

mind that correlation does not necessarily imply causation. That is to say, even 



45 
 

though we may see higher levels of RAGE within the higher grade tumors, RAGE 

signaling may not be causing this progression. Because of this, it is necessary to 

investigate the signaling pathway by which AGEs and RAGE are inducing this effect 

in ER+ breast cancer. 
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Specific Aim #2: Determine if AGE-RAGE signaling through Akt and ERK 

induces estrogen receptor phosphorylation leading to increased proliferation 

and tamoxifen resistance. Previous studies have shown that RAGE signaling can 

activate the specific kinase signaling cascades, PI3K and MAPK, which contribute to 

tumor survival and growth in many cancers. Additionally and separately, previous 

studies investigating a molecular cause for tamoxifen resistance in estrogen 

receptor positive cancer have identified two residues on the receptor itself that, 

when phosphorylated, are indicative of this resistance. Interestingly, these two 

residues, ser167 and ser118, are phosphorylated by kinases within the PI3K and 

MAPK pathways. This specific aim proposes that AGE signaling is connected to these 

phosphorylation events and resistance to tamoxifen in ER+ breast cancer through 

the mechanism shown in Figure 9. By characterizing this pathway, we can elucidate 

a functional role of AGEs and RAGE in the development of this resistance. 

 

Task #1: Determine AGE and RAGE levels in ER+ breast cancer cell lines in 

order to: 

1) Show that AGEs and RAGE are present in ER+ breast cancer  

2) Create base line reading of AGE and RAGE protein levels before 

manipulating pathway in following tasks 

Task #2: Perform proliferation experiments following AGE treatment to 

demonstrate: 

1) AGEs role in cancer progression 
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2) Gain a more functional perspective of AGEs and RAGE in breast 

cancer in vitro 

Task #3: Demonstrate that AGE-RAGE signaling induces phosphorylation of 

the estrogen receptor on ser167 and ser118 through phosphorylation of Akt 

and ERK 1/2 in order to: 

1) Demonstrate AGEs signaling through RAGE activates pro-

tumorigenic signaling pathways  

2) Create a connection between AGE-RAGE signaling and ER 

mediated signaling in ER+ breast cancer  

Task #4: Identify a role of AGEs in tamoxifen resistance by exposing ER+ 

cells to AGEs and monitoring cell viability during tamoxifen treatment to 

determine if: 

1) AGE-mediated activation of ER at ser167 and ser118 results in a 

more resistant phenotype 
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Experimental Design 

Cell Culture. ER+ MCF7 and T47D cell lines were a gift from Dr. Dennis Watson at 

the Medical University of South Carolina. Cells were incubated at 37°C, 5% CO₂ in 

their respective media. T47D cells were incubated in RPMI (Fisher Scientific, Fair 

Lawn, NJ) with 10% fetal bovine serum (Fisher Scientific, Fair Lawn, NJ), and 1% 

Penicillin/Streptomycin (Fisher Scientific, Fair Lawn, NJ). MCF7 cells were 

incubated in DMEM/High Glucose media (Fisher Scientific, Fair Lawn, NJ) also 

containing 10% FBS and 1% Penicillin/Streptomycin with the following additives: 

1% MEM Non-essential Amino Acids (Mediatech, Manassas, VA), 1% Sodium 

Pyruvate (100mM) (Life Technologies, Grand Island, NY), 1% Sodium Bicarbonate 

(7.5% stock) (Invitrogen, Grand Island, NY), and 1% insulin (Life Technologies, 

Grand Island, NY). Media on each cell line was changed every 3 days and were 

passaged once 75% confluency was reached using 0.05% HyClone Trypsin (Fisher 

Scientific, Fair Lawn, NJ). 

 

AGE and Protein Assessment. In order to assess endogenous AGE content in our 

ER+ in vitro model, dot blot analysis was performed. RAGE, p-Akt (and total Akt), p-

ERK1/2 (and total ERK), and p-ERα at both ser167 and ser118 (and total ERα) 

expression were examined using Western Blot analysis. For each, cells were 

cultured on 10cm plates. After reaching 75% confluency, the old media was 

removed and plates were washed with 7mL of PBS. After removal of the PBS, cells 

were lysed using 100uL RIPA lysis buffer +Halt phosphatase inhibitors (Pierce, 
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Rockford, IL) and manually removed from the surface of the plate using a cell 

scraper and placed into eppendorfs. Tubes were then centrifuged for 20 minutes at 

13,000 RPM at 4°C. After centrifugation, the supernatant was collected and placed 

into new eppendorfs. Protein concentration of each sample was then assessed using 

the BCA protein assay (Pierce, Rockford, IL). A 2mg/mL standard of BSA was diluted 

to 16ug/mL in 1% SDS and then serial diluted to produce the remaining samples for 

the standard curve: 8ug/mL, 4ug/mL, 2ug/mL, 1mg/mL, and a blank of only 1% 

SDS. 25uL of each standard was added into their respective wells on a 96 well plate 

in duplicate. 5uL of the unknown samples were diluted into 20uL 1% SDS and then 

added into their respective wells on the same plate. 200uL of the BCA protein assay 

reagent (mixed according to manufacturer’s instructions) was added to each well. 

The plate was incubated at 37° for thirty minutes, allowed to cool, and immediately 

read on a spectrophotometer plate reader at a primary wavelength of 540nm (Bio-

Tek Instruments, Inc., Winooski, VT) to determine protein concentration of each 

unknown sample. Samples were diluted to produce 50ug of protein using distilled 

water.  

For the western blot analysis, the diluted protein sample was added to a tube 

containing Laemmli Sample Buffer (BioRad, Hercules, CA) plus 0.1% β-

mercaptoethanol and boiled for five minutes. The proteins in the samples were 

separated using 10% Mini-PROTEAN® TGX (BioRad, Hercules, CA) pre-cast gels in 

running buffer containing 25mM Tris-base, 192mM Glycine, and 1% SDS run at 200 

volts for 45 minutes for blots investigating RAGE, Total Akt, ERK1/2, and ERα. For 
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phosphorylated proteins (p-Akt, p-ERK1/2, and p- ERα), gels were run at 100 volts 

for approximately two hours with the gel-containing chamber on ice. The protein 

ladder, PageRuler Plus (BioRad, Hercules, CA), was used to estimate protein size. 

Gels were removed from their casts and prepped for transfer to a PVDF (Millipore, 

Billerica, MA) membrane that had been charged in methanol and rinsed in distilled 

water. The blotting sandwich containing the gel and membrane was placed in a 

chamber containing chilled transfer buffer (25mM Tris-base, 192mM Glycine, 20% 

methanol). Transfer was performed at 100 volts for one hour for RAGE, Total Akt, 

ERK1/2, and ERα. For phosphorylated proteins, transfer was performed at 40 volts, 

on ice, for 90 minutes. Membranes were then removed and placed in 1x TBST 

overnight at 4°C.  To reduce non-specific binding, the membrane was blocked in 

10% milk diluted in TBST for one hour. For phosphorylated proteins, the membrane 

was blocked in 5% BSA diluted using TBST for one hour. After blocking, blots were 

incubated with primary antibody at 4°C overnight with gentle agitation. Antibodies 

were diluted as follows using either 5% milk or 2.5% BSA: RAGE (rabbit) (Abcam, 

Cambridge, MA) 1:1500; p-Akt (rabbit) , p-ERK1/2 (rabbit), p- ERα ser167 (rabbit), 

p- ERα ser118 (mouse) (Cell Signaling, Danvers, MA) 1:1000; Total Akt, Total 

ERK1/2, Total ERα (Cell Signaling, Danvers, MA) 1:1000. Membranes were washed 

three times in TBST for ten minutes each. Anti-rabbit and anti-mouse HRP linked 

secondary antibodies (Cell Signaling, Danvers, MA) were then diluted in 5% milk or 

2.5% BSA (1:4000 for all). Blots were incubated in appropriate secondary antibody 

at room temperature for one hour on an orbital shaker. After washing excess 
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secondary from the membrane (3 x 10 minutes each in TBST), Blots were covered 

with Super Signal West Pico Chemoluminescence substrate (Fisher Scientific, Fair 

Lawn, NJ) for 5 minutes in order to activate the horseradish peroxidase. Finally, 

using autoradiography film (Delville Scientific, Metuchen, NJ) various time 

exposures were taken of each blot and then developed on an automatic developer 

(Kodak, Rochester, NY). After achieving ideal exposure, membranes were stripped 

by washing with 200mM NaOH for five minutes, followed by two five minute washes 

with distilled water in order to prepare membrane for loading control. Membranes 

were blocked in 10% milk for thirty minutes and then incubated with GAPDH 

primary antibody (Cell Signaling, Danvers, MA) at a 1:5000 dilution for two hours at 

room temperature on an orbital shaker. Blots were then washed as before and 

incubated with an anti-rabbit HRP linked secondary antibody (Cell Signaling, 

Danvers, MA) diluted at 1:5000 for one hour at room temperature on an orbital 

shaker. The blots were then washed and developed as described previously.  

For the dot blot analysis, the diluted samples were boiled for five minutes. 

10uL (50ug) of each sample was then carefully applied on a nitrocellulose 

membrane  in duplicate (one for AGE content and one for loading control) and 

allowed to dry at room temperature for 90 minutes. The membrane was blocked in 

5% BSA for thirty minutes. The blot was then incubated overnight at 4°C in primary 

AGE antibody (Abcam, Cambridge, MA) diluted 1:4000 in 2.5% BSA. The membrane 

was washed, incubated in secondary anti-body (1:10,000), and exposed to ECL in 

the same manner as was detailed for the western blot analysis.  
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RNA Extraction and RAGE mRNA Analysis. Endogenous RAGE mRNA as well as 

change in RAGE mRNA following AGE treatment was performed using quantitative 

real time PCR as previously described in Specific Aim #.1 

 

Formation of Exogenous AGEs and AGE Treatments. In order to examine the 

effects of AGEs on proliferation and estrogen receptor mediated signaling, we 

needed to first produce exogenous AGEs that we could expose our ER+ cell lines to. 

We chose to produce glyceraldehyde-derived AGEs because this type has been 

shown to be biologically relevant (prevalent in total circulating AGEs) and also 

enhances disease malignancy more so than other types of AGEs (i.e. glucose derived 

AGEs) (65-67). Our protocol for production of these types of AGEs is as follows: 

125mg BSA (Fisher Scientific, Fair Lawn, NJ) suspended in 3mL of distilled water, 

1mL of 1M NaP (pH=7.4), 250uL of 2M glyceraldehyde (Fisher Scientific, Fair Lawn, 

NJ), 31uL of 800mM diethylene triamine penta acetic acid (DENPA) (Fisher 

Scientific, Fair Lawn, NJ), and then filled with distilled water to a total volume of 

5mL. The solution was then incubated for seven days at 37°C with gentle agitation. 

Following incubation, excess glyceraldehyde not conjugated to BSA was removed 

using a dextran desalting column (Pierce, Rockford, IL) according to the 

manufacturer’s instructions. Finally, the samples were concentrated to remove 

excess PBS (used in previous step as exchange buffer) in 0.5mL centrifugal filter 

units (Millipore, Billerica, MA) according to the manufacturer’s instructions. Final 

AGE concentration was determined to be approximately 10mg/mL using an AGE 



53 
 

ELISA assay (described previously in specific aim #1). A control AGE solution was 

made using the same protocol, but without glyceraldehyde in order to prevent any 

glycation (and therefore no AGE formation) to ensure that the AGEs themselves are 

causing an effect and not any of the other ingredient used in our AGE formation 

process. 

 We then proceeded to treat our ER+ breast cancer cell lines with exogenous 

AGEs. First, approximately 24 hours before cell collection was to occur, the cells’ 

media was changed to serum-free. After 24 hours of serum-starvation, 

Glyceraldehyde AGEs were pipetted directly into the media for a final concentration 

of 50ug/mL. The cells were then placed in a 37°C cell culture incubator for the time 

specified for each experiment. The media containing the AGEs was then aspirated, 

cells were washed with PBS, and cell collection proceeded as described previously. 

Cells treated with the control AGE solution underwent the same treatment protocol.  

   

Proliferation Assays. To look at the effects of AGE treatment on cell growth, a 

proliferation assay was performed. Cells were plated in triplicate in a 96 well format 

with 2,000 cells per well. Cells were allowed 24 hours to fully adhere to the bottom 

of the plate. The zero time point was fixed using 5% cold trichloroacetic acid 

incubated at 4°C for one hour. After incubation, the plate was washed four times 

with water and stored until conclusion of experiment. The remaining cells were 

either treated with 50ug/mL AGEs or left untreated and allowed to grow. The final 

time point was then fixed at 48 hours using 10% cold TCA as described previously. 
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Fixed plates were then stained with 0.4% sulforhodamine B diluted in 1% acetic 

acid for 30 minutes at room temperature and washed four times with 1% acetic 

acid. After allowing the plates to air dry, SRB staining was solubilized using 10mM 

Tris Base for five minutes with gentle agitation and absorbance was immediately 

read at 560nm using microplate reader (Bio-Tek Instruments Inc., Winooski, VT). 

Percentage growth was then quantified by normalizing 48 hour time point with 

corresponding zero time point.   

 

shRNA Mediated Knockdown of RAGE Function. In order to verify that the pro-

proliferative effect observed was dependent upon the presence of RAGE, shRNA was 

used to stably knockdown RAGE in MCF7 cells. 150,000 MCF7 cells were plated into 

the wells of a 12 well plate and allowed to adhere to the plate for 24 hours. Various 

shRNA lentiviral vectors (Table 3) (Sigma-Aldrich CO. LLC, St. Louis, MO) were then 

added to the appropriate well with an anticipated multiplicity of infection (MOI) of 2 

along with polybrene (8ug/mL). 24 hours after infection, the media was changed 

back to normal media.  After 24 hours, media containing 2ug/mL puromycin was 

added to each well in order to select only the cells that were infected with the 

shRNA vector. After original selection, cells were cultured in media containing 

200ng/mL puromycin. Knockdown of RAGE was verified using western blot 

analysis. 
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Inhibition of Akt and ERK1/2. So that we may confirm AGE mediated activation of 

the estrogen receptor is occurring through Akt and ERK1/2, we inhibited the 

functionality of both kinases using the molecular inhibitors LY294002 and U0126, 

respectively. MCF7 and T47D cells were cultured as described previously. Before 

AGE treatment and subsequent cell collection, cells were treated with 15uM of the 

appropriate inhibitor for 12 hours before being exposed to AGE treatment. Cells 

were collected and subjected to western blot analysis for phosphorylated ERα as 

described previously.  

 

AGE Treatment and Tamoxifen Resistance. In order to investigate the effects of 

AGE signaling on tamoxifen resistance, we performed a cell viability assay by plating 

3,000 cells per well in triplicate on a 96 well plate. The cells were allowed 24 hours 

to adhere to the plate and were then treated with varying doses of tamoxifen (0, 5, 

10, 20uM) (Sigma Aldrich, St. Louis, MO) in combination with varying doses of AGEs 

(5ug/mL, 10ug/mL, 50ug/mL). After 24, 48, and 72 hours, SRB staining was used to 

quantify cell growth as described previously.  

 

 

 

Clone # shRNA Sequence

165 CCGGGCGGCTGGAATGGAAACTGAACTCGAGTTCAGTTTCCATTCCAGCCGCTTTTTG

878 CCGGTGCTGATCCTCCCTGAGATAGCTCGAGCTATCTCAGGGAGGATCAGCATTTTTG

582 CCGGCACACTGCAGTCGGAGCTAATCTCGAGATTAGCTCCGACTGCAGTGTGTTTTTG

963 CCGGCCGTGCTGTCAGCATCAGCATCTCGAGATGCTGATGCTGACAGCACGGTTTTTG

Table 3: shRNA sequences for RAGE knockdown
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Results and Discussion 

AGEs and RAGE are present in two ER+ breast cancer cell lines: Dot blot 

analysis shows baseline levels of AGEs present in MCF7 and T47D cell lines (Left, 

Figure 16).  Additionally, RAGE expression seems to be higher in the MCF7 cells 

when compared to the T47D cells on both the protein and transcript level measured 

by western blot and qRT-PCR analysis, respectively (Right, Figure 16). This also 

happens to correlate with GLO1 mRNA levels observed in specific aim #1 (Figure 

11). These data suggest that AGEs and RAGE are present in ER+ breast cancer.  
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Figure 16 AGEs and RAGE are present in two ER+ breast cancer cell lines. 
Top Left) Dot blot analysis examining AGE content in BC cell lines. Top Right) 
qRT-PCR data quantifying RAGE mRNA (normalized to GAPDH) in BC cell lines 
showing a greater level of RAGE transcript in MCF7 cells (*, p<0.05), Bottom 
Right) Western blot analysis of RAGE protein level confirming the greater 
expression of RAGE in MCF7 when compared to T47D (GAPDH shown as 
loading control). 
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RAGE mRNA and protein are upregulated following AGE treatment: Following 

AGE treatment (50ug/mL for 5 minutes) in both cell lines, RAGE mRNA (bottom 

panels, Figure 17) and RAGE protein (top panels, Figure 17) were increased when 

compared to untreated controls. Increase in RAGE mRNA was statistically significant 

in MCF7 cells. The ability of our exogenous AGEs to upregulate the RAGE receptor is 

Figure 17 Exogenous AGE treatment increases RAGE mRNA and protein 
expression: Top Panels) Western blot analysis showing increased expression of 
RAGE protein following AGE treatment (50ug/mL) in MCF7 (left) and T47D (right) 
cells. Bottom Panels) qRT-PCR data normalized to GAPDH examining increase in 
RAGE mRNA following AGE treatment.  
(*, p<0.05). 
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most likely a result of the positive feedback loop (discussed in background, Figure 

8) and seeing these results indicate that we are able to manipulate the RAGE 

signaling pathway for the following experiments. 

 

AGEs signaling through RAGE result in more proliferative phenotype: To gain a 

more functional perspective of the effects AGE-RAGE signaling has in ER+ breast 

cancer, we performed proliferation assays because uncontrolled proliferation is 

considered to be a hallmark of cancer. We utilized MCF7 and T47D cells and 

examined proliferation after 48 hours with or without AGEs (50ug/mL). In both cell 

lines, we found a statistically significant increase in growth in the presence of AGEs 

when compared to the untreated control (Top, Figure18). 

We then needed to determine if AGEs were signaling through RAGE to 

produce this more proliferative phenotype. To do this, we utilized shRNA to stably 

knockdown RAGE. We began with a variety of different clones including two 

infections using a combination of shRNA. After successful infection and subsequent 

puromycin selection, western blot analysis was used to verify knockdown (Middle, 

Figure 18). We chose clone #165 as a partial knockdown model and #878 as an 

almost total knockdown. A repeat western blot in our chosen clones verified our 

results. 

 We performed the same proliferation assay as before to see if the increase in 

proliferation that we observed was attenuated when AGEs were unable to interact 

with the RAGE receptor (Bottom, Figure 18). In our scramble control, we observed 
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the same increase in proliferation that we saw in our wild type MCF7 and T47D 

cells. The RAGE knockdown clones, however, showed no difference between the 

AGE treated and untreated cells indicating that RAGE is necessary for the AGE-

mediated increase in proliferation observed previously. 
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Figure 18 AGE increases proliferation through interaction with RAGE receptor. 
Top) Proliferation assay quantifying percentage growth after 48 hours in the 
presence of AGEs (50ug/mL). Increased proliferation occurs with AGEs  when 
compared to untreated control (*, p<0.05). Middle) Western blot analysis verifying 
shRNA mediated RAGE knockdown in MCF7 cells. Bottom) Proliferation assay in 
stable RAGE knockdown cell line. Proliferation was unaffected despite presence of 
AGEs (50ug/mL) in RAGE stable knockdowns (*, p<0.05).   
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AGE treatment induces ERα phosphorylation: To begin examining AGEs 

influence on estrogen receptor-mediated pathways, we first needed to look into the 

effects on the estrogen receptor following AGE treatment. MCF7 and T47D cells 

were treated with 50ug/mL of AGEs for 30 minutes and were then examined for 

ser167 and ser118 phosphorylation. 100nM estradiol, one of the key estrogenic 

ligands for the receptor was used as a positive control to ensure optimization of 

phospho-specific antibodies. In both cell lines and at both serine residues, we found 

a significant increase in phosphorylation following AGE treatment when compared 

to untreated control (Figure 19). The estrogen independent phosphorylation of ERα 

at these residues has been shown to be indicative of tamoxifen resistance. Our data 

suggests that AGEs are capable of influencing these phosphorylation events, and 

therefore potentially contributing to tamoxifen resistance.   

Additionally, we examined the influence of different time durations of AGE 

treatments on the phosphorylation of ERα at ser167 because of the transient nature 

of this post-translational modification. We did indeed find a time dependent 

activation of the receptor with a peak around 15-30 minutes following initial 

treatment (Figure 20). 
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Figure 19 AGE treatment induces ERα phosphorylation at ser167 and ser118. 
MCF7 (left) and T47D (right) cells treated with either 100nM estradiol (positive 
control) or with AGEs (50ug/mL) for 30 minutes. Western blot analysis using 
phospho-specific ERα antibodies show greater phosphorylation of the receptor at 
ser167 and ser118 following AGE treatment when compared to untreated control.  
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Figure 20 Phosphorylation of ERα at ser167 occurs following AGE 
treatment in a time-dependent manner. MCF7 (left) and T47D (right) 
cells were treated with AGEs (50ug/mL) or with AGE control for varying 
durations of time. Western blot analysis shows peak of phosphorylation 
around 15-30 minutes following AGE treatment. 
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AGE treatment induces Akt and ERK phosphorylation:  Because we 

hypothesized that RAGE was signaling through Akt and ERK to mediate estrogen 

receptor phosphorylation, we needed to examine the effects of AGEs on activation of 

both these kinases. To investigate this, we again treated MCF7 and T47D cells with 

AGEs (50ug/mL) for varying time durations. In both cell lines, we found a 

correlation between Akt (Figure 21) and ERK (Figure 22) phosphorylation and 

duration of AGE treatment. The time-dependent manner in which these 

phosphorylation events occur indicate that sustained exposure to AGEs may induce 

pro-tumorigenic signaling pathways and influence estrogen-receptor mediated 

signaling in ER+ breast cancer. 
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Figure 21 AGE treatment induces phosphorylation of Protein Kinase B 
(Akt) in a time-dependent manner. MCF7 (left) and T47D (right) cells were 
treated with AGEs (50ug/mL) for varying time durations. Western blot 
analysis shows correlation between Akt phosphorylation and duration of 
treatment suggesting AGEs influence Akt activation in ER+ breast cancer. 
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Figure 22 AGE treatment induces phosphorylation of ERK1/2 in a time-
dependent manner. MCF7 (left) and T47D (right) cells were treated with 
AGEs (50ug/mL) for varying time durations. Western blot analysis shows 
correlation between ERK phosphorylation and duration of treatment 
suggesting AGEs influence ERK activation in ER+ breast cancer. 
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Inhibition of Akt and ERK results in decreased ERα phosphorylation following 

AGE treatment: To ensure that Akt and ERK were responsible for estrogen receptor 

phosphorylation, we needed to inhibit these two kinases and examine downstream 

effects. Using Ly294002, we successfully inhibited Akt phosphorylation (Figure 23) 

in both MCF7 and T47D cell lines. Western blot analysis probing for p-ERα at ser167 

revealed that, despite being exposed to AGEs (50ug/mL) for thirty minutes before 

cell collection, little to no phosphorylation occurs when Akt is inhibited. We saw a 

similar result when using U0126 to suppress ERK activation (Figure 24). When ERK 

phosphorylation was successfully inhibited, phosphorylation of ERα at ser118 was 

attenuated, even after AGE treatment. This suggests that AGEs, through interaction 

with RAGE, signal through Akt and ERK to induce estrogen-independent activation 

of the estrogen receptor.  
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Figure 23 AGE-mediated ERα phosphorylation at ser167 is attenuated 
following Akt inhibition. MCF7 (left) and T47D (right) cells treated with 15uM of 
Akt inhibitor Ly294002 for 12 hours do not exhibit phosphorylation of the estrogen 
receptor, despite 30 minute AGE treatment (50ug/mL). Cells treated with AGEs 
alone do still exhibit increase in ser167 phosphorylation.   
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AGE treated cells are more resistant to tamoxifen: After identifying at least part 

of the pathway by which AGEs induce ERα phosphorylation, we wanted to 

investigate whether or not AGEs were, in fact, inducing tamoxifen resistance 

through this mechanism. We examined this by performing a proliferation assay. 

MCF7 and T47D cells were treated with varying levels of AGEs and varying levels of 

tamoxifen and were allowed to grow for 24, 48, and 72 hours (Figures 25 and 26). 

At the highest concentrations of tamoxifen (20uM), the 50ug/mL AGE treated cells 
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Figure 24 AGE-mediated ERα phosphorylation at ser118 is attenuated 
following ERK inhibition. MCF7 (left) and T47D (right) cells treated with 
15uM of ERK inhibitor U0126 for 12 hours do not exhibit phosphorylation of 
the estrogen receptor, despite 30 minute AGE treatment (50ug/mL). Cells 
treated with AGEs alone do still exhibit increase in ser118 phosphorylation.   
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still remained viable in both cell lines. Additionally, resistance to the effects of 20uM 

tamoxifen occurred in an AGE dose-dependent manner in the MCF7 cells after 24 

and 48 hours. Similar results occurred early on in the assay in the 5uM and 10uM 

tamoxifen treated MCF7 cells. Response in T47D cells, however seemed to be more 

dependent on AGE concentration later on in the assay in the 5uM and 10uM 

tamoxifen treated cells. All of this data suggests that AGEs do, in fact, contribute to 

tamoxifen resistance in vitro which may potentially occur by AGEs inducing ERα 

phosphorylation at ser167 and ser118 through Akt and ERK, respectively. 



71 
 

 

0
 h

r

2
4

 h
r

4
8

 h
r

7
2

 h
r

0 .0

0 .5

1 .0

1 .5

2 .0

2 .5

M C F 7 -2 0 u M  T a m o x ife n

P
e

r
c

e
n

ta
g

e
 G

r
o

w
th

 (
x

1
0

0
) 5 0 u g / m L  A G E s

1 0 u g / m L  A G E s

5 u g / m L  A G E s

0 u g / m L  A G E s

C o n t r o l  0  A G E / 0  T a m

Figure 25 AGE treated MCF7 cells exhibit more resistant phenotype 
following tamoxifen treatment. Proliferation assay showing percentage 
growth in MCF7 cells treated with 5uM (top), 10uM (middle), and 20uM 
(bottom) tamoxifen and with varying concentration of AGEs. AGE treated cells, 
especially at higher concentrations, remained more viable when compared to 
AGE untreated cells despite treatment with tamoxifen.  
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Figure 26 AGE treated T47D cells exhibit more resistant phenotype 
following tamoxifen treatment. Proliferation assay showing percentage growth 
in T47D cells treated with 5uM (top), 10uM (middle), and 20uM (bottom) 
tamoxifen with varying concentration of AGEs. AGE treated cells, especially at 
higher concentrations, remained more viable when compared to AGE untreated 
cells despite treatment with tamoxifen.  
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Discussion and alternative approaches 

The goal of this aim is to identify a role for AGE-RAGE signaling in ER+ breast 

cancer progression and tamoxifen resistance. We have been able to determine that 

AGEs and RAGE are normally present in the ER+ breast cancer cell lines MCF7 and 

T47D. After exposing these two cell lines to AGEs, we have found that the expression 

of RAGE is increased on both the transcript and protein levels. Additionally, we 

showed that AGE treatment induces phosphorylation of ERα at ser167 and ser118 

potentially through the activation of Akt and ERK, respectively. These two kinase 

cascades are frequently altered in cancer and influence cell growth and survival. 

Additionally, estrogen independent phosphorylation at these two residues are 

significant because they have been previously identified as indicators of poor 

clinical response to the SERM, tamoxifen. We have been able to show that AGEs do 

possess the capability to alter tamoxifen response in vitro which may have very 

important clinical implications in the future. In specific aim#1, we suggest that AGEs 

and RAGE are associated with increased progression in breast cancer. Using a more 

functional perspective with our breast cancer cell lines, we have shown AGE 

treatment increases proliferation in wild type MCF7 and T47D cell lines because of 

AGEs’ ability to interact with their receptor, RAGE. This may explain why we 

observed an increased presence of AGEs and RAGE in the more progressed tumor 

samples.  

While our in vitro work is an important foundation in investigating a role for 

AGEs in tamoxifen resistance, immortalized cell lines are not the ideal method for 
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examining drug sensitivity because it fails to address the complexity of the tumor 

microenvironment and intracellular signaling. We can only begin to scrape the 

surface of the numerous signaling pathways that influence a tumor’s ability to grow 

and metastasize within the mammalian body. Because of this shortcoming of our 

model, in vivo mouse models in which tamoxifen treated mice are exposed to 

exogenous AGEs will be necessary in the future to reliably identify any of the AGE-

mediated effects we observed in our cell lines. 

 In addition to the general failings of using an in vitro model to show clinically 

relevant data, it is also important to recognize the complexity of intracellular 

signaling itself. As stated previously, non-genomic action of ERα is a complex 

network of bi-directional cross-talk so it is not reasonable to identify a linear 

signaling pathway as we have suggested in this study. We can show this simple 

pathway is occurring, but it is incredibly plausible that several other proteins may 

be affecting the activation we are observing in our ER+ breast cancer cell lines. 

Additionally, the disparity in peak phosphorylation between Akt/ERK and ERα may 

indicate that ERα may be phosphorylating these kinases as well. Because of this, 

suggesting that AGE signaling is the cause of all these effects is indeed 

oversimplification. 

 Despite these shortcomings, we have shown data that suggests AGEs 

signaling through RAGE is causing activation of the estrogen receptor independently 

of estrogen, potentially leading to tamoxifen resistance through phosphorylation at 

ser167 and ser118 in ER+ breast cancer.  
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Future Experiments 

While the data attained in this study suggests a functional role for AGEs in 

breast cancer, many more studies need to be performed to reach a full conclusion. 

As stated previously, our tissue and serum samples need to be expanded into a 

wider set of patients with greater diversity. Doing so would allow us to investigate 

AGE differences between varying demographics. As discussed previously, African 

American women are more likely to die from their disease and it would be 

interesting to investigate a role for AGEs in this disparity. Additionally, since the 

focus of our study is on ER+ breast cancer for the most part, focusing in on this 

specific subtype would allow us to gain insight into the role of AGEs in specific ER+ 

disease progression.  

 Characterizing the specific signaling pathway by which AGEs influence 

tamoxifen sensitivity requires more gain of function and loss of function studies. By 

investigating knockdown and overexpression of RAGE protein in our tamoxifen 

treated cells, we can verify that the AGE mediated tamoxifen resistance is occurring 

because of RAGE signaling. It would also be important to investigate ERα signaling 

using immunofluorescence. It is known that the estrogen receptor can be located 

throughout the cell and its functionality can be dependent upon its location. It would 

be interesting to identify where the receptor is localizing following AGE treatment in 

order to gain more insight into exactly how AGEs are inducing these 

phosphorylation events. And, if we observe nuclear localization, identifying which 

target genes are being transcribed will allow us to gain a functional perspective as to 
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how increased proliferation and tamoxifen resistance are occurring.  Additionally, 

several studies have documented development of tamoxifen resistant cell lines. 

Usage of such a cell line could allow us to examine basal levels of AGEs in these cells 

compared to tamoxifen sensitive cells as well as the effects of AGE inhibitors on 

rescuing tamoxifen sensitivity. Finally, breast cancer patients can also exhibit 

resistance to aromatase inhibitors, so it would be ideal to investigate whether or not 

AGEs are contributing to this phenotype as well. 

 A key goal to further the knowledge gained in this project is to investigate 

this signaling pathway in an in vivo model. It would be ideal to look at the effects of 

a high AGE diet on tamoxifen resistance in a breast cancer mouse model because of 

its preventative and clinical implications.  

 

Significance of study 

 Previously, several studies have implicated AGEs in the pathogenesis of a 

variety of different diseases including diabetes, cardiovascular disease, and 

Alzheimer’s. AGE-RAGE signaling has only recently been shown to contribute to 

tumorigenic signaling in cancers such as colorectal, prostate, and pancreatic. Very 

little research, however, has investigated the effects of AGE and RAGE signaling in 

breast cancer. It is important to elucidate the role of these reactive metabolites in 

breast cancer disease progression because of our ability to consume exogenous 

AGEs. By showing that high levels of AGEs leads to a more progressed disease, our 

data could potentially possess preventative implications in breast cancer. It is 
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already known that obesity is a risk factor for development and reoccurrence in 

breast cancer and our data could possibly offer a mechanistic explanation for this.  

 In addition to simply showing this association between AGEs and breast 

cancer progression, identifying a mechanism for tamoxifen resistance is both a 

widely investigated and severely misunderstood field of study. About 70% of all 

invasive breast cancers express the estrogen receptor, making it of utmost 

importance to create more effective treatments for these patients. By characterizing 

a functional role of AGEs in the development of tamoxifen resistance, targeted 

therapies for this type of cancer can potentially become more effective, leading to an 

improved prognosis. This could occur through modification of diet or through AGE 

inhibition with drugs already on the market in tamoxifen treated patients. Many 

studies have shown an association between certain estrogen independent 

phosphorylation sites on ERα. Here, we have shown that two of these identified 

residues are activated in response to AGE exposure and that AGE treatment reduces 

cell sensitivity to tamoxifen treatment. By identifying an effect on sensitivity to this 

drug, we can add to the existing knowledge base that is reinforcing the need for 

more personalized medicine in cancer.  
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