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Abstract

There is a considerable and growing interest in the organization and develop-

ment of neural function at the scale of the entire brain, particularly from activ-

ity observed in fluctuations in the blood oxygen level dependent (BOLD) signal in

functional magnetic resonance imaging (fMRI). This activity reliably organizes into

sub-networks, whether obtained from subjects at rest or from those involved in var-

ious perceptual or cognitive tasks. While these networks have often been identified

and studied, the precise dynamics involved in their interactions as well as the rela-

tionship between organization found in both resting and task-based activity are not

well understood.

Here I report not only the traditional functional organization of the resting brain

as observed through inter-regional correlations, but how this organization changes

over time. The dynamics of the brain during rest are not stationary as typically

assumed, but vary as different sub-networks co-activate. To produce this more

advanced model I apply a new method from the machine learning literature that

uses spectral learning to estimate the latent dynamics of brain activity driving these

changes. When comparing this model to one from subjects passively viewing faces

and other objects, I find distinct changes in a sub-network containing regions of the

brain involved in object recognition.

Additionally, the importance of fMRI signal variability as an independent within-

subject measure has recently gained attention. Looking at those same subjects
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at rest and passively viewing images, I introduce a simple measure that finds a

differential network that may expose the sources of variability driving these dynam-

ics. This network appears to be largely absent in anesthetized primates, and is

disrupted in a cohort of cocaine users viewing drug related paraphernalia.

These results together suggest a picture of a dynamic brain, with multiple inter-

acting subsystems that are not discrete isolated elements but often overlap. These

superpositions of activity may give insights into the dynamics seen during vari-

ous attentional tasks, where smaller parts of these networks tend to increase in

activity. Finally, there may be an independent level of organization that is coordi-

nating this dynamic activity as seen through the variability of these systems over

time. This novel network both increases in magnitude and is predictive of age,

and discriminates between faces and other objects. These results help further our

understanding of network organization in the brain.
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Background

1.1 Introduction

Understanding the interactions of neurobiological substrates that support human

cognition and perception has been a fundamental neuroscience research question

for decades. Techniques such as whole-brain functional magnetic resonance imag-

ing provide an opportunity to study large scale organization and function of the hu-

man brain. However, fMRI studies generate large volumes of data which presents

challenges for traditional statistical methods. One promising approach to address

this difficulty comes from the study of complex systems and networks, where struc-

ture and function arise from the many interacting elements of the system. Litera-

ture suggests that the brain exhibits network structure at possibly every scale, from

complex chains of molecular interactions, to populations of cells encoding stimuli,

and ultimately to graph theoretic descriptions of the anatomical connectivity provid-

ing the scaffold for all activity. Particular interest has been given to those functional

networks derived from the fMRI signal (Bullmore & Sporns, 2009) in part because

of their ability to cover large spatial scales and non invasive nature of the imaging

technique. Many of the networks discovered are present during spontaneous activ-

ity in resting states (Raichle et al., 2001), can show changes across development

(Fair et al., 2009), and these resting state networks may account for the majority

of brain activity ultimately utilized for various cognitive demands (Raichle, 2009).

In this work I intend to better quantify this spontaneous activity, first by modeling
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the temporal dynamics of information shared between brain regions, investigating

intrinsic maps of functional activity and how this activity segregates the brain into

multiple sub-networks, as well as changing through development. I will also ex-

tend these techniques into the investigation of activity during visual tasks. Despite

being widely studied, visual networks such as those involved in face and object

processing have had little formal network characterization. Given the importance

of face and object processing in daily life, identifying properties of these systems

has implications for understanding both typical and atypical functional brain organi-

zation in disorders like Autism Spectrum Disorder (ASD). In order to quantify these

changes I introduce a novel approach to studying these brain dynamics I apply re-

cent advances in spectral learning, an approach related to topics in applied graph

theory and machine learning (Luxburg, 2007a) that allows the investigation of how

networks change in time. Additionally I look at the spatial distribution of variabil-

ity in these fluctuating systems, identifying a new differential network that seems

independent of traditional functional networks, yet also predictive of function and

development.

The specific aims of this thesis are:

1. To assess the organization of resting-state brain networks in healthy adults

and children, as well as a small group of anesthetized primates, and deter-

mine network features that may be conserved across groups and species.

(Chapters 4 and 5)

2. To build on the features observed in the prior aim to distinguish changes to

brain organization during perceptual tasks relative to resting-state activity in

both healthy children and adults as well as a cohort of children diagnosed

with ASD. (Chapters 3, 4, and 5)
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3. Develop a functional connectivity approach using spectral graph theory, sim-

plifying and highlighting the most important network relationships present in

the data. (Chapters 2 and 4)

During the completion of the studies in the present work the above aims be-

came somewhat mixed as it was always useful to compare the activity at rest to

what was observed during a perceptual task. Aim 1 is largely addressed in Chapter

4 where I not only investigate how spontaneous functional activity is organized, but

introduce a novel method to identify how this brain organization changes dynami-

cally in time. This advances our understanding of resting state activity as much of

the current research in the field is looking at static networks derived from average

activation patterns. It also provides a way to simulate possible disruptions to these

networks, introducing an new method to probing translational links to other atypi-

cal groups. I continue to investigate resting activity in Chapter 5, as I compare the

sources of variability in resting networks derived from both humans and primates.

This work suggests a consistent and novel subnetwork in humans that does not

appear to be present in this anesthetized primate group. After establishing these

features of resting state networks, I investigate how they may reorganize in sev-

eral groups viewing visual stimuli. In Chapter 4 I investigate dynamics in adults

passively viewing faces and other objects, and observe a modest reorganization of

dynamic organization, specifically the amplification of a ventral visual subnetwork

that is matched to the presentation of images, and anti-correlated with a network

related to resting state activity. In Chapter 5 this group is central to the development

of differential networks, and I also look at children performing this task and identify

a source of functional variability that appears to increase with age. I also compare

these subjects to a cohort of drug using subjects viewing drug related parapher-
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nalia. This group shows regions of the differential network with significantly higher

degrees of variability. Much of my early work was looking at possible differences in

children on the autism spectrum, and later on larger groups of subjects with autism

from a public database. This largely yielded negative results, but I briefly go over

these in Chapter 3, which also introduces some general concepts such as group

averaged brain organization. Aim 3 was a methodological aim, and was central to

the methods in Chapter 4.
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1.2 Foundations of fMRI for neuroscience research

A general assumption of this work is that brain activity measured during fMRI

through the BOLD signal is in fact an appropriate albeit incomplete and indirect

representation of the underlying information as generated through neural activity.

The investigation of how this neural activity is related to perception, cognition, and

behavior is a central problem in neuroscience, and what follows is a brief review

of the evidence of how fMRI has been functionally tied to other, typically more

spatially localized, methods of measuring brain activity.

The development of fMRI

The development of neuroimaging techniques has progressed alongside the study

of the brain itself. In the late 19th century, Angelo Mosso developed a tech-

nique known as ’human circulation balance’, recording changes in blood flow in

patients undergoing neurosurgery. He noted that there were differences in blood

flow that occurred during cognitive activities. While this was the first recorded ex-

ample of this technique, it remained unknown until recent discovery of his tools and

manuscript.

In the early 20th century the neurosurgeon Walter Dandy developed ventricu-

lography, which injected air into the lateral ventricles during anaesthesia, allowing

x-ray imaging to better capture images of the ventricular system. Later Egas Mo-

niz introduced cerebral angiography, which helped to visualize blood vessels in the

brain through x-ray, though the positive contrast agents had negative effects. X-

ray computed tomography (CT) scanning was developed in the 1960’s and 70’s by

William Oldendorf, Godfrey Hounsfield and Allan Cormack. This was awarded the

Nobel in 1979, and provided a much safer and easier alternative that continues to
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be used, while still using radiation and often contrast agents.

Early blood flow maps were developed in the 1960’s by Niels Lassen et al, using

radioactive isotopes such as xenon, which produced images that could reflect brain

activity from various cognitive tasks. This technique, combined with CT technology,

led to the development of positron emission tomography by Edward Hoffman and

Michael Phelps, first used in a human scanner in 1973.

Alongside these developments an alternative method was developed, magnetic

resonance imaging(MRI). Rather than using some radioactive property, this used

changes in signals made by hydrogen protons that are placed in a magnetic field.

The 2003 Nobel was awarded to Paul Lauterbur and Peter Mansfield for the devel-

opment of MRI. Over the years as the technology was developed it was noted that

not only structural aspects of the body could be observed, but the kind of blood

flows imaged through PET scanning were also measurable by MRI, leading to

functional MRI more or less as it operates today. This has become the most widely

used imaging technique in brain mapping due to its non-invasiveness and lack

of any radiation. Briefly, neural activity leads to localized changes in blood flow,

and within about two seconds oxygen-rich blood flows into the region displacing

oxygen-depleted blood, gradually falling towards the typical baseline after about

6 to 12 seconds if activity has diminished. This diamagnetic oxygenated blood

displaces the paramagnetic deoxygenated blood, which was introducing inhomo-

geneity to the local magnetic field, and this decrease leads to increases in image

intensity which can be mapped onto the brain. The first in vitro demonstration of

this signal change was done by Thulborn and Wright in the 1980’s, and Ogawa

et al showed that this was measurable in the rodent brain (Ogawa et al., 1992)

using the dynamics of blood oxygenation as the contrast. The first human experi-

ment was performed in 1991 by Kenneth Kwong using visual stimuli, published the
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next year (Kwong et al., 1992). Kwong not only demonstrated the blood oxygen

level dependent (BOLD) signal, but a direct blood flow signal that eventually led to

methods known as arterial spin labeling.

The technology has continued to advance with stronger magnets and integra-

tion of associated technologies such as electroencephalography (EEG) and tran-

scranial magnetic stimulation (TMS), but much of the progression in the field of

fMRI has been through the development of algorithmic and computational tech-

niques, leveraging modern computing power to apply increasingly sophisticated

tools from statistics and machine learning. The present work is largely a continu-

ation along those lines, investigating novel statistical applications to better under-

stand whole-brain neural systems.

The functional basis for fMRI

The first fMRI studies identified large metabolic changes within occipital regions

of the brain - regions that are well known to have visually evoked neural activity -

and this was the first system to have a clear application of oxygenation of blood

as a contrast in response to external stimulus. The visual system is a convenient

region to test, as visually evoked neurons are among the most well studied due to

relative ease of experimental design, easy access to the most accessible aspect

of the CNS, the retina, and relatively easy access to primary visual cortex. This

may also be reinforced by the general importance that vision plays in our everyday

lives. This has led to a relatively robust computational understanding of sensory,

particularly visual, systems.

Sensory and computational neuroscience took an enormous conceptual leap

with the Nobel winning work of Hubel and Weisel (Hubel & Wiesel, 1959), which
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used microelectrodes to identify the existence of a remarkable organization of func-

tion along gradients of cellular populations in the cortex. This organization appears

to exist through laminar columns in a semi-discrete grid of population ’preferences’

for different types of stimuli. Additionally there is a map from retinal input, through

the thalamus, to V1 along the calcarine sulcus. This produces a radiation of in-

puts mapped and transformed through retina and thalamus away from this sulcus,

with each hemisphere of the brain representing a contralateral hemi-field of visual

space. This retonotopic map is fixed and evoked neural responses change as a

function of input - ie as the eyes and gaze move around visual space.

fMRI encapsulates volumes of the brain that may contain tens or hundreds of

thousands of individual neurons, depending on the spatial resolution of the imag-

ing. If fMRI is capturing functional relationships between stimulus and neural activ-

ity, it should be possible to identify some of the fundamental functional organization

already known to exist. Most importantly, much of this fundamental neuroscience

work has been done in animals, and fMRI allows this knowledge to be applied

to human subjects. Taking advantage of the known anatomical connections from

retina, projecting into the lateral geniculate nucleus, then radiating into visual cor-

tex, and using high field (3T) and localized high-resolution voxels, Schneider et al

(Schneider et al., 2004) were able to image the laminar structure of the LGN. This

anatomical body has 6 layered structures which receive distinct input from a hemi-

field of either the ipsi or contralateral eye, with dorsal layers having sustained color

sensitive activity, with low contrast gain, and 2 ventral layers having more tran-

sient, high contrast and luminance sensitive activity. Thus different laminar profiles

can and were observed through different stimuli presented to each visual hemifield

independently. The relatively small superior colliculus was also partially mapped

through a similar process (Sylvester et al., 2007), reproducing some aspects of
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phase and movement often studied in this region in animals.

Those studies reproduced the most basic elements of vision, and confirmed in

humans what was nearly universally accepted but not observed, that their visual

system is organized as it is in other mammals. There is a long history of investi-

gation of function of visual areas in animals, where function appears to increase

in complexity from early V1 in the occipital lobe that is organized around more ba-

sic aspects of vision such as stimulus orientation, spatial frequency, motion, and

color. As you move into V2 more complex visual relationships are encoded such

as contours and patterns, V3 has more global feature and color mapping, as well

as large scale motion. A widely accepted view of visual function argues that there

are two distinct functional systems radiating from V1. This two-stream hypothe-

sis (Goodale et al., 1991) suggest that a dorsal stream projects from the occipital

lobe, through middle temporal, and towards the parietal lobe, while a ventral stream

projects through V4 towards inferior temporal. These streams would largely serve

different functions, where the dorsal system is concerned with processing visually

guided behavior and motion, while the ventral system processes recognition or

identification of visual stimuli. This leads to a conceptual delineation of vision into

dorsal ’action, or where?’ pathways and ventral ’identification, or what?’ pathways.

Recent reviews suggest that this is still a useful model, though the streams may not

be as independent as once thought (R. D. McIntosh & Schenk, 2009). In any case,

the ventral system is more relevant for much of the work in this thesis, where sim-

ple visual features are recognized and mapped in some feedforward manner, and

upstream temporal areas encode very complex patterns, with evidence for various

objects and faces having specific neural response patterns. Debate remains as to

the specificity and sparseness of this encoding, although some studies suggest a

remarkably sparse encoding (Quiroga et al., 2005), populations of neurons are still
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likely required (Quiroga et al., 2008).

fMRI provides advantages in several respects to understanding the shifting

anatomical and functional landscape encoding vision within the brain. First, these

regions are largely discrete in function, but not necessarily through any obvious

anatomical boundaries. Second, while animal studies are successful at inves-

tigations of fundamental properties of cellular function, which can be later con-

firmed in human subjects, more complex perceptual properties may only exist in

humans and can only be studied through these non-invasive means. Dougherty et

all (Dougherty et al., 2003) provided an early functional map of visual delineation

between V1-3 using shifting stimuli, and showed a general consistency across indi-

viduals in how visual space is represented in the brain. fMRI has made it relatively

easy to map additional visual regions (Wandell et al., 2007), such as the dorsal

clusters V3a, b, V6, V7, and IPS, which tend to extend into parietal regions, often

represent more peripheral regions (higher degree of tuning), are much more ori-

ented towards motion, depth, spatial orientation, and eye-movement, are strongly

modulated by attention, and damage tends to disrupt motion perception and vi-

sual/spatial attention. V5 in humans (MT or middle temporal in primates) tends

to be completely motion sensitive, and can be difficult to track across individuals.

Lateral clusters in occipital regions tend to have very large receptive fields and

are broadly recognized to be involved in object and face perception. ’Early’ lateral

occipital cortex(LO1) continues to show selective responses to simpler visual fea-

tures such as orientation selectivity, while LO2 begins to recognize more complex

objects. More ventral clusters (V4, V8, VO1-2) become much more complex and

difficult to study, though are involved in various ways of decoding color, complex

shapes, and so on. These regions also tend to have less obvious homology with

primate regions, where in early visual areas (V1-3 and V5/MT) there is reasonable
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overlap. This could be due to some evolutionary differences, but may also be a

limit of the tools used to identify these regions - a gap between functional fMRI and

tools used to measure these areas in animals.

What about more discrete computational aspects, such as the functional columns

that exist across cortex? These are typically on the order of hundreds of microns,

at the edge of the higher resolutions available to BOLD signals. Ocular dominance

columns were mapped in 2001 (Cheng et al., 2001), reproducing a well known

feature where columns receive a balance of input from one, or both, eyes. A high

strength (7t) scanner finally mapped the orientation columns found by Hubel and

Weisel 50 years prior, and even imaged ’pin wheel’ singularities known to exist

between functional regions (Yacoub et al., 2008).

This evidence suggests that fMRI is able to identify many aspects of neural

function at different scales, at least in sensory systems. The confidence in the

underlying signal helps as studies step into more complex analysis that tends to

abstract even further away from this signal, such as the network approaches used

in this thesis.

The neural basis underlying the BOLD signal

While a functional basis underlying the BOLD signal may be well established, the

specific nature of the neurobiology underlying this activity is still debated. Here I’ll

briefly outline some of the background relating BOLD to techniques that are more

closely related to neural activity. While this issue is often secondary to the utility

of BOLD in localizing function it is still critical to keep in mind the underlying basis

for the eventual interpretation of many findings, particularly for research that may

want to bridge gaps between findings from the fMRI literature and more localized
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approaches to studying neural systems.

Considerable work has been done on correlating BOLD with simultaneously

recorded electrical signals. This was largely done in animals and most notably

from the lab of Nikos Logothetis (Logothetis, 2003; Logothetis et al., 2001). Briefly,

electrodes placed in V1 were used to capture a wide range of frequencies of local

neural activity while high resolution BOLD imaging of the area was also collected.

This electrical activity can be decomposed through fourier analysis to identify indi-

vidual spiking activity from other background activity composed of a superposition

of many neurons activity. This lower frequency activity, often referred to as Local

Field Potentials (LFP), can be influenced by neurons as far as 1 or 2 mm away,

approximately the size of a voxel in BOLD imaging. After stimulation many neu-

rons become active, but rapidly fall to a much lower firing rate. In contrast, the

LFP tends to increase but gradually decrease to a constant rate of activity, before

extinguishing at the removal of a stimulus. If a several second lag is taken into con-

sideration this correlates well to the BOLD signal. Logothetis et al have succesfully

created a simple model to predict BOLD signal given this LFP activity (Logothetis &

Wandell, 2004). If spiking activity is understood as instantaneous activity resulting

from a cellular integration of depolarization, LFP is a summation of this as well as

all synaptic depolarization itself that does not necessarily lead to the spike itself.

Additional work has attempted to disambiguate spiking, LFP, and BOLD. One

complex example used electrical records in cat visual cortex with simultaneously

recorded local oxygen level measurement (Viswanathan & Freeman, 2007). Stimuli

were used that are known to elicit synaptic activity at certain frequencies, but no

spiking, and it was observed that LFPs were strongly coupled to changes in tissue

oxygen in the absence of spikes, also supporting the closer coupling of LFP to

BOLD.
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While LFP is likely the closest analogue to the BOLD signal, clearly LFP is

related to spiking activity, and a large enough sample of spikes would likely closely

correlate to BOLD. A striking example of this was found by Mukamel et al (Mukamel

et al., 2005), where two human subjects had spiking activity from multiple cells

in auditory cortex recorded while listening to an auditory cue. This activity was

convolved with a typical Hemodynamic response function that is frequently used to

mimic the ideal dynamic of a BOLD response. These predicted BOLD responses

were then highly correlated with BOLD from auditory cortex from an independent

sample of subjects listening to the same cue.

A newer technology, 2 photon imaging, was recently used to attempt to address

some similar issues. This used a complex setup that stimulated excitatory neurons

in one region while recording BOLD in a distal targeted region (Lee et al., 2010).

There was very clear BOLD activity in these target regions post stimulus, clearly

showing that BOLD can be driven by neural excitation. They further claim this

is evidence directly linking spikes to BOLD, rather than the summation of more

distal synaptic activity. In response, Logothetis (Logothetis, 2010) writes a brief

communication taking issue with this, stating that any local excitation could rapidly

distribute into multiple neural circuits driving LFP activity in the target region, which

was not denied by the authors. This study also attempted to observe the effect of

stimulating inhibitory neurons, and found some evidence that this causes a local

BOLD increase, with flanking voxels decreasing in magnitude.

These and other results all suggest that the BOLD signal is closely related to

LFP activity, while also at least strongly correlated to spiking activity. The distinction

lies in LFP reflecting ’inputs’ and spikes reflecting ’outputs’, which is ultimately im-

portant for a better understanding of additional analysis, including my own. BOLD

activity may be correlated to these information carrying signals, but it is actually
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driven by the changes in blood flow which is largely driven by astrocytes in a tripar-

tite synaptic relationship (Figley & Stroman, 2011). Energy use, such as spiking

activity, is not directly tied to blood flow, but rather indirectly related mainly through

glutamate triggered calcium influx at the post-synaptic density, releasing a number

of vasodilators. This typically increases blood flow over a relatively large area.

1.3 Characterizing the brain at rest

A growing body of research has focused on spontaneous changes in the BOLD

signal during a resting state condition, where subjects are not engaged in any

cognitive task and there are no experimenter controlled changes in sensory input.

Changes from this baseline spontaneous activity during tasks are typically small

(5% or less) compared to the total metabolic activity in the brain (Raichle et al.,

2001). Importantly, this activity is not random and appears to reflect some under-

lying organization, which either re-organizes when engaged in a task, or specific

task-related networks superimpose onto or modulate the underlying relations. As

described by Fox and Raichle (Fox et al., 2005), evaluating and understanding

this change from spontaneous to task related activity is an important unanswered

question that likely requires novel approaches above and beyond voxelwise, seed,

and independent component analysis based connectivity measures.

Spontaneous activity was first studied and formalized by (Raichle et al., 2001),

and was based on earlier meta-analysis (Shulman et al., 1997), as a default or

baseline state of activity. The regions showing consistent "deactivation" (i.e., acti-

vation during baseline compared to active tasks) included the posterior cingulate

and precuneus, inferior parietal, and medial frontal regions. Further results often

describe connectivity between regions through time series analysis, typically cor-
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relations, reflecting some positive or negative colinearity between the respective

signals. There is a lack of discussion within the literature as to the justification or

weaknesses of using pearson correlations to derive brain organization. This may

be a poor measure of information about some dependence between regions as it

ignores the multiple influences imposed from areas across the brain, which is an

implicit assumption in a network or systems approach.

Since first reported, the ’default mode network’ (DMN) has been consistently

observed, particularly using time series low-pass filtered below 0.1 Hz (Cordes

et al., 2001; Fox & Raichle, 2007), though it also appears in block designs that

are high-pass filtered. This network often has negative correlation with attentional

networks (Broyd et al., 2009) suggesting a neural architecture mediating between

periods of introspection and periods of attention and action. A number of other

studies have gone on to perform similar analysis, typically either using a priori

specification of seed regions (Fox, Corbetta, et al., 2006), or using some method

of signal reduction across all voxels, such as independent component analysis

(ICA) or principal components analysis (PCA) (De Luca et al., 2006; Kelly et al.,

2008). These have found a number of candidate networks which appear to be syn-

chronized during rest. These resting state networks have been observed across

various conditions and samples, including anaesthetized monkeys (Vincent et al.,

2007), have been placed under various classes, including (Fox & Raichle, 2007):

DMN, visual, auditory, dorsal attention and ventral attention networks, and others.

These resting networks include many regions that would typically have coincident

activity during relevant perceptual or cognitive tasks, and there is evidence that

there may be re-organization of resting state activity over development (Fair et al.,

2007).
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1.4 Development of functional organization, Autism Spectrum Disorder, and

Face processing

Having established some resting ’baseline’ network, the study will then contrast

deviations from this baseline, in perceptual networks as well as in a cohort of

subjects with Autism Spectrum condition (ASD). Studies in the present work will

have subjects performing a passive face viewing task, where images of faces and

other objects are presented with intermediate blocks containing no stimulus. This

is a preliminary task made prior those that investigate how subjects perceive and

compare the individual parts and overall configuration of a face, which were not

analyzed in this work. The ability to correctly identify and process facial featural

information is critical to social interaction, and disruptions to development of these

processes can have considerable negative consequences to daily life, as in ASD.

While there is a considerable literature on various mechanisms of face and

object processing, integrated network approaches to studying functional organi-

zation are relatively rare. Regions involved typically include the fusiform gyrus,

superior temporal sulcus, and parts of the occipital cortex. These areas appear to

form a functional core and may have different roles in various aspects of percep-

tion (Haxby et al., 2000), with fusiform representing identity and STS involved in

changeable aspects of faces, though the regional integration and functional sep-

aration of these regions is still under debate (Cohen Kadosh et al., 2010; Collins

et al., 2012; Sekuler et al., 2004). Other areas involved in numerous cognitive

functions are also important for face perception and may interact with this core

perceptual system, such as limbic regions for emotional context or parietal and

frontal areas for processing eye gaze. This considerable imaging evidence in hu-

mans has supported single unit findings in macaque, where activity in superior and
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inferior temporal cortex suggest that there are neurons that respond preferentially

to face stimuli (Hasselmo et al., 1989; Perrett et al., 1982).

fMRI activation is typically greater for faces than other non-face objects in parts

of this core system. Manipulations of face stimuli suggest that the neural systems

in face recognition are much more sensitive to image inversion than object recog-

nition (Yin, 1969). This inversion affects the 1st order information of the face; that

is, the canonical order of face parts such as eyes above nose, nose above mouth.

One explanation for the discrepancy is that relational processing is not as neces-

sary for identifying objects, and provides a principal feature for separating faces

from non faces, though not faces from one another as they have the same order-

ing of these features. 2nd order information, the spacing among face parts, is a

candidate mechanism for face recognition and perceiving the changeable aspects

of faces. This is important for recognition and non-verbal communication, and pre-

sumably less important for most object recognition. A debate as to the details of

these aspects of perception and their independence in face and object detection

continues. Network analysis of brain activity can help elucidate these largely be-

haviorally described manipulations.

Several studies have begun to look at developmental changes in functional

connectivity in cognitive domains other than face processing. Fair et al. (Fair et

al., 2009) looked at different age groups and found changes in regional clustering

or modularity, with younger children having high correlations in close anatomical

space, shifting towards functional integration across more distant regions in adults

(more recently concerns with head movement in adolescents needs to be con-

sidered in interpreting these results; (Power et al., 2012)). Notably, Dosenbach

(Dosenbach et al., 2010) used a multivariate statistical learning approach employ-

ing support vector regression to create a maturation index using resting state ac-
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tivity from children to young adults. They showed that functional connections that

changed with age tended to be more distal and along an anterior/posterior axis.

There are few studies looking at typical developmental changes of visual percep-

tion (Cohen Kadosh & Johnson, 2007).

Autism is defined by deficits in impaired social interactions, impaired communi-

cation, restricted interests, and repetitive behavior (Rudie et al., 2012), and is in-

creasing in prevalence. ASD is a disorder of neural development where alterations

to synaptic coupling and organization lead to widespread functional changes. These

changes are often described as relative increased local anatomical connectivity

and decreased long-range connectivity, reflecting deviations from the typical de-

velopmental trajectory (Belmonte et al., 2004). An essential characteristic of ASD

relevant to this study is an impairment in processing the emotional and social sig-

nals in faces. This may be from some dysfunction in aspects of face perception,

through either overemphasis of individual face features, or reduced ability to pro-

cess the overall configuration of a face.

Network analysis provides a means to characterize systems-level changes in

development, evaluating connectivity both during rest, object, and face-viewing,

and quantifying differences in typical and atypical populations. One hypothesis is

that a support vector machine can predict condition and group from network statis-

tics, providing a method of network quantification that incorporates subject-by-

subject variability. Support vector regression will reproduce the maturation index

from (Dosenbach et al., 2010), modeling ages in a large cohort of typical subjects

ranging from children to adults, and then apply this to the smaller cohort diagnosed

with ASD. This cohort is hypothesized to lie outside of the typical developmental

profile, and changes in connectivity and network measures may reflect differences

in brain development placing these individuals outside the modeled growth curve.
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In a similar methodology, behavioral responses to visual feature discrimination will

be modeled in both groups, and may reflect either a misallocation of resources, or

the utilization of different sub-networks during discrimination.

1.5 Measures of similarity

This work takes a fairly analytical approach to understanding brain function. One

goal is to not only describe the areas where function may be happening in a de-

scriptive fashion, but to more specifically model how their dynamic activity is related

in time and function. This approach is aided with some more advanced statistical

and machine learning approaches, which help identify these dynamics in a rigor-

ous manner. In this section I will briefly go over some of the basic methodological

issues that need to be tackled prior to further analysis. A formal review of all the

procedures taken in an fmri study would be unnecessary, and I won’t go into de-

tail on many of the more accepted techniques, such as those built into common

packages like FSL.

Measures of correlation and dependence between time-series

Much of the analysis used in this research will depend on measures used to assess

some kind of relationship between BOLD signal time-series recorded in two or

more regions of the brain. Subsequent inference depends on this initial decision,

so a review and understanding of some relative strengths and weaknesses will be

useful before approaching more complex topics. In this section I will use some

example data from several subjects in a continuous resting state scan, where no

stimulus was presented for several minutes.

These metrics can be characterized by the nature of the relationship that they
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measure - most notably whether the relationship is linear or non-linear, and addi-

tionally if the measure is conditioned on any additional data. The most classic, and

far and away most applied in the fMRI literature, is the Pearson correlation coeffi-

cient, though many others have been developed and have had success in different

applications.

Covariance, inner products, and the Pearson correlation

The covariance of two vectors measures the degree to which two variables change

linearly, together. If one vector’s values tend to increase as the others do, then

the covariance will be positive. Otherwise, if one vector’s greater values tend to

correspond to the other vector’s low values, then the covariance will be negative.

As the degree of this relationship increases, the magnitude of the covariance in-

creases, conversely as this decreases this magnitude will approach zero. If two

vectors are independent, then they will have zero covariance. If two vectors have

zero covariance, they may still be dependent (typically through some non-linear

process). The covariance, or dispersion, matrix of vectors x and y is defined as:

cov(X, Y ) = E[(X − µX)(Y − µY )]. E[] is the expected value, or mean.

The units of measurement of this measure are those of X times Y. For the

purposes of this discussion I’ll be outlining population formula, though sample es-

timates of the respective variances are used in practice. In the context of linear

algebra, covariance is closely related to an inner product in a euclidean space.

This is often a useful interpretation for more geometrical approaches to informa-

tion spaces, such as angles and norms of vectors, and allows for some important

relationships often used in machine learning applications. Given vectors x and y,

an inner product satisfies several rules:
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Symmetry:

〈x, y〉 = 〈y, x〉

Linearity:

〈ax, y〉 = a〈x, y〉.

〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉.

Positive-Definiteness:

〈x, x〉 ≥ 0 〈x, x〉 = 0⇒ x = 0

For random variables, 〈X, Y 〉 := E(XY ). Perhaps the simplest case is the in-

ner product in a euclidean space, which is the simple dot product of two vectors.

xTy =
∑n

i=1 xiyi = x1y1 + · · · + xnyn. Inner product spaces have naturally defined

norms, ‖x‖ =
√
〈x, x〉. This is interpreted as the length of the vector, and allows

the calculation of angles, distances, and so on. Many interpretations of machine

learning techniques rely on finding geometric relationships in data which depend

on these qualities. One important concept that I will not explore in detail is called

the ’kernel trick’, which is a widely used approach where a new function is used in

place of some algorithm, such as covariance or inner product, generally for the pur-

pose of finding non-linear relations. One important aspect of the selection of these

kernels are that they satisfy rules of inner product spaces, triangle inequalities, and

so on. When these are satisfied then we can effectively treat this information as if

it were in our familiar euclidean space, and the location of values relative to each

other has real information. Much of the work in the discovery of functional relation-

ships in fMRI have used linear inner products, and it is worth keeping in mind that

applying various kernel tricks may have some utility. In this thesis I will incidentally

cover these briefly in Chapter 2, but applying kernels, for instance to the learning

process in Chapter 3, remains a future direction.

An additional consequence of these geometric relationships is the triangle in-
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equality:

‖|x, y|| ≤ ||x||+ ||y||

A simple distance metric is d(x, y) = ||x − y||, or the euclidean distance. Another

simple relationship within any inner product space is the calculation of the angle

between two vectors. This would intuitively reflect some relationship, as a smaller

angle would seem to suggest vectors pointing in a similar direction. Due to their

geometric relationships, the calculation is straightforward: θ = arccos( x∗y
|x||y| ). This

leads to the most commonly used measure of dependence between timeseries,

the Pearson correlation. This is the covariance, normalized by the product of each

vector’s standard deviation.

ρX,Y = cov(X,Y )
σXσY

= E[(X−µX)(Y−µY )]
σXσY

If this is compared to the calculation of the angle above, it can be seen that the

right side of this equation is similar to the dot product of x and y over their norms.

As stated earlier, the dot product of two vectors is equal to the product of their

expected values. Moving the trigonometric function to the left side of the equation

results in cos(θ), which maps the angle onto the range [-1,1], which is also the

range of the Pearson correlation. |x| =
√
〈x, x〉 =

√
var(X) = SD(X). When two

vectors are orthogonal, the angle between them is 90◦, and the correlation - or

cosine of the angle - is 0. Many studies have used pearson correlations in contexts

where a distance metric would be desired. Frequently this is done by transforming

the Pearson correlation into a range that satisfies non-negativity, most often done

with a distance correlation metric, which is simply 1 − ρ(X, Y ). The best distance

metric to use for various machine learning algorithms to capture information from

fMRI activity is an open question, for the most part I will focus on various kinds of

correlations between time series. This is principally due to the tremendous prior

research that has largely focused on this measure, and the ease of application.
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Figure 1.1: Examples of different correlation measures from one subject’s time series.
Each figure is a 90 by 90 matrix representing the individual relationships between all 90
brain regions studied throughout this work.

Partial Correlation

Partial correlations provide an interesting approach to measuring time-series de-

pendence by controlling for some other random variables. This could be any vari-

able that may be suspected to influence the results, and we would want to remove it

due to our principle concern being the direct relationship between the two variables

of interest.

The partial correlation ρ between X and Y, given one or more controlling vari-

ables Z, is the correlation between the residuals resulting from a correlation be-

tween X and Z, and Y and Z. One common application is to partial out a mean

time series across all regions of interest in the brain. The use of this prior to anal-

ysis has caused some debate, as not conditioning on the mean tends to remove

the anti-correlation between many regions, including influences from the default

mode network. In this work, I typically calculate the partial correlation between
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two variables, given all other variables. This is not the same as the global mean,

as this seeks to provide as much information that is specific to two variables and

not shared among regions of the brain synchronously. In practice, it is computa-

tionally efficient to calculate this full partial correlation using a matrix inversion of

the covariance (or correlation) matrix. If the inverted matrix P = cov−1 then the

partial correlation between i and j is ρ(XiXj
) = − pij√

piipjj
. If there is some relation-
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Figure 1.2: Scatterplot of different measures against one another, with r2.

ship between three regions, where region A influences B, which influences C, full

correlations would have high correlations in all pairwise connections. Partial cor-

relation conditions each pair on other nodes - which can remove the ’extra’ edge

between A and C. This approach was described and applied in (Marrelec et al.,

2006) where they suggest that this is a straightforward and data-driven technique

that can be seen as more closely related to ’effective’ connectivity approaches such

as dynamical causal modeling, which are much more complex to calculate and re-
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quire a number of prior assumptions. The method was further justified in (Smith et

al., 2011) where it was shown through simulation work that partial correlation was

more successful at recovering true underlying connectivity than Pearsons. In Fig-

ure 1.1 I show a comparison of several kinds of correlation computed from a single

subject’s timeseries across 90 brain regions. From this it can be seen that the ma-

trix of partial correlations conditioned on the mean signal is qualitatively similar to

the traditional Pearson’s correlations. Conversely, there is a clear difference in the

full partial case, where it appears many inter-regional links are removed. Figure

1.2 shows scatterplots between some of these kinds of correlation.

One significant problem often encountered by these researchers has been the

difficulty in computing the inverse of the covariance matrix when the number of

time series samples is smaller than the number of variables under consideration,

for instance Marralec et al were only able to analyze a small subset of their data.

In this work that will be a concern when looking at matrices derived from task-

positive runs when subjects are viewing some stimulus category, as any particular

stimulus will tend to only be viewed about 20 times, and the fixation runs used as

intermediate resting states are viewed about 40 times. I typically use a partition of

the brain into 90 regions, and calculating a covariance matrix from these data will

result in unstable estimates that are singular - that is , they cannot be successfully

inverted in order to calculate partial correlations.

I’ll apply a simple shrinkage approach to improve this estimate, as developed

in (Ledoit & Wolf, 2003) and applied in (Sch, 2005). This yields a well-conditioned

positive definite covariance estimate that has guaranteed minimum mean squared

error, and I apply a shrinkage factor, using the Ledoit-Wolf lemma, to calculate an

optimal shrinkage intensity. S? = λT + (1 − λ)U , where λ ranges from [0-1]. This

serves as a convex combination of the sample covariance estimate U against the
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target T, with a mixing parameter lambda to maximize the accuracy of the estimator.

Essentially, as the sample gets larger, the estimate converges with the empiracle

sample estimate. I use code written by and detailed in (Sch, 2005).

Distance Correlation

One additional metric that has recently gained attention is the distance correla-

tion, sometimes referred to as a brownian distance. As mentioned, the classical

measure Pearson’s correlation measures the linear relationship between variables.

Partial correlation measures a conditioned linear dependence. In 2007, Gabor

Szekely (Székely et al., 2007) addressed this deficiency, where clearly (nonlin-

early) dependent variables can have a 0 correlation. Given the random variables

X and Y, first compute all euclidean distances in to the distance matrices A and B:

aj,k = ‖Xj −Xk‖, j, k = 1, 2, . . . , n

bj,k = ‖Yj − Yk‖, j, k = 1, 2, . . . , n After centered these matrices by subtracting

respective column and row means, and summing the matrix mean, calculate the

distance correlation:

dCov(X, Y ) := 1
n2

∑n
j,k=1Aj,k Bj,k

This effectively incorporates notion of linear dependence with dispersion of

points, and in practice I used it as a quick measure of the non-linearity of time-

series relatedness. It is important to note a loss of sign or directionality in the

relationship using this relationship (as distance is a strictly positive metric). In 1.1

and 1.2 it can be seen that distance correlation is qualitatively similar to the Pear-

son correlation, and in 1.2 it is nearly linearly related. If there were relationships

that were not so linear, such as trivial functions like one region’s timeseries being

a square of another, then the distance correlation may reflect a relatively higher
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value than appears in Pearson correlation. If there were complex relationships, it

may be significantly higher in distance correlation while not being different from 0

in Pearson. This was only evaluated averaged across all subjects, and there may

be subject-specific interactions where this distinction does appear. This metric

remains a largely unexplored tool to investigate functional connectivity.

1.6 Graph theoretic approaches to connectivity

A graph theoretic approach to connectivity creates an abstraction of the brain with

regions of interest as nodes, and the measure of connectivity relating pairs to each

other as edges. A number of metrics have been used to characterize networks,

such as node strength - a sum of all connections to any given node, or between-

ness centrality - a reflection of how often a node lies on a shortest path between

other nodes. There are also notable global measures, such as measures of small-

world architecture, which can reflect a tendency for the network to organize around

regions acting as hubs, which act as centers for other nodes to connect to and

likely have high betweenness centrality themselves. Node modularity is another

common measure, where the entire brain is partitioned into self-organized clusters

or sub-networks. These various measures have been used successfully not only

within neuroscience, but across numerous fields - in fact some of the most notable

work has shown that there is a surprising consistency in some global network mea-

sures (Barabasi, 1999) across networks as disparate as metabolic networks and

air travel. This ’non-random’ aspect likely reflects important principles underlying

information flow across real-world systems, where redundancy and relatively short

travel times are at a premium, constraints that are also imperative to function in

neural networks.
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These graph heuristics have been developed alongside a rich mathematical

framework, starting from Eulers use of graph theory to solve the Konigsberg Bridge

problem with a formula relating the number of edges, vertices, and faces of a con-

vex shape. A graph is best represented by a matrix containing edge values indexed

between nodes, and this provides a great deal of statistical and linear algebra tools

to employ in the study of graph properties. In particular is spectral graph theory,

which studies summary properties of networks and their nodes through diagonal-

ization of the system into its spectrum- the relationships among the eigenvalues

and eigenvectors of that graph. As described by Chung (Chung, 1994), a major

goal of graph theory is to describe principal structure in a graph through this spec-

trum, much as structural properties of a molecule can be inferred through its MR

spectrum. I’ll go into considerable detail to some topics related to modularity(or

clustering) as well as spectral approaches to graphs in the following Chapter.

1.7 Concerns with head movement

Head movement has been a known problem for fMRI studies since early in its de-

velopment. This can have a profound effect on the magnetic gradient being mea-

sured, as well as changing the position of the brain itself. Standard procedures

have been designed for pre-processing of data prior to statistical analysis, these

measure and realign the position of imaged volumes in space, and then frequently

take some regression of the data against motion estimates to attempt to remove

motion artifacts from the data. Recently (Power et al., 2012) it was shown that

these common procedures were insufficient, particularly in younger subjects. Sub-

jects with excessive average head motion are often discarded from analysis. Fre-

quently, remaining subjects who otherwise have a low degree of mean movement
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Figure 1.3: Here the mean time series(above), and the fractional displacement are plotted
with a dotted red line at the cutoff point. Below is a region by region plot of the time series,
with the top row indicating stimulus condition by color. There is a clear sudden movement
at point 40, with an associated disruption to the time series. Red x’s on the average signal
are those frames that would be eliminated from analysis.

will have brief sudden movements, and recorded data at these points are com-

pletely in error. Powers et al suggest a procedure where a more thorough investi-

gation of head movement is done on a frame-by-frame basis, and data from time

points around sudden shifts in position are discarded from analysis. They show

that these data from these times can have a large effect on functional connectivity,

as even a few of these spurious movement artifacts can disrupt a real correlation,

or possibly introduce a false one. In particular, they show that eliminating these

movement points can alter the relationship between functional connectivity in chil-

dren as compared to adults. Children tend to have more movement and this was

likely contributing to some of the effect of studies seeing lack of functional connec-

tivity. Removing these points increases the similarity between children and adults,

and appears to recover some distal functional connectivity while still maintaining
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a significant overall difference between groups. An application of the approach

used by Powers et al was applied in most of the present work. In Figure 1.3 is an

example from one subject who has a single rapid movement with an associated

disruption in the time-series data. Removing these artifacts should improve esti-

mates, and is especially important for developmental studies as in Chapter 3 or

5. Chapter 4 did not use this method to eliminate specific frames, as the analysis

was specifically looking at a time-shifted correlation, and removing some number

of frames would break the temporal assumption behind that approach. It should be

noted that no children were analyzed in that work, so movement effects would be

generally small, but it is something to keep in mind if in the future developmental

questions are asked using this method.
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Approaches to learning in biological and artificial systems

2.1 Introduction

Neuroscience has been applying methods from machine learning and statistical

computing since these tools became available. There has also been considerable

theoretical exchange between fields, as evidenced by concepts like artificial neural

networks and conferences such as Neural Information Processing Systems. In this

chapter I will cover a number of topics concerned with modeling unlabeled data,

a field known as unsupervised learning. This is a contrast to several other kinds

of artificial learning, one being supervised learning where some or all data have a

corresponding label (such as having a pathology, something like age, or being a

control) which are used to guide a search for distinguishing features, or reinforced

learning where a process takes actions in some environment to maximize some

kind of reward.

While the purpose of this chapter is mainly to discuss practical approaches to

developing and applying clustering techniques, it is worth visiting how these arti-

ficial strategies may relate to cognitive and computational mechanisms in neural

systems. Machine learning has been motivated by finding useful statistical ap-

proaches to understanding large amounts of data, and it may be informative to

consider the evolution of brain systems in a similar context (Doya, 1999). Do the

solutions that researchers find in understanding complexity and unknown structure

have anything in common with the solutions the brain has found?
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Reinforcement learning is probably the most clear example, and its develop-

ment was guided by older observations from behavioral psychology. In the brain

there are computational mechanisms underlying how reinforcement modulates dopamine

(DA) in cortico-striatal systems. The first striking example comes from a series of

studies by Schultz and colleagues (Schultz, 1998) on primate midbrain DA neu-

rons. In conditioned motor tasks, these neurons initially respond to the reward on

successful trials, but after learning the task these neurons shift to responding to the

visual stimulus itself, rather than the reward. This ties directly into much of the com-

putational literature, as temporal difference reinforcement models seek to devise a

strategy that maximizes future reward (Sutton, 1998). The learning ’signal’ in these

models act exactly as DA neurons, at first linking motor behavior to the reward, and

then tracking back in time to the causal mechanism underlying it. Another related

example is in a task where stimuli are presented and subjects are required to make

a binary decision to make a motor response, or withold that response, this is typ-

ically called the go/no-go task. Cortico-striatal inputs corresponding to motor and

stimuli in go tasks are further excited by D1 receptors, whereas DA is inhibitory on

nogo via D2. This differential will affect performance, and after a ’correct’ response

in the task dopamine bursts will reinforce the previous response. This results in

learning during this phasic signal, strengthening the corresponding synapses, and

facilitating selection of the previously rewarded response in future experiences with

the stimulus. Likewise incorrect responses result in the opposite effect, strength-

ening nogo units which were being otherwise inhibited.

This would suggest that the basal ganglia are acting in a computational role to

perform this reinforcement learning. Likewise, cortex has been suggested to act in

a largely unsupervised manner, learning statistically optimal representations of the

unknown state of the environment and its own behavior. This provides a mecha-
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nism to learn behavioral ’habits’ responding to events, and representations of the

most important characteristics of stimuli, giving a shortcut to facilitate rapid action.

This is evident in the ventral visual pathways discussed in the previous chapter,

and these regions develop over time with additional experience and expertise with

different stimuli. In the case of the go/nogo example, it has been suggested that

sensorimotor pathways learn prior statistics of successful actions, at some rate

slower than the basal ganglia guided learning (Frank & Claus, 2006).This can ex-

plain some results such as post-motor response activation in striatal units after

action onset in well-learned tasks (Alexander & Crutcher, 1990), and patients with

Parkinson’s, a pathology of dopaminergic neurons, having relative ease with well-

learned motor behavior. Dopamine also plays a role in ’activating’ learned repre-

sentations in cortex, as seen in addiction models as DA release in prefrontal cortex

is necessary for drug seeking reinstatement (Kalivas & Volkow, 2005), but not its

release in accumbens.

There are attempts to generalize unsupervised biological learning within a sin-

gle framework, namely the free energy principle (K. Friston et al., 2006), which

ties in closely to an even more general hypothesis of neural function known as

the Bayesian brain. The free energy principal attempts to explain how biological

systems minimize this energy among some number of internal states, where these

internal states model belief about unknown or hidden states in their environment.

This effectively minimizes self-information, or surprise, which is the divergence of

the internal model from the external states. The objective is to maximize model

evidence p(s|m) or alternatively, minimize surprise −logp(s|m) where the sensory

state is evaluated given some generative model. This can be viewed as modeling

the unconscious inference of perception, and an abstraction of neuronal process-

ing. As the brain encounters the (unknown) world, it updates internal represen-
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tations based on those sensations and how they compare to an internal repre-

sentation. The generative models themselves that define the free energy function

can be varied, but are typically hierarchical, like many systems in the brain. This

can mimic message passing, and the movement of ascending prediction errors

with their top-down predictions, a theoretical view consistent with the physiology

of many sensory systems. As the most abstract levels at the top of the hierarchy

make predictions about representations, lower, sensory, levels reciprocate with er-

rors on those predictions. These unsupervised models would have the most in

common with the underlying theory discussed in most of this chapter.

The cerebellum has long been understood to be involved in fine tuning of move-

ment (Marr, 1969), though it is also innervated from large regions of cortex outside

of motor areas. Fine motor control could be seen as an error-based learning task,

which would correspond to supervised learning, as after initiation there is some

target, and deviation from that can provide an error signal. A possible mechanism

for this process was identified in the long-term depression of Purkinje synapses

dependent on climbing fiber input which could provide some kind of error signal.

Kitazawa et al showed this (Kitazawa et al., 1998) when they identify that the infor-

mation content in spikes from these cells contain information about target direction

at movement initiation, and error near end of the movement.

Besides these three general learning approaches, particular strategies to deal-

ing with complex and high dimensional information in machine learning and statis-

tics also seem to have biological ’implementations’. A typical example is the struc-

ture of the ear causing an incoming sound to produce a different frequency of

oscillation along spatial regions of the membrane of the cochlea. This membrane

has many hair cells, connected to nerve fibers, which are then each stimulated

through a small range of frequencies of the incoming sound. This is effectively
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a fourier transform from incoming mechanical wave over time into the frequency

domain. There has also been considerable interest in understanding the under-

lying dimensionality and functional organization of neural populations and the in-

formation contained in their activity. The clearest example is the encoding of the

geometry of an animals spatial environment in hippocampal place cells(and the

related grid cells in nearby enthorhinal cortex), where a proportion of neurons be-

comes active in a specific field of space in the environment (O’Keefe & Dostrovsky,

1971). The population of cells, which is flexible to new environments, is then able

to represent information about the entire area to produce a cognitive map of the

environment. Given the role the hippocampus plays in memory it is suspected

that this map is important for creating spatial context for memory formation. Place

cells are able to maintain activity after changes to the environment (Moser et al.,

2008), which may suggest a role in the ability to complete memory patterns only

using fractions of information. There are also hypothesized mechanisms using this

system that act to separate patterns, where the dentate gyrus relays sensory in-

formation to place cells, and the constructed maps ultimately relate back to higher

order patterns in cortex (Rolls, 2013). I’d suggest this technique is closely related

to statistical practices such as principal components analysis, where a simpler low

dimensional representation of information is stored in a high dimensional, neu-

ronal, space. This embedding in lower dimensions is itself informative, and some

might say ’emergent’, and as we’ll see can guide techniques such as clustering.

This general computational approach to lower dimensional representations for en-

coding in cortical areas will likely continue to gain attention (Barbieri et al., 2014;

Citti & Sarti, 2014).

The brain itself appears to have multiple approaches to modeling information,

and it is no surprise that there are numerous ways for investigators to, in turn,
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model the brain. The motivation for the remainder of this chapter is to introduce

and formalize some of the established techniques and examine how they are re-

lated. These typically model hidden or latent structure in the data, either through

identifying cluster centers (kmeans), additionally adding mixture weights and mod-

eling variance about those centers(Gaussian Processes), or finally modelling the

dynamic nature of changes in latent states and influence of observations over time

(Hidden Markov Models). I contrast those traditional approaches with another class

of algorithms from multiple disciplines that looks for useful embeddings of informa-

tion in lower dimensions, and identifies structure in this simplified space to then

identify cluster centers, their variance, and ultimately their dynamics. This new

approach is computationally more efficient, and results in a tractable system to

learning latent parameters and a successful strategy that unwinds the complex

picture given to us from whole brain analysis in fMRI, and I apply that to find the

results in the next chapter.

2.2 Clustering

There are countless examples of unsupervised learning in the neuroscience liter-

ature. In previous lab work prior to dissertation research I spent a considerable

amount of time identifying and characterize spikes from populations of neurons

recorded from extracellular electrodes. The system capturing these signals had

built in software that would take spike shapes, project them into lower dimen-

sions using principal components analysis, and then run a clustering technique

- k-means - to try to identify some unknown, or latent, structure separating differ-

ent neurons. This process could be largely automated and literature often did not

go into detail on how spikes were discovered - even though small changes to some
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parameters could make very considerable differences in results.

With my current research I’ve encountered a similar problem, though on a very

different scale. fMRI timeseries spatially encompass the entire brain and contain

large amounts of information, but how best to manage and characterize this infor-

mation is still being established. Significant work has gone into understanding how

different clusters, or sub-networks, seem to preferentially communicate and orga-

nize their activity. Clustering is a very difficult problem, and the notion of a cluster

or partition itself is poorly defined (Estivill-Castro, 2002). Being unsupervised, it

is a problem where some intrinsic aspect of the data is being modeled, with no

outside information or labels to help guide the process. A full review would be im-

possible, but I will go through a number of the most common approaches which

will be important to the following work. These all typically try to organize obser-

vations, such as regions of the brain, according to some measure of how related

they are. For instance, bilateral regions from left and right lobes typically have sim-

ilar time-courses, which would be strongly correlated and subsequently likely to be

identified in the same cluster.

Hierarchical clustering is one of the simpler and older ways to assess data orga-

nization. The process does not create a single cluster assignment, but a multilevel

tree. As one moves through the tree, distinct clusters at one level are joined at the

next. Tree construction requires a similarity (or dissimilarity) score between every

pair of variables, which in my case is typically regions of the brain. The typical

correlation or partial correlation matrices will work, and these are used to create

linkages between sets of variables to determine the order that sets are combined.

There are a number of criteria that can be used, such as the minimum or maximum

among all distances between sets, or a factor tied to the decrease in variance when

merging clusters. This results in a tree structure that can be ’pruned’ at any level
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to create a desired number of clusters. I frequently use this approach as a reliable

and minimally complex way to assess brain organization, as the only decision be-

yond cluster number is the choice of distance and linkage function, and results are

deterministic. This by no means suggests it is correct, and is often weak to outliers

which form clusters themselves, causing other clusters to merge.

One popular approach in the fMRI literature has been evaluating brain organi-

zation through the lens of graph theory, where regions are nodes in a graph that

are connected by edges (Bullmore & Sporns, 2009). These edge values are ei-

ther binary or determined by a ’weighted’ similarity metric such as a correlation

structure. Many algorithms were developed in the context of binary connections

between nodes, and particularly when moving to weighted graphs this approach is

often more of an abstraction of statistical and machine learning methods. To pro-

duce a graph, correlations are often thresholded at some value to produce more

graph-like structures. Many important results from this literature come from the

surprising tendency for complex systems to self organize into modules, or clusters,

around the most important nodes, referred to as hubs. More generally, a network

with community structure can be grouped into modules containing more densely

connected sets of nodes. Numerous algorithms can be used to determine this

structure, such as hierarchical clustering.

2.3 K-means

It will be useful to start formalizing some of the variables and methods used in

cluster analysis, beginning with K-means. Given a dataset consisting of N brain

regions x1, ..., xt, our random variable, in D dimensions, and it is desired for these

regions to be split into K cluster assignments. As discussed, typically a measure
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is used for clusters that minimizes inter-cluster distances compared to outside dis-

tances. If cluster centers are represented by a D-dimensional vector µk for each

cluster, then a minimization of the sum of squares from data point distances to a

closest vector µk is made. Using a binary indicator rtk associating a data point to

a cluster, I can define the objective function

J =
N∑
t=1

K∑
k=1

rtk||xt − µk||2 (2.1)

.

The goal is to minimize J through finding values of rtk and µk. This is done

by initializing any value for µk, and keeping this fixed, minimize J with respect to

rtk. Next, minimize J with respect to µk, keeping rtk fixed. Then repeat this two

step process, at one point assigning clusters, and the next locating cluster centers,

until some number of steps or convergence of the objective. Each iteration will

necessarily lower or converge on a value, but the value reached may be a local

minimum. This means that there may be many combinations of clusters that are

solutions, but each application of the k-means algorithm could reach a different

solution. Frequently many passes of the algorithm might be performed, looking for

a most minimal objective. J is a linear function of rtk and variables are independent,

so the nth data point is simply assigned to the closest cluster center. Updating µk

is quadratic, and is minimized throughits derivative

2
N∑
t=1

rtk(xt − µk) = 0 (2.2)

µz =

∑
t

rtkxt∑
t

rtk
(2.3)
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The interpretation is simply that µk is set equal to the mean of all data within that

cluster, the numerator effectively summing the data, and the denominator counting

the number of variables. The steps of the k-means clustering correspond closely

to something called the EM algorithm, where updating rtk can be considered the

expectation step, and updating µk the maximisation step. The EM algorithm is a

useful method for finding maximum likelihood solutions in problems with unseen,

or latent, variables.

2.4 Gaussian Mixtures

An extension of this approach is done by modeling more than just cluster means.

A useful approach is to look at gaussian mixture models which also incorporates

information about the variability about these means. This can be viewed as a

superposition, or linear combination, of individual gaussians. Each of these could

be considered the distribution underlying the respective class, and by adding more

gaussian distributions, effectively any continuous distribution could be modeled.

Given K Gaussian distributions N (x|µk,Σk) the mixture is

p(x) =
K∑
k=1

πkN (x|µk,Σk) (2.4)

where πk is a weight or mixing coefficient which should sum to 1. This can be

viewed in terms of discrete latent variables, where I’ll introduce an additional K-

dimensional binary random variable z, which has one dimension = 1 and all others

= 0. The marginal over z is set equal to the mixing coefficient. The marginal of

x is obtained by summing the joint over all z, which simply results in a Gaussian

mixture as in (2.4). This creates a new representation of the marginal that allows
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for a latent variable zt for each data point, and allows some applications through

use of the joint p(x, z) with the EM algorithm. This leads to the introduction of an

objective function to maximize, similar to (2.1). From (2.4), the log likelihood is

given by

ln p(X|π, µ,Σ) =
N∑
t=1

ln
K∑
k=1

πkN (x|µk,Σk) (2.5)

. Taking the derivative with respect to µk to 0,

0 = −
N∑
t=1

πkN (x|µk,Σk)∑
j

πjN (x|µj,Σj)
Σk(xt − µk) (2.6)

The fraction summed over N happens to be the conditional p(zk = 1|x) and if πk

is a prior over zk, this is a posterior after seeing x. If this posterior is referred

to as γ(ztk), and defined through Nk =
N∑
t=1

γ(ztk), after multiplying by the inverse

covariance Σ−1k

µk =
1

Nk

N∑
t=1

γ(ztk)xt (2.7)

. That is, the mean for the kth Gaussian is the weighted mean of all points, with the

weight determined by the posterior that this component was responsible.

A similar process, finding the derivative with respect to Σk yields

Σk =
1

Nk

N∑
t=1

γ(ztk)(xt − µk)(xt − µk)T (2.8)

Next, I maximize with respect to the mixing coefficients, which are required to

sum to one, which subjects the function to a langrange multiplier (details omitted

here), ultimately yielding the fraction for mixing components

πk =
Nk

N
(2.9)
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The kth mixing component is the average over the posterior of that component.

These steps produce a way to implement EM to update the Gaussian mixture es-

timate, where the Expectation step is done by estimating the posterior γ(ztk) from

current parameters, and then these posteriors are uses to update the parameters

in (2.7,2.8,2.9). Again, similar to Kmeans, this process is guaranteed to increase

the log likelihood, and the process is typically stopped as the change in log likeli-

hood is below some value.

2.5 Hidden Markov Models

While the techniques discussed so far can provide considerable insight into brain

organization, our data is sampled in time and it may be false to assume that it is

identically distributed sequentially. This is relatively common in various measure-

ments, from time series in general, or certain kind of sequentially related infor-

mation such as text or DNA, and I’ll be applying similar methods to investigating

changes in functional brain organization over time. The joint distribution of a series

of data over time T from a Markov model is

p(x1, ..., xt) =
N∏
t=1

p(xt|x1, ..., xt−1) (2.10)

If observations only depend on the immediately preceding observation

p(xt|x1, ..., xt−1) = p(xt|xt−1) (2.11)

It is possible to consider higher order markov chains, which model earlier parts

of the time series, but doing this grows model parameters exponentially. A more

useful way to add flexibility to the model is to add discrete latent variables, as was
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done for Gaussian mixture models, where each observation has a corresponding

latent variable zt. A Hidden Markov model is an extension of mixture models where

the mixture component at each observation is not independently selected, but de-

pends on the previous observation. If these latent variables are K-dimensional

binary indicators of state, they correspond to a table of conditional values p(zt|zt−1)

T, known as a transition probability matrix. The conditional distribution is then

p(zt|zt−1, A) =
K∏
k=1

K∏
j=1

A
(Zt−1,j)(Ztk)
jk (2.12)

Where A is a table of numbers who’s elements are the transition probabilities for

moving between states. This table has elements Ajk = p(ztk = 1|zn− 1, j = 1).

The starting state has no parent, so its marginal is represented by a vector of

probabilities π. Additionally, the observation or emission probabilities are defined

as

p(xt|zt, φ) =
K∏
k=1

p(xt|φk)ztk (2.13)

which could be from any distribution governed by parameters φ. The full joint

distribution over latent and observed variables is

p(X,Z|θ) = p(z1|π)[
N∏
t=2

p(zt|zt−1, A)]
N∏
m=1

p(xm|zm, φ) (2.14)

θ = π,A, φ.

After observing some data, I can again use EM for maximizing likelihoods,

though now a different approach is required as complexity will otherwise grow ex-

ponentially with the length of the time series. It is possible to take advantage of

the conditional independence of the states to reduce the cost of inference. After
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initializing θ1 I begin an expectation step.

γ(zt) = p(zt|X, θ1) (2.15)

ε(zt−1, zt) = p(zt−1, zt|X, θ1) (2.16)

Where γ and ε are the posterior and joint posterior of latent and successive latent

variables. Each marginal state γ can be a vector of K positive values summing to

one, and ε is a matrix summing to 1. An efficient and frequently used procedure

for evaluating these is known as the forward-backward algorithm (Rabiner, 1989)

or Baum-Welch algorithm (Baum, 1972). The evaluation of latent variables is in-

dependent of the form of the emission. We are interested in finding the posterior

p(zt|x1, ..., xt) given the observed data.

γ(zt) = p(zt|X) =
p(X|zt)p(zt)

p(X)
=
p(x1, ..., xt, zt)p(xt+1, ..., xt|zt)

p(X)
=
α(zt)β(zt)

p(X)

(2.17)

Where α represents the joint of observing all data and the current state, and β

represents the conditional of future data given the state, and were separated using

their conditional independence given the current state. These are also vectors of

size K. p(X) is conditioned on θ and represents the likelihood. It is possible to

define recursive relations of these in terms of previous states

α(zt) = p(xt|zt)
∏
zn−1
1

α(zt−1)p(zt|zt−1) (2.18)

The first step of the recursion is initialized

α(z1) = p(z1)p(x1|z1) =
K∏
k=1

πkp(x1|θk)z1k (2.19)
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Each step ends up involving multiplication of a KxK transition matrix in p(zt+1|zt),

so the overall cost is O(K2N). A similar process can find a recursion relation for β

β(zt) = p(xt+1, ..., xt|zt) =
∑
zt+1N

β(zt+1)p(xt+1|zt+1)p(zt+1|zt) (2.20)

Each step uses the observation xt+1 through the emission p(xt+1|zn+ 1) multiplied

by the transition p(zt+1|zt) The initial condition in this case is the value at N, which

from (2.17) could simply be viewed as the vector of ones as the limiting case as α

covers the entire joint distribution. Next I’ll evaluate the matrix in ε which can be

put in terms using α and β

ε(zt−1, zt) =
α(zt−1)p(xt|z|n)p(zt|zt−1β(zt)

p(X)
(2.21)

This produces a new set of parameters which can be used to evaluate a maximiza-

tion step using these terms. This produces updates

πk =
γ(z1k)
K∑
j=1

γ(z1j)

(2.22)

Tjk =

N∑
t=2

ε(zt−1,j, ztk)

K∑
k=1

N∑
t=2

ε(zt−1,j, ztl)

(2.23)

To maximize φ an update similar to that of a standard mixture for independent data

can be applied, where γ acts as the posterior as in (2.7,2.8).

It is typically desirable to have an estimate for the most probable sequence

of states given observations, and the parameters from an HMM, which is not the

same as identifying the most probable state at each point. I’ll just briefly mention
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the most common approach to evaluating this, the Viterbi algorithm, which saves

computational cost by using a dynamic programming approach to searching all the

possible paths. For a more complete reference for all these steps refer to (Bishop,

2007).

2.6 Dimensionality reduction and Spectral Theory

Next I will introduce an important class of analysis that applies to theories involving

mathematical operators in linear algebra and linear equations. This is an important

branch of applied mathematics with a long history in physics and statistics. Some

insight into motivations behind its use in physical systems might be gained from

a well known article "Can one hear the shape of a drum?" in the American Math-

ematical Monthly. The question was, could the shape of a (theoretical) drum be

uniquely predicted if the frequencies were known? The frequencies happen to be

the eigenvalues of the laplacian of the membrane, where the laplace operator is a

differential in space. It was eventually shown that some different shapes did have

identical eigenvalues, known as their spectra, though these drums do have the

same area and perimeter. In fact the area and perimeter could be approximated

through analysis of the distribution of eigenvalues. So in this sense the spectra

seem to map information from one space to another, similar in some respects to a

fourier transform.

More generally, spectral algorithms study information contained in eigenval-

ues(or singular values) and eigenvectors of various kinds of matrices, or graphs.

Outside of theoretical physics, there were important applications using these ap-

proaches that have become commonplace - first and probably most notably princi-

pal components analysis(PCA). PCA is a relatively simple approach to dimension
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reduction which has been applied for nearly a century. PCA finds an orthogonal

basis for some dataset X ∈ Rn∗t that seeks to maximize the variance projected

onto that basis. Despite being a complex, nonconvex problem, PCA has an exact

solution (Eckart & Young, 1936). Importantly, it can be calculated with standardized

linear algebra methods, the top k vectors in a dataset are given by the top k eigen-

vectors of the covariance matrix, and the corresponding eigenvalues are propor-

tional to the variance explained by that vector. Singular value decomposition(SVD)

is a closely related method than can also compute these principal vectors, without

first computing the covariance. This can be put in terms of a low-rank matrix ap-

proximation, that is, the decomposion of data matrix X such that UΣV T = X, and

then keep the top k singular vectors Xk = UkΣkV
T
k , which reconstructs the data in

a least squares sense at a given rank.

These methods have been commonplace in statistical applications for decades.

The dimensional reduction and low rank approximations discussed above can also

improve clustering methods, as they remove noise and reduce the effect of the

curse of dimensionality, where the volume of a high dimension space requires

exponentially more sampling to cover it. There was a resurgence of activity in the

machine learning community to applications of spectral theory to clustering and

graph partitioning. An example was in (Ng, Jordan, 2002), where rather than using

a simple covariance or correlation matrix, a more general affinity matrix from the

data is constructed using a gaussian kernel

Aij = exp(−||si − sj||2/wσ2) (2.24)
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. With A, a laplacian is related to that used in the physical membrane problem,

L = D−1/2AD−1/2 (2.25)

Where D is a diagonal matrix with the sum of rows of A along the diagonal. Now,

after performing an eigendecomposition as in PCA to form a low dimensional pro-

jection, they also normalize to have row unit length (projection on a sphere). Clus-

tering is done in this space, via K-means or any other algorithm. These steps tend

to have much more success in clustering distributions, particularly those which

have complex non-linear qualities rather than spherical or gaussian characteris-

tics.

A closely related perspective to spectral clustering can be gained by viewing

the affinity matrix as a graph, and considering a process of random walks on this

graph. A cluster could be seen as a partition where the random walker tends to

stay for long periods before moving to another section of the graph. Formally,

the transition probability is proportional to the edge weights, and given by P =

D−1A. This random walk will have a unique stationary distribution π = (π1, ..., πn)

where πi = di/vol(A) and vol(a) is the total weight in the graph. There is a close

relationship between this transition graph and the laplacian, as L = 1 - P. There is

a corresponding relationship between respective eigenvalues, with the largest in P

matching the smallest in L (Luxburg, 2007a).

Along these lines some additional, and perhaps more fundamental, relation-

ships in dimensionality reduction have been established. Coifman et al (Coifman

et al., 2005) discuss a framework that generalizes these results to show that eigen-

functions of Markov matrices can bridge the local transition probabilities into a

macroscopic description of the system, mimicking physical integration of small

48



movements into global changes. They show that a diffusion distance is an im-

portant geometric quantity that can embed data into a euclidean space according

to a diffusion metric. They establish a family of diffusion maps

kαε (x, y) =
kε(x, y)

pαε (x)pαε (y)
(2.26)

Where the numerator is effectively the weight or affinity function, p(x) = e−U(x)

Z

which is a steady-state Boltzmann density. When α = 0, this is the classical normal-

ized graph laplacian, when α = 1, this is the Laplace-Beltrami operator(heat kernel

smoothing), and when α = 1/2, this is related to the backward Fokker-Planck oper-

ator, which is a partial differential equation describing time evolution of probability

distributions under random forces, such as brownian motion. They suggest that dif-

fusion maps of points sampled from dynamic systems may be a tractable method

to recovering their lower dimensional eigenfunctions, rather than using numerical

solutions of differential equations.

2.7 Spectral Learning

While the earlier methods to latent variable discovery, kmeans, gaussian mixtures,

or Hidden Markov models, have all been incredibly useful and successful at mod-

eling various systems, the underlying learning problem is not completely solvable

- local minima may always exist, and results can be sensitive to selection of initial

states. Recent approaches have tried to make separation assumptions about the

underlying distributions. For instance Vempala and Wang (Vempala & Wang, 2004)

show that it was possible to use a spectral approach to rapidly learn a mixture of k

spherical(uniform variance) Gaussians. The main step is to project to a subspace
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spanned by the top k singular vectors of the sample matrix. They show that after

projection, the separation between mean vectors of the underlying distribution is

preserved while the radius of the distribution drops by a factor proportional to k.

This effectively amplifies the ratio of separation while lowered the dimension. The

results also hold with any moderately isotropic distribution. Work along these lines

has largely concentrated on what the magnitude of separation between distribu-

tions needs to be for efficient learning algorithms, for instance bounds can be set

on the magnitude of variance (or radius) for a correctly classified Gaussian.

There are clearly close relations between this approach to learning a gaussian

mixture model, and results from topics such as spectral graph theory as discussed

earlier. Besides the general utility in clustering in lower dimensional spaces, the

spectral gap of a markov chain can be defined as the difference between its two

largest eigenvalues and puts a bound on the mixing time for that chain. IE the ’bot-

tlenecks’ present in a graph could be seen as larger distances between clusters,

and increase transit or mixing time. The clear relationship in discovering latent

distributions when comparing kmeans, mixture models, and HMMs above, would

suggest that there may be a method to use these various insights in spectral em-

bedding to not only improve classification performance, but learn dynamics as in

HMMs.

Hsu et al made an important advance in this direction (Hsu et al., 2012). They

combined these insights in separation of mixtures with results from several closely

related fields. One, subspace identification, used spectral approaches to discover

latent relationships in linear dynamical systems, which are related to HMM’s but

assume Gaussian distributed latent states as well as additive noise independent

of these states. They combine this with insight from the use of Observable Opera-

tor Models (Jaeger, 2000), or the closely related Predictive State Representations
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(Littman & Sutton, 2002), which developed non-iterative asymptotic approaches

to HMM inference which represent sequence probability as the product of matrix

operators. These techniques main learning procedure is done by using spectral de-

compositions of correlations between past and future observations. This is a small

but important shift from most work that uses ’stationary’ correlations between time

series, which makes up the majority of work on functional brain organization.

This effectively yields a simple and rapid method to learn HMMs, in a strikingly

different way from EM as outlined above, using some separation conditions similar

to those studied in gaussian processes. This can approximate the joint distribu-

tion over observation sequences (2.28, 2.29), as well as the conditional distribu-

tion of future observations on some history (2.39), and the error is asymptotically

bounded. This results in a model of dynamics that does not explicitly model transi-

tions between states, but does linearly relate to HMM’s.
Basic Algorithm: Learn-RR-HMM(k,N)

from (Siddiqi et al., 2009)

1. Compute empirical estimates ~̂P 1, P̂2,1, P̂3,x,1 ∀x directly from the data.

2. Use SVD on P̂2,1 to compute Û , the matrix of left singular vectors for each of

k largest singular values.

3. Compute the model parameter estimates b̂1, b̂∞ , B̂x

This algorithm is idealized for sampling N triplet sequences from a dynamical

system. In practice this is more often 1 or more long time-series which can also

be used to develop estimates, and this extension is also detailed by Siddiqi et

al. For practical consideration of these estimates see below in implementation

details, and in the appendix for some code examples.

This will continue from the definitions of a transition matrix describing m states

T ∈ Rmxm (2.12), and observation matrix O ∈ Rn∗m (2.13), as well as an initial state
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Figure 2.1: A. Graphical representation of the reduced rank HMM in time as outlined by
Siddiqi et al. Observations x are determined through the latent state z, while l is a k rank
projection of that hidden state. B. Parameters in the model and the variables they act on.
O is the transition probability of observation space given the state z, while R is propagating
the low rank state to the hidden state, while S is projecting the hidden state to the low rank
state.

πi = p(z1 = i). The alternative view of computing sequence probability from obser-

vation operators, for observed variables in vectors xt, for example our n regions of

the brain

Ax = Tdiag(Ox,1, ..., Ox,m) (2.27)

where for any time t the joint probability is calculated:

p(~x1, ..., ~xt) = 1TmAxt ...Ax1π (2.28)

Where diag(O) is a diagonal matrix with the respective observation probabilities,

and 1Tm is a diagonal ones matrix. Hsu et al assume that the probability of initial

states π > 0 and that the rank of the transition matrix is m, that is there are not

some states which are somehow mixtures of other states. This assumption was

relaxed in (Siddiqi et al., 2009) where the underlying system as modeled in T may

have low rank, k, where T = RS , R ∈ Rm∗k and S ∈ Rk∗m. This casts the
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initial state distribution into a lower dimensional state, π = Rπl, and they refer

to this reformulation as a reduced-rank HMM. R can be thought of as acting on

the discrete latent space, while S acts on the low-rank continuous latent space.

S projects zt to lt, while R propagates lt to zt+1 (See Figure 2.1 for a graphical

model). This provides an alternative distribution to (2.28), and they show that a

reduced-rank HMM with rank k is actually more expressive than a k-state HMM,

and it is able to more smoothly model transitions between states. Rank-k RR-

HMMs (which can have m >> k states) can produce sets of predictive distributions

not possible in k-state HMMs. This is an important quality for systems that have

smooth intermediate regions between states, an example used by the Gordon lab

in presentations is learning the motion of a pendulum(through video recording), a

standard HMM can learn a set of velocities and directions, but a reproduction from

the generative model yields a very ’jerky’ system jumping between these states.

This reduced-rank technique is able to represent combinations of states, which

through simulation can yield smooth trajectories from the same number of basis

states, or the same complexity model. This is almost certainly an important feature

in the brain, which is likely to have transitions between states rather than shifting

between sets of discrete modes.

p(x1, ..., xt) = 1TmRWxt ...Wx1πl (2.29)

This formulation avoids using EM and estimate directly from the data. This observ-

able representation is defined in the following low order moment matrices

[~P1]i = p(x1 = i) (2.30)
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[P2,1]ij = p(x2 = i, x1 = j) (2.31)

[P3,x,1]ij = p(x3 = i, x2 = x, x1 = j)∀x ∈ [n] (2.32)

Probability vector P1 ∈ Rn, covariance matrix P2,1 ∈ Rn∗n, and ’trivariance’

P3,x,1 ∈ Rn∗n, where each variable has a corresponding covariance structure of

surrounding observations given that variable is observed. One further dependence

is the matrix U where UTO is invertible, which is calculated through the SVD of P2,1.

The parameters of the dynamic model derived from these estimates are

~b1 = UT ~P1 (2.33)

~b∞ = (P T
2,1U)+ ~P1 (2.34)

Bx = (UTP3,x,1)(U
TP2,1)

+∀x ∈ [n] (2.35)

P+ refers to the Moore-Penrose psuedo-inverse of that matrix. All parameters of

this reduced rank HMM have dimensionality in k, not m. Initial and normalization

vectors (2.33, 2.34) can be related back to the original parameters, and in particular

Bx = (UTOR)Wx(U
TOR)−1 (2.36)

Making Bx a similarity transform of the reduced rank parameter Wx, which was the

factorization of our original operator. These can be used to update estimates, from

new data or through simulation

p̂(x1, ...xt) = b̂T∞B̂xt ...B̂x1 b̂1 (2.37)

b̂t+1 =
B̂xt b̂t

b̂T∞B̂xt b̂t
(2.38)
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p̂(xt|x1:t−1) =
b̂T∞B̂xt b̂t∑
x

b̂T∞B̂xt b̂t
(2.39)

In Hsu et al, the initial proposal of spectral learning in HMMs was shown to

be free of local optima and statistically consistent with finite-sample bounds on

the error in joint probability estimates. In (Hsu et al., 2012) they show that many

applications may have sample complexities independent of n, or regions of the

brain, and the bound will depend polynomially on the mth largest singular value of

several of the matrices used in analysis, as well as t and m. Siddiqi et al extend

this model, largely theoretically rather than in changing the algorithm, to learning

reduced-rank HMMs. Learning in a low rank space still allows modeling arbitrarily

large state spaces in O(Nk2) time. This large implicit state space allows smooth

state trajectories, while the low dimensionality allows efficient learning. This gen-

eralized HMM algorithm is also extended to multi-step observations, rather than

single steps in time, as well as high-dimensional real valued variables using ker-

nel density estimation. They generalize bounds from Hsu to the case of low-rank

HMMs, showing the consistency of the learning algorithm without needing the high-

dimensional latent parameters. The number of samples are also dependent on k,

rather than m.

If σk(M) is the kth largest singular value of a matrix M, the sample complexity

depends polynomially on 1
σk

(P2,1) and 1
σk

(OR). As σk(P2,1) increases, the better

separated underlying dynamics are from noise. The term no(ε) is the minimum

number of observations accounting for (1 − ε) of the probability mass. They in-

troduce this theorem: There exists a constant C > 0 where the following holds.

Pick any 0 ≤ ε, η ≤ 1 and t ≥ 1. ~π > 0, rank(T) = k, rank(UTOR) > k and

rank(O) > k. Also assume rank(Sdiag(~π)OT ) ≥ k, ||R||1 ≤ 1, and for some col-
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umn c of R, ||Rc||2 ≤
√

k
m

. ε = σk(OR)σk(P2,1)ε/(4t
√
k). Assume N ≥ C ∗

t2

ε2
( k
σk(OR)2σk(P2,1)4

+ k∗n0(ε)
σk(OR)2σk(P2,1)2

)log 1
η

With probability ≥ 1 − η, the model satis-

fies ∑
x1,...,xt

|p(x1, ..., xt)− p̂(x1, ..., xt)| ≤ ε (2.40)

Hsu et al mention that in practice, knowing the exact number of states is not es-

sential as the spectral method tolerates models that are not exactly HMMs. Siddiqi

et al go on to show that observable representations of reduced rank HMMs are a

subset of k-dimensional Predictive State Representations, which are themselves a

larger class of dynamic models that could be seen to subsume HMMs. This sug-

gests that the spectral approach is a statistically consistent PSR learning algorithm

as well, and it can apply to situations where the underlying model is not exactly an

HMM, but still recover some sensible dynamics.

2.8 Implementation details

Example functions for spectral learning of dynamical systems were made available,

implemented in Matlab code, at Geoff Gordon’s website (http://www.cs.cmu.edu/ ggor-

don/specds/), and were used for applications in this work. This largely follows the

steps as described above, the major computational step is in the singular value de-

composition of the covariance structure, which is efficiently implemented in Matlab.

Easily the largest use of memory is in calculating the trivariance structure P3,x,1. To

limit this usage, Gordon et al modify the algorithm in order to skip explicit calcula-

tion. The future-past covariance structure, which is effectively a cross correlation

between offset time-series, P2,1 is calculated, and a decomposition into U is done

as outlined. These are used to create a basis, U ∗ P2,1 that is used for regressing
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observations into their predicted states. This basis is also used to create future

states by shifting sequences one time point into the future, accounting for the ad-

ditional shift in P3,x,1. The final Bx operator (2.35) is obtained through iterating

over observations, weighing future states by current observations, and then taking

the matrix product of this and predicted states. Finally, observations are multiplied

with predicted states to create expected covariances of observations across states,

Σ̂i,j = p(x1,t = i, x2,t = j, bt = s)∀s ∈ [k], which are useful representations to help

understand what dynamics are changing between transitions.

As Siddiqi et al discuss, it is possible to contruct Hankel matrices, concatenated

time-shifted observations, which can be used to assess correlations between more

distant time-shifted data in the past or future while maintaining the same system

complexity k. In practice I did not see obvious benefits in the model to doing so,

and covariance reconstruction tended to decrease with increased windows, though

the effects of using different temporal distances wasn’t investigated thoroughly.

These learned parameters can be used for further updates, as in simulations

of time series. An update to expected observations is done through the tensor

product of the modeled expectation and the prior state, and a state update is done

through the tensor product of the observable operator and prior state. The obser-

vation probability is the diagonal of the updated observation matrix, and I use this

as a surrogate for the observation in simulations.

Ôt = Σ⊗ b̂t−1 (2.41)

b̂t = (Bx ⊗ b̂t−1) ∗ (
Ôt

~xt
) (2.42)

~xt = diag(Ôt) (2.43)
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These various expectations are not exactly probabilities, but are linear trans-

formations away from HMM probabilities. This can lead to negative expectations,

which in the original formulation would be in error. Siddiqi et al mention thresh-

olding or modifying values that may fall too low. This topic was central to a recent

critical view of spectral learning (Zhao & Poupart, 2014). They identify that spec-

tral learning is an exciting method for various reasons, but they suggest negative

probabilities have been ignored, and also mention that while this is an exciting

technique EM is still successful and can outperform this newer method in some

cases. I do often have negative probabilities which I normalize after updates, such

as in (2.41-2.43). As I’ll discuss in Chapter 4, while this is a general concern there

was still a significant reproduction of results across distinct datasets, suggesting

that while some of the bounds on error may be loose given our sample sizes, the

underlying dynamics are still being recovered.
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Functional organization and development in typical and autistic subjects

3.1 Introduction

Individuals with Autism Spectrum Disorder (ASD) have difficulties processing and

reacting to emotional and social signals in faces. Typical brain development may

involve changes to connectivity, particularly long-range connections between distal

regions of the brain. These deficits could reflect a fundamental problem in face

perception, and may be characterized by abnormal development of the brain, such

as long range underconnectivity and local overconnectivity. A systems-level ap-

proach, like network analysis or using graph theory, may be well suited to assess-

ing disrupted connectivity and in characterizing degree of functional integration

and segregation. Greater segregation of functional networks in ASD could be an

index of local over connectivity or more distant under connectivity. In this study I

compared functional connectivity measured with fMRI during rest, face, and object

viewing in children with ASD and matched neurotypical controls. I sought to investi-

gate and compare functional connectivity patterns during rest and face processing

to assess possible network differences, and to use a support vector machine ap-

proach to predict ASD status given those patterns. Additionally, it has been shown

that these kinds of functional connectivity patterns can successfully predict age

across typical subjects. I investigated whether those on the ASD spectrum could

also match a similar maturation index, or if that index were disrupted in these sub-

jects. I apply these techniques to a small group of children collected within the lab,
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as well as to a much larger database of subjects provided publicly through a data

sharing project.

This work was largely the focus of my early dissertation research, though re-

sults were mixed. Early analysis was on a limited sample, and after extending this

work to the much larger dataset the picture actually became less clear. Nonethe-

less this is a useful opportunity to outline many of the steps involved in preparing

and analyzing functional connectivity, and questioning why classification may have

not worked well across these samples.

3.2 Methods

Participants Involved in Face Localizer Scans

Assent and consent were provided according to procedures approved by the Uni-

versity of Kentucky Institutional Review Board. Typically developing children were

recruited through outreach presentations, fliers, email advertisements, and word-

of-mouth. Children with ASD and siblings of children with ASD were recruited

through the University of Kentucky Psychiatry Department and regional autism

groups. The ASD-matched control and sibling subjects had and no first-order rela-

tives with an ASD diagnosis.

To confirm ASD diagnosis or neurotypical status, all ASD, sibling, and matched

control children were tested using the Autism Diagnostic Observation Schedule

(ADOS; Lord et al. 2007). Parents completed the Social Responsiveness Scale

(SRS, Constantino et al. 2003) and the Autism Diagnostic Interview âĂŞ Revised

(ADIR, Rutter et al. 2005). The ADOS and ADIR were videotaped and results

were confirmed via reliability testing by a speech-language pathologist. In addition,

the Peabody Picture Vocabulary Test and Wechsler Block Design and Vocabulary
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subtests were administered.

A typically developing control group of 23 children (all right-handed except 1

ambidextrous subject) were recruited as part of an ongoing study. 18 children with

a prior ASD diagnosis volunteered for the study and participated in at least one

visit. Five participants did not complete all visits and data from three participants

were not usable due to excessive head motion in all functional runs. The final ASD

group consisted of 10 males (7-17.8 years of age; M =12.86, SD = 3.31; 1 left-

handed). ASD participants were asked to stop any medications on the day of func-

tional scanning. 12 typically developing matched control children were originally

recruited, data from two subjects were removed due to excessive head motion,

leaving 10 control children matched by age, sex, and handedness (1 ambidextrous

subject) to the ASD participants. Nine children (8 females) with a sibling with ASD

volunteered for the study and participated in at least one visit. Sibling typically

developing matched control group. 10 typically developing matched sibling con-

trols were originally recruited, one participant was not neurotypical according to

the ADOS/ADIR, leaving a final group of 9 control children (7 females) matched by

age and handedness to the sibling participants.

Fifty-nine healthy right-hand adult volunteers (Mean age = 26.5, SD =6.0, range

18-42 years; 29 men) were compensated for participation or received course credit

in an introductory psychology course. Due to excessive head motion (>1.75mm),

data from eight participants were eliminated from analysis. No participants re-

ported neurological or psychiatric diagnoses or pregnancy. All procedures were

approved by the University’s Institutional Review Board. Participants provided in-

formed consent before participating.

Photo-realistic faces were constructed using FACES 4.0 software (IQ Biometrix,

Redwood Shores, CA) and house stimuli were created using Chief Architect 10.06a
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(Coeur dAlene, ID). The design was one where a preliminary ’face localizer’ scan

was run, where subjects passively viewed various face, non-face object, and noise

stimuli, with interval blocks of no stimulus - a fixation cross at the center of the dis-

play. Subsequent designs used these as a basis for investigation of manipulations

of these stimuli in various respects, but only the localizer scan was used here. All

MR images were acquired using a Siemens 3T Trio MRI system (Siemens Medi-

cal Solutions, Erlangen, Germany). Subjects underwent one 109-volume (272.5 s)

face localizer scan and four 133-volume (322.5 s) whole-brain functional task runs

(pulse sequence: gradient echo, echo planar imaging; TE = 30 ms, TR = 2500

ms, flip angle = 8012◦, 64 x 64 matrix, FOV = 22.4 cm x 22.4 cm), interleaved ac-

quisition of 38 transaxial contiguous 3.5-mm slices for the face localizer scan and

40 slices for the task scans. Following the functional scans, subjects underwent a

high-resolution T1-weighted anatomical scan using magnetization-prepared rapid

acquisition with gradient echo (MPRAGE) sequence (TE = 2.56 ms,TR = 1690

ms, TI = 1100 ms, FOV = 25.6 cm x 22.4 cm, flip angle = 1212◦, matrix size

= 256 x 224) with 176 contiguous sagittal slices and a slice thickness of 1 mm.

Field map information was also collected to correct geometric distortions caused

by static-field inhomogeneity. The presentation of visual stimuli was controlled by

E-prime software (version 1, www.pstnet.com; Psychology Software Tools) running

on a Windows computer connected to the MR scanner. The time of each pulse of

MR, each visual stimulus onset, and behavioral data responses were recorded by

this software and used for data analyses. Preprocessing and statistical analysis

were conducted using FSL (version 4.1.7, FMRIB, Oxford University, Oxford, U.K.)

For each subject, preprocessing included motion correction with MCFLIRT and

brain extraction using BET. The images were then smoothed with a 7-mm (FWHM)

Gaussian kernel and were temporally high-pass filtered with a cutoff period of 100
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s.

Additional subjects from ABIDE

Additional subjects were used from the publicly available Autism Brain Imaging

Data Exchange (ABIDE) database which contains both ASD and age-matched

control subjects undergoing resting-state scans across a variety of institutions (Di

Martino et al., 2014). These institutions all follow their own scanning protocols

and have multiple scanner types, and so their website should be consulted for

details http://fcon_1000.projects.nitrc.org/indi/abide/. After downloading

this data, field maps were used to correct for geometric distortions, images were

motion corrected and spatially smoothed with a gaussian kernel (7 mm), then band-

pass filtered between 0.01 and 1 hz.

Data preparation and Scrubbing

In each of 90 cerebral regions of the AAL atlas time series were extracted for the

entire functional run and scrubbing of high displacement frames was applied as in-

troduced by Power et al (Power et al., 2012). This measures a fractional displace-

ment of images in the time series relative to the previous image, and summarizes

the six rigid body motion parameters for movement and rotation already used for

motion correction. Those images with corresponding displacement greater than

0.5 mm were eliminated from analysis in an effort to further reduce the effects of

periods of high motion. In the case of face localizer scans, full time series was

then broken into four separate time-series, one for each condition, faces, objects,

textures and rest. Each of the experimental conditions’ time series consisted of 21

time points and the rest condition consisted of 42 time points. Each time series
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was shifted by one TR. Although time-shifting was not necessary, it more closely

links the time points with the conditions of interest by accounting for the hemody-

namic lag. Resting state scans from the ABIDE Dataset were analyzed as is after

scrubbing.

Connectivity Matrices and Graph-theory metrics

For each subject and each condition, a connectivity matrix was computed from

all pair-wise correlations across the 90 regions. Partial correlations were used to

measure the degree of association between two regions time series while control-

ling for all other regions. This has the advantage of better reflecting the influence

unique to those respective time series, and eliminates aspects of the signal that

may otherwise dominate many regional correlations. The calculation is straight-

forward, but requires the inversion of the covariance estimate. In cases with the

condition of âĂŸsmall n, large p’, as our case where time points are significantly

smaller than the 90 regions of interest, matrix inversion is not possible. To create

a well conditioned covariance estimate, I apply a shrinkage factor as developed by

Ledoit et al (Ledoit & Wolf, 2003) and implemented in Matlab by Shafer et al (Sch,

2005) . This finds a mixing parameter to solve a convex combination of the sample

estimate against a diagonal target matrix.

Support Vector Machines

Support vector machines (SVM) are a common supervised learning algorithm for

classification of labeled data. An SVM learns a representation of training exam-

ples in space, creating a map that separates label categories as widely as possi-

ble. This model can then be applied to additional data to evaluate their category.
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Support vector regression is an extension to SVM that can be trained on real-

valued outcomes such as age, as in dosenbach et al (Dosenbach et al., 2010),

where an envelope of width epsilon is used to evaluate sample points along a re-

gression line. To better interpret feature weights I use a linear classifier, which

produced similar results to non-linear kernels across our dataset and produces

weights which are more easily interpreted. All SVM and SVR calculations were

performed with the Spider Matlab Machine Learning Toolbox. Leave-one-out cross

validation (LOOCV) was used to ensure generality of the predictive models, where

one unlabeled test subject in turn is predicted from a model trained on remaining

labeled data.

Hierarchical Clustering

Group averaged matrices were submitted to a hierarchical clustering analysis (Mat-

lab Stats toolbox) using ward’s minimum variance method, which minimizes the

total within-cluster variance in an agglomerative clustering assignment. This is a

deterministic method that produces a tree structure relating groups of nodes to

each other according to their shared distances. This tree can be cut to produce as

many branches, or clusters, as desired.

3.3 Results

Using hierarchical clustering, subjects and groups largely have consistent patterns

of organization. In Figure 3.1 I plot average functional maps of four groups, using

rest blocks from the face localizer task. There is some re-organization across

groups, the ASD subjects had a significant degree of lateralization (Figure 3.1a),

whereas controls (Figure 3.1b) were generally bilateral. This lateralization was also
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Figure 3.1: Average correlation matrices were used to generate clusters of regions func-
tionally connected. Nodes are colored by cluster ID, assigned through hierarchical analy-
sis, and the top 2 % of edges are plotted. Inset, in C, is an example dendrogram used for
clustering.

seen in both typical children (Figure 3.1d) and adults (Figure 3.1c). There is some

degree of continuation when looking at the young children, to somewhat older ASD

controls, into adults, where fronto-parietal connectivity seems to be strengthening

as a unique cluster. Inset I display an example of the hierarchy used to generate

this figure, with the arbitrary cutoff that designates cluster assignments.

Applying the ASD and ASD control groups to a support vector machine clas-

sification yielded a high degree of classification accuracy, as seen in Figure 3.2.

This was done through a leave-one-out approach that trains models, in turn, on

all but one sample, and then tests on that subject. This model used the top 200

edge weights, as determined through a t-test between groups, for classification. To
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Figure 3.2: The top 200 edges discriminating between ASD and controls (via t-test) were
used to create an SVM classifier for matrices generated from rest and face blocks. Brain
network figures have had nodes and edges collapsed into respective regions, with red
signifying more weight assigned to ASD subjects, and blue for controls. Node sizes reflect
weight assigned to intra-node connections.

simplify their display I group them into larger regional interactions, for instance

all frontal cortex edges that project to limbic structures are collapsed into one

edge, and all edges between frontal regions are depicted through the size of that

node. There are large differences between edge assignments in the two condi-

tions, where red indicates areas where edges predicted autism, and blue indicates

regions predictive of controls.

In Figure 3.3 I also applied a support vector regression analysis to typical sub-
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Figure 3.3: The top 200 edges, determined through individualy evaluating edge weight
correlations with age, from task-negative correlation matrices were used as features to
train an SVR on typical subject ages, in blue. This model was applied to the same data
from the Autistic (red), ASD-control (green) and asd-sibling (black) subjects, and a growth
model was fit to each sample.

jects (in blue), again with a leave-one-out strategy, which successfully creates mat-

uration index with a relatively well fitting growth curve, seemingly plateauing at

around 20 years old. Inset on the bottom right is a panel that shows a significant

difference between the anatomical distance of features (inter-regional correlations)

positively and negatively correlated with age. Autistic (red), ASD-control (green)

and asd-sibling (black) subjects had this learned model applied to them, and their

predictions are plotted. Inset in the top right are bootstrap estimates of a trained

growth parameter for best-fit lines, suggesting that the autistic subjects have a

much different, possibly flat or even inverse, growth curve.

The sample size of the autistic subjects was too small for a confident appraisal

of these results, and so I applied similar strategies to much larger cohorts of sub-
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jects from the ABIDE data sharing initiative. Figures 3.4 and 3.5 depict information

on subjects and age distributions across centers. When looking at resting state

connectivity from across typical subjects in this database (Figure 3.6b) it is differ-

ent than that of continuous rest from an internal dataset from the lab (Figure 3.6a)

While differences exist, the overall pattern of connectivity is relatively similar, on the

same order as differences in 3.1, suggesting that the kind of functional connectivity

routinely studied is present across subjects.

Figure 3.7 shows an analysis of the variability across typical subjects in the

ABIDE data. Investigation into the inter-regional correlations shows a specific pat-

tern mostly centered on temporal and frontal regions, though extending into sub-

cortical and parietal areas, among others. While this distribution might be sugges-

tive of some kind of center or scanner specific variability, further analysis suggests

that these are actually intrinsic regions of functional connectivity variability within

the brain.

In Figure 3.8a is a representative example of an identical prediction process

learned from typical subjects, and applied to those with ASD. In this case it is dif-

ficult to differentiate between curves. I redid the analysis again on a collection of

subjects across centers in 3.8b, and again ASD subjects are difficult to differenti-

ate. Similar analysis as in Figure 2 was applied to predict whether a given subject’s

connectivity matrix was in the ASD or control group, success rates for each insti-

tution tended to lie from 50-70 percent. Interpretation of the most significantly

discriminative edges was difficult, as different groups analysis yielded a different

edge weight distribution.

In Figure 3.9 I show a dimension reduction using the top 3 principal components

across all ABIDE subjects. The effect of center dominates these dimensions. De-

spite this the functional connectivity within these groups does tend to average into

69



Figure 3.4: The distribution of control and
asd subjects by institution within the ABIDE
database.

familiar patterns. The NYU group in the lower left of this plot seems to be largely

isolated, but as I’ll show in the next chapter, models derived from that data are very

similar to those made from internal lab datasets.

3.4 Discussion

The identification of biomarkers for autism would be a very useful translational tool

for diagnosis and treatment in clinical decision making. A number of imaging tech-

niques have been used to classify autism, both fMRI (Anderson et al., 2011; Wang

et al., 2012) and other modalities (Ecker et al., 2010; Lange et al., 2010; Roberts

et al., 2010). These approaches, all from single institutions much like our early re-

sults from the Kentucky sample, have approached 90% accuracy, with an average

around 80%. Nonetheless these studies have not had consistent conclusions, and

so the identification of biomarkers has been elusive despite the seeming success

at classification.

Early work at identifying differences in ASD using fMRI found decreased func-

tional activity (Just et al., 2004; Welchew et al., 2005), which was followed by many

other reports of abnormal connectivity patterns (Belmonte et al., 2004; Rudie et
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al., 2012), both during rest and under cognitive demands. Many of these were

from decreases in connectivity in more distal regions, among a number of iden-

tified functional networks. While most reports were on decreases of connectivity,

many have shown increases, or no changes, and the spatial location is largely

inconsistent.

One of the principal concerns, and a likely reason for these general inconsis-

tencies, was the typically low sample size used. Combined with the highly variable

and still debated nature of autism itself, large sample sizes are likely needed to

have the necessary power to detect possible biomarkers. The availability of a large

multisite dataset from the ABIDE project was an important step in addressing this

question.

Figure 3.5: The distribution of ages in ABIDE by center

This dataset consisted of over 1000 subjects, split roughly evenly between typ-

ically developing and those on the ASD spectrum. This subjects were spread over

nearly 20 institutions, and across numerous age ranges. There were many differ-
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ent scanners, and a number of protocols involved in the various institutions, but

the general design was a simple resting state scan. After comparing the average

clustering behavior of networks in an independent continuous resting state dataset

from the lab to a similar map generated across all typical subjects in ABIDE (Figure

3.6), it seems that while there are differences, generally speaking the organiza-

tion is similar. This suggests that the sort of fundamental organization frequently

described in literature is present across many subjects, regardless of scanners,

protocols, and so on. This organization does change modestly when looking at

individual centers in each institution, along the lines of the differences seen in this

figure. There may be a general outline for brain organization into these modules,

but no specific ’steady state’, or alternately, inter-lab differences lead to modest

modularity changes.

Figure 3.6: Average clustering generated from functional connectivity across subjects from
an internal dataset (left), and all typical adult subjects in the ABIDE data (right). Nodes are
colored according to cluster, and sized according to the sum of all edges into that region.

I also investigated the sources of variability in functional connectivity across all

subjects. In Figure 3.7 I make a similar brain-map of this network of ’variability’.

This indicates a network of regions largely organized around inferior frontal and

temporal areas, but extending into subcortical, limbic, parietal, and occipital. While
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this is largely an incidental observation here, these areas are also sources of vari-

ability when looking at within-subject functional connectivity, as I’ll discuss in depth

in Chapter 5. If the modularity of the brain is not in a stable state, there may be the

appearance of some kind of variability mediating the shifts between states. This is

an important concept going forward in this work, as the next chapter characterizes

a picture of the brain that seems to always be shifting between various functional

regimes, and Chapter 5 then suggests that this network of variability is another

feature that may be coincident with those variable states.

Figure 3.7: The variability of typical subjects functional connectivity across the entire
ABIDE database is represented in matrix form (left) and various brain maps (right). It
tends to organize in a fronto-temporal axis reaching into parietal and occipital regions.
Despite significant differences in mean activation between centers (see Figure 3.9) vari-
ability in connectivity is reasonably consistent in these regions. This pattern of variability
in the brains correlation structure persists in other datasets as well, and is the main topic
in Chapter 5.

Finally I made a ’dimensionally reduced’ representation of these subjects, as

depicted in Figure 3.9. This shows that the greatest sources of variability is largely

a function of center. Several other factors are modestly correlated with various

eigenvectors, such as age or scanner type, but ASD’s highest correlations are not

significant, and are much lower than even the percent of data scrubbed (which is

quite modest across the dataset).
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The inconsistent nature of results found here were also found in another study

looking at classification accuracy across this same data (Nielsen et al., 2013).

There were some differences in their data preparation and methods, but the over-

all design and approach was similar - that is a multivariate classification using

functional connectivity as features. They also obtained approximately 50-60 %

accuracy across groups with generally different edge weights. I had also looked

briefly at some other methods, such as logistic regression and deep belief net-

works (a type of artificial neural network) with similar conclusions. It seems that

this particular approach of multivariate classification of ASD status using functional

connectivity is unsuccessful.

The reason for this failure could be varied, including protocol differences, sam-

pling from distinct populations, and scanner types. Many previous results did not

specifically address rapid head movements, which I attempted to with scrubbing.

This single factor may create disparities in many previous studies which often found

potentially larger functional differences in distal regions than appropriate (Power et

al., 2012). Motion has mainly been a concern in younger populations, but may

also be a particular concern in atypical populations such as those with ASD. Of

course, it is possible that while differences in individuals with ASD can be dis-

cerned in some fashion at the level of fMRI, the variability in the subtypes of ASD

overwhelms detection of a specific marker. It may be possible for some of these

classifiers to find edges that are consistent in the typical group, but more variable

in ASD groups, yielding a moderate classification success while producing a diffi-

cult to interpret pattern of ASD activity. This goes hand-in-hand with the failure of

analysis, where the appropriate ’features’ to feed into these learning algorithms is

still an open question. If this feature is quantifiable from fMRI it may not be a simple

functional connectivity measure like correlation, or may be derived from it. Finally,
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Figure 3.8: Prediction of subject age using continuous resting state data. A. A subset of the
ABIDE data from NYU which had a good distribution across ages was used as in Figure
3.3. In this case after training on typical subjects (in blue), the autistic subjects (in red) are
indistinguishable. B. A collection of subjects across centers was used to create a range of
ages. Data were successfully used to create an index predicting subject age, though again
the autistic subjects do not display any significant deviation from the growth model.

while SVM and other multivariate techniques had inconsistencies across groups,

there may be other strategies available to use from the machine learning field that

may be more successful.

75



Figure 3.9: Principal components analysis of the top 3 dimensions from across all subjects
in the ABIDE database. Some organizations have a modest mix, suggesting their subjects
are similar, while others appear more isolated, suggesting there is some aspect to their
data that separates them from other groups.
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A Model of dynamic activity in the brain

4.1 Abstract

There is now considerable interest in the organization and development of spon-

taneous activity observed in the brain in the absence of any explicit stimulus or

task. This brain activity, particularly observed in fluctuations in the blood oxygen

level dependent (BOLD) signal in functional magnetic resonance imaging (fMRI),

reliably organizes into sub-networks often resembling those observed during tasks.

While this intrinsic functionality has been well characterized and often reproduced,

the precise temporal dynamics of the brain during rest are not well understood and

have only recently gained some attention. Here I measure how this organization

changes over time as different subnetworks co-activate. I employ recent advances

from machine learning to model the organization of different brain regions as their

activity ebbs and flows over time. This approach, which is closely related to Hidden

Markov Models, is applied to several distinct cohorts of subjects producing a num-

ber of reproducible patterns of activity, including but not limited to previously iden-

tified systems such as the default mode network. These results together suggest

a dynamic brain with multiple interacting subsystems that are not discretely iso-

lated elements but frequently overlap. These superpositions of modules provides

insight into the dynamics seen not only during rest, but in tasks, where components

of these networks tend to have small changes in activation levels, and I see this

through the emergence of a ventral visual state during a passive viewing session.

77



Finally, I identify a possible way to simulate lesions and measure their effect on

subsequent brain activity, potentially providing a method to probe pathological and

disrupted brain states.

4.2 Introduction

While most fMRI studies of the brain focus on measuring changes in activity as a

result of some task or stimulus, the importance of brain organization at rest is now

widely accepted. The resting brain is metabolically active, with activity typically

shifting during tasks less than 5% (Raichle et al., 2001) and statistically significant

results are often much lower. Not only is the majority of brain metabolism ac-

tive during rest, but brain organization itself, through a number of measures such

as voxelwise analysis (Shulman et al., 1997) seed-based correlations (Fox, Cor-

betta, et al., 2006), data reduction techniques such as ICA or PCA (De Luca et

al., 2006) and network measures like graph theory (Achard et al., 2006), has been

characterized as having various components or subnetworks that arise during this

spontaneous activity. The first and most studied of these was the default mode net-

work (DMN) (Greicius et al., 2003; Raichle et al., 2001), a set of spatially separated

cortical regions including medial prefrontal, posterior cingulate, precuneus, inferior

parietal, and frequently parts of the medial temporal lobe. These regions seemed

temporally synchronized and reduced in activation during tasks. Many other brain

regions are also correlated during rest and this coherence seems to be modu-

lated during tasks, rather than having functional organization generated purely as

a result of some new context. These groups of correlated regions often include

motor, dorsal and ventral visual networks, dorsal and ventral attentional networks,

and the basal ganglia. Spontaneous activity has also been matched to behavioral
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flexibility (Kelly et al., 2008), as well as shown to be developmentally dependent

(Dosenbach et al., 2010; Fair et al., 2008). These findings have contributed to

the growing interest in more explanatory models of brain organization above and

beyond the traditional mean-signal changes (Hutchison et al., 2013; Smith, 2012),

ultimately indicating the importance of better understanding temporal dynamics in

and between functional regions of the brain.

The consistency of resting or spontaneous functional organization produces a

picture of the brain that is characterized by a number of interacting sub-networks.

This baseline, or homeostatic, state then reorganizes to reflect or accommodate

various attentional or perceptual needs. Despite this consensus picture (Deco et

al., 2013; Raichle, 2009), the actual dynamics of these observed systems and sub-

networks have not been well characterized. While the existence of resting activity

has been well established, is this activity static, in a single stable state waiting for

some external perturbation, or is dynamic, possibly shifting between a number of

different organized states that taken together average to the commonly character-

ized system? Evidence collected in the last several years has begun to identify the

non-stationary nature of resting state activity, where the functional organization ob-

served in many studies changes in magnitude over time. Chang et al show (Chang

& Glover, 2010) that time-frequency coherence between posterior cingulate and

anti-correlated regions was variable in both phase and coherence over time, and

a sliding-window correlation revealed that a number of regions across the brain

phased in and out of correlation with this region. The neural basis of a time vary-

ing signal was reinforced by finding that dynamic BOLD activity is often correlated

to underlying local field potentials in rats (Thompson et al., 2013). Differences in

dynamic default mode connectivity in subjects that positively correlated with a mea-

sure of mind-wandering suggest that not only is the DMN involved in introspective
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focus, but the dynamics and frequency of coherence in this network may predict

later behavior (Kucyi & Davis, 2014). Differences between controls and a group

with Alzheimer’s could be identified in the amount of time that specific resting state

modules were maintained over time, rather than the static average (Jones et al.,

2012). These findings all point to the importance of better characterizing dynamic

brain connectivity.

The prevailing techniques traditionally used to inspect organization across the

brain are fairly straightforward in application. One common approach is seed-

based analysis, where correlations are made between one identified region and

all other regions of the brain in an effort to find functionally âĂŸconnected’ regions

that share similar time-courses. Extensions of this approach to inspect all regions

of the brain include independent components analysis and graph-theoretic analy-

sis, which both look at all time-series simultaneously seeking functional groupings

of spatially separated brain regions. These have all had success, are easy to im-

plement, and require no explicit model building. Some other approaches attempt

to better model dynamics of the influence of regions on connectivity, and have had

more modest success and interpretation, these would include Granger causality

or dynamic causal modeling (Smith et al., 2011). While these attempt to model

directional or effective connectivity, they still show an ’average’ influence between

different regions across the entire observed time-series.

Other successful approaches in modeling complexity present in fMRI have been

made through successful applications of tools from the machine learning litera-

ture. Golland et al use kmeans clustering to segregate the brain into two sub

divisions, which they describe as intrinsic and extrinsic, integrated around DMN

and sensory-motor respectively (Golland et al., 2008). More recently entire rest-

ing state networks were used with support vector learning to successfully predict
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age in a developmental study (Dosenbach et al., 2010), and another study used

spectral embeddings of brain structure to model patterns of dementia (Raj et al.,

2012). Recently, several groups have begun to look at time-varying changes in

the resting state signal. This approach may yield a magnitude greater degree of

complexity as analysis is expanded into the time dimension, requiring special con-

sideration as the number of parameters being tracked increases. Allen et al used

a sliding window approach to cluster analysis (Allen et al., 2014) and find that

functional connectivity does change over time, with some areas showing periodic

patterns of higher degrees of cluster reorganization that may be missed in a static

average. A similar sliding window approach was used to calculate principal com-

ponents across time, and compared controls to a group with multiple sclerosis,

yielding additional connectivity differences across time that were not seen in the

time-averaged measure. (Leonardi et al., 2013) This study will integrate many of

these recent approaches using a recently formalized approach from the machine

learning literature that directly captures the dynamics as they change in time, and

can then reconstruct, through simulation, the observed variability as needed.

Hidden Markov models (HMM) have been a very successful tool for understand-

ing time-series dynamics (Baum & Petrie, 1966). Briefly, HMM’s are the simplest

dynamic Bayesian network, where the system being modeled is assumed to be a

Markov process with some unobserved or latent states driving observations, typi-

cally discrete or Gaussian in nature. The state determines a probability distribution

over the possible outputs, and so as this state changes over time the observed

time series will consequently change. They have been used successfully in many

applications, perhaps most recognized in speech, handwriting, and gesture soft-

ware, as well as a variety of genomic and proteomic bioinformatics uses (Stigler

et al., 2011), and have had some success in neuroscience related studies, though
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most often in studies looking at ion channel or spike-train dynamics (Danóczy &

Hahnloser, 2005; Herbst et al., 2008). The learning problem is then: given the

output sequence such as an fMRI time series, how can a model optimally learn the

unknown brain states that are driving the observations. Once a model of these hid-

den states is created, the learned representation can be evaluated against known

patterns, such as the DMN, and their dynamics can be tested - do they remain

largely constant, vary over time, or appear random. There is an inherent difficulty

in solving the underlying parametric problem, and approaches have typically relied

on traditional and well accepted methods such as maximum likelihood and expec-

tation maximization (EM). Applications to fMRI data are rare and typically model

task based data (Faisan et al., 2007). The first application of an HMM to resting

state data was by Eavani et al who use an HMM framework with sparse basis

learning to identify that functional connectivity over time can be modeled as a com-

bination of different basis networks (Eavani et al., 2013). This analysis used a joint

learning strategy that effectively generated prior basis to simplify and constrain tra-

ditional HMM learning. These basis were constrained to rank-one decompositions

of covariance, as well as restricting an l1 norm to reduce the number nodes in each

basis set. While this was an important work, this approach may limit the ability to

detect the underlying dynamics, as basis are evaluated from static covariance. Ad-

ditionally the study only investigated cases where the number of states was equal

to the number of basis used. While they showed good results in recovering a sim-

ple simulated network, it is unknown how well their state recovery performed in the

real data. One challenging issue in modeling dynamics is the relationship between

the number of systems in the brain, and the number of states the brain can exist in.

Traditional HMM approaches, including those done by Eavani et al, typically have

a ’rigid’ state assignment, which imposes a discrete view of fluctuations between
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possible organizations, when the brain is actually acting in a much more continu-

ous fashion. A recently discovered approach to solving these dynamical systems

may introduce a method that can address many of these concerns, while learn-

ing an underlying low rank basis set directly from temporal patterns in the data.

This low rank approximation to an HMM allows one to model systems with a much

higher state space, and uses a new approach to parameter learning using a class

of spectral learning algorithms which avoids issues of local optima such as EM.

These use a generalization of dynamical systems that include HMMs, Predictive

State Representations (PSR) and the closely related class of algorithms known as

observable operator models. (Boots et al., 2011; Hsu et al., 2012; Siddiqi et al.,

2009; Singh et al., 2004)

Here I apply these spectral learning techniques, as implemented by Boots et

al (Boots et al., 2009), to construct a dynamic model of the brain that can explain

most of the observed variability. Through easily implemented linear algebra meth-

ods, namely a singular value decomposition of time-shifted covariance structures,

this learning approach is statistically consistent, avoids issues of local optima, and

has memory usage independent of the number of training examples, with time

complexity linear to this number - most of the results in this study took seconds to

run on an average PC. This method allows for very large data sets, and can scale

well to much more complex models than many prior approaches. I show the ability

to capture most of the dynamics associated with resting activity, identify consistent

subnetworks across subjects and groups, and are able to reproduce the observed

covariance structure of the data through simulation. These discovered dynamics

appear to reflect a rapidly transitioning and superimposing background of brain

activity, modulating between a number of systems including previously identified

networks such as the DMN. I also investigate a group of subjects passively view-
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ing visual stimuli, and while these subjects overall states remain largely consistent,

there is a rearrangement of these states with the ventral visual stream becoming

more pronounced. Finally I introduce an approach to investigating synthetic le-

sions in the learned model, which presents a new method to test disruptions in

these complex systems.

4.3 Methods

fMRI data acquisition

Dataset 1 contains continuous resting state data from fifty-one healthy young adults

(18-25 years), recruited under my advisor’s grant award, from two different institu-

tions (15 subjects were enrolled at the University of Kentucky and the remainder

of the subjects were enrolled at the Medical University of South Carolina). The

images in each participant’s time series were motion-corrected, geometric distor-

tion corrected, spatially smoothed with a 3-D Gaussian kernel (full width at half

maximum = 7 mm) using FSL v. 4.1 (http://www.fmrib.ox.ac.uk/fsl). The statistic

parametric maps were then registered via the subject’s T1 anatomical scans to

the MNI-2mm template. Data were bandpass filtered from 0.01 to 0.1 hz, as is

common in resting state literature.

Dataset 2 included subjects collected from a single institution (NYU) from the

publicly available ABIDE database which contains both autistic and age-matched

control subjects undergoing resting-state scans, across a variety of institutions

(N=82,mean age 16.1). I use all eye-open controls from this subgroup. Prepro-

cessing was performed as above.

Dataset 3 contained 51 healthy right-hand volunteers (Mean age = 26.5, SD

=6.0, range 18-42 years; 29 men) were compensated for participation or received
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course credit in an introductory psychology course. The design was one where a

preliminary ’face localizer’ scan was run, where subjects passively viewed various

face, non-face object, and noise stimuli, with interval blocks of no stimulus - a fixa-

tion cross at the center of the display. Subsequent designs used these as a basis

for investigation of manipulations of these stimuli in various respects, but only the

localizer scan was used here. All MR images were acquired using a Siemens 3T

Trio MRI system (Siemens Medical Solutions, Erlangen, Germany). Subjects un-

derwent one 109-volume (272.5 s) face localizer scan and four 133-volume (322.5

s) whole-brain functional task runs (pulse sequence: gradient echo, echo planar

imaging; TE = 30 ms, TR = 2500 ms, flip angle = 80Âř, 64 x 64 matrix, FOV = 22.4

cm x 22.4 cm), interleaved acquisition of 38 transaxial contiguous 3.5-mm slices

for the face localizer scan and 40 slices for the task scans. Following the functional

scans, subjects underwent a high-resolution T1-weighted anatomical scan using

magnetization-prepared rapid acquisition with gradient echo (MPRAGE) sequence

(TE = 2.56 ms,TR = 1690 ms, TI = 1100 ms, FOV = 25.6 cm x 22.4 cm, flip an-

gle = 12◦, matrix size = 256 x 224) with 176 contiguous sagittal slices and a slice

thickness of 1 mm. Field map information was also collected to correct geometric

distortions caused by static-field inhomogeneity. The presentation of visual stim-

uli was controlled by E-prime software (version 1, www.pstnet.com; Psychology

Software Tools) running on a Windows computer connected to the MR scanner.

The time of each pulse of MR, each visual stimulus onset, and behavioral data

responses were recorded by this software and used for data analyses. Prepro-

cessing and statistical analysis were conducted using FSL (version 4.1.7, FMRIB,

Oxford University, Oxford, U.K.) For each subject, preprocessing included motion

correction with MCFLIRT and brain extraction using BET. The images were then

smoothed with a 7-mm (FWHM) Gaussian kernel and were temporally high-pass
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filtered with a cutoff period of 100 s.

Prior to parameter learning of dynamics, all time series data are normalized in

a range 0-1.

Partial Correlations and Hierarchical Clustering

When looking at static time-averaged patterns of connectivity, partial correlations

were used to measure the co-linearity between two nodes while controlling for all

other nodes. These have been shown to be more sensitive to specific node to node

connectivity as they reflect the more direct relationship between two time-series

(Marrelec et al., 2006; Smith et al., 2011). If P is the inversion of the covariance

matrix of the time series data, the partial correlation ρ between nodes i and j is:

ρij =
pij√
piipjj

These partial correlation matrices were submitted to a hierarchical

clustering analysis (Matlab Stats toolbox) using ward’s minimum variance method,

which minimizes the total within-cluster variance in an agglomerative clustering

assignment. This is a deterministic method that produces a tree structure relating

groups of nodes to each other according to their shared distances. This tree can

be cut to produce as many branches, or clusters, as desired.

Parameter Learning

In contrast to traditional HMM’s, which learn the transition probabilities between

some unobserved latent states, as well as associated state dependent observa-

tion probabilities, I use a Predictive State Representation that creates a model of

dynamic states by measuring the occurrence probabilities of future events con-

ditioned on past events. Learning is done through a spectral algorithm, which

can produce observable operators that are a transform of a reduced-rank HMM
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(RRHMM), where dimensionality depends on rank rather than state space size.

This allows a large implicit state space where the model can still have smooth

state trajectories and a compact, efficient learning procedure.

This method and implementation were discussed in depth in Chapter 2, and

more details can be found there. Briefly, this approach begins with definitions from

the HMM literature, which use a transition matrix T ∈ Rm∗m to identify probabilities

of moving between states where the current state, of m possibilities, is understood

to be tracked over time in zt. An observation matrix O ∈ Rn∗m identifies observation

probabilities given the current state of each variable in vectors ~xt, for example our

n regions of the brain. There is also an initial state probability vector ~π, where πi =

p(z1 = i). The alternative view of computing sequence probability from observation

operators used in this work defines

Ax = Tdiag(Ox,1, ..., Ox,m) (4.1)

where for any time t

p(~x1, ..., ~xt) = 1TmAxt ...Ax1π (4.2)

Ax is a tensor ∈ Rm∗m ∀x ∈ [n] and diag(O) is a diagonal matrix with the respective

observation probabilities of a variable under a given state. This assumption can

be relaxed, where the underlying system as modeled in T may have low rank, k,

where T = RS , R ∈ Rm∗k and S ∈ Rk∗m. This casts the initial state distribution

into a lower dimensional state, π = Rπl, and likewise A can be projected into this

space using a related matrix W:

p(~x1, ..., ~xt) = 1TmRWxt ...Wx1πl (4.3)
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With this formulation, I can avoid using EM and estimate a linear transform of W

directly from the data. This observable representation is defined in the following low

order moment matrices in 3 general steps. First, I compute empirical covariance

estimates P̂1, P̂2,1, P̂3,x,1 directly from the data, which respectively describe initial

probability vectors of the observed data, the covariance of time-shifted time series,

and future-past covariance between regional time series as a function of each

specific region. Then I use a singular value decomposition of P̂2,1 to compute Û ,

the matrix of left singular vectors for each of k largest singular values from P̂2,1.

From these empirical estimates I compute the model parameters b̂1, b̂∞ , B̂x, which

relate back to the original model parameters, for instance

Bx = (UTOR)Wx(U
TOR)−1 (4.4)

This makes Bx a similarity transform of the reduced rank parameter Wx, which

was the factorization of our original operator. These are used as model parameters,

and can be used to update estimates, from new data or through simulation.

This algorithm is idealized for sampling N triplet sequences from a dynamical

system. In practice this is more often 1 or more long time-series which can also be

used to develop estimates, and this extension is also detailed by Siddiqi et al. Ex-

ample functions for spectral learning of dynamical systems were made available,

implemented in Matlab code, at Geoff Gordon’s website http://www.cs.cmu.edu/

~ggordon/specds/, and were used for applications in this work. This largely fol-

lows the steps as described above, the major computational step is in the singular

value decomposition of the covariance structure which is efficiently implemented

in Matlab. Easily the largest use of memory is in calculating the trivariance struc-

ture P3,x,1. To limit this usage, the algorithm was modified in order to skip explicit
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calculation. The future-past covariance structure, which is effectively a cross cor-

relation between offset time-series, P2,1 is calculated, and its decomposition into

U is done as outlined. These are used to create a basis, U ∗ P2,1 that is used for

regressing observations into their predicted states. This basis is also used to cre-

ate future states by shifting sequences one time point into the future, accounting

for the additional shift in P3,x,1. The final Bx operator is obtained through iterating

over observations, weighing future states by current observations, and then taking

the matrix product of this and predicted states. Finally, observations are multiplied

with predicted states to create expected covariances of observations across states,

Σ̂i,j = p(x1,t = i, x2,t = j, bt = s)∀s ∈ [k], which are useful representations to help

understand what dynamics are changing between transitions.

Simulations and lesions

For simulation of timeseries from learned models, an update to expected observa-

tions is done through the tensor product of the modeled expectation and the prior

state, and a state update is done through the tensor product of the observable op-

erator and prior state. The observation probability is the diagonal of the updated

observation matrix, and I use this as a surrogate for the observation in simulations.

Ôt = Σ⊗ b̂t−1 (4.5)

b̂t = (Bx ⊗ b̂t−1) ∗ (
Ôt

~xt
) (4.6)

~xt = diag(Ôt) (4.7)

The x vector is normalized from the range 0-1 at each update. For visualization I

apply the same low pass filter, from 0.01 to 0.1 hz, that was applied to observed
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data. For synthetic lesions, I either artificially set a given regions value in x to zero,

which influences further state updates, or I set all respective entries in the expected

observation matrix Ot to zero to eliminate the influence of a given state.

Visualization of anatomical brain maps and nodes was done using BrainNet

Viewer (Xia et al., 2013), transition graphs were made with Gephi software (Gephi:

an open source software for exploring and manipulating networks, n.d.).

4.4 Results

Brain organization is observed in the correlation structure of fMRI time series

Using static correlation matrices generated from subject time series data (Figure

4.1A), I reproduce graph theoretic results as often seen in the literature (Rubinov

& Sporns, 2010; Salvador et al., 2005). This can be used for further analysis, such

as one identifying modules or subnetworks (Figure 4.1B). These yield many com-

mon observations, such as strong bilateral connectivity and grouping of common

functional systems including visual, fronto-parietal, sub-cortical and motor. These

static networks do not always clearly reproduce results found from other analysis,

that is, the default mode network is most clearly identified through seed based ap-

proaches, and often through ICA, but may appear grouped with other regions in

clustering analysis.

Decoding functional dynamics in a single subject

Rather than using the simple average covariance of the signal to analyze func-

tional connectivity, I can generate a covariance between past and future obser-

vations, and use a spectral approach to identify the top dimensions (through a
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singular value decomposition) that is used as a basis for understanding the sys-

tem. Regression using this basis can identify amplitude of states, where each state

corresponds to that identified singular vector. In Figure 4.1C two of the top state

amplitudes or weights are plotted in time, with Figure 4.1D showing their respective

expected observations. Only two of the 12 modeled states are shown. In D, the

observations are split into positive and negative regions (red and blue). A conse-

quence of the singular value approach is that the sign in both the state amplitude

and its respective expected observation are arbitrary, and these parameters may

in fact change given small changes in the data. The actual observation can be

understood as the weighted combination or superposition of these expected ob-

servations by their state in time, and so as the sign and magnitude of the state

vector changes in time so does the output of the system.

This case in a single subject is illustrative of two important questions being

asked. First is whether the system is largely stationary, and clearly there is a large

flux in how the brain is organized over time. In Figure 4.1C I plot the amplitude of

two components of the state vector over time. These are effectively the weights

of an associated basis shown in 4.1D. These weights fluctuate considerably from

positive to negative, and at times they are highly synchronized while at other times

are nearly anti-correlated. This is characteristic of learned state vectors across

subjects, and there were no cases where a subject’s functional organization was

stationary over time for long durations, or which appeared to be mainly composed

of only one or two states. A second question is towards the nature of the brain

states and how they are organized over time. There are a number of subsystems

in the brain that are regularly learned in single subjects and across groups, in-

cluding the two plotted in Figure 4.1. State 2 in particular is closely related to the

commonly studied default mode network, plotted above in red in D. This incorpo-
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rates medial frontal, posterior cingulate, and inferior temporal/angular gyrus. In C

these two states start out largely synchronized, but then have large periods of anti-

correlation. This reflects an important finding of the study, that while these base

states are consistently learned across subjects and different centers, they super-

impose to create additional intermediate states. This is simultaneously a strength

and weakness of this approach. While more traditional Hidden Markov models typ-

ically simplify assumptions to model a system as being in a single discrete state,

this approach produces a state vector that may better reflect that complex orga-

nization of the brain, which is by no means guided by unitary modes across all

regions. The trade off is the loss of explicit modeling of the transition probabilities

between states and over time, though I can recover the observed operators that

are transforms away from being related to these factors. In 4.1E I plot a graph

(left) of the mean observed transition matrix across observables or regions. This

is a reflection of the influence of observations, which are marginalized out by the

mean, to the next state in the system. On the right is the matrix generating the

graph, with rows and columns relating to states 2-7 of the modeled system. The

diagonal reflects a weight for remaining in the same state, and is reflective of the

approximately 2-4 time steps that the system seems to stay in a given functional

mode above. There is some considerable variance across subjects in these ob-

served transition parameters, and this likely reflects the unconstrained nature of

the resting state systems. Regardless of instructions to the subjects, there is likely

a large degree of subject variability in how the mind may wander, attend to stimuli,

and so on, which could then influence the change in brain sub-system activity.
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The dimensionality of the model is largely consistent across subjects and

groups

An important and useful aspect of the spectral approach to learning is that there is

a natural relationship between the order of the states and their explained variance,

similar to the proportionality of singular values or eigenvalues to variance in princi-

pal components analysis. This can be used to guide the number of states used in

analysis. In Figure 4.2A each subject in Dataset 1 has the 2nd-12th singular value

plotted, over the sum of all singular values, with the singular values resulting from

the full model across all subjects in bold. The first singular value was not plotted

as it tends to dominate in magnitude. Most subjects follow a similar trend, with a

gradual plateau down with increased dimension, though a few subjects appear as

outliers that can be modeled by fewer states. This Figure can be compared to Fig-

ure 4.6, where I compare simulated time series, using variable number of states,

to the observed group average. Simulations using 3-25 states are generated, and

each corresponding simulated correlation matrix was itself correlated with the ob-

served matrix, and the R2 increases similarly to the change in singular values. This

shows that as additional states are learned through the model, additional informa-

tion is captured and reflected in the measured correlation structure. As more states

are added they effectively prune connectivity from the mixture of state representa-

tions until increasingly accurate representations are produced. It should be noted

that partial correlations were used in lieu of traditional Pearson correlations, which

are distinct in that they capture direct relations between time series conditioned on

other time series, which is not something explicitly captured in the model. There is

a generally linear increase in variation explained as states are added to the model,

until the explained variance plateaus in the teens.
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In Figure 4.2b I compare the full model, generated across all subjects, to individ-

ual models produced in order to better understand how consistent state discovery

is across subjects. The magnitude of the correlation between the expected obser-

vation of state two in the full model, above, and seven, below, are indicated against

each subjects individual states. This shows that the second state, the putative

DMN (table 1), is generally consistent appearing in the top 2 or 3 states within

most subjects. State 7 is less precise, and is not always as clearly correlated with

the full model.

The identification of a base set of functional subnetworks

For further analysis I compare models learned across subjects within each respec-

tive dataset. Dataset 1 and 2 were recorded at different institutions, on different

scanners, but were both from the same design, namely eyes-open continuous rest-

ing scans. Both appear to find very similar basis used to determine the dynamics

in the system. In Figure 4.2C the top 6 states expected observation from Dataset

1 are plotted in anatomical space. The color indicates polarity, as shown in Figure

4.1, any state can have a weight and sign, this modifies the observation and so a

negative state would flip the polarity of the observation. The size is proportional

to the magnitude of the expected observation, and I also plot the top 2 percent of

the underlying expected covariance as edges between regions. In all cases State

1 is a pseudo-constant state that accounts for a large percent of the observed sig-

nal. This seems to be largely related to the global signal, or a global basis. State

two is the basis containing the default mode network, including posterior cingu-

late and medial frontal regions, but wrapping around frontal and temporal areas.

The opposing signal comes mainly from motor and sensory areas. The third state
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has a large component centered on visual regions, from occipital to the fusiform

gyrus, and opposite nodes from insula, supramarginal gyrus, palidum, and puta-

men. The fourth had a strong bilateral fronto-parietal network, with opposition from

a limbic system mainly surrounding hippocampus. State 5 had a network connect-

ing inferior frontal with middle temporal and the temporal pole, with an opposite

network spanning subcortical regions to posterior cingulae and parietal. State 6

had strongly lateralized networks, one being a more left dorsal fronto-parietal, the

other a more ventral fronto-parietal. These may correspond to attentional net-

works, particularly the more ventral right lateralized network. The seventh state

(Figure 4.3 for state 7-10) has a somewhat left-lateralized cluster bridging inferior

occipital, inferior temporal, into frontal regions, with an opposite network spanning

more dorsally from medial frontal through the cingulate. The former seems likely

to correspond to the ventral visual stream, and as shown later does appear to be

important in the visual task related group. State 8 has nearly spatially orthogonal

networks, one bridging occipital and primary visual regions to anterior cingulated

and frontal, the other spanning hippocampal and temporal to parietal. State 9 is

moderately lateralized and one network spans the temporal pole, middle temporal,

and medial frontal, while the other is mainly organized around inferior frontal and

insula. State 10 has a network focused on motor areas, as well as possibly an

auditory network mainly bridging Heschl’s gyrus and the angular gyrus. State 11

has a moderately left lateralized network bridging superior temporal pole, cingu-

late, and parietal areas, and a bilateral network bridging caudate with pre and post

central areas. Finally state 12 has two strongly focused networks focused on the

gyrus rectus, and caudal areas, respectively. See table 1 for a detailed description

of the most pronounced regions in each state.
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The modeled basis driving resting dynamics is consistent between groups

The analysis done on Dataset 1 was reproduced in Dataset 2, and many of the

states were closely reproduced. Figure 4.3b shows a cross-correlation matrix be-

tween respective expected state observations in each group. High values along

the diagonal suggest a match between groups. State 1-4 shows a close match

between groups, 5 is a modest match. States 6 and 7 match, but have reversed

places, suggesting a slight different in proportion of variance explained in each.

State 8 is a relatively poor match, while 9, 10, and 11 are quite good. As noted

the matches are modest into the teens but it seems that these top 10-12 states

account for most of the reproducibility between groups. States 5, 7, and 8 may

appear to be ’leaking’ somewhat between groups, with some degree of correlation

between them. Figure 4.3a shows a number of the states matched between the

two datasets, and the general similarities or lack thereof. The principal difference

in state 8 seemed to be a shift from the ventral-dorsal connectivity between parietal

and temporal regions, to a more frontally organized subsystem.

The utility of the approximate transition matrices that can be made could be

evaluated by testing how related they are between groups. In Figure 4.3c the off-

diagonal elements of the state transitions are plotted and correlated against each

other, with a significant correlation between them. There is a higher correspon-

dence between the transitions in the first few states, as shown in green. A graph

of the transitions from Dataset 1 is shown in Figure 4.3d. The reproduction of

some aspects of these transition observations suggest that there is some structure

to state transitions at rest, and they are not purely random fluctuations between

possible states.
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A shift in the functional basis due to perceptual task

Having established that there is a consistent set of states driving resting states,

I look at how these states may change during a simple passive viewing task. In

Figure 4.4a, states in Dataset 1 are compared to those in Dataset 3, with the

viewing task. In this case, there is clearly less correspondence between states

compared to Dataset 2. This is largely due to shifting of states, particularly 3, 5,

and 7. The 7th state in Dataset 1, which included a ventral network integrating

visual, temporal, and frontal areas, becomes the third most important state driving

these observations (behind the default mode network state). This identified state

is shown in Figure 4.4b. I can also evaluate what states, if any, correlate with the

identifiers in the design matrix (ie 1 for task, 0 for rest). The third state was most

correlated(R2 = .38), more than double the next closest, state 4. In C, a single time

series from a subject with a high correlation between these states and the design

is shown, with the amplitudes for state 2 and 3 below, a potential index for when

the brain is using a default mode, and when it is using the ventral visual network.

Above the plots for states are blocks in red for visual task, and black for a blank

screen. Those areas of each line that are the max for that time point are in bold,

and a pattern emerges for the switching between brain states. In D the graph for the

group transition matrix is plotted, and there may be a bit more bi-stability forming,

as would be expected when inducing multiple states throughout the experiment,

with a cluster of states around 8, 9, 10, and 11. There is no correlation between

the off diagonal transition observations between this and Dataset 1, in contrast with

the two resting state designs.
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Simulated activity and lesions

A consequence of the formal modeling of the dynamics of fMRI activity is the ability

to use that model to simulate time series data closely mimicking the original ob-

servations. In Figure 4.5a a single subject’s timeseries from Dataset 1 is plotted

with a longer simulated time series on the right. At time point 500, a synthetic

’lesion’ of activity in the posterior cingulate is introduced, effectively reducing the

activity in that node. It is difficult to perceive the change in dynamics during that

time, but the relative change is shown in B, where correlations and regions which

were higher prior to lesion are indicated in blue, and those that are higher during

the lesion are in red. Assessing the assigned states over time, there are signifi-

cant differences in the amplitude of states between these two periods in a number

of states, particularly 2, 6, and 7 are all states heavily incorporating the posterior

cingulate. Additionally, I briefly investigated the ability to remove a given state, in

C results from the synthetic removal of the second, default mode, state are shown.

Not surprisingly there is a reduction in the default mode, but there is a particular

increase in a set of nodes oriented around the middle temporal pole. These investi-

gations are preliminary but show additional potential of the method to investigating

disruptions to brain networks.

4.5 Discussion

Spontaneous activity was first formalized by Raichle et al (Raichle et al., 2001), and

was based on earlier meta-analysis (Shulman et al., 1997) as a default or baseline

state of activity. The regions showing consistent "deactivation" , that is, increased

activation during baseline compared to active tasks, included the posterior cingu-

late and precuneus, inferior parietal, and medial frontal regions. Further results
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often describe connectivity between these and other regions through time series

analysis, typically using correlations, reflecting some positive or negative co linear-

ity between the respective signals. Since first reported, the DMN has been consis-

tently observed, most consistently at low-pass filtered, continuous data (Cordes et

al., 2001) similar to Datasets 1 and 2 from this study, but also from block design

task-negative studies, such as the passive face viewing in Dataset 3. This network

is often described as having a negative correlation with attention networks, with

the two often being framed as task-negative and task-positive, suggesting a neural

architecture mediating between periods of introspection and periods of attention to

external factors and action. While some studies find hippocampal coactivation with

other DMN units (Greicius et al., 2003), other studies are unable to reproduce this

finding (Damoiseaux et al., 2006). This could reflect the non-stationary nature of

these subnetworks, as some analysis may yield a result reflecting the occasional

superposition of these states. Recent criticism towards the use of global-mean

regression before analysis has made the degree of anti-correlation hotly debated

(Chai et al., 2012; Chen et al., 2012; Fox et al., 2009), but the basic principle of

sub-networks showing cohesive changes or decreases in activation still stands.

Some have raised the possibility of resting activity amplitudes being more closely

related to structural aspects of the vascular system, rather than brain grey matter

(Vigneau-Roy et al., 2014), and this may bias results in certain regions, particularly

those implicated in the original default mode network. Recent work suggests that

the global signal is coupled to local neural dynamics, which would seem to suggest

a neural signature. Regardless, even those regions that have a higher flux in blood

oxygen level intrinsically may show changes in dynamics that reflect functional neu-

ral driven processes, and their frequent usage may have guided their adjacency to

the vascular system. The method in this study locates this mean activity in the
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principal state, allowing the isolated inspection of additional activity.

Numerous studies have found a number of candidate networks which appear

to be synchronized during rest. Some aspects of the current study, namely spec-

tral learning of parameters, have some methodological aspects in common with

data reduction methods such as PCA or ICA. The vectors found in those studies

are in principle similar to those found here, though they are most often across all

spatial voxels rather than the anatomically segregated averages used here, and

are without the overarching goal of learning temporal parameters for a more com-

plex dynamic time-shifted model. While using a different granularity of the regional

topology will no doubt influence some of the results, the brain is largely organized

hierarchically and increasing spatial dimensionality should maintain the general re-

sults found here (Power et al., 2012). Few studies have begun to venture into more

dynamical models of brain activity, and the precise nature of how resting state

activity is related to functional networks is still debated.

While early studies focused on the default mode network, additional work has

shown that many other subnetworks are identified during spontaneous activity.

These resting state networks, which have been observed across various condi-

tions, including anesthetized primates (Vincent et al., 2007), have been placed

under various classes, including but not limited to (Fox & Raichle, 2007) the afore-

mentioned DMN, visual, auditory, dorsal attention and ventral attention/salience

networks, motor, and a hippocampal or memory network. These include many

regions that would typically have coincident activity during relevant perceptual or

cognitive tasks, and there is evidence that there may be re-organization of rest-

ing state activity over development (Fair et al., 2007). Perhaps the most important

systems in relation to the default mode are the dorsal and ventral attention net-

works, and if there is interplay between internalized thoughts coordinated through
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default mode activity and shifts to external focus, these systems would participate

in mediating this change. While these attention networks were originally defined

in tasks related to external stimuli, they have also been recognized in resting state

studies absent of any demands (Fox, Corbetta, et al., 2006). Both networks are

fronto-parietal, with the dorsal being bilateral and proposed to mediate top-down

voluntary attention, whereas the ventral system was right lateralized and involved in

detecting unattended or unexpected stimuli to shift attention. The principal regions

of the dorsal network include the intraparietal sulcus, frontal eye fields, while the

ventral network comprises the temporo-parietal junction and ventral frontal cortex,

and primate homologues of the ventral network are more debated. Both resting

groups have systems that may indicate a right lateralized cluster of fronto-parietal

nodes (Figure 4.3A) that coincide with this ventral attention network. These two

networks do not seem particularly strongly linked, as represented in Figure 4.3D,

and the most common state, involving the default mode, had no particular states

strongly predicting it. State 12, which had very strong clusters centered on either

caudal or rectus gyrus, was strongly coupled to states 4 and 5, which had either

strong fronto-parietal or strong fronto-temporal and subcortical connectivity. State

4 and 5 were directed at state 11, which has strong temporal-parietal connectiv-

ity. This may suggest a flow of connectivity in these systems. The visual network

is clearly organized in several states among the groups, such as in state 3 where

there is a very strong coupling within visual regions. Importantly, state 7 appears to

show some ventral visual stream connectivity, and this is the state that is most in-

creased in importance in Dataset 3, where there is the introduction of visual stimuli

that would most influence that subsystem.

This intrinsic activity, once viewed as noise, may be a fundamental baseline

that is modulated during tasks. Some work has in fact shown that task-evoked ac-
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tivity seems to be distinct from rest, but additive in nature, superimposed on some

baseline activity (Arfanakis et al., 2000; Fox, Corbetta, et al., 2006). Spontaneous

activity can be used to predict individual differences in the degree of learning in

a task (Ventura-Campos et al., 2013). Fluctuations in somatomotor cortex activity

can also account for the majority of variability in the force of a button press during

a task (Fox & Raichle, 2007)., while spontaneous activity in an anterior tempo-

ral network is correlated with memory tasks (Gour et al., 2011). As mentioned,

Dosenbach et al predict subject age from individually weighted connections from

an analysis of brain-wide spontaneous activity (Dosenbach et al., 2010). This all

provides evidence towards the view of a basal state of activity that is not stationary,

but dynamic and predictive of tasks and behavior, and is itself modified over de-

velopment. If individual aspects of this spontaneous activity are so variable, then

averages across long spans of time cannot be giving a complete picture of the sys-

tem, but only a reflection of those largest or most common subsystems. Likewise,

while the handful of identified brain systems has been a powerful addition to the

theoretical toolkit, there has not been a clear mechanism to define how these large

spatially distributed systems may account for small individual variations. The idea

of overlapping networks that superimpose in time to create observed activity pro-

vides a useful template for understanding changes in activity, and our method of

untangling complex covariance structure may reflect a deeper relationship intrinsic

to regional interactions. This method could provide insight into mechanism and

a new approach to understanding the diversity of observed signals in fMRI activ-

ity. Some recent evidence from EEG studies (Mehrkanoon et al., 2014) provide

additional evidence for this view, where 7 distinct networks were found that were

expressed in different mixtures over time.

Two principal kinds of connectivity have been evaluated in brain networks, non-
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directional functional connectivity based on correlations, as well as directional ef-

fective connectivity typically based on dynamic causal modeling (K. J. Friston et

al., 2003) or Granger causality (Roebroeck et al., 2005). Partial correlations have

been considered a functional metric with some effective properties, as they more

directly tie together relationships between regions (Marrelec et al., 2006; Smith et

al., 2011). Functional connectivity is also often interpreted using graph theoretic

measures which seek to identify certain organizational principles present in the

network, such as path lengths between regions or hubs of activity. These are not

dynamic metrics themselves, though they could be evaluated in a subject over time,

likewise the set of states found here could be evaluated for distinct network char-

acteristics. Effective connectivity attempts to show some causal effect between

regions, though some methods have struggled to reproduce known connections

in simulation (Smith et al., 2011). Within attentional networks Granger causality

was applied to identify the top down influence of Intraparietal sulcus and frontal

eye fields on visual areas during spatial attention (Bressler et al., 2008). Likewise,

DCM has been used to show directed influence from bilateral IPS to visual cortex

depending on the direction of visual attention, pushing and pulling neural activity

in those areas (Vossel et al., 2012). Due to parametric constraints and general

difficulty in model construction and interpretability, these approaches typically only

look at a small number of regions at once, and while identifying causally directed

influence between regions, they assume this influence is stationary over time.

The body of work resulting from static time averaged connectivity has led to

considerable insight in brain function and organization, but evidence increasingly

points to this being an oversimplification. These experiments tend to span minutes

of data, and given the clearly very dynamic nature of neural systems it would be

unlikely that there is no change in most metrics used to study the brain over such
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a span of time. Resting state activity may have originally been thought of as noise,

and now there may be a realization that the dynamics of that activity are also much

more than noise. In a recent discussion, Hutchinson et al note a number of issues

for this emerging field (Hutchison et al., 2013). The first is an issue that all fMRI

studies face, physiological noise and pre-processing artifacts, though these could

be of even more concern in studies looking at temporal features. While I haven’t

addressed this specifically, the reproducibility of our results across three distinct

groups, two continuous resting states from different centers with low frequency

bandpass filtered data, and a task-positive group with high bandpass filtered data,

suggest that the principal findings cannot be due to a specific artifact. Several of

their identified issues were specific to most of the methods to date, for instance the

use of sliding windows. One strength of our method is that it forms a time-shifted

basis that is then regressed on each time point to identify states, without needing

a variable window size to create many averages over time. Artifacts may still be

present and influence the results, but will not compound over moving averages.

Also, while the model may be more complex in theory, it actually has fewer deci-

sions for the investigator and produces a set of readily testable parameters. Design

issues include longer scans, and in particular, faster image acquisition, and while

our results suggest a set of very consistent basis, some dynamics may be difficult

or impossible to detect without faster sub-second scan times.

The literature on dynamic fMRI, resting or otherwise, is still relatively sparse and

immature. A number of studies have identified significant changes to connectivity

in time, but the complexity and lack of tools for quantifying them made conclusions

difficult. Sets of functional connections appear to change between modules over

time, often simultaneously and involving DMN or fronto-parietal areas (Zalesky et

al., 2014). The modularity of nodes is also dynamic during a learning task, and
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that degrees of modularity can be predictive of learning in future sessions (Bassett

et al., 2011). Sliding window approaches have shown that there are changes in

functional connectivity, with an approach based on principal component analysis

(Leonardi et al., 2013) showing some differences in DMN connectivity between

controls and subjects with multiple sclerosis. Perhaps the most methodologically

related study (Eavani et al., 2013) applied a more conventional HMM approach

with sparse basis learning to identify 6 discrete HMM states which are mixtures

of a set of covariance basis. This approach limits the basis by assuming small

numbers of ROI’s change between states, that is they belong to low rank matrices.

This helps constrain the difficult learning problem. Additionally a large weakness of

traditional HMM may be seen as the result will be identified as switching between

some number of discrete states, which is unlikely to represent the true system well

unless the number of states is arbitrarily high. These discrete states are good

at modeling those systems with competitive inhibition between states, where the

observations are either on or off, and this is unlikely to be a valid representation

of brain function. Alternately, I might use methods from Linear dynamical systems

(Kalman, 1960) that impose Gaussian requirements on noise, but become overly

’smooth’. The approach used in this study is uniquely able to model both inhibition

and smooth evolution (Siddiqi et al., 2009).

The degree that resting activity reflects an actual brain at rest is difficult to deter-

mine, and it is undoubtedly true that any conscious individual within the scanner is

in fact receiving a multitude of stimuli and often reflecting on different mental tasks.

The absolute nature of the question has been partially laid to rest by studies that

show resting state activity and network formation during sleep, and under anaes-

thesia. As speculated by Fox et al (Fox & Raichle, 2007) there may be several

conceptual layers to resting state activity. The first may be related to unconstrained
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behavior or mental thoughts specific to a subject during a task, and will evoke sim-

ilar activity to respective task related paradigms. A second layer underlies this and

possibly all activity and persists across states, conditions, and subjects. It is likely

that the variability of states observed in individuals relative to the group may reflect

the former, while states consistent across groups reflect the latter, though no doubt

still incorporating the common mind-wandering across groups. A reorganization of

states, such as those seen here in the task-positive group (Figure 4.4) can also

reflect the increase in utilization of a particular subsystem.

An open question is the degree to which functional connectivity is related to

anatomical connectivity, both of which are often imaged during single sessions

within a subject. Several studies have indicated that functional connectivity is

higher in the presence of a strong anatomical white matter linkage (Honey et al.,

2010), but comparing structure to the set of basis networks might show that some

states have a higher anatomical relationship than others, and function is oscillating

around a structural skeleton, and this remains a possible future area to study.

Many studies have shown differences in resting activity between groups hav-

ing different medical conditions. Not only are differences measurable across age,

but there are disturbances in the network in a number of pathological states such

as Alzheimer (Greicius et al., 2004) and depression (Greicius et al., 2007; See-

ley et al., 2007). Considerable effort has gone into understanding and modeling

differences in activity as they relate to these conditions, and it may be the case

that specific states or sub-networks dynamics in time are disrupted. Given the

evidence that across groups there is a consistent basis that may have variability

within subjects, the underlying dynamics may change across different pathology.

Only looking at static measures of connectivity may completely miss those as-

pects that are most disrupted in these conditions. Additionally, the potential to
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simulate disruptions through artificial lesions of parameters in the model, or modify

regions in pathological models, might bridge understanding in how function that

arises through dynamics over time can be either strengthened or attenuated.
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Figure 4.1: A. Timeseries from single subject in Dataset 1. B. An example of a more tradi-
tional analysis which generates brain clusters from average functional connectivity. C. This
study uses an alternative method to model and characterize the change in internal states
of the brain over time. Here two of the most significant states amplitudes are shown over
time, corresponding to the time series in A. D Each of these states models the temporal
influence of a sub-network of brain regions. Here I show a summation over this structure,
and split the result into primarily positive (red) and negative (blue) influence, giving the
mean influence of that state, which is weighted by the amplitude in C at a given time to
produce observed activity. E I can identify an approximate weighted influence between
states, indicating the probability of transitioning between state amplitudes over time. On
the left is a graph of the highest weights between states, as seen in the matrix on the
right. F This method, unlike Hidden Markov Models, does not explicitly model the transi-
tion probabilities T between hidden states S, which then have some emission probability
O for viewing observations X, but rather models a set of observable operators A for each
observed region, and I can learn state weight vectors purely through linear operations on
the set of observables.
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Figure 4.2: A. The systems intrinsic dimensionality can be evaluated through singular val-
ues corresponding to each state, and subsequently, an appropriate number of states to
use in the model can be determined by investigating their magnitude. Individual subjects
have singular values 2-12 plotted, along with the values from a model trained over all sub-
jects in black. The top singular value was not included as it is much larger. B. Individual
subject states compared to the group model. The top figure compares each subject states
individually to the second state discovered in the group, where below the same is done
with state 7 from the group model. State 7 may be a group of regions involved in visual
identification and recognition of objects, and its usage could vary considerably between
sessions, whereas state 2 is the putative DMN which is frequently identified in resting state
activity. C The top six states learned from all subjects in Dataset 1, with sagital and axial
views of each. Each map is split into positive (teal) and negative (gold) regions. Edges
drawn between regions represent the top 2% of the underlying covariance structure. These
distributions represent the major basis networks responsible for most activity during these
resting scans.
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Figure 4.3: A In an additional public dataset from a different institution models were repro-
duced with largely similar results. Here sagital views of states 6-10 are plotted as in Figure
4.2, comparing datasets. The distributions of regions are flipped in state 6 and 7, and state
8 seems to be less of a match. B A cross correlation between Dataset 1 and 2 indicates
that the first 4 states are very consistent between groups, and the flip in states 6 and 7, and
poor correlation in 8 can be seen. C A scatterplot of the similarity of off-diagonal transition
weights between Dataset 1 and 2. The dependence between elements from the top states
are shown in green and are more tightly correlated. D A graph of transition weight between
states in Dataset 1, plotting the top 50% of interactions between states. The distributions
of weights is fairly spread out, without very clear organization, though this is also a possible
consequence of the method that allows for mixing of states over time. The diagonals of
the matrix are not plotted on this graph, which represent a tendency to stay within a state
on subsequent time points, this is typically several times higher (as in Figure 4.1E). Edge
weight corresponds to transition probability.
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Figure 4.4: A. A cross correlation between Dataset 1 and 3 (compare to Figure 4.3b).
While there are still many highly correlated states, they are somewhat less so and do not
lie as strongly on the diagonal. This suggests a reordering of the importance of each
state on the observed time-series, for instance state 7 from Dataset 1 is most related to
state 3 in this data. B. Render of state 3 from Dataset 3, which can be compared to 7
from Figure 4.3a. The gold nodes may indicate the influence of a ventral visual stream,
integrating regions from occipital, temporal, and frontal areas. C. This dataset provides a
degree of structure compared to the continuous resting state sessions. Above is plotted a
single subjects time course over the course of an experiment. Below this timeseries are the
state amplitude vectors for state 2 and 3, roughly corresponding to DMN and ventral visual
stream maps, and they alternate according to the current state of the experiment which is
indicated with alternating red and black bars. D. A transition weight graph between states,
where compared to Figure 3d there may be a larger degree of organization into a bistable
graph.
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Figure 4.5: A An example time series (left) compared a simulated time course (right). At
time 500 an alteration was made to observations, artificially suppressing activity from bi-
lateral posterior cingulate. B Comparing correlation measured from pre and post lesion
of posterior cingulate, regions in blue indicate higher correlation prior to lesion, while red
indicate areas with lower correlation. The DMN seems to dominate blue areas, though
several other states were also negatively affected which incorporated PCC. C Results from
the suppression of an entire state over the lesion time course, in this case state 2 corre-
sponding to DMN. Regions in blue show reduction in activity, and include the DMN as well
as a number of other regions including inferior frontal and some subcortical areas. Areas
with increases in activity are spread out, but the largest changes in correlation are in the
temporal pole. The distribution of edges changed through altering this state is qualitatively
similar to those found in the next chapter.
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Figure 4.6: Top left: Plot of the effect of the number of states on correlation reconstruction.
Bottom left: observed correlation. Right: Several correlation matrices calculated from
simulated data derived from either 3, 12, or 24 states. As the number of basis states used
increases, the simulated correlations converge to the observed correlation matrix.
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Differential networks: A novel view of brain variability

5.1 Abstract

Recently, the importance of brain variability as an independent measure of function

has gained considerable attention. In previous chapters I have frequently investi-

gated aspects of functional organization that are largely based on measures like

correlation, but here I will directly investigate how this correlation structure appears

to vary or differentiate over time and between different visual states. I consider net-

works derived from the state of the brain when viewing both images of face and

non face objects (both referred to ask task-positive) relative to the task-negative

periods when no stimulus is present, as well as a cohort of drug users viewing

drug related paraphernalia. I contrast this with subjects undergoing continuous

rest, as well as a small group of primates under anaesthesia. I hypothesize that

a differential between these states may expose sources of dynamic activity that

would otherwise go unseen. This derived network is consistent across subjects

and groups, both increases in strength and is predictive of age, and discriminates

between faces and objects. Additionally, in adult cocaine users there is increased

variability located precisely in regions implicated in disruptions to dopamine signal-

ing, including frontal and striatal regions. This network largely matches a theorized

distribution of brain regions involved in the representation of semantic knowledge

anchored in a hub located in the anterior temporal lobes. It also largely overlaps

dopamanergic pathways that are often described as being involved in signal-to-
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noise detection. I suggest that this approach to investigating brain networks may

identify a novel source of organization above and beyond the more traditional func-

tional connectivity, which reinforces those studies that have found similar results

looking at variation within regions.

5.2 Introduction

As discussed in previous chapters, many studies have discovered the reliable or-

ganization in fluctuations of the BOLD signal during rest (Raichle, 2009), where

correlations between distinct brain region time series appear to have a high level

of intrinsic organization. In the previous chapter a more comprehensive picture of

this organization was made, where functional connectivity is not static but shifts

rapidly between numerous basis networks. Having established this I’ll revisit net-

work analysis from an alternate perspective that attempts to more directly measure

variability in these time series. If the previous chapter was something of a top-down

approach to modeling variability, this will introduce a simpler method of bottom-up

analysis that seeks to evaluate the degree or magnitude of variability between brain

regions. While the technical details are simpler, this approach produces a unique

picture of brain organization that may be distinct from much of the literature.

Recently the analysis of fMRI variability has become a topic of interest itself,

and this signal may contain information largely independent of the traditionally

used mean. This originated from the acknowledgement of the importance of look-

ing at individual differences in behavior, which typically vary considerably across

subjects, age, and so on. With this discovery it was natural to begin looking at

how BOLD signals themselves varied with behavior. Many studies have looked at

inter-subject variability in fMRI, but recently intra-subject variability has come into
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focus. This could be seen as directly using variability in lieu of the mean signal

as a statistical measure. This second moment of the data can be independent of

the mean, and two subjects with identical mean behavior may have considerably

different variability over time. Likewise, two regions of the brain that have similar

mean activity may have considerably different variability. Most studies consider this

variability uninformative noise and attempt to average it away. Some recent work

suggests that this more granular information may be important and it should also

be assessed as an additional dimension, and this addition may better reflect the

complex dynamics evident across the brain.

Garret et al (Garrett et al., 2010) looked at the standard deviation of time-series

and found they were actually more predictive of age than the mean, which was the

first work to directly make this comparison as a within-subject measure. They went

on to show that this variability is also a powerful measure to identify relationships

in differences in task performance such as reaction time. Additional studies have

found that increased variability in nucleus accumbens activity correlated with older

subjects who made suboptimal choices in a financial risk taking task (Samanez-

Larkin et al., 2010). Increases in variability in parieto-occipital connectivity was

identified in blind subjects (Leo et al., 2012), which has been suggested to be a

hub in the absence of visual input.

Results such as these led to an editorial (Mohr & Nagel, 2010) remarking on the

possible utility in using variability rather than means. They briefly review the use of

standard deviation, as in Garret et al, but identify that this measure may be poor

when the baseline itself is changing, which is frequently the case. They suggest

a related measure, the mean squared successive difference (MSSD). This takes

the square of differences between adjacent time points, and so can more naturally

take into account shifts in the underlying signal, and was used in Samanez-larken
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et al.

Figure 5.1: Above: the experimental design for task-condition. Over time, different blocks
of stimuli are presented to a subject, such as faces (A), intermediate resting periods (B),
or non-face objects (C). Correlation matrices, or functional networks, are derived from time
points gathered from each kind of condition. Middle: Taking the difference between any two
networks would hypothetically yield a result consisting of noise and some remaining signal
identifying the difference in conditions. Below: Surprisingly, the square of this difference
appears to reverse the functional organization, yielding a consistent pattern of connectivity
in areas otherwise seen as noise.

In this work I will investigate sources of variability in fMRI, but rather than look

simply at variation about the mean, I will at variability look from a systems or net-

work level. I’ve discussed in detail the interest in whole-brain organization, and so

I’ll use this relatively straightforward measure, MSSD, to try to localize what inter-

actions among functional connections have the most variability. As brain networks

defined through inter-regional correlations have been demonstrated to be a useful

way to investigate fMRI activity, similar to the underlying mean signals, I hypoth-

esize that variation in these networks will be useful and potentially quite distinct
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from the original networks, much like variation about the mean signal is. Addi-

tionally, this approach may identify putative ’hubs’ of variability, possible regional

centers coordinating dynamic organization.

MSSD, or what I’ll call differentials of functional networks, can be applied easily

and rapidly to any time series data. Given the ease of application I will look at a

number of cohorts to both establish the consistency of the technique and identify

changes between groups. I’ll outline results from continuous resting state stud-

ies, which could be considered differential networks with respect to time, as well

as task-based studies, which could be differential networks with respect to input.

Analysis of continuous rest states will allow a baseline of variation to be estab-

lished, while looking at functional tasks may provide a way to investigate changes

in the degree of variability of connectivity. In the task based analysis I’ll investi-

gate two groups with very similar designs, one cohort having typical children and

adults viewing face and non-face objects, and the other a group of subjects from

a study of drug users viewing drug-related paraphernalia. Additionally I will briefly

investigate the organization of variability in a small group of anesthetized primates.

This will introduce a novel approach to measuring changes in network organi-

zation in the brain, and may also lend itself to some interesting theoretical views

of functional organization. I have already identified that the brains functional con-

nectivity is not static during rest, and so I expect to see considerable variation.

Likewise, looking at the difference in various task states, such as viewing faces

or objects, may reveal how these sources of variability change in different con-

texts. The distribution of this variation appears to be largely orthogonal to tradi-

tional mean activity based measures, which confirms, at the network level, some

findings from local activity. This differential network also largely corresponds to a

distribution of semantic processing oriented around an anterior-temporal lobe hub,
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which has been debated in that literature (Patterson et al., 2007), as well as also

largely overlapping with many dopamanergic systems.

5.3 Methods

Participants and data acquisition

The continuous resting state group is the same used in the previous chapter,

Dataset 1. The task-positive group passively viewing stimuli is the same as Dataset

2. An additional dataset is used which uses a block design, similar to Dataset 2.

This data was supplied from the lab of Dr. Kathleen Brady at MUSC, and it con-

sists of 37 adult cocaine users. In this case, rather than face and non-face objects,

these subjects viewed drug paraphernalia and non-drug related objects, and all

time-series were preprocessed as in Dataset 2.

For primate data, four female Rhesus monkeys (Macaca mulatta) 6 to 12 years

old were habituated to the MRI scanning environment using positive reinforce-

ment. In fMRI scanning (pulse sequence: GRE-EPI; TE=33 ms, TR=2930 ms, flip

angle=77◦, 64x64 matrix, FOV=10.2cmx10.2cm, interleaved acquisition of 40 coro-

nal contiguous 1.9-mm slices), iron oxide contrast agent was used and heads were

stabilized using thermoplastic masks molded individually for each NHP. Anatomi-

cal regions (bilateral V1, V2, amygdala, hippocampus, TE and TEO) were defined

based on Frey’s MRI atlas. Data were bandpass filtered from 0.01 to 0.1 hz prior

to analysis.
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Additional Motion Correction

Due to the effect of motion on time-series analysis, even when doing traditional mo-

tion correction and subject elimination [power], additional evaluation of volume-by-

volume motion within subjects was performed, eliminating volumes where changes

in head position pass a given threshold. Changes in six parameters of head motion,

translation and rotation along each axis, are used to create an index for framewise

displacement (FD) in a subject. FDi = |4dxi|+ |4dyi|+ |4dzi|+ |4i|+ |4i|+ |4i|,

where4dxi = dxit+1 - dxit, and the alpha, beta, gamma parameters are estimated

by converting rotation degrees into mm via displacement on a spherical surface

with radius approximately the size of the subjects brain. Those frames with FD >=

0.5 mm were rejected from analysis. To prevent biases in estimates, each subject

used the same number of images per condition equal to the minimum used across

conditions.

Partial Correlations and Estimates of the Sample Covariance

Partial correlations were used to measure the co-linearity between two nodes while

controlling for all other nodes. To address the common problem in estimating sam-

ple covariance known as ’small n, large p’, where a system has more variables

than observations leading to an ill-conditioned, singular, covariance estimate we

use a shrinkage approach utilizing a convex combination (Ledoit & Wolf, 2003) of

the sample covariance with a target diagonal matrix with an empirical shrinkage

factor. This constrained structure results in more accurate estimates and is always

well conditioned, and thus suitable for matrix inversion and calculation of partial

correlations.
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Differential networks

Partial correlations provide a first order measure of co-activation of brain regions.

In order to investigate variability of these matrices I’ll define a differential network

with respect to time as the mean squared successive difference of respective ma-

trices Dt = (Dtn − Dtt+1)
2 and D = 1

T

∑T
t=1Dt Individual matrices are averaged

from the local time points, where I use a window as large as minimal block sizes

(18 points) in task-related designs to keep samples consistent, and use matri-

ces spaced to avoid overlap. So a continuous resting state block with 180 time

points would generate 10 differential networks, that I average for a final subject

estimate. When looking at functional networks, such as those derived from face or

object viewing, rather than calculating a difference over time I use matrices gener-

ated from respective blocks, so a differential network derived from face and object

blocks might be DF−O = (DF −DO)2

Support Vector Machines

Support vector regression is an extension to SVM that can be trained on real-

valued outcomes such as age, as in dosenbach et al, where an envelope of width

epsilon is used to evaluate sample points along a regression line. To better inter-

pret feature weights we use a linear classifier, which produced similar results to

non-linear kernels across our dataset and produces weights which are more easily

interpreted. All SVM and SVR calculations were performed with the Spider Matlab

Machine Learning Toolbox (http://www.kyb.tuebingen.mpg.de/de/bs/people/spider).

Leave-one-out cross validation was used to ensure generality of the predictive

models, where one unlabeled test subject in turn is predicted from a model trained

on remaining labeled data.
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Hierarchical Clustering

Group averaged matrices were submitted to a hierarchical clustering analysis (Mat-

lab Stats toolbox) using ward’s minimum variance method, which minimizes the

total within-cluster variance in an agglomerative clustering assignment. This is a

deterministic method that produces a tree structure relating groups of nodes to

each other according to their shared distances. This tree can be cut to produce as

many branches, or clusters, as desired.

5.4 Results

In previous chapters I’ve described general organizational properties of the brain in

detail, such as clustering behavior or latent states. Most of the data analyzed here

was also used for either resting state or task-based analysis in those chapters,

and so results can be compared easily between different analysis. Broadly speak-

ing, prior results both from my work and the field in general conclude that brain

organization typically using correlations is organized into a number of consistent

sub-networks that change only slightly during perceptual or cognitive demands. In

contrast, the results I find using analysis of variation identify a newly distributed

network that appears distinct from those found previously.

In Figure 5.2 I plot a comparison of different networks generated from these

measures. The distribution of variation in both resting states (Figure 5.2a) and

task-positive (Figure 5.2b, face-rest) is quite similar. There is a higher magnitude

of variation in some occipital and temporal regions in the functional condition which

is likely related to the impact of visual processing. In both cases, there are strong

clusters of activity incorporating anterior temporal lobe with other cortical and sub-

cortical regions, particularly from inferior frontal cortex. This is largely shared be-
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tween both conditions.

This distribution of variation can be compared to a network more related to

mean-activity changes in 5.2c, where the face-rest condition generates a map of

mean level magnitude differences between regions. The underlying matrix used

to generate this used differences of signals between regions rather than correla-

tions. This is not at all a common approach to investigating brain organization, but

would be related to maps of significantly different regions or voxels in traditional

studies. In this case the map is clearly dominated by signal from the inferior oc-

cipital, as well as some other visually related regions (such as the fusiform). This

is a not-surprising result as these are the commonly identified areas that are face

or stimulus specific. Interestingly, this differential network is distinct and nearly

orthogonal to that derived from differences in correlation.

I also investigated a group of 4 anesthetized primates in a design mimicking a

continuous resting state with no stimulus. A full comparative study would be too

complex for this work, but I wanted to investigate general principles of organization

in an animal model, as well as possibly investigating how a lack of conscious activ-

ity may be reflected in brain organization. Looking at average brain networks (Fig-

ure 5.3a) derived from mean correlations there is an organization of clusters that is

not unlike that found in awake humans, with distributions of related nodes largely

organized bilaterally and grouped functionally in localized anatomical space. In

this case there is some higher degree of lateralization compared to humans with

several modules being left or right aligned. Looking at the map of variation (Figure

5.3b) there seems to be much less in common with human networks. There is a

set of mainly limbic nodes that seems strongly connected, but variability is gener-

ally quite diffuse over the rest of the brain. There seems to be two large, widely

distributed clusters, which do seem to have some consistent structure such as bi-
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Figure 5.2: A. Using continuous resting data, sliding windows are used to generate differ-
ential networks in time. An average of these, over subjects, yields a distribution of nodes
centered around inferior frontal and anterior temporal regions, and extending into parietal
areas. In B, a similar analysis is done but taking a difference between task-positive and
negative times. The network is quite similar to that in A, but possibly more diffuse in nature
with additional connectivity notably in more visual regions. In C an example generated from
measures more similar to mean-activity analysis produces a map completely localized in
inferior occipital and fusiform, generated from the same data as in B. All figures only show
approximately the top 2 percent of edges, and node colors correspond to labels from a
cluster analysis, node sizes are proportional to strength or the sum of all edges.

lateral symmetry. The limbic system was also incorporated in humans, which may

be the common element in both cases. It is possible that the anesthesia has had a

profound effect on variability, while having a more modest one on mean activation.

Various measures of mean activity, brain networks, and sources of variability

have been used to match or predict individual subjects ages, and I have been

able to replicate that here using these new measures. In Figure 5.4a I show the

average brain organization from mean correlation matrices across subjects when
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Figure 5.3: Here average data from 4 primates was analyzed as before. A. Graphing the
average functional organization from correlation matrices produces a distribution of nodes
not unlike those seen in human data. Organization is largely localized anatomically, with
considerable bilateral symmetry and functional organization, for instance in visual regions.
B. When plotting differential networks, there is some structure in organization of variability.
Modest bilateral symmetry seems to discriminate between two major components in yellow
and green, with a small subnetwork of more limbic nodes being separated from others. This
organization is in stark contrast to the more typical functional organization, and seems quite
unrelated to human data.

viewing faces. Using this I can use a support vector regression to accurately predict

age, and any similar functional map, such as those generated by task-negative

or continuous resting state subjects, also successfully predict age. In this case

it appears that younger subjects may have a relatively poor separation from each

other, before a developmental curve picks up in teens. In Figure 5.4b average face-

rest differential organization is plotted next to a similar support vector regression.

This results in nearly as good of a prediction as those generated from the mean

correlation matrices. Additionally, a very simple sum over all squared variance

results in a crude but significant age prediction. Below in 5.4c is a similar result

when looking at a face-object map. Finally in 5.4d I plot a result from summing the

squared difference between randomly selected time points, that is a difference from
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networks generated from mixes of face, rest, and object viewing. This also results

in a significant linear age relationship, suggesting that the principal factor driving

the age relationship is a general increase in variability independent of function.

Figure 5.4: A. Correlation matrices generated from face-viewing blocks produce a map
of functional organize (left), and can be used to create a maturation index that predicts
subject age (right). Predictions are done through a support vector machine analysis, where
models are sequentially trained on all subjects but one who is used to test. Similar results
can also be obtained from object, task-negative, or continuous resting state. B. Face-Rest
networks can also be used to generate such age predictions, with what may be a slightly
different growth curve. C. The same analysis but done in a face-object differential network,
which also produces a linear maturation index, though it may be more dis-similar than the
previous growth curves. Right column in B,C. Differential energy vs subject age, which is
simply the sum over all magnitudes of the differential matrix. This also yields a significant
age relationship without the need of any prediction or machine learning, something not
present in the simple correlation data.(Face-Object R=0.35, Face-Rest R=0.25)

Despite the similar distribution of variance across all conditions, there does

seem to be distinctions between groups or stimuli. In Figure 5.5 I show the results

of a support vector classification of networks derived from face-rest and object-rest.
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Adult accuracy is 87% and across all subjects is 75%. The significant features

discriminating conditions do seem to have some considerable bi-lateral distribu-

tion, though they lie across the brain rather than mainly within the principal fronto-

temporal hub. Using edge weights as a measure of influence, the face differential

seems to be more localized, with some notable regions including right fusiform and

occipital regions, bilateral posterior cingulate, left middle cingulate and amygdala,

and left inferior frontal. The object differential seems less localized.

Figure 5.5: Using a support vector classifier, networks derived from face-rest and obj-rest
were successfully classified using a leave one out approach. A. Edges that were predictive
of face viewing. The edges and nodes most predictive of face viewing. These can be
interpreted as regions and interactions displaying greater variability between rest and face
viewing. Node size is the sum of edges. B. Edges predictive of object viewing. These
seem less concentrated than those discriminating faces.

An additional group of subjects was analyzed with a design very similar to the

face localization task, but rather than compare faces and non-face objects the de-

sign was looking at drug users viewing drug-related periphenalia. In Figure 5.6a

I plot the highest sources of variability within this group, and in contrast to the

typical subjects viewing faces and other objects, there is a pronounced difference
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in network variance. In Figure 5.6b I directly plot the matrices generating these

Figures, comparing a typical group viewing faces to the cocaine users. A number

of regions have much higher variance, particularly interactions among amygdala,

inferior frontal, caudate, and putamen.

Figure 5.6: A. Matrices generated from group averages of the typical subject’s face-rest
condition, and the cocaine users drug image-rest condition. While the network organization
is largely the same across both groups, some parts of the cocaine group have much higher
deviation. B. Brain regions with higher differential network magnitude are indicated in red
for cocaine users, and in blue for typical users. There is a strong concentration of increased
magnitude around the medial frontal, amygdala, and caudate. C. A comparison figure
generated from traditional connectivity maps, showing that while there are large deviations
between groups they are organized much differently.

5.5 Discussion

In this study, I attempt to identify and characterize patterns of variability in func-

tional connectivity in BOLD activity. I show that these differential networks are

useful measures of brain function, acting as an indicator for subject age, as well

as discriminating between classes of visual stimuli. Further, I identify possible ev-

idence for disruption of this differential network in drug-users. This suggests that

there is a specific spatial pattern of temporal and task-specific variability found in
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functional networks, similar to recent results suggesting that variability of the BOLD

signal itself is a useful, and largely independent, metric. It appears that this is an

additional kind of functional representation that exists independently or in addition

to the more traditional functional organization frequently studied in fMRI.

Interpretations of variability in fMRI

Samanez-Larken et al (Samanez-Larkin et al., 2010) investigated individuals

BOLD variability and their degree of risk taking. They hypothesized that older

adults might be impaired in risky decisions due to age related declines in dopamine,

which lead to more variable signals in the striatum. They suggest that this variabil-

ity might compromised value estimation. In particular, they looked at the temporal

variability in nucleus accumbens which is a region identified in various risk-seeking

tasks. Using a mediation analysis they find that temporal variability in NAcc in-

creases with age, and this variability causes differences in risk seeking mistakes.

On the other hand, the mean signal in this region does not predict the same mis-

takes. There is a general theory of dopamine function that suggests dopamine in-

fluences the signal-to-noise ratio of information processing, effectively sharpening

brain representations and performance. This is one hypothesis for why variability

in BOLD is tied to age, as dopamine levels decrease during normal aging.

The core regions that are involved in the differential networks found throughout

this work are also largely concentrated around the various dopaminergic pathways.

Mesolimbic, mesocortical and nigrostriatal projections tie together limbic, frontal,

and striatal regions, which effectively spans the same regions as these differential

networks. Additionally the drug-abuser cohort found distinct increases in variability

in frontal and striatal areas commonly affected in drug use due to dopamine dis-

ruption. This suggests one potential mechanism underlying these differences in

variability, where moment to moment changes in dopamine may be reflected in the
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underlying temporal variability of BOLD activity.

A more general and theoretical view of what BOLD variability may represent

comes from some earlier work. McIntosh et al (A. R. McIntosh et al., 2008) found

that multichannel EEG variability increases in adults may reflect a more sophis-

ticated neural system that is able to explore multiple functional states compared

to children. These increases in variability they found were also coupled to faster

reaction times and better performance, suggesting a role for these fluctuations in

optimal behavior. This line of thought has been theorized across work that sug-

gests that variability over trials or time might derive from underlying changes in

coherence or spontaneous activity (Laskaris et al., 2003; Nir et al., 2008). That

is, regions that have a real functional coupling to each other will exhibit greater

variability as their co-activation exhibits itself, and this activity and coordination be-

tween neural systems might be better seen in their variability rather than mean

activity. Under a number of conditions, theoretical work suggests that neural net-

works can spontaneously organize between up and down states of activity (Parga

& Abbott, 2007), and these naturally balanced systems may be nonetheless inher-

ently variable. Importantly, these analytical systems were found to be sensitive to

outside noise, driving modulations into up and down states.

This evidence may provide a systems view of the functional and active brain,

where the kinds of organization seen in the dynamics from the last chapter are a

result of a complex balancing of neural systems interacting with each other into

the multi-state system. These results all point to an even more dynamic brain that

thought, and simply using mean activity will miss most of this information. Certain

subsystems, such as the anterior temporal lobe identified here, may hold a special

role in coordinating this activity. This differential network also overlaps with many

of the key dopamanergic regions of the brain, which has long been seen as playing
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a role in controlling the signal-to-noise of information encoding. Greater variability

seen in some of these regions with age may reflect an increase in the underlying

functional connectivity, that is with age these neural systems are more highly in-

tegrated with additional brain regions. This causes the fluctuating activity to shift

more rapidly in time as it goes in and out of coherence with various other systems.

This is related to a proposed mechanism for the changes in BOLD activity and

inter-regional correlations found through normal aging (Fair et al., 2009), where

it was found that brain organization follows a progression from locally organized

anatomically defined clustering to more distally organized functional clustering, for

example the appearance of a more strongly correlated default mode network link-

ing frontal, cingulate, and parietal areas. In general the increase in variability may

be seen as a consequence of the introduction of additional states that the brain

can occupy, and is a reflection of greater computational and behavioral flexibility.

The variation of fluctuations between these states is likely happening at a scale

much faster than the recorded fMRI activity, but are nonetheless reflected in these

observations.

Garret et al have found that the changes in variability across the brain during

normal aging are mixed between areas that both increase and decrease in variabil-

ity over time. This would challenge a naive idea that aging, and its related decline

in many tasks, is completely a function of noise as a system ’decays’. Rather this

noise is a more complex component that is a reflection of changing brain organi-

zation. Those systems that have reduced variability through normal development

may reflect reductions in adaptability observed after adolescence. In contrast to

previous investigation of variability this chapter has not looked at a regions specific

signal, but variability of inter-regional correlations. This allows a more direct com-

parison of the functional coupling often discussed more theoretically, rather than
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an indirect look at how an increase in coupling might be reflected in variability of

the underlying signal.

McIntosh et al proposed an inverted U of brain variability across age, that can

be matched to a U shape curve of behavioral variability across age. That is, chil-

dren have a great degree of variability in their behavior as their underlying neural

systems have limited coherence between functional systems governing behavior.

Through development, these systems better integrate, are able to flexibly move

between more states, and behavior becomes more controlled. In old age these

neural systems may begin to decouple again, and behavioral variability once again

increases. This ties into aspects of dedifferentiation theory (Baltes & Lindenberger,

n.d.) where older brains become less distinct during task performance through re-

ductions in selectivity and specificity. Along these lines, Garret et al find lower brain

variability in older, poorer cognitive subjects.

It has been proposed that the concept of dynamic range, which refers to the

range of possible neural responses, be extended to variability. Perhaps this vari-

ability might be seen as an analogue for the range itself, where this dynamic range

is not any particular measured signal but the set of neural couplings possible. Ul-

timately the underlying neural system is composed of the connectivity between a

large, and at the level of fMRI, unknowable neural populations, and the information

expressed in a neuron or population of neurons is a function of this connectivity.

The observed BOLD signal is a summation of instantaneous metabolism tied to

neural activity, and it is likely that the variation in this signal is a better marker for

connective range than the mean. While this work looks directly at a differential

metric of functional connectivity over time, it should be noted that many kinds of

analysis, such as that found in the previous chapter, have an implicit modeling

of these changes in variation as well. Those results may not directly assess the
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spatial distribution of variability, but that distribution is governing computation of a

covariance structure in time.

Semantic representations

My earlier investigation into these differential networks was performed in the task-

positive condition and then later reproduced in a temporal rather than semantic

context in resting states. As the distribution of nodes was established as being dis-

tributed around inferior frontal, and anterior temporal lobes, the surprisingly good

alignment with a network hypothesized to account for semantic representation in

the brain was noticed. Semantic memory or conceptual knowledge corresponds to

the knowledge of objects, words, and representations in general (Patterson et al.,

2007; Visser et al., 2010; Wong & Gallate, 2012). This is in contrast to episodic

memory that places or orders events and objects. Abstract representations of in-

formation in the brain have been difficult to study as they are typically thought to

be distributed in some manner and presumably integrate numerous modalities and

systems, ie vision, language, auditory, and so on. One extreme but plausable idea

was that a universal connectivity might be responsible for representations. This

is the idea the entire cortex and some subcortical regions may be responsible for

representations and so no particular stable subnetwork could be identified as coor-

dinating this knowledge. Lesion studies largely eliminated this as a possibility, but

the nature of this representation has still been elusive and is likely at least partially

distributed.

Most recent work has been built around the idea that semantic memory relates

perception and action, and so should be represented or overlap with those regions

(Martin & Chao, 2001). This is necessarily a distributed system, but a key ques-
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tion is whether the encoding is done in a purely distributed manner or if they are

integrated in some hub region. While the numerous features of a representation

are encoded in different areas of the brain, the integrated representation might be

encoded in a distinct area. Subjectively, it seems that semantic knowledge as we

understand it requires one additional step beyond encoding, the ability to general-

ize concepts beyond the attributes of that given object. The idea of an object can

incorporate many sensory or even abstract properties of the entire class of related

objects. This allows for the learned representations to be used in novel contexts

or scenarios not previously seen. Having an independent hub that was involved in

this coordination of properties seems a testable hypothesis for the embedding of

semantic information. Not only should it be possible to identify possible hubs, but

disruption to that area should impair semantic judgement independent of the type

of input.

Considerable evidence has pointed to the anterior temporal lobe as a strong

candidate for this semantic hub. Semantic dementia is a neuro-degenerative con-

dition with progressive deterioration of vocabulary and knowledge about everyday

objects. By the time these patients become systematic there is typically bilateral

degeneration of the anterior temporal lobes. Similarly Alzheimer’s patients may

encounter similar semantic issues, though the more distributed degeneration in

these patients that may extend into anterior temporal regions probably accounts

for the inconsistency in effect compared to Semantic dementia. A number of other

focal disruptions to ATL, such as stroke, might impair semantic recall. Additionally,

the role of ATL was further solidified in a TMS study where symptoms mimicking

semantic dementia were induced through low frequency repeated TMS (Pobric et

al., 2007). Interestingly, relatively few fMRI studies identify the ATL as a significant

region activated during semantic tasks (Patterson et al., 2007). Typically, these
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studies find numerous regions in frontal, posterior temporal, temporo-parietal and

parietal areas, which are likely constituting many parts of the putative distributed

semantic network. Several reasons for this lack of activation have been given. Prin-

cipal among them may be that the ATL may have relatively low signal-to-noise due

to proximity to sinus cavities, and PET may be more able to detect this activation

(Devlin et al., 2000). Magnetoencephalography studies have also shown that in a

semantic task, activation from sensory areas as first detected with convergence in

the ATL about half a second later (Marinkovic et al., 2003).

The network identified in this work is clearly anchored around the anterior tem-

poral lobes, bridging frontal, temporal, and parietal regions. This at first seemed to

be a powerful linkage between some kind of variability present in the task-positive

task and a previously unseen semantic network. Further analysis of resting states

found a very similar pattern of activity in subjects not involved in any specific task.

In either case, there were no specific semantic knowledge tasks being presented,

rather more passive viewing tasks. It may be possible that subjects are using this

network continuously through conscious processing, with evidence of increased

incorporation of visual and sensory areas during the visual task compared to rest.

The flux between resting and attentional states has largely been used as an ex-

planation for the emergence or disappearance of subnetworks such as the default

mode, but the semantic network may be just as taxed when reflecting on internal

cues and demands as external ones. The semantic network may also be constantly

utilized for integrating the functional modes seen in the previous chapter, and so

these regions account for the most variability in functional connectivity while not

actually constituting one of the derived networks. Interestingly, the relative lack of

this network emerging in primates may suggest it does have a role in conscious

activity, and a comparative analysis in sleeping or anesthetized humans would be
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an interesting next step.

There appears to be a highly reproducible network that may coordinate or inter-

act with many other frequently seen functional clusters, and this network may have

been missed in most fMRI studies because they mainly look at mean measures of

activity rather than the variance of that activity. This network may also be related to

some theoretical models of brain function, namely a free energy model proposed

by Karl Friston (K. Friston et al., 2006). Variation could easily be viewed as an ’en-

ergy’, where the mean difference is a velocity away from the information-theoretic

position of the brain at a given moment. The general increase in this energy with

age may reflect the expanding degrees of freedom in the number of states the brain

can explore.

139



Conclusion

In this work I report the traditional functional organization of the brain as observed

through inter-regional correlations in chapter 3, as well as a brief investigation into

possible developmental disruptions in Autism. This establishes, and largely repro-

duces, some basic notions of how the brain is segmented spatially through anal-

ysis of its temporal correlations. This also reproduces some previous work that

was able to use this intrinsic organization as a marker for a subjects age or brain

maturation.

After a review of relevant literature in chapter 2, I go on to demonstrate that the

dynamics of the brain during rest are not stationary as typically assumed, but vary

as different sub-networks co-activate. Nearly all work to date has assumed that

correlations were stationary in time, which I show may miss a considerable and

important aspect of dynamic activity. To produce this more robust picture of the

functional brain I apply a new method from recent machine learning research that

estimates latent aspects behind these dynamics using spectral learning theory.

When comparing this model to one from subjects involved in a visual task, I find

that a ventral visual sub-network becomes more pronounced, and the dynamics

between regions changes in a subtle manner that likely reflects the functional re-

organization under task demands.

I also introduce a new measure that finds a differential network that may ex-

pose the sources of dynamic activity driving the dynamics above. This network
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appears to be largely absent in anesthetized primates, and is disrupted in a cohort

of cocaine users viewing drug related paraphernalia.

These results suggest a dynamic brain containing interactive systems that ap-

pear to exist in a multi-stable steady state. They superimpose to create the ob-

served BOLD signals and re-arrange during visual tasks. The creation of a model

of the dynamics also introduces an opportunity for simulation studies, where per-

turbations of the system may create translational links to atypical groups. Finally,

there may be an independent level of organization that is coordinating this dynamic

activity, which is identified through an analysis of the systems variability. These re-

sults further our understanding of how the brain is organized during rest, and how

that structure may reorganize when presented with a stimulus.

Cortical Activity as a network at the edge of instability

This work has reinforced the idea that the spontaneous activity in the brain during

rest is structured into a number of particular spatiotemporal patterns. These pat-

terns appear to emerge despite the enormously complex and noisy system driving

this activity. This suggests that this complexity is constrained through some sort of

equilibrium state. By better characterizing the nature of dynamics about this equi-

librium, and identifying a putative network of variation possibly coordinating these

dynamics, this work may help to understand the nature of spontaneous activity and

its relationship to evoked activity during tasks.

This equilibrium state appears to be organized around the anatomical frame-

work of the brain, as determined through diffusion tensor imaging (Honey et al.,

2010). These studies have shown many areas with high functional connectivity

also tend to have a strong anatomical connectivity. These include many of the re-
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gions in networks such as the default mode, for example the posterior cingulate

cortex and precuneus have high connection density, suggesting they are a struc-

tural core or hub. While anatomical connections are typically predictive of function,

the reverse is not always true. Additionally, these functional connections are typi-

cally more variable than the anatomical linkages, even in studies of within-subject

retests for reliability (Koch et al., 2002).

If there are functional networks that exist without any stimulation, and are largely

independent of each other without being driven mainly through anatomy, how do

these networks persist? A purely cognitive explanation, such as modes of intro-

spection, may fail to completely explain them as at least some functional networks

exist during anaesthesia and sleep. Deco et al propose that it may be appropriate

to consider these resting dynamics as being a picture of the brain in constant ex-

ploration, shifting through multiple states to generate predictions of likely network

configurations that are optimal for whatever inputs may be coming next (Deco et

al., 2011).

This may be a useful hypothesis, but does not simplify the underlying problem

- how can we understand and model the collective dynamics in such a complex

system as the brain? They discuss several theoretical and computational models

that attempt to recreate some of the connectivity seen in static networks; the dy-

namics discovered in this thesis may provide an important step in bridging our un-

derstanding to these computational models. These models are mainly concerned

with trying to simulate networks from static anatomical connectivity. This is in con-

trast to my own approach; seeking to better characterize the modes of dynamic

activity through observation. The two approaches can be informed by each other,

and eventually begin to constrain the space of outcomes of each in turn.

Briefly, in their review, Deco investigated three models in detail. They applied
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various kinds of connectivity based on anatomical connections, with simulated ac-

tivity derived from these connections driving responses, and they used these to in-

vestigate how fast synchronized activity - typically in the gamma range - might drive

the kind of slow oscillations seen in resting activity. Using these models a number

of system effects similar to observed activity can be seen, such as the emergence

of several coordinated subsystems largely spanning frontal and parietal regions,

and the anti-correlated nature of these systems. One important aspect of the sim-

ulated systems was that the time-window used in capturing data may influence the

observed functional networks, as nodes often form distinct networks for relatively

small periods of time. This of course was a major factor in looking at time-varying

dynamics, identifying how these networks evolve, but it also suggests that the tem-

poral resolution of the scanner may be a factor.

They also warn against the notion of a discrete number of functional networks,

suggesting that anatomy provides a deterministic structure as a scaffold for cer-

tain functional modes, but that the precise configuration is a function of intrinsic

activity (or exploration) and environmental demands. If there is a multi-stable set

of brain networks, constrained but not limited to the underlying anatomical con-

nectivity, noise may provide the ’push’ or kinetic energy needed for the system to

visit network configurations, without being a ’blank slate’ system waiting for input.

Additionally, through visiting these configurations the system is able to shape and

predict future inputs. This provides important links to a large body of theoretical

and computational work. In a follow up study (Deco & Jirsa, 2012) they further

identify that the best fit to BOLD data is obtained when the underlying network is

critical, that is when the brain is operating at the brink of a bifurcation separating

a possible stable equilibrium low activity state from the multi-stable state where

many ’attractors’ cause high activity in different brain areas. I’ve also found evi-
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dence supporting this view, as the superposition of states generally does not sta-

bilize into any particular equilibrium, rather the brain appears to be in a constant

flux between modes. These intermediate states may represent the latent ’ghost’

attractors proposed by Deco et al.

Bayesian brains and free energy

A number of related theories with considerable experimental evidence supporting

them have begun to explain perception and action as being driven through a pro-

cess of unconscious probabilistic inference (Knill & Pouget, 2004; Pouget et al.,

2003). This idea is in some respect very old (Helmholtz, 1910), and might be seen

as the linkage from a neuronal information theoretic world to external physical sys-

tems, clearly stated by Mach who claimed that ’the foundations of science as a

whole and of physics in particular, await their next greatest elucidations from the

side of biology, and especially from the analysis of the sensations’. (Ernst Mach,

1897)

Aided through modern statistical and machine learning techniques, researchers

have found that humans and animals frequently behave as optimal Bayesian ob-

servers. This proposes that the information about the world, as gained through

the senses, is represented by a conditional probability over a set of unknown vari-

ables (the posterior). A Bayes optimal system maintains a representation of the

parameters being computed with their probabilities, allowing a system to integrate

information over time from different sensory modalities, and this representation is

maintained through stages of processing. In Bayesian networks this concept is

known as belief propagation.

The basic premise of Bayesian theories of cortical processing is that the brain
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encodes with something like probability density functions, rather than through a

deterministic and discrete mode of operation. While a deterministic and discrete

picture of the brain is more accommodating to our subjective experience of a uni-

tary nature in our perceptual world and seemingly discrete actions, most careful

observations of behavioral decisions and even their associated neural encoding

point, in many cases, to a more probabilistic view (Averbeck et al., 2006). ’Noise’

often becomes an important component of such systems, for instance in gain en-

coding (Knill & Pouget, 2004). Neuronal noise is often near-Poisson (Tolhurst et

al., 1983), and while it would seem that the tremendous variability often seen in

neuronal firing is detrimental, models suggest that Poisson noise allows a popula-

tion code to represent both the mean and variance of the variables being encoded

- something crucial for Bayesian inference.

While these results are from behavior and ensembles of neurons, the concepts

would very possibly scale to those at the whole brain. Probably the most closely

related work at that scale is by Karl Friston (K. Friston, 2012), where Bayesian Vari-

ational methods are used as an explanatory mechanism for embodied perception.

Recently this approach was used as a theoretical basis for resting state activity

(K. J. Friston et al., 2014). They consider a system undergoing self-organized insta-

bility and critical slowing. This assumes that a system is minimising the entropy of

exogenous fluctuations driving internal states through minimising self-information,

a kind of ’surprise’ in the system, defined through a free energy function quantify-

ing this as the error in internal representations compared to sensory input. Briefly,

this model shows that an expression of free energy defines a kind of landscape

where minimums never have a high curvature. That is, internal states will tend to

flow into these valleys, but are not constrained by free energy and can be sensitive

to random fluctuations. They suggest that from a Bayesian perspective this self-
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organized instability reflects that a system seeks to respond sensitively to sensory

pertubations while resisting an overly precise or particular interpretation. This can

be seen as a mechanism for metastability and allows for a more flexible repertoire

of action (Breakspear, 2004).

Conclusion

Tremendous challenges remain in bettering our understanding of the relationship

between the brain, perception, and action. The rapid advancement of technolo-

gies used to record and image the brain has resulted in the need for increasingly

complex models of that data. Recently the BRAIN initiative has called for an accel-

eration in developing these recording technologies, as well as investing in creating

the theoretical, computational, and machine learning tools and knowledge that will

be necessary to handle new data. One might imagine the ability to look into a

brain with perfect electrical knowledge, which somehow underlies the full spec-

trum of cognition and behavior. With our current methods and prior knowledge

this data would be completely overwhelming. These developments parallel those

outside academia, where "big data" has become a new industry, and many com-

panies seek to mine ever increasing amounts of data for useful, and profitable,

information.

As the models we use to leverage our understanding of data collected from

neural systems become more complex there may be a tendency to create "black

box" systems that are successful at predicting outcome, but in a mysterious fashion

as the parameters are too complicated to easily interpret. This may be appropriate

for some cases, such as most industry applications, or perhaps in diagnostic tools,

but basic science questions require methods that can be disentangled to under-
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stand some mechanistic basis. The brain may be a special case, as its a peculiar

situation where we are developing artificial learning tools to understand what is es-

sentially a biological "black box", and if these tools add to that complexity we may

be heading in the wrong direction.

We are rapidly moving into a period of "big data" neuroscience, and it may be

a period marked by every answer leading to a new set of questions. Not long

ago spontaneous and resting activity in the brain was viewed largely as noise to

average away, but it was discovered that it was actually well organized and not very

different from the task-oriented brain. More than a decade after the term "default

mode" was coined, this work adds to a small but growing body of evidence that

there is yet another level of complexity to be examined in spontaneous activity,

and this leads to numerous questions in itself. These questions will hopefully help

identify new avenues to explore with future experiments, and better prepare us for

the time when we do have a more complete window into the brain.
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