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Abstract 

Age-related macular degeneration (AMD) is a multifactorial disease and is regarded as 

the predominant cause of central vision loss in the elderly in industrialized countries. A 

critical target tissue in AMD is the retinal pigment epithelium (RPE), which together with 

Bruch’s membrane forms the outer blood-retina barrier (BRB). RPE-barrier dysfunction 

in AMD might result from attenuation and disruption of intercellular tight junctions. 

Zonula occludens-1 (ZO-1) is a major structural protein of intercellular junctions. A 

connexin-based peptide mimetic, αCT-1 (Alpha Connexin carboxy-Terminal 1), was 

developed which competitively inhibits ZO-1 interaction with its binding partners. We 

hypothesized that targeting ZO-1 signaling using αCT-1 would maintain BRB integrity 

and reduce RPE pathophysiology by stabilizing gap- and/or tight-junctions. 

Choroidal neovascularization (CNV) was induced using laser-photocoagulation; RPE-cell 

barrier loss was triggered by bright light exposure (3000 lux for 3 hours). Both models 

lead to VEGF- dependent loss of cell junctions. The αCT-1 peptide was delivered via 

daily eyedrops. CNV lesion sizes were determined using optical coherence tomography 

(OCT). RPE flatmounts were stained for cell-junction proteins ZO-1 and occludin. Cell 

profiler software was used to examine the RPE tiling pattern. In vitro experiments using 

ARPE-19 cells showed that αCT-1 stabilizes intercellular tight junctions.  

αCT1 treatment reduced CNV development and fluid leakage, and damage was 

correlated with disruption in cellular integrity of the surrounding RPE cells. Light-

damage significantly disrupted RPE cell morphology, which was prevented by αCT-1 

pre-treatment. In vitro experiments using ARPE-19 cell monolayers suggest that αCT-1 

stabilizes intercellular tight junctions. 
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Taken together, stabilization of cellular junctions with αCT-1 was effective in 

ameliorating RPE dysfunction in AMD models of photo-coagulation-induced CNV and 

bright-light exposure RPE-cell barrier loss. Future research will include additional 

investigation into the peptide’s mechanism of action. 
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Chapter 1: Review of Literature 

Overview of AMD 

Age-related Macular Degeneration (AMD) is the most common cause of central visual 

impairment in the elderly. In the Unites States alone, 10% of individuals between 65 and 

75 years of age have some degree of vision loss related to AMD.1 The risk of getting 

AMD increases 15-fold in individuals over 75 years of age. With the population age only 

growing in industrialized countries, the prevalence of AMD will rise as well.2 It is 

estimated that the prevalence of this disease will increase to around 3 million by 2020.3 

 

AMD is a multifactorial disease of which the largest risk factor is aging. Other risk 

factors are of environmental as well as genetic nature. Polymorphisms in the complement 

control proteins factor H (CFH) and factor B (CFB), as well as complement receptor 2 

(C2), are strongly associated with AMD.4 In fact, approximately 50% of AMD cases have 

the risk allele (402H) while only 29% of the controls carry that particular variant in their 

genome.5  The reason being is that a single mutation from tyrosine (Y) to histidine (H) at 

the 402 site of CFH is implicated in impaired regulation of the alternative pathway’s 

complement activation.4, 5 On the other hand, variants of CFB and C2 seem to be 

protective. Haplotype analysis revealed that possessing the protective allele L9H in BF 

and E318D inC2, as well as the variant intron 10 of C2 and the R32Q allele significantly 

reduces the risk of AMD.6 It is important to note that there are synergistic effects of 

genetic and environmental agents that ultimately determine the risk factor of developing 

AMD. One environmental factor that is unequivocally linked to AMD is tobacco 
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smoking. It is thought that smoking increases the levels of oxidative stress, thereby, 

directly leading to damage to the retinal pigment epithelium (RPE) in AMD.7   

 

AMD pathology involves the breakdown of the retinal pigment epithelium (RPE), a 

single layer of hexagonal, highly pigmented cells located between the retina and the 

choroid. The RPE displays a distinct apical and basal polarity with the photoreceptors 

being on the apical and the fenestrated choriocapillaris on the basal side. Hence, the RPE 

together with the BrM form part of the blood-retina barrier, ensuring the separation of the 

retina from the choroid circulation, and thus, maintaining the immune privilege of the 

eye.8 Its many functions include: transport of molecules between the subretinal space and 

the choroidal blood supply; spatial ion buffering; secretion of growth factors that control 

the stability of photoreceptors, Bruch’s Membrane (BrM) and the choroid; and 

modulation of the immune response.8 Photoreceptor outer segment discs continuously 

renew themselves from the base due to the shedding of photo-generated oxidized outer-

segment disc material.9 The RPE is able to phagocytose photoreceptor outer segments via 

its microvilli on the apical aspect. Impaired function of the RPE to effectively remove 

and degrade this material can have deleterious effects on the retina’s health.8-10 The 

internalized discs that don’t get properly degraded accumulate as lipofuscin granules in 

the lysosomal system. While lipofuscin granules naturally accrue with age, it is presumed 

that some of their contents, specifically A2E, are associated with RPE damage and 

AMD.10, 11  
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Two clinical forms of AMD exist: atrophic (dry) and exudative (wet). White or yellow 

fatty deposits (drusen) that build up between Bruch’s membrane (BrM) and the retinal 

pigment epithelium (RPE) characterize the early stage of AMD. Normal aging 

contributes to small discrete hard drusen within the macula. However, the deposits that 

are linked to AMD are of soft nature and exceed 63 µM in diameter.10, 12 In late AMD, in 

addition to drusen, patients exhibit damage to the macula, which can occur due to 

consequences of geographic atrophy (GA) or choroidal neovascularization (CNV). In 

GA, the advanced form of dry AMD, the RPE starts to atrophy, thereby leading to the 

degeneration of photoreceptors. Thus, vision is far more impaired in GA than in early dry 

AMD that bears little consequence to vision. Wet AMD on the other hand, is 

characterized by the growth of new blood vessels that break through the blood-retina 

barrier and grow into the retina under the macula. These blood vessels tend to be fragile 

and often leak blood and fluid. This phenomenon is termed CNV and is associated with 

rapid and severe vision loss. While only 10 – 15% of AMD cases develop into the 

exudative form of the disease, it accounts for more than 80% of the individuals who are 

legally blind due to AMD.13  

 

RPE damage and loss of blood-retina barrier function is a common feature in dry and wet 

AMD, where the pro-angiogenic factor, vascular endothelial growth factor (VEGF), plays 

a critical role.12 The RPE naturally secretes low concentrations of VEGF to the basal side 

of the RPE, where the growth factors are needed to stabilize the choroidal endothelium.14 

In response to an injury and damage, the RPE secretes high levels of VEGF on the apical 

and basal side, inducing RPE permeability and potentially harmful neovascularization in 
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the choroid.15 Leaky blood vessels and RPE permeability are the result of VEGF altering 

tight junction function in the respective locations.16 

 

The RPE exhibits three kinds of cell junctions: tight, adherens and gap junctions. Tight 

junctions form a gate or barrier that regulates the paracellular diffusion of solutes and 

nutrients in the RPE.17 Adherens junctions provide the strong mechanical attachment 

between adjacent RPE cells that occurs prior to the formation of tight junctions.18 

Together with tight junctions, adherens junctions afford the barrier function of the RPE, 

while gap junctions allow for the communication between cells within the RPE 

monolayer.19  

 

Overview of Cell Junctions  

The apical junctional complex consists of two distinct cell junctions: tight and adherens 

junctions.20 The tight junctions comprise of at least 40 proteins some of which are 

categorized into three transmembrane proteins: claudin, occludin and adhesion proteins 

that mediate intercellular adhesion such as junctional adhesion molecule (JAM).21, 22 

Other proteins are intracellular scaffold proteins that link the junctions to the 

cytoskeleton. Claudins make up the backbone of the tight junction complex, as they are 

able to polymerize, forming the tight junction strands necessary gating properties.23 

Currently, 24 members of the claudin family have been discovered. They are implicated 

in the regulation of tight junction ion selectivity, some of which result into the formation 

of cation or anion selective pores. Occludin is an important tight junction protein that 

plays more of a regulatory role of maintaining and organizing the tight junction structure, 
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but is neither necessary nor sufficient for its survival.24 The main element in adherens 

junctions is the cadherin receptors that bridge the gap between neighboring cell 

membranes through homophilic interactions. In adherens junctions, catenins are the main 

scaffolding proteins that act to tether these junctions to the cytoskeleton.25  

 

Gap junctions allow for a direct and rapid diffusion of second messengers, nutrients and 

metabolites that are smaller than around 1000 Daltons.19 This form of communication 

plays a critical role in cellular regulations such as differentiation and proliferation, as well 

as protection and cell death via the bystander effect.26 The basic unit of a gap junction 

channel is the connexin, a tetraspan transmembrane protein. Twenty-one connexin 

isoforms have been identified in the human genome, each with a distinct spatial and 

temporal expression pattern.27 The RPE expresses Connexin43 (Cx43) and Connexin46 

(Cx46).28 Six connexins assemble into one connexon (hemichannel), while two 

connexons from adjacent cells join together to form a gap junction.29 Various heteromeric 

configurations of different connexin proteins can occur during the assembly of a 

connexon, leading to different communication properties of gap junctions.28  

 

Role of ZO-1 

Zonula occludens-1 (ZO-1) is a scaffolding protein that binds to all three junction types, 

anchoring their respective cell junction molecules to the cytoplasmic actin. ZO-1 belongs 

to the family of membrane-associated guanylate kinase-like proteins (MAGUK) and 

carries three PDZ domains: an SH3 domain, a GUK domain and a proline-rich domain at 

the C-terminus.30 The different domains afford interactions with junctional 
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transmembrane proteins (i.e., connexins) as well as their peripheral cytoplasmic 

scaffolding proteins. The binding of Cx43 to the PDZ2 domain of ZO-1 mediates the size 

and stability of gap junction channel aggregates.31, 32 ZO-1 regulates the cellular 

distribution of Cx43, providing a control point for dynamic switching between gap 

junctional communication and non-junctional (hemichannel) communication.32, 33 ZO-1 

disruption in a functional epithelial monolayer results in a loss of barrier function as well 

as a reorganization of apical actin and myosin.30, 34 Important for the context of AMD, 

VEGF disrupts ZO-1 organization, resulting in tight junction disassembly and increased 

monolayer permeability.35, 36 VEGF-induced occludin phosphorylation of serine 490 

resulted in decreased ZO-1 binding to occludin’s C-terminus domain, concomitant with 

the defragmentation and ubiquitination of tight junctions. Furthermore, in vitro studies 

using endothelial cells show that VEGF-mediated disruption of gap junction 

communication is correlated with changes in Cx43 phosphorylation.37  

 

Role of αCT-1 

 A synthetic peptide (25 amino acids with MW = 3597.33) was developed that contains a 

sequence mimicking the Cx43 C-terminal PDZ binding domain to target the interaction 

between Cx43 and its binding partners containing a PDZ2 binding motif.31 The αCT-1 

(Alpha Connexin carboxy-Terminal 1) peptide has a high binding-specificity with the 

PDZ-2 domain of ZO-1 and competitively inhibits ZO-1 interaction with its binding 

partners, such as claudins, occludin and Cx43.31, 38, 39 Hunter has shown that inhibiting 

the ZO-1/Cx43 interaction increases the size of the gap junction plaque by increasing the 

proportion of hemichannels forming gap junctions with the adjacent cells compared to 
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undocked connexons in the plasma membrane.31 Unpaired hemichannels allow for 

autocrine as well as paracrine intercellular communication, regulating the release of 

extracellular messengers such as ATP.40, 41 Release of ATP can promote proinflammatory 

responses such as leukocyte chemotaxis, NO generation, cytokine release, or 

cytotoxicity.40 Thus, stabilizing gap junction or tight junction function by preventing or 

reducing the interaction of ZO-1 with its binding partners via the αCT-1 peptide can be 

helpful in treating diseases where the cell junctions and their given functions are 

impaired.  

 

Treatment with the peptide has been shown to have positive effects on treating 

cardiomyopathies42-45 and on wound healing.46-50 As gap junctional Cx43 is implicated in 

wound regeneration and scarring, the αCT-1 peptide was studied in models of cutaneous 

and corneal wound injury. Treatment with the peptide not only accelerated wound 

healing, but reduced the formation of scars in the tissue as well.46, 48, 51 A similar effect is 

to be seen in the heart, where a myocardial infarction can lead to the disruption of gap 

junction organization, which in turn, can result into re-entrant arrhythmias and overall 

heart failure.42, 43, 45 Application of αCT-1 to infarcted hearts reduced the propensity for 

arrhythmia as well as increased cardiac contractile function, improving the heart’s 

mechanical function after injury. 42, 43, 45 Given that RPE cells are equally as dependent on 

healthy cell junction functions as are cardiovascular and skin tissues, we wanted to test 

the effects of the peptide on retinal diseases involving the RPE. Knowing that AMD is 

the result of decreased RPE/BrM barrier function, we propose that stabilizing the RPE 

cell junctions by treating with αCT1 will reduce AMD-like pathology.  
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Rationale And Aims 

AMD is a multifactorial disease and is regarded as the most common of central vision 

loss in individuals over 65 years of age in Western countries. As a consequence of the 

exponential population aging, the projected number of people with AMD in 2020 is 196 

million, increasing to 288 million in 2040.52 The loss of visual acuity seen in individuals 

affected by AMD has a major impact on the quality of life as well as causing a significant 

economic burden to society.2   

 

Two clinical forms of AMD exist: dry (atrophic) and wet (exudative).  Dry AMD is 

characterized by a more progressive vision loss than in the wet form of the disease, where 

vision impairment is far more acute and severe.13 While the atrophic form is far more 

prevalent, no FDA approved treatment options are currently available for dry AMD. 

Advancements in the management of the exudative form of AMD have been made, 

however, these treatments are expensive and not available to all patients in all countries.52 

Treatment options involve monthly or even bimonthly intraocular injections with anti-

VEGF agents. As VEGF is the main pro-angiogenic factor involved in CNV, the 

hallmark of wet AMD, reducing the levels of VEGF in the retina and BrM can inhibit the 

progression of exudative AMD. However, not only is treatment via intravitreal injections 

very invasive, but it has also recently been published that patients receiving these 

injections can develop geographic atrophy, the late dry form of AMD. Hence, it is critical 

to further research the underlining mechanisms of AMD and the role that VEGF plays in 

wet as well as dry AMD in order to advance the treatment options for AMD. 
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The main target tissue affected by all types of AMD is the RPE. The RPE is a monolayer 

of cuboidal shaped cells that serves various factors important for visual function 

including secreting growth factors (including VEGF) and nutrients to the retina and 

choroid as well as the general stability of these layers. And finally, the RPE with the BrM 

acts as an important barrier, separating the choroidal vasculature from the neuronal retina. 

Tight junctions, regulating the flow of molecules between the apical and basal lateral 

compartments, thereby, controlling paracellular permeability and communication mediate 

this barrier. Gap junction channels, on the other hand, enable intercellular communication 

and the diffusion of ions and metabolites between connecting cells. Thus, preventing the 

breakdown of the RPE by stabilizing the different cell junctions involved in the various 

functions of the RPE offers therapeutic opportunity in the treatment of AMD. 

 

Hypothesis 

The αCT-1 peptide with its soluble design allows for intracellular translocation due to an 

antennapedia complex included to the peptide sequence.48  There is substantial evidence 

that the peptide controls cell junction function in wound healing and cardiomyopathies, 

and therefore, reduces inflammation preventing a progression of the disease.43, 45-47 We 

propose that the peptide will counteract the RPE/BrM breakdown by maintaining the 

barrier and communication function in the RPE and decreasing chronic inflammatory 

response (i.e. VEGF) along with oxidative stress associated with AMD.  We tested this 

hypothesis in two different mouse models: the CNV model that mimics the angiogenesis 

seen in wet AMD, as well as the light damage model which shows loss of RPE cell 
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integrity akin to dry AMD. ARPE-19 cells were employed to determine the drug’s 

mechanism of action.   

 

Aim 1: Establish αCT-1 as a treatment paradigm in two VEGF-dependent in vivo models 

of AMD 

Aim 2: Examine effects of the αCT-1 peptide in vitro on ARPE-19 cells to study the 

drug’s mechanism of action 
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Chapter 2: Specific Aim 1 

Establish αCT-1 as a treatment paradigm in two VEGF-dependent in vivo models of 

AMD 

We tested the biological function of the Cx43 C-terminus mimetic αCT-1 peptide on two 

murine models of AMD. Mice do not develop AMD as they lack a macula, however, the 

structural anatomy and the primary site of AMD (RPE, BrM and choriocapillaris) are 

preserved from rodents to humans, making mice nevertheless attractive candidates for 

AMD research.10 Hence, AMD-like pathology must be induced in mice to study the 

peptide’s treatment efficacy via eye drop application (formulated in 0.05% Brij-78 and 

0.9% NaCl) as well as its therapeutic window.  

 

The Rohrer Lab has established a model of laser-induced CNV to examine the 

underlining mechanisms involved in wet AMD.53 This model has confirmed the 

involvement of complement activation, oxidative stress, and more importantly for this 

study, elevated VEGF levels as contributing factors as well as providing evidence of 

efficacious treatment strategies targeting said factors.53-55 Four CNV lesions with a spot 

size of 100 µm are generated via laser photocoagulation of the Bruch’s membrane 

surrounding the optic nerve. These lesions increase radially over time and can be 

monitored via Optical Coherence Tomography (OCT), a diagnostic tool that allows for in 

vivo imaging of the retina and BrM. In addition, lesions and the surrounding area can be 

examined with cell junction markers, such as ZO-1 and occludin to study the morphology 

of cells. And finally, electroretinography (ERG) can be conducted on CNV’d animals to 

compare retinal function between αCT-1-treated animals and controls. It has been shown 
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that CNV lesions correlate in a drop in ERG amplitudes and the amount of vision loss 

correlates with the size of the CNV lesion.5, 53, 54 The effects of the αCT-1 peptide will be 

examined on tight junction stabilization during CNV growth and on the retina function 

post photocoagulation.  

 

Light-induced loss of the blood retina barrier is characterized by structural and functional 

similarities to pathologies in dry AMD. Cachafeiro has shown that hyperactivation of 

light leads to photoreceptor cell death that is mediated by VEGF and RPE permeability.56 

Albino mice are exposed to bright light under 3000 lux for 3 hours and RPE morphology 

was examined 24 hours after bright light exposure by immunohistochemistry between 

non light-damaged controls, light-damaged vehicle mice and light-damaged αCT1-treated 

animals. Morphometric analysis was conducted via the cell profiler software. In order to 

determine the treatment window for αCT-1 application, albino animals were divided in 

groups, administering only one dose of treatment at a time point either before or after 

bright-light exposure. The cell profiler software was used to determine the tiling pattern 

of the RPE and its morphology for each time point. 
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Materials and Methods 

Animals 

Albino Balb/c mice were generated from breeding pairs obtained from Harlan 

Laboratories. Pigmented C57BL/6J mice were based on Jackson Laboratory breeding 

colonies. The animals were housed in the Medical University of South Carolina animal 

care facility under a 12-hour light / 12-hour dark cycle with access to food and water ad 

libitum. All experiments were conducted in accordance with the ARVO Statement for the 

Use of Animals in Ophthalmic and Vision Research and were approved by the 

Institutional Animal Care and Use Committee.  

 

αCT-1 Peptide Treatment 

For in vivo studies, the αCT-1 peptide (FirstString Research, Inc., Mount Pleasant, SC) 

was administered via eye drops (5 mM; 10 µL per eye) formulated in a 0.05% Brij-78 and 

0.9% NaCl solution. The control group received vehicle solution. The treatment schedule 

varied for individual experiments. Cell culture experiments were performed with 100 µM 

αCT-1, diluted in sterile water. A one-hour pre-incubation period of αCT-1 was 

employed for all in vitro experiments. 

 

Laser-Induced CNV and Treatment Schedule 

To induce CNV lesions, 3- to 4-month-old C57BL/6J mice were anesthetized (xylazine 

and ketamine, 20 and 80 mg/kg, respectively) as previously described.53 Mouse pupils 

were dilated using 2.5% phenylephrine HCL and 1% atropine sulfate. In order to avoid 

cataract formation, mice were treated with Goniovisc (HUB Pharmaceuticals) before and 
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after lasering. Laser photocoagulation was induced via a 532 nm Argon laser (100 µM 

spot size, 0.1 s duration, 100 mW), in which 4 equidistant laser lesions were produced 

surrounding the optic nerve. The formation of a bubble at the site of photocoagulation 

indicated the desired rupture of the Bruch’s membrane.54  

 

Three αCT-1 peptide treatment regimens were employed for CNV studies in order to 

establish the treatment window of the drug. For the early administration model, mice 

were treated twice a day (am and pm) for the first three days post laser photocoagulation. 

In the continuous treatment paradigm, the animals were only given eye drops once a day 

throughout the 6-day experiment. Finally, the effects of the αCT-1 peptide were 

investigated when treating the animals twice daily (am and pm) during the last three days 

of the CNV study. Thus, all three treatment regimens resulted in equal drug exposure. 

Animals were euthanized on day 6 or 7 (depending on the experiment) in order to obtain 

RPE/choroid samples for immunofluorescence studies (see Immunofluorescence 

Staining). 

 

Assessment of CNV Lesions 

CNV size was determined using optical coherent tomography (OCT) on day 5 given that 

maximal CNV size was reported on that day.57 OCT was performed using an SD-OCT 

system (Bioptigen Inc., Durham, NC), with scan parameters set to 1.6 x 1.6 mm 

rectangular volume scans, consisting of 100 B-scans (1000 A-scans per B scan). Mice 

were anesthetized and pupils were dilated as described above. Using the Bioptigen SD-

OCT system, the center of the lesion was determined by identifying the midline of the 
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RPE/Bruch’s membrane rupture,57 and Image J software (http://imagej.nih.gov/ij/) was 

used to measure the cross-sectional area of the hyporeflective spot seen in the fundus 

image (en face) as well as the area of fluid accumulation in the outer retina (cross 

sectional view).  

 

Electroretinography 

Electroretinography (ERG) recordings were performed as previously described.58, 59 In 

short, C57BL/6J mice were dark-adapted overnight and anesthetized with xylazine and 

ketamine (20 and 80 mg/kg, respectively). Pupils were dilated with phenylephrine HCL 

(2.5%) and atropine (1%). ERGs were recorded with the UTAS-2000 (LKC 

Technologies, Inc., Gaithersburg, MD) system, using a Grass strobe-flash stimulus. 

Stimuli consisted of 10 µs single flashes at a fixed intensity (2.48 cd*s/m2) under 

scotopic conditions. ERG measurements were performed before (baseline ERG) laser 

photocoagulation and afterwards on day 6. A-wave amplitudes were measured from 

baseline to the a-wave trough, whereas b-wave amplitudes were measured from the a-

wave trough to the peak of the b-wave. 

 

Bright Light Exposure Protocol and Treatment Schedule 

Six-week-old Balb/c mice were exposed to bright light for 3 hours using 3000 lux after 

12 hours of dark adaptation.60 The light exposure box was wrapped in aluminum foil to 

increase reflectivity. Mouse pupils were dilated using 2.5% phenylephrine HCL and 1% 

atropine sulfate 15 minutes prior to exposure of bright light.  
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Different treatment groups were established. To demonstrate proof of principle, animals 

received αCT-1 eye drops (5mM, see αCT-1 Peptide Treatment) three and one hours 

prior to the start of light damage, as well as 15 minutes after completion of light 

exposure. The control group was given vehicle drops at the same time points. For 

comparison, one group of animals did not receive any bright-light exposure. To establish 

the therapeutic window for αCT-1, 7 additional groups of mice were treated 4, 2, and 1 

hour prior to bright-light exposure, as well as 1, 2, 4 and 6 hours post bright-light 

exposure. All animals were euthanized 24 hours post light damage in order to collect 

RPE/choroid flatmounts. RPE cells were stained (see Immunofluorescence Staining) with 

ZO-1 and occludin for morphometric analysis via the cell profiler software 

(cellprofiler.com).  

 

Immunofluorescence Staining  

Eyes were collected, and lens, anterior chamber and retinas were removed.53 Eyecups 

were immersion-fixed in 4% paraformaldehyde (PFA) overnight at 4ºC. After extensive 

washing, eyecups were either incubated in antibodies recognizing ZO-1 (1:200; 

Invitrogen), occludin (1:200; Invitrogen) or connexin43 (1:300; Sigma Aldrich) in 

blocking solution (10% normal goat serum, and 0.4% Triton-X in tris-buffered saline). 

All before mentioned antibodies are rabbit polyclonal; thus, Alexa Fluor 488 goat-anti-

rabbit (1:500; Invitrogen) was used as the secondary antibody. Following extensive 

washing, eyecups were flattened using four relaxing cuts and cover-slipped using 

Fluoromount (Southern Biotechnology Associates, Inc., Birmingham, AL). All 

immunohistochemistry experiments included a no-primary antibody control. Staining of 
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flatmounts was examined via fluorescence microscopy (Zeiss, Thornwood, NY) equipped 

with a digital black-and-white camera (Spot camera; Diagnostic Instruments, Sterling 

Heights, MI). 

 

Assessment of RPE Morphology 

Images of flatmounts (tiff) were imported into CellProfiler 2.1.1 for analysis 

(http://www.cellprofiler.org/). For each comparison, images of equal size and exposure 

time were analyzed, using a customizable script. The pipeline “neighboring cells” was 

used. For each image, we obtained cell count (number of cells present), form factor 

(equals 1 for a perfectly circular object), eccentricity (measures the degree to which an 

object represents an ellipse, and varies between 0 and 1), number of neighbors (a perfect 

hexagonal RPE cell has 6 neighbors), perimeter (the total length of the perimeter of all 

the RPE cells present in the image), and the total area covered by the RPE cells 

(determines the degree of loss of cells). Results were exported into Excel for statistical 

analysis. 

 

Statistical Analysis 

Data are presented as mean ± SEM. Single comparisons were analyzed by t test analysis, 

accepting a significance level of P <0.05. Repeated ANOVA measurements were 

conducted for ERG studies. 
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Results 

In order to test the biological function of the αCT-1 peptide, we needed to confirm that 

the drug does reach into the RPE via corneal eye drop application. The drug was further 

tested on two VEGF-induced in vivo models of AMD to establish it as a therapeutic 

option for this disease. 

 

I. Detection of αCT-1 in RPE Cells 

αCT1 peptide was applied via corneal eye drop application (5 mM) 4 hours prior to 

enucleation of the eyes. To confirm that αCT-1 reached its target via this route, we 

stained for Cx43 in murine flatmount preparations. Given that the αCT-1 is a peptide 

mimetic of the C-terminal sequence of Cx43, we could compare the difference in the 

Cx43 staining pattern between animals that were treated with αCT-1 when compared to 

vehicle. As expected, the vehicle control animals showed Cx43 staining mostly in 

clusters along the lateral walls of the RPE, representing Cx43 in gap junctions (Fig. 1B). 

In comparison, the flatmount from the animal that was given αCT-1 eye drops showed 

significantly more Cx43 staining both in gap junctions as well as in the cytoplasmic 

compartment (Fig. 1C). No staining was detected in no-primary antibody controls. These 

data confirmed that αCT1 applied to the cornea can reach the intended target tissue in 

quantities detectable by immunohistochemistry.  
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Figure 1 

 

Figure 1. αCT1 detection in murine RPE flatmounts. The αCT-1 peptide has an amino 

acid sequence that is mimetic of the Cx43 C-terminal sequence. Thus, the peptide can be 

detected via Cx43 antibody that recognizes the C-terminal domain. The eyes of the 

mouse that received the peptide were enucleated 4 hours after eye drop administration 

and stained for Cx43. The αCT-1 peptide could be clearly detected in the animal that 

received the treatment drops (C), when compared to vehicle-treated animals (B). No 

primary antibody was used as a control (A).   
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II. Effects of αCT1 in a Model of CNV 

II-A. αCT1 Peptide Decreases CNV Development 

CNV is known to lead to an increase in angiogenic factor VEGF expression in both 

mouse and human RPE,53 and CNV is associated with blood vessel growth and fluid 

leakage. In order to investigate the effects of the αCT-1 peptide on CNV development in 

3- to 4-month-old C57BL/6J mice, CNV lesions were induced by laser photocoagulation 

of BrM. Area measurements of CNV lesion size (en face images) (Fig. 3A, B) and area 

of fluid leakage (vertical section) (Fig. 3C, D) were analyzed by SD-OCT. In Figure 2, 

we established the peptide’s therapeutic dose to be 5mM, thus for further experiments, 

the peptide was administered via eye drops (5 mM of αCT-1; 10 µL per eye) and its 

efficacy was compared to vehicle drops in three different treatment regimes. All animals 

were exposed to equal drug treatment with the exception of timing in order to investigate 

the treatment window of the drug. Treatment was either provided continuously (mice 

were treated once [in the pm] on days 1-6 or 4-9) (Fig. 4B, D); during the early phase of 

the model (animals were treated twice [in the am and pm] on days 1-3) (Fig. 4A); or 

during the growth phase of the lesion (animals were treated twice [in the am and pm] on 

days 4-6) (Fig. 4C). αCT-1 was found to significantly reduce the growth of the CNV 

lesion by around 25% (P <0.05) in both the 6-day continuous (Fig. 4B), as well as the 3-

day early administration group (Fig. 3A). However, no significance could be established 

for the group that received treatment for 3-days late in the development of CNV (Fig. 

4C) or those that received the delayed 6-day continuous treatment (Fig. 4D). Importantly, 

αCT-1 was found to not only reduce the size of the fibrovascular scar (Fig. 4, left-hand 

column), but also to significantly reduce the amount of fluid leakage into the subretinal 
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space (Fig. 4, right-hand column) by around 50% (P <0.05) in both the early 6-day 

continuous, as well as the 3-day early administration group. As seen for growth 

assessments, no significance could be established regarding fluid leakage for the groups 

receiving αCT-1 treatment for 3 days in late CNV or those receiving the delayed 6 day 

treatment. These data together suggest that the αCT-1 peptide is required during the early 

phase of CNV to exert its effect on reducing both angiogenesis and fluid leakage.  
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Figure 2 

 

Figure 2. Dose efficacy of αCT-1 in in vivo models. The αCT-1 peptide was 

administered via eye drops (100 µM, 500 µM, 1 mM or 5 mM; formulated in 0.05% Brij-

78 and 0.9% NaCl; 10 mL per eye) and its efficacy was compared to vehicle. An asterisk 

denotes significance (P <0.05) comparing vehicle group and αCT-1-treated animals. Data 

are expressed as mean ±SEM (n = 3-8 per treatment group).  
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Figure 3 

	  

Figure 3. Imaging of choroidal neovascularization and fluid leakage in αCT-1- 

versus vehicle-treated mice. Animals were analyzed on day 5 post laser-

photocoagulation by SD-OCT. The cross-sectional area of the hyporeflective spot seen in 

the fundus image (A, B) as well as the area of fluid accumulation in the outer retina (C, 

D) were determined and representative OCT images taken from the vehicle (A, C) and 

αCT-1-treated animals (B, D) are depicted. 
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Figure 4 

 

Figure 4. Analysis of cross-sectional area and fluid accumulation in αCT-1- versus 

vehicle- treated mice. CNV area and fluid accumulation were determined from SD-OCT 

images as depicted in Figure 2. Quantification of the cross-sectional areas of the lesions 

(left-hand column) as well as areas of fluid accumulation (right-hand column) were 

measured in pixels for the individual treatment groups. CNV size and area of fluid 

accumulation in αCT1-treated animals was reduced compared to the vehicle group for the 

continuous (B) and early (A) treatment paradigms. No significance was noted between 

the two groups for the late treatment study (C, D). Data are expressed as mean ±SEM (n 

= 7-23 animals per treatment group). 
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II-B. αCT-1 Peptide Maintains RPE Cell Integrity Around CNV Lesions 

CNV has at least two components, it involves breakdown of the RPE, followed by 

angiogenesis of the choroidal vasculature. To test whether CNV size also correlated with 

RPE cell integrity, a subset of mice (vehicle group and animals treated for 6 days with 

αCT-1) were sacrificed 7 days after CNV induction and the RPE/choroid was 

flatmounted. The flatmounts were histologically analyzed for the cell junction markers 

ZO-1 and occludin. In the vehicle-treated animals, ZO-1 and occludin staining revealed a 

large halo of unhealthy RPE cells surrounding the CNV lesion (Fig. 5A, C). Unhealthy 

was defined as cells having lost their junctional markers or having lost their normal 

hexagonal shape. The diameter of this halo was significantly reduced (P <0.05) by the 

αCT-1 peptide for both cell junction markers by ~30% (Fig. 5B, D and Fig. 6). This data 

suggested that the αCT-1 peptide diffuses to the site of the lesion in the RPE/BrM where 

it is needed to stabilize tight junctions, preventing the breakdown of the RPE layer, 

thereby limiting the size of the CNV lesions. 
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Figure 5 

 

Figure 5. RPE integrity in αCT-1 compared to vehicle-treated mice (qualitative 

approach). On day 6 after the induction of CNV, eyes were enucleated and RPE/choroid 

eyecups were stained for two different cell junction markers ZO-1 (A, B) and occludin 

(C, D). Representative images for each cell junction marker are presented, depicting the 

differences in the diameter of unhealthy cells (peri- lesion area) surrounding the lesion 

(LES) in the control group compared to the αCT-1-treated animals. 
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Figure 6 

		 

Figure 6. RPE integrity in αCT-1 compared to vehicle-treated mice (quantitative 

approach). Quantitative comparisons of lesion distances for each cell junction marker 

and treatment group reveals that αCT-1 significantly (P <0.05) reduced the lesion 

distance for ZO-1 as well as occludin (in µm; ZO-1: control 105 ±9.2 versus αCT-1 74 

±12.5; occludin: control 96 ±13.8 versus αCT-1 68.3 ±10.7). Data are expressed as mean 

±SEM (n = 7-8). 
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II-C. Effects of the αCT-1 Peptide on Retina Function in CNV 

We have shown previously that CNV size correlates with loss of retinal function as 

measured by Ganzfeld ERGs.53 Retinal function was assessed by recording dark-adapted 

ERG amplitudes. These readings allow for the analysis of the light sensitivity of the rod 

photoreceptors (a-wave) and the sensitivity of the bipolar cells to the cessation of 

glutamate release from the stimulated photoreceptors (b-wave). Vehicle- and αCT-1-

treated animals (n=8 per group) were compared after completing the CNV study with the 

early continuous treatment regimen (Fig. 7A, B). The data revealed a ~15-20% reduction 

of ERG responses in control animals when compared to the αCT-1 group. ERG 

measurements were made for 6 different light intensities (-40, -30, -20, -10, -6 and 0 dB 

of attenuation). Using a t-test for comparison at individual light intensities, αCT-1- 

treated animals had significantly higher amplitudes at all intensities for both a- and b-

waves, when compared to controls, which was confirmed using a repeated measure 

ANOVA over the different light intensities for both a-and b-waves (P <0.001). 

 

 

 

 

 

 

 

 

 



	 35	

Figure 7 

 

Figure 7. Retina Function of αCT1- versus vehicle-treated animals. Mice were dark-

adapted and single-flash recordings were performed with maximum light intensity of 2.48 

scotopic cd*s/m2. (A-B) A- and b-wave amplitudes revealed a significant reduction in 

amplitude for the brighter light intensities (-40, -20, -10, -6 and 0 dB). Statistical 

significance (* P <0.05), determined by repeated measure ANOVA, is indicated for the 

range of light intensities tested in the study. Animals treated with αCT1 peptide lost less 

visual function than those treated with vehicle over the entire range of light intensities 

studied. Data are expressed as mean ±SEM (n = 7-8 animals per treatment group). 
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III. Effects of αCT-1 in a light damage model 

III-A. Effects of the αCT-1 Peptide on RPE Cell Integrity in a light damage model 

It has been shown that hyper-activation of the retina via bright-light exposure leads to 

photoreceptor cell death in mice in part due to increased VEGF-mediated RPE 

permeability.56 To investigate the effects of the αCT-1 peptide on RPE cell integrity, RPE 

damage was triggered using a light-damage model (3000 lux of white light for 3 hours) in 

Balb/c mice. Cell morphology was determined via ZO-1 and occludin 

immunohistochemistry in RPE flatmounts (Fig. 8A, B). Cell profiler software was used 

to determine the tiling pattern of the RPE and its morphology for animals that were 

pretreated with the αCT-1 peptide (5 mM) compared to vehicle prior to bright light 

exposure (Table 1). Light damage reduced the number of cells with ZO-1 staining (Table 

1, ZO-1) by ~30%, as evidenced by the significant drop in cell count (P = 0.004), the 

number of neighbors (P = 0.008) and the area covered (P = 0.05, when compared to no 

light damage). In addition, cellular morphology was altered as evidenced by significant 

changes in form factor (P = 0.017) and eccentricity (P = 0.002). αCT1 treatment 

significantly preserved RPE morphology and cell counts. Similar results were obtained 

when analyzing occludin distribution by immunohistochemistry and image analysis 

(Table 1, occludin). 
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Figure 8 

 

Figure 8. RPE morphology following light-damage. Balb/c mice were exposed to 

bright light (3000 lux) for 3 hours, and sacrificed and eyes enucleated after 24 hours. 

RPE morphology was analyzed by immunohistochemistry for ZO-1 (A-C) and occludin 

(D-F) on RPE/choroid flatmounts from the respective treatment groups, no light damage 

controls (A, D), light damage treated with vehicle (B, E) and light damage treated with 

αCT-1 peptide (C, F). 
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Table 1 

 

Table 1. Morphometric analysis to quantify changes in retinal pigment epithelium 

cells in ZO-1- and cccludin-stained images using CellProfiler. Measurements were 

significant (P < 0.05) between the no light damage controls (no LD) and the light-

damaged PBS-treated animals (LD vehicle) for all morphometric factors analyzed. No 

significance in morphometric measurements were identified between light-exposed 

animals that were treated with αCT-1 (LD αCT-1) and subjects that were never exposed 

to bright light (no LD, control). 
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III-B. Establishing a Therapeutic Window for the αCT-1 peptide in the light 

damage model 

Using the same light damage model as in previous experiment (3000 lux for 3 hours), we 

wanted to investigate the drug’s therapeutic window of αCT-1. To evaluate whether loss 

of barrier function in light damage can be reduced using a delayed treatment paradigm or 

if pre-treatment with the peptide is necessary to prevent RPE damage, we administered 

one dose of eye drops (5mM; 10 µL per eye) at either -4, -2, -1, +1, +4 or +6 hours with 

respect to the time of bright light exposure (Table 2). The RPE was collected 24 hours 

after light exposure and stained with ZO-1. Animals pre-treated only with one dose of 

αCT-1 significantly (P < 0.05) preserved RPE morphology and cell counts for most 

morphometric factors, while delayed treatment resulted in no significant differences 

between treated animals and vehicles. Thus, the breakdown of the RPE can be rescued by 

supplying an effective dose of αCT-1 prior to injury in a light damage model.  
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Table 2 

 

Table II. Morphometric analysis to quantify changes in retinal pigment epithelium 

cells in ZO- 1-stained images using CellProfiler to determine the therapeutic 

window for αCT-1. Animals were treated at the indicated times (-4, -2, -1, +1, +4 and +6 

hours) with zero representing the time of Light ON. Protection was identified (i.e, 

measurements were significant; P < 0.05) for the majority of morphometric factors 

analyzed for the treatment groups that initiated treatment prior to the onset of light 

damage. 
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Specific Aim 1 Conclusions 

A novel peptide, αCT-1, was developed and has been identified to have anti-

inflammatory and regenerative properties.45, 50, 51 αCT-1 is a soluble 25 amino acid 

peptide (3597.33 MW) that has a compact 2-domain design based on linkage of an 

antennapedia (a cellular membrane transport peptide) internalization domain (1-16 amino 

acids; RQPKIWFPNRRKPWKK) to the C-terminal PDZ binding domain of Cx43 (17-25 

amino acids; RPRPDDLEI). In the current study we were able to show translocation of 

the αCT-1 peptide to the RPE following corneal application. To determine the therapeutic 

possibility of targeting Cx43 pathways with αCT-1 in the treatment of AMD, we chose 

two animal models that mimic VEGF-dependent loss of RPE barrier function: the mouse 

model of choroidal neovascularization, and the light-induced loss of barrier function in 

Balb/c mice. In both of those models, anti-VEGF blocking strategies have been shown to 

prevent or reduce pathology.56, 61 Here we showed that the αCT-1 peptide significantly 

reduced the αCT-1 peptide significantly reduced fibrovascular scarring as well as the 

amount of fluid leakage into the subretinal space when applied immediately after laser 

photocoagulation. The reduction of CNV development correlated with healthier RPE 

cells found closer to the lesion site in the αCT-1-treated animals compared to the vehicle 

group. A reduction in CNV development also correlated with improved retinal function 

as shown in the higher rod ERG a- and b-wave amplitudes in mice treated with the 

peptide. Data from the light-damage model indicated that the αCT-1 peptide also 

improved cell morphology in this model of RPE barrier loss as long as the peptide was 

applied prior to RPE injury due to light damage. These data show that the αCT-1 peptide 

preserves RPE barrier function in these models. 



	 42	

Chapter 3: Specific Aim 2 

Examine effects of the αCT-1 peptide in vitro on ARPE-19 cells to study the drug’s 

mechanism of action 

In order to study αCT-1’s mechanism of action, we examined its effects on ARPE-19 

cells, an established human RPE cell monolayer system. These cells grow in tight 

polarized monolayers, forming an apical and basal side. Intact tight junctions have been 

shown to be necessary for efficient removal of fluid from the subretinal space as well as 

the barrier function of the RPE.62 This accumulation of subretinal fluid has been reported 

in AMD, implying impaired barrier function in AMD. Barrier function requires a stable 

transepithelial resistance (TER), where high TER is indicative of robust RPE barrier 

properties. Maximal TER values are reached within 2-3 weeks after reaching confluency 

(40- 45 Ωcm2).63 Furthermore, Ablonczy et al showed that adding VEGF to ARPE-19 

cells renders a significance decrease in TER, demonstrating increased RPE 

permeability.64  

In the RPE, the peptide could act on tight junctions, gap junctions as well as hemichannel 

activity. Two members of the connexin family are expressed in the RPE: Cx43 as well as 

Cx46.28 Cx43 hemichannels play a critical role in providing a paracrine and autocrine 

route for intercellular communication, releasing extracellular messengers, such as NAD+ 

and ATP.40, 41 It has been proposed in heart- and wound injury that the drug is effective 

via two possible mechanisms.45 αCT-1 mediates the localization of Cx43 hemichannels to 

gap junctions, thus, the size of the gap junction plaque increases due the translocation of 

hemichannels from the perinexus to the site of the gap junction plaque. Thus, one 

possible mechanism would be that increased stability of gap junctions could allow for a 
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more coordinated cellular activity, stabilizing the cells. coordinated cellular activity, 

stabilizing the cells. It is equally plausible that decreasing hemichannel activity results in 

decreased release of extracellular messengers like ATP, preventing an inflammatory 

response with VEGF and other cytokines and cell death associated with elevated ATP 

release.40, 41, 45 A stabilization of gap junctions can also foster the integrity of tight 

junctions in RPE cells. ZO-1 binding to tight junction proteins reinforces the anchoring 

between tight junction proteins and the cytoplasmic actin, reducing fluid accumulation in 

the subretinal space.30, 62 Thus, the deterioration of the RPE can be mediated by any one 

of the three cell junctions breaking down. 

In order to study which cell junction is affected by αCT-1, we inhibited gap junction 

communication as well as hemichannel activity in ARPE-19 cells and analyzed the 

resulting TER outcome. Gap junctions were blocked utilizing 18-β-glycerrhetinic acid 

(18-beta-GCA) and hemichannel activity was inhibited by adding apyrase to the cells.65, 

66 Apyrase catalyzes the hydrolysis of ATP, rendering it impossible to bind to purinergic 

P2 receptors when released via hemichannels.66, 67 Given that elevated levels of VEGF 

can be the result of increased hemichannel activity as well as VEGF playing a critical 

role in AMD development, we wanted to see if αCT-1 would ameliorate its effects in a 

TER assay. Following the assay, the cells were stained with cell junction markers to 

investigate their tiling pattern between the respective treatment groups. 
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Material and Methods 

ARPE-19 Cell Cultures 

ARPE-19 cells, a human RPE cell line, was expanded in Dulbecco’s modified Eagle’s 

medium (DMEM) (Invitrogen) with 10% fetal bovine serum and antibiotics as previously 

described.68 These cells generate a polarized RPE cell monolayer when plated on 

Transwell filters (3450; Costar). Cells were grown on permeable membrane inserts in the 

presence of DMEM with 10% fetal bovine serum and antibiotics. After cells became 

confluent, serum was reduced to 2%. Cells were exposed to serum-free media the last two 

days prior to the measurements. Barrier function requires a stable transepithelial 

resistance (TER), where high TER is indicative of the robust RPE barrier properties 

afforded by tight junctions.64 TER was monitored with an epithelial volt-ohm meter 

(World Precision Instruments) equipped with an STX2 electrode. Maximal TER values 

(40-45 Ωcm2) are reached within 2-3 weeks after cells reach confluency.64 The TER 

value for cell monolayers was determined by subtracting the TER for filters without cells, 

and the percent TER decrease was calculated using the starting value as the reference. 

Agents used for the TER assays were VEGF165 (SRP4363; Sigma Aldrich), 18-beta 

glycyrrhetinic acid (G10105, Sigma Aldrich) and apyrase (M0398S; NEB).  

 

Immunofluorescence Staining  

Staining was also performed on ARPE-19 cells that were grown on transwell filters 

(3450; Costar). Cells were either incubated in antibodies recognizing ZO-1 (1:200; 

Invitrogen), �ccluding (1:200; Invitrogen) or connexin43 (1:300; Sigma Aldrich) in 

blocking solution (10% normal goat serum, and 0.4% Triton-X in tris-buffered saline). 
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All before mentioned antibodies are rabbit polyclonal; thus, Alexa Fluor 488 goat-anti-

rabbit (1:500; Invitrogen) was used as the secondary antibody. If necessary, cells were 

flattened using relaxing cuts and cover-slipped using Fluoromount (Southern 

Biotechnology Associates, Inc., Birmingham, AL). All immunohistochemistry 

experiments included a no-primary antibody control. Staining of cells was examined via 

fluorescence microscopy (Zeiss, Thornwood, NY) equipped with a digital black-and-

white camera (Spot camera; Diagnostic Instruments, Sterling Heights, MI). 

 

Statistical Analysis 

Data are presented as mean ± SEM. Single comparisons were analyzed by t test analysis, 

accepting a significance level of P <0.05. 
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Results 

I. Effects of the αCT-1 Peptide on VEGF-Mediated TER Reduction  

For mechanistic studies, we switched to assessing barrier function in ARPE-19 cells, a 

human RPE cell line. These cells were grown on transwell plates where they establish a 

polarized monolayer. An indication of proper tight junction integrity is high TER.64 

VEGF has previously been shown to alter tight junctions and promote leakage in RPE 

cells, resulting in a reduction in TER. This loss in VEGF-induced TER can be prevented 

by co-administration of a VEGF-R2 receptor antagonist.64 Here we confirmed that VEGF 

leads to a reduction in TER in a time-dependent manner (Fig. 9A), which can be 

ameliorated by pre-incubating the cells with αCT-1. Figure 9B exhibits a protective 

effect of the peptide even up to a VEGF concentration of 30 ng/mL, a very high level of 

insult. A 60ng/mL VEGF concentration leads to a complete loss of barrier function as 

indicated by a 100% drop of TER (data not shown). Pre-treatment with αCT-1 could not 

rescue this level of stress to the RPE. 24 hours after treating cells with increasing 

concentrations of VEGF, the cells were stained with ZO-1 in order to look at their 

morphology. The decreasing TER results matched the level of disruption in the cell’s 

tiling pattern, the corollary is true, and the protective effect of αCT-1 correlated with a 

more undisrupted cell shape.   
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Figure 9 

(A)                                                               (B) 

   

(C) 

 

Figure 9. Effects of apical application of VEGF on TER on ARPE-19 cells grown on 

transwell plates. (A) TER was measured via a volt-ohm meter with an STX2 electrode. 

VEGF (10 ng/mL) significantly (# P <0.01) reduced TER by 2 and 4 hours post-

application. Pretreatment with 100 µM αCT1 ameliorated the drop in TER at both time 

points. Data are expressed as mean ±SEM (n = 3 per treatment group). (B) Pretreatment 

with 100 µM αCT1 was even protective against a 3-fold concentration of VEGF (30 

ng/mL), however, a VEGF concentration of 60 ng/mL resulted in irreparable damage that 
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could not be rescued by αCT1. Data are expressed as mean ±SEM (n = 3 per treatment 

group). (C) Representative images of ARPE-19 cells stained with ZO-1 and DAPI for 

each treatment group referenced in Figure 9B. 
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II. Effects of the αCT-1 Peptide on Gap Junction Function and on ATP Release via 

Hemichannel Activity 

Since there is evidence that VEGF can transiently disrupt endothelial gap junction 

communication,37 we tested whether αCT-1 might act by modulating gap junction 

function by adding the gap junction blocker, 18-β-GCA (0.1 mM), to the ARPE-19 TER 

assay (Fig. 10A).65 Administration of the gap junction inhibitor alone had little effect on 

TER. Additionally, there was no significant difference in TER between cells that received 

VEGF (10 ng/mL) only and wells where VEGF and 18-beta GCA was added together. 

Interestingly, the addition of αCT-1 peptide ameliorated the effects of VEGF-mediated 

TER reduction, even in the presence of 18-β-GCA.  

 

Another mechanism of connexin-dependent cell communication involves extra-cellular or 

paracrine communication via unpaired hemichannels.66 These channels allow for 

communication between the intracellular compartment and the extracellular environment. 

The predominant messenger released by hemichannels is ATP that can act via autocrine 

signaling on purinergic receptors. Extracellular ATP is important for calcium signaling 

activation as well as regulating ion and fluid transport in the RPE.41, 66 Rhett and 

colleagues showed that αCT1 can recruit hemichannels into gap junctions, thereby 

indirectly reducing the pool of hemichannels available for signaling.32 If VEGF-treatment 

mediates the release of hemichannel ATP release, apyrase (1 U/mL), an ATP/ase and 

ADP/ase should prevent the VEGF-induced loss in TER.67 Analysis of TER (Fig. 10B) 

revealed that applying apyrase alone significantly (P <0.05) reduced resistance, 

suggesting that ATP signaling is important for RPE barrier function. However, the TER 
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decrease elicited by applying apyrase and VEGF together to ARPE-19 cells was not 

significantly different (P >0.05) from the TER reduction seen by treating with VEGF 

alone. Application of αCT1 peptide ameliorated the effects of VEGF and apyrase. Figure 

10C shows the immunohistochemistry images corresponding to the treatment group from 

the gap junction inhibitor study. ARPE-19 cells were stained with ZO-1 24 hours after 

the TER assay. Again, αCT1 maintained the regular shape of the cells compared to the 

ARPE-19 cells that were exposed to VEGF and 18-β-GCA. 

 

Together, these data suggest that the protective effect of αCT1 on VEGF-induced loss in 

barrier function is not mediated by αCT1’s effect on gap-junctions or hemichannels.31  
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Figure 10 

(A)                                                                     (B) 

 

(C) 

 

Figure 10. Determining the contribution of gap junctions and hemichannels on 

protection by αCT1 on VEGF-mediated loss in barrier function. (A)The TER 

reduction seen by a sole VEGF (10 ng/mL) administration is not significantly different (P 

<0.05) from the the TER reduction noted by applying VEGF (10 ng/mL) and 18-β-GCA 

(0.1 mM). (B) Apyrase alone significantly (P <0.05) reduced TER; however, apyrase in 

addition with VEGF (10 ng/mL) provided no synergistic effect compared to VEGF (10 

ng/mL) alone. Data are expressed as mean ±SEM (n = 3 per treatment group). (C) 

Representative images of ZO-1 stained ARPE-19 cells used in the gap junction inhibitor 

study. 
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Specific Aim 2 Conclusions 

The mechanism of action for αCT-1 is based on the modulation of the interaction 

between Cx43 and its C-terminal binding partners, including ZO-1. ZO-1 is a critical cell 

junction protein and it regulates the cellular distribution of Cx43, providing a control 

point for dynamic switching between gap junction communication and non-junctional 

hemichannel communication.32, 33 In order to determine a potential mechanism of action 

of the compound, we investigated tight junction integrity as well as Cx43-mediated gap 

and hemichannel communication. TER assays are a simple measure to quantify barrier 

integrity of RPE cells.64 TER assays on ARPE-19 cells were conducted to determine 

which cellular junctions might be affected by VEGF administration and if the αCT-1 

peptide would ameliorate those effects. VEGF is known to induce tight junction 

permeability by trafficking occludin fragments away from the tight junction site as well 

as by occludin phosphorylation.16, 35 In addition, VEGF transiently disrupts gap junction 

communication in endothelial cells.37 Here we found that 100 µM of αCT-1, a 

concentration shown to be biologically active in HeLa cells31 was found to prevent the 

loss of barrier function in RPE cells induced by 10 ng. ZO-1 stained images of ARPE-19 

cells that received an apical application of VEGF verify said disruption of cellular 

junctions and exhibit longer irregular cell shapes compared to controls.  Pre-treatment 

with αCT-1 maintained a more regular cell shape even with high levels of VEGF, 

demonstrating its preventive effects on VEGF-induced insults to the RPE.  

 

Blocking gap junction communication in ARPE-19 cells via the gap junction inhibitor, 

18-beta-GCA, had little effect on the barrier function in the TER assay, and 18-beta-GCA 
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did not increase the effect afforded by VEGF alone. However, αCT1 did prevent the loss 

of TER when VEGF and 18-beta GCA were co-administered. These data suggest that the 

mechanism of action of αCT-1 did not involve modulating gap junction communication. 

Another mechanism by which the αCT-1 peptide could stabilize RPE barrier function is 

via gap junction hemichannel activity. ATP is one of the most abundant extracellular 

signaling molecules and plays a pivotal role in intercellular communication via autocrine 

and paracrine signaling, and its release is mediated by hemichannels.67 ATP has been 

shown to both increase and decrease endothelial barriers, based on whether the effect is 

mediated by ATP or its metabolite, adenosine.69 Furthermore, there is evidence that the 

release of ATP can promote wound healing in epithelial cells.70 The latter might be the 

reason why disrupting ATP communication via the ATP diphosphohydrolase apyrase 

resulted in a significant decrease in TER when added to the monolayers. If the VEGF 

effects on TER were to involve ATP-mediated effects, co-administering VEGF and 

apyrase should have altered the degree of change produced by VEGF alone. However, 

adding apyrase together with VEGF showed no greater TER reduction than adding VEGF 

alone. Furthermore, addition of αCT-1 in these assays showed no additional protective 

effect. Together, these data suggest that αCT-1 may stabilize barrier function by 

preventing the disassembly of tight junctions by a mechanism independent of gap-

junction or hemichannel function.31  
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Chapter 4: Discussion 

Overall Conclusion 

αCT1 is a peptide-based therapeutic that modulates the activity and signaling pathways 

mediated by the transmembrane protein, Cx43. Here we analyzed the effects of αCT-1 in 

in vivo and in vitro models of VEGF-dependent RPE damage. The main results of the in 

vivo components this study were as follows: (1) αCT-1 delivered topically via eyedrops 

accumulated in the RPE where it can be detected by immunohistochemistry; (2) αCT-1 

significantly reduced laser-induced CNV when applied during the initiation or trigger 

phase of CNV development rather than during the growth phase; and (3) αCT-1 also 

significantly improved RPE morphology after bright-light exposure, a stimulus that alters 

RPE morphology in a VEGF-dependent manner. The in vitro RPE assays suggested a 

mechanism of action that was separate from gap- or hemichannel-mediated cell-cell 

communication and involved αCT-1 prevention of VEGF-induced loss of transepithelial 

resistance via the stabilization of tight junctions. Taken together, the data suggested that 

the stabilization of tight junctions via targeting Cx43 signaling using αCT-1 may serve as 

a new treatment paradigm for both wet and dry AMD. 

 

Discussion 

The RPE is a barrier epithelium located between the retina and the choroid. The outer 

blood retina barrier is essential to proper functioning of the eye as the epithelial barrier 

supports nutrient and solute transport while preventing infiltration of cells (choroidal 

epithelial cells or inflammatory cells) into the subretinal space.8 Together with its 

basement membrane, BrM, and the RPE plasma membranes, the primary cellular 
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determinant of the RPE barrier function is made up by the tight junctions between the 

RPE cells in the monolayer making up the primary cellular determinant of the RPE 

barrier function. RPE damage and blood retina barrier loss is a common feature in dry 

and wet AMD, as well as diabetic retinopathy, and the formation of macular edema. 

Blood retina barrier loss involves inflammation, angiogenesis, and oxidative stress. 

VEGF and other growth factors are involved in mediating loss of barrier function in the 

RPE as well as angiogenesis and choroidal neovascularization. However, the role that 

VEGF plays in dry AMD is yet to be determined. It is known that elevated levels of 

VEGF alone is not sufficient to cause any type of AMD, rather an injury to the RPE has 

to occur that causes an imbalance in VEGF secretion by the RPE.8, 71 Given that VEGF 

receptors are located on the apical side, the elevated secretion of VEGF towards the 

apical side causes a disassembly of tight junctions due to the disruption of ZO-1 

organization, generating further RPE permeability.30  

 

Our data show that the αCT-1 peptide prevents VEGF-mediated breakdown of the barrier 

function and stabilizes RPE tight junctions. In aortic endothelial cells, Src, ERK, JNK 

and PI-3 kinase/Akt, signaling leads to serine/threonine phosphorylation and the 

redistribution of ZO-1 and occludin.
48 

The effects on tight junction stability may occur 

indirectly, by the well characterized anti-inflammatory effect of αCT1 (inflammation 

causes tight junction disassembly),
49-51 

or by promoting the extent of intercellular 

adhesion mediated by gap junctions, independent of their intercellular channel function, 

as we have reported previously.
11, 12 

αCT-1 may also have direct effects on tight junction 

stability. The C-terminus of Cx43 and related connexins are the only PDZ-binding 
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ligands known to interact with the ZO-1 PDZ2 domain. For example, a phage display-

based search for PDZ2 ligands was unable to identify further binding peptides.
52 

However, the PDZ2 domain does mediate homomeric interactions with other PDZ2 

domains, enabling the formation of domain-swapped ZO-1 homodimers.
53 

ZO-1 

dimerization is essential for claudin polymerization, and tight junction formation and 

stability in vivo.
53-55 

Domain-swapped PDZ2 dimerization is also necessary for high 

affinity binding of the Cx43 C- terminus to ZO-1.
56 

Endogenous Cx43 C-termini are not 

thought to interact directly with the macromolecular complexes forming tight junctions. 

However, the presence of free Cx43 C- termini in the form αCT-1 could provide for 

ligand-based stabilization of ZO-1 homodimers – via αCT-1 binding to the high-affinity 

binding pocket generated by PDZ2-PDZ2 interaction. αCT-1 may thus stabilize tight 

junctions and increase barrier function by directly interacting with dimerized PDZ2 

domains, enhancing the stability of the ZO-1-containing quaternary complexes necessary 

for tight junction formation and maintenance. Ongoing studies are being performed to 

determine whether enhancement of PDZ2-PDZ2 interaction may be the molecular 

mechanism by which αCT-1 protects and prevents dedifferentiation of RPE. 

An additional potential mechanism that deserves investigation is based on observations 

that at the tissue level, αCT-1 treatment is associated with reduction in pro-inflammatory 

cytokines and decreased inflammatory responses.
57-59 

In AMD, this mechanism of action 

may mediate responses elicited from RPE cells, or inflammatory cells such as Mueller 

cells, astrocytes and glial cells as well as invading leukocytes, all of which express Cx43. 

Inflammation has been shown to contribute to CNV lesion size and fluid leakage in AMD 
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as well as mouse models.
60 

Likewise, a chemokine-mediated inflammatory response has 

been shown after light-damage, involving RPE, Mueller cells and activated microglia
61

. 

In addition, in the rat it has been reported that Cx43 expression in the choroid co-

localizes with markers of oxidative stress and inflammation.
62 

These additional 

mechanisms will be investigated in future studies. 

The most widely used treatment for wet AMD is intraocular anti-VEGF injections, 

whereas no treatment is available for dry AMD. Given that the αCT-1 peptide reduced 

AMD-like pathology in two in vivo mouse models via eye drop administration, targeting 

connexin signaling may serve as a promising new treatment paradigm for both wet and 

dry AMD, as well as other retinal diseases in which the RPE barrier is affected. 
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