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ABSTRACT 
 

NATALIE MAURISA STRAIGHT MCGUIER. A Role for Kv7 Channels in Alcohol Consumption: 
Genetics, Drinking Behavior, and Neuroadaptations. (Under the direction of PATRICK J. 
MULHOLLAND)  
 

Alcohol use disorder (AUD) is a major public health issue that produces 

enormous societal and economic burdens. Current FDA-approved pharmacotherapies 

for treating AUD suffer from deleterious side effects and are only effective in a subset of 

individuals, representing a need for improved medications for the management of AUD. 

The experiments described in this dissertation provide evidence for a complex 

relationship between Kv7 channels and alcohol-related behaviors that spans genetics, 

behavioral pharmacology, and biochemical adaptations suggesting these channels are a 

target for treating AUD. We first examined the genetic relationship between Kcnq genes 

and alcohol-related behaviors, showing that these channels contribute to an alcohol 

drinking phenotype. Behavioral pharmacology studies strengthened this relationship by 

showing that systemic administration and microinjections of retigabine, an FDA-

approved anticonvulsant and Kv7 channel positive modulator, to components of the 

addiction neurocircuitry reduced voluntary consumption in a long-term intermittent 

access model in an alcohol-specific manner. Finally, we investigated alcohol-induced 

neuroadaptations in the nucleus accumbens (NAc). Specifically, we observed that long-

term drinking enhanced sensitivity to the pro-convulsant effects of Kv7 channel 

blockade, altered surface trafficking of Kv7.2 channels between detergent resistant and 

soluble membranes, and reduced Kv7.2 channel SUMOylation in the NAc. To our 

knowledge, these data are the first to show evidence for post-translation modification by 

SUMOylation in a model of alcohol or drug exposure. Altogether the work presented in 

this dissertation indicates that retigabine may be a promising treatment for AUD, and 

that Kv7 channels are a target of alcohol-induced neuroadaptations.  
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CHAPTER 1: INTRODUCTION 
 
 
Millennia of Alcohol Use in Global Cultures 

The purposeful creation and consumption of alcohol is as ancient as the first 

known civilization. Our Stone Age ancestors left behind jugs intentionally meant for 

fermentation dating back to 10,000 BC (Patrick, 1970). This time period, the Neolithic 

Revolution, represents a shift from nomadic wandering to an agricultural-based lifestyle. 

Some anthropologists speculate that the demand for beer inspired farming in the Near 

East as mass beer consumption preceded the baking of bread (Braidwood, 1953; Katz, 

1987). Throughout ancient history alcohol consumption was integrated into nearly every 

growing civilization. Between 4000 and 3500 BC wine is clearly indicated in Egyptian 

hieroglyphics, and alcohol use was an important part of societal exchange as well as 

religion (Cherrington, 1930; Darby, 1977; King, 1947). By 3000 BC alcohol consumption 

was a mainstay in the Greek, Roman, and East Asian cultures as well; it was engrained 

throughout the entirety of the known world. 

Due in no small part to the psychoactive effects of alcohol, by 700 BC it was a 

central part of nearly every major religion, although in the centuries that followed most 

religions and governments would condemn excessive use and drunkenness (Dietler, 

2006). Greeks and Romans worshiped gods dedicated to wine and merriment (Sournia, 

1990), and when old deities gave way to new in the first and second centuries BC and 

AD, sacramental wine and beer brewing were at the heart of Jewish and Christian 

traditions (Raymond, 1927). In a time span that held the birth of Christianity, the Dark 

Ages of Europe, and its Renaissance many clergy considered beer and wine a necessity 
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to worship. These traditions were maintained until the 1800s when a social and 

economic shift spurred Protestant Christians in both Western Europe and America to 

demand complete abstinence from alcohol (Esteicher, 2006).  

In the 19th century, industrialization took hold of the economy of the United 

States. The increased number of factory positions lead to an influx of formerly rural 

families to cities. The isolation and cyclical farming work schedule allowed for excessive 

drinking in rural culture. In contrast, city living was more regimented, which lead to 

unease with routine drunkenness among factory workers (Dietler, 2006). In the years 

following the Civil War saloons became increasingly popular in urban areas and 

synonymous with prostitution, gambling, and other amoral acts (Rorabaugh, 1979). 

Additionally rural and urban women began to seek safety for themselves and their 

children from alcohol-induced domestic violence, wage loss, and child neglect (Blocker, 

2006). These are the first recorded examples of what would now be diagnosed as 

alcohol use disorder (AUD). Soon the Protestant church joined the outcry against 

drinking, and, as a moral and religious crusade, the Temperance Movement was born 

(Hill, 2004). By 1919 most states in the US had independently banned the sale and 

consumption of alcoholic substances, however prohibition was formalized at a federal 

level with the ratification of the 18th amendment, banning the sale of intoxicating 

beverages with an alcohol content greater than 0.5%.  

During the Temperance Movement and prohibition, alcohol consumption per 

capita was reduced by an estimated 20% in the US (Blocker, 2006). This moderate 

reduction represents almost the entirety of the success of prohibition. The illegality of 

alcohol lead to an increase in the consumption and sale of unregulated homemade 

liquor. Underground bars known as speakeasies replaced saloons, and arguably the 

most disastrous consequence of prohibition was the formation of organized crime 
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syndicates that continue to exist today. Prohibition was repealed by the 21st amendment 

in 1933 as a means of stimulating the economy during the Great Depression. While most 

regard Prohibition as a misadventure, its failure to induce national abstinence 

exemplifies how engrained alcohol consumption is in our way of life (Blocker, 2006). 

Furthermore, the social outcry against alcohol abuse that spurred the Temperance 

Movement revealed the necessity of understanding and treating alcohol addiction as a 

disease. 

Lawmakers have discarded the idea of banning alcohol sales and consumption, 

however, the substance is heavily regulated at both the state and federal levels, 

including laws ranging from the regulation of sales to minimum drinking ages. In the 

1940s National Council on Alcoholism was created to promote the disease theory of 

alcoholism (NCADD, 2015), and in 1968 the National Institute on Alcohol Abuse and 

Alcoholism (NIAAA) was formed with the mission statement “to promote, direct and 

support biomedical and behavioral research on the causes, consequences, treatment, 

and prevention of alcoholism and alcohol-related problems” (NIAAA, 2012). Numerous 

other organizations have since formed to alleviate the personal and social 

consequences of alcoholism. In the present day, clinicians and researchers recognize 

alcohol abuse as an addictive brain disorder that should and can be medically treated.  

 

Prevalence of Alcohol Use Disorder 

Alcohol consumption is pervasive in the United States. 51.3% of adults self-

report as regular drinkers (>12 drinks in the previous year) and an additional 12.9% 

report as infrequent drinkers (1-11 drinks in the past year) (Blackwell DL, 2012). 12% of 

adults will face alcohol use disorder (AUD) at some point in their lives, which the NIAAA 

defines as a diagnosable medical condition wherein an individual’s drinking causes 
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distress or harm (NIAAA, 2012). The condition is characterized by unhealthy or 

dangerous drinking habits (alcohol abuse), and by symptoms of alcohol dependence 

including a forfeit of normal life function in favor of the pursuit of alcohol. AUD comes at 

a tremendous societal and personal cost. Annually, 15,990 individuals die from alcoholic 

liver disease, 25,682 die from alcohol-induced deaths (excluding accidents and 

homicides), and 10,228 people die in alcohol-impaired driving crashes (Corrao G, 2004; 

LA, 1998; Rehm and Gmel, 2003). Furthermore, in 2006 the Center for Disease Control 

estimated that excessive alcohol consumption in the United States cost approximately 

$223.5 billion in expenses related to losses in workplace productivity, healthcare, 

criminal justice, and motor vehicle accidents (Bouchery EE, 2011). Considering these 

extreme costs it is obvious that effective, accessible, and inexpensive treatment options 

for AUD are desperately needed. 

 

Past and Present Treatment Options 

There are four key points of treatment when approaching any drug of abuse: 1) 

intervention to decrease the rewarding value of drugs, 2) increase the value of 

endogenous rewards while establishing alternative behaviors, 3) to weaken drug-

associated responses through behavioral treatments such as extinction learning, and 4) 

to strengthen executive control through cognitive therapy (Volkow et al., 2003). Several 

accepted treatment options for AUD exist that target multiple points of intervention. 

Cognitive and behavioral psychological therapy are perhaps two of the most utilized, and 

aim to establish healthier behaviors and avoid trigger recognition. Group therapy (e.g. 

Alcoholics Anonymous; AA) is often the first form of intervention for treatment-seeking 

patients with AUD. Interestingly, a Cochrane review found no experimental studies that 

unequivocally demonstrated the effectiveness of AA or similar twelve-step approaches 
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(Ferri et al., 2006). In addition, individuals may hesitate to initiate twelve-step programs 

because they require immediate cessation from alcohol, which can result in the 

debilitating symptoms of alcohol withdrawal syndrome. One-on-one psychological 

counseling in the form of motivational interviewing (MI) and motivational enhancement 

therapy (MET) developed as a direct result of this hesitation by addicts (Woody, 2003). 

While beneficial for the subset of individuals who would otherwise resist group programs, 

MI and MET on their own are not as efficacious as twelve-step programs for the majority 

of patients. Psychological interventions are frequently used in concert with 

pharmacological interventions to ease the physiological symptoms of addiction. Indeed, 

multi-faceted approaches to treatment are shown to be the most efficacious (Anton et 

al., 2006; Donovan et al., 2008). However, the risks and benefits of pharmacotherapies 

must also be taken into account. 

Pharmaceutical treatments for AUD act at two discrete points in the addiction 

process: to prevent relapse or to aid in drinking cessation. Presently there are four major 

FDA-approved pharmaceuticals for AUD: benzodiazepines, naltrexone, disulfiram, and 

acamprosate.  

 

Benzodiazepines 

Benzodiazepine refers to a class of drugs that contain a benzene ring fused to a 

diazepine ring. Presently, the two most commonly prescribed are diazepam and 

chlordiazepoxide. These compounds enhance GABAA receptor activity resulting in 

sedative, anxiolytic, and anticonvulsant properties (Browne and Penry, 1973). 

Benzodiazepines are used to prevent relapse by reducing withdrawal symptoms, which 

can include headache, nausea, tremors, seizures, hallucinations, and death (Bayard et 

al., 2004; Mayo-Smith and Bernard, 1995; Myrick et al., 2000; Myrick et al., 2009). 
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However, like chronic alcohol, prolonged exposure to benzodiazepines can lead to a 

hyperexcitable state and subsequent seizures (Allison and Pratt, 2003). Consequently, if 

treated with this class of drug, relapse is often more severe and detrimental than if 

pharmacological intervention had not been utilized (Malcolm et al., 1993; Malcolm, 

2003). Additionally benzodiazepines are addictive and have a variety of adverse side 

effects that include hypotension, decreased cognitive function, and anhedonia (Vgontzas 

et al., 1995). Thus, while effective at reducing acute withdrawal symptoms, 

benzodiazepines have serious long-term consequences making them a non-ideal choice 

for treating AUD.  

 

Naltrexone 

In 1994 the FDA approved naltrexone for the treatment of alcoholism. This mu 

and kappa opioid receptor antagonist has had the most clinical success; being most 

effective in individuals who have already ceased drinking and seek to prevent a slip of 

alcohol use from becoming full-blown relapse. While beneficial, naltrexone has been 

found to be most efficacious in carriers of the A118G polymorphism on the µ-opioid 

receptor gene OPRM1 (Anton, 2008; Anton et al., 2012; Schacht et al., 2013). These 

studies suggest that genetic factors contribute to alcohol and drug abuse, and that 

naltrexone is not necessarily beneficial to the entire population of AUD patients. 

Furthermore, this drug hosts a myriad of side effects including anhedonia, 

nausea/vomiting, and muscle pain (Streeton and Whelan, 2001). Although it is 

considered the best available pharmaceutical treatment for aiding alcohol abstinence, it 

leaves much to be desired. 

 

 



	
   7	
  

Disulfiram  

Disulfiram is another FDA-approved treatment for AUD, and acts by inhibiting a 

portion of the alcohol and dopaminergic metabolic pathways (Goldstein et al., 1964; 

Sauter et al., 1977; Sauter and Wartburg, 1977). Alcohol is catabolized by alcohol 

dehydrogenase to acetaldehyde. Acetaldehyde is a toxin that induces nausea, dizziness 

and headaches before it is further metabolized into acetate. Disulfiram inhibits aldehyde 

dehydrogenase, causing a build up of acetaldehyde and subsequent illness when 

alcohol is consumed. Unsurprisingly, patient compliance is a tremendous obstacle in the 

efficacy of this treatment. One study (Fuller et al., 1986) estimated that only 20% of 

subjects followed the prescribed drug regimen. Consequently, disulfiram leaves much to 

be desired in an AUD pharmacotherapy. 

 

Acamprosate  

The fourth major pharmacological treatment for alcoholism is acamprosate 

(Campral). This drug is believed to enhance GABAergic reception and transmission 

while reducing glutamate signaling at NMDA receptors, which are both oppositely 

affected by chronic ethanol exposure (Reilly et al., 2008). Acamprosate likely 

counteracts the hyperexcitable state in the central nervous system produced by 

repeated bouts of alcohol exposure and withdrawal (Becker, 1996, 1998; Becker and 

Hale, 1993). Acamprosate has been efficacious in preventing relapse, but yields small 

effect sizes. In addition, this drug appears to be most useful to patients who have 

already withdrawn from alcohol, and consequently does not aid with immediate 

abstinence (Bouza et al., 2004). A recent publication using multiple rodent models of 

alcohol exposure suggests that the calcium cation in the salt form of acamprosate is the 
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active moiety (Spanagel et al., 2014). While the results from this study need to be 

replicated, it suggests that acamprosate may not be a suitable treatment for AUD.  

 

Together, these pharmaceuticals leave an opening for drugs that will have high patient 

compliance, non-deleterious side effects, and that will help patients abstain immediately 

from alcohol.  

 

Advent of Anticonvulsants as Pharmacotherapies 

Chronic alcohol consumption with episodes of withdrawal leads to an imbalance 

of excitatory regulation in the central nervous system. Simply, chronic intermittent 

alcohol exposure increases excitatory mechanisms (i.e. glutamate receptors, Ca2+ 

channels) and decreases inhibitory mechanisms (i.e. GABA receptors) (Alele and 

Devaud, 2007; Gass and Olive, 2008; Szumlinski et al., 2007). This allostatic state of 

brain function is believed to be a compensatory mechanism to counterbalance the 

depressive effects of alcohol (Mulholland and Chandler, 2007). These effects are 

visually perceived in alcohol withdrawal syndrome (AWS) where seizures and delirium 

tremens are common characteristics. Given the similarity of alcohol withdrawal and its 

biochemical effects to epilepsy, it is unsurprising that since 1976 clinicians have been 

using anticonvulsants to treat AWS. In the past 10 years, there has been a significant 

amount of interest in the use of anticonvulsants for the reduction of alcohol-seeking 

behavior (Ait-Daoud et al., 2006; Book and Myrick, 2005; Malcolm et al., 2001). The 

following sections highlight some of the preclinical and clinical evidence regarding the 

more recent anticonvulsants to emerge as candidates to aid in drinking cessation.  
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Topiramate 

Topiramate is perhaps the most widely studied anticonvulsant drug in rodent 

models of alcohol drinking. It is thought to have a variety of molecular targets including 

voltage gated sodium channels, high voltage gated calcium channels, and GABAA 

receptors (Porter et al., 2012). Regimes of systemic and acute dosing effectively reduce 

drinking in alcohol-preferring rodent strains (Farook et al., 2009; Gabriel and 

Cunningham, 2005; Nguyen et al., 2007). However, evidence suggests that low doses of 

topiramate can increase drinking (Gabriel and Cunningham, 2005), and that the drug is 

ineffective at reducing drinking in rat strains not specifically bred for high levels of 

alcohol consumption (Hargreaves and McGregor, 2007).  

Clinically, topiramate has been the subject several studies investigating its ability 

to aid in alcohol abstinence after cessation (for a complete review see (Kenna et al., 

2009)). In an open-label trial in India, topiramate was significantly more effective at 

maintaining abstinence than Disulfiram (De Sousa et al., 2008). Two double blind, 

placebo-controlled studies indicate that topiramate is effective at decreasing the number 

of heavy drinking days and the number of drinks per day in AUD patients (Johnson et al., 

2003; Johnson et al., 2007). However patients have experienced substantial negative 

side effects including difficulty concentrating, taste perversion, and anorexia (Johnson et 

al., 2007). In addition, topiramate appears to be most efficacious in individuals with a 

specific GRIK1 polymorphism (Kranzler et al., 2014). Together the preclinical and clinical 

data indicate that topiramate may be useful to help heavy-drinking individuals abstain 

from alcohol, but there are potentially severe negative side effects.  

 

 

 



	
   10	
  

GABA Analogues 

Gabapentin and pregabalin have a similar structure to the amino acid γ-

aminobutyric acid (GABA), but have potent anticonvulsants actions mediated through 

voltage-sensitive Ca2+ channels (Stephen and Brodie, 2011). Recent evidence in a 

variety of rat drinking models indicates that gabapentin can reduce voluntary alcohol 

consumption, operant responding for alcohol, and cue-induced reinstatement (Roberto 

et al., 2008). Treatment with pregabalin also can reduce cue-induced reinstatement of 

alcohol-seeking behavior (Stopponi et al., 2012). Similar to gabapentin and pregabalin, 

vigabatrin (gamma-vinyl-GABA) is an analogue of GABA, however, vigabatrin influences 

excitability by inhibiting GABA transaminase (Rogawski and Loscher, 2004). Two studies 

that used a standard choice model demonstrated that vigabatrin reduced alcohol 

consumption in alcohol-preferring rats. More recently Griffin et al reported that vigabatrin 

decreased operant responding for alcohol as well as home cage drinking in mice (Griffin 

et al., 2012; Stromberg et al., 2001; Wegelius et al., 1993). 

Several small, open-label studies indicate that gabapentin can reduce withdrawal 

symptoms (Bonnet et al., 2007; Myrick et al., 1998). Double blind, placebo-controlled 

studies investigating the anticonvulsant’s ability to reduce drinking have contradicting 

results. A study investigating consumption in moderate-drinking patients found no effect 

of gabapentin (Myrick et al., 2007) whereas one investigating the same effect in heavy-

drinking individuals found gabapentin to be efficacious (Furieri and Nakamura-Palacios, 

2007). Pregabalin helped detoxified patients remain abstinent and reduced craving and 

withdrawal symptoms in small open-label trials (Di Nicola et al., 2010; Martinotti et al., 

2008). However, a double blind trial comparing naltrexone to pregabalin indicated no 

difference in efficacy between the two (Martinotti et al., 2010). Finally, little is known 

clinically of vigabatrin, but one open-label study suggests that it may be beneficial in 
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treating the symptoms of alcohol withdrawal (Stuppaeck et al., 1996). In summary the 

GABA analogues need further investigation to assess their clinical efficacy.  

 

Levetiracetam 

The exact mechanism through which levetiracetam acts is unknown, however 

there is evidence to suggest that it inhibits neurotransmitter release by interacting with 

the synaptic vesicle glycoprotein SV2A (Lynch et al., 2004). Only two preclinical studies 

have examined the effects of levetiracetam on alcohol-related behaviors. In a voluntary 

alcohol consumption model, repeated doses of levetiracetam significantly reduced 

alcohol intake and preference for alcohol in rats (Zalewska-Kaszubska et al., 2011). In 

the second study, levetiracetam blocked the ability of alcohol to reduce intracranial self-

stimulation in mice (Robinson et al., 2013). 

While preclinical studies suggest that levetiracetam is a strong candidate for 

treating AUD, there is little clinical evidence to support the use of this anticonvulsant. 

Three double-blind placebo-controlled studies in medium to high drinking patients 

showed no effect of the levetiracetam on withdrawal symptoms, an inability to reduce the 

number of drinks consumed per day, and an inability to reduce relapse (Fertig et al., 

2012; Richter et al., 2012; Richter et al., 2010). Together these studies indicate that 

levetiracetam may not be a suitable treatment for AUD.  

 

Zonisamide 

Zonisamide is approved for the treatment of partial onset seizures, although its 

mechanism of action is not well characterized. The drug is believed to block sodium and 

T-type calcium channels, and is known to modulate glutamatergic and GABAergic 

neurotransmission (Leppik, 2004; Mimaki et al., 1990; Ueda et al., 2003). One study has 
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shown that a relatively high dose of zonisamide (50 mg/kg) was able to reduce alcohol 

consumption, but only when the drug was actively on board (Knapp et al., 2007). 

Furthermore, chronic treatments with zonisamide lead to weight loss in rodents. 

There have been few clinical trials investigating the effectiveness of zonisamide 

on preventing alcohol consumption. In open-label trials, zonisamide reduced craving and 

consumption of alcohol-dependent patients (Knapp et al., 2010; Rubio et al., 2010). In 

one placebo-controlled study the drug also reduced alcohol consumption and the urge 

drink, but failed to increase the number of completely abstinent days (Arias et al., 2010). 

Zonisamide also suffers from several deleterious side effects including anorexia, 

depression, memory impairment, and dizziness (Services, 2013) suggesting that it may 

not be advantageous for patients with AUD. 

 

While many of these anticonvulsants show promise as therapeutics for aiding in alcohol 

abstinence, most have side effects so adverse as to raise concern over patient 

compliance and quality of life during treatment, or are simply not performing well in large 

clinical trials. Most anticonvulsants primarily function to dampen glutamatergic signaling, 

potentiate GABAergic signaling or block voltage-gated sodium channels (White, 1997). 

Often when treating epilepsy, medical professionals take a multi-hit approach and 

prescribe multiple drugs that act through different mechanisms (Bianchi et al., 2009; 

LaFrance and Devinsky, 2004). Thus, there is a constant demand for new 

anticonvulsants that act at novel targets. One such drug, retigabine, functions to open 

Kv7 channels, a voltage-gated class of K+ channels (Tatulian et al., 2001; Wickenden et 

al., 2000). Neither retigabine nor Kv7 channels are well understood in the context of 

alcohol exposure; however, recent studies and the pharmacokinetics of both retigabine 

and Kv7 channels provide exciting implications for alcohol research.  
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Retigabine: Anticonvulsant and Kv7 Channel Positive Modulator 

 The FDA approved retigabine in 2011 for the treatment of partial onset seizures. 

This anticonvulsant primarily acts as a Kv7 channel positive modulator, leading to an 

increase in K+ current (Tatulian et al., 2001; Wickenden et al., 2000), and subsequent 

neuronal inhibition. Positive modulation of Kv7 channels effectively reduces seizures 

both preclinically and clinically (Armand et al., 1999; Brodie et al., 2010; French et al., 

2011; Porter et al., 2007). Retigabine has a mean terminal half-life of approximately 8 

hours in humans, with a maximal plasma availability of 420 ng/mL 2 hours after oral 

administration. In rats, the half-life is also approximately 2 hours after oral dosing 

(Review: (Mazarati et al., 2008)). A 20 mg/kg systemic dose of retigabine in mice results 

in a brain concentration of 2.7898 µM (Zhou et al., 2015). The side effects of retigabine 

are relatively minimal and include dizziness, confusion, fatigue, dysarthria, vision 

impairment and nausea. These effects are only experienced by 1-12% of patients taking 

600 mg of the drug per day, and are reported as tolerable (Crean and Tompson, 2013; 

Mazarati et al., 2008). 350 mg is effective at reducing seizures in humans whereas 2.5 - 

30 mg/kg reduces convulsant activity in a variety of rodent models of epilepsy (Large et 

al., 2012).  

Pharmacokinetic studies of retigabine and Kv7 channels indicate that it has an 

IC50 of 0.6 ± 0.3 µM to 5.2 ± 0.9 µM depending on the Kv7 channel subunit or subunit 

combination being examined (Tatulian et al., 2001). Importantly, this anticonvulsant only 

modulates Kv7 channel subunits expressed in the CNS (Kv7.2-Kv7.5). Retigabine 

produces a hyperpolarizing shift of the activation curve of Kv7 channels by up to 40 mV, 

greatly increasing the open probability of the channel around the resting membrane 

potential (Tatulian et al., 2001). This suggests that Kv7 channel positive modulators may 

reduce drinking and alcohol withdrawal-associated seizures in a manner similar to other 
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anticonvulsants. Additionally, activation of Kv7 channels can influence DA 

neurotransmission in the VTA and NAc. Retigabine has been shown to inhibit basal DA 

synthesis, reduce extracellular DA levels when striatal DA uptake is inhibited, and block 

depolarization-induced DA release from striatal terminals (Hansen et al., 2008). Given 

the importance of DA release in addiction (Kalivas, 2002), these studies suggest that 

retigabine and Kv7 channel activation could influence addictive behaviors.  

 

Kinetics and Regulation of Kv7 Channels 

The Kv7 family of voltage-gated potassium channels consists of 5 subunits, 

Kv7.1-Kv7.5, encoded by the genes Kcnq1-5. Four subunits come together to form the 

channels responsible for M-current in peripheral organs and brain (Jentsch, 2000; 

Selyanko et al., 2002; Wang et al., 1998). Kv7.1-containing channels are exclusively 

expressed in the heart, whereas Kv7.2-Kv7.5 are found abundantly in the CNS. Kv7.2 

and Kv7.3 subunits are the most widely distributed and are found in the cortex, basal 

ganglia circuitry, hippocampus, cerebellum, thalamus, hypothalamus, and amygdala. 

Kv7.3 has the next highest expression level, having been reported in the cortex, 

striatum, and hippocampus (Kharkovets et al., 2000; Wang et al., 1998). In contrast, 

Kv7.4 channels appear to be restricted to the VTA and dopaminergic neurons in the SNC 

(Kharkovets et al., 2000). Typically, the subunits come together in dimer pairs of 

Kv7.2/Kv7.3 and Kv7.3/Kv7.4, however current research suggests that channels in the 

VTA are composed of Kv7.4 homotetramers. All subtypes of Kv7 channels are slowly 

activated (~100-300 ms at -30mV; (Miceli et al., 2009)), and start opening near resting 

membrane potential (-60mV). M-current becomes more strongly activated at depolarized 

potentials. Accordingly, M-current activation is important for repolarizing the cell, fine-

tuning the resting membrane potential, and controlling action potential generation and 
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frequency. Because Kv7 channels are slowly activated, M-current provides a stronger 

inhibitory input during sustained or repetitive firing. Thus, M-current activation functions 

as a brake on neuronal excitability.  

M-current was named because it is blocked by muscarinic acetylcholine receptor 

agonists (mAChRs) (Brown and Adams, 1980). However, Kv7 channels are inhibited by 

the activation of any Gq coupled receptor (Marrion, 1997). In the last 10 years it was 

established that Kv7 channels require PIP2 to enter an open state and similarly close 

when PIP2 is depleted (Suh and Hille, 2007). Thus, it has become clear that 

phospholipase C (PLC) hydrolysis of PIP2 into IP3 and DAG is responsible for blocking 

M-current. A-kinase binding protein (AKAP79/150) directly interacts with the Kv7.2 

subunit and recruits protein kinase C (PKC) where it can phosphorylate the channel 

leading to inhibition of M-current (Bal et al., 2010; Hoshi et al., 2003). Kv7 channels are 

also sensitive to slight increases in Ca2+ concentration (Gamper et al., 2003), and 

calmodulin (CaM) interferes with the AKAP-Kv7.2 protein-protein interaction either by 

prevention of the physical interaction, by blockade of PKC phosphorylation, or both (Bal 

et al., 2010). Recent work as also implicated the peptide hormone ghrelin as an inhibitor 

of Kv7 channels in the SNc, where it can increase the excitability of dopaminergic 

neurons (Shi et al., 2013). These regulatory interactions highlight mechanisms that open 

or close Kv7 channels, but not how the channels are trafficked within the neuron. 

The trafficking of Kv7 channels is presently not well understood. As previously 

mentioned, CaM is known to directly interact with the channel, but initial studies with 

mutants lacking a CaM binding site indicated that Kv7 channels remained at the 

membrane surface (Wen and Levitan, 2002). One group has suggested that the same 

mutant is retained in the endoplasmic reticulum (Etxeberria et al., 2008). A recent study 

showed that constitutive CaM tethering is not required for Kv7 channel function (Gomez-
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Posada et al., 2011). In short, CaM’s role in Kv7 trafficking is not well defined. In the 

axon initial segment (AIS) co-assembly of the Kv7.2 and Kv7.3 subunits and interaction 

with ankyrin-G are required for efficient localization (Rasmussen et al., 2007). Evidence 

suggests that the protein serum-glucocorticoid-regulated kinase 1 (SGK1) increases 

surface expression of Kv7 channels leading to an increase in M-current. However 

whether this is due to a direct interaction of SGK1 with a Kv7 subunit or through direct 

interactions with Nedd4-2 ubiquitin ligase has yet to be defined (Miranda et al., 2013; 

Schuetz et al., 2008; Seebohm et al., 2005). In summary, Kv7 channel function and 

trafficking are regulated through a myriad of protein-protein interactions, but exact 

mechanisms are currently unclear. 

 

Evidence for Kv7 Channels in Alcohol Use Disorders 

Several recent studies have linked Kv7 channel function to drinking and other 

symptoms of AUDs. Kv7 channels are linked to acute alcohol tolerance and acute 

alcohol-induced memory impairments in Drosophila models (Cavaliere et al., 2012; 

Cavaliere et al., 2013). Kv7 channel expression has also been more directly related to 

alcohol consumption. Both alcohol self-administration and home cage drinking decrease 

Kcnq3 gene transcripts in the NAc of P rats (Bell et al., 2009; Rodd et al., 2008), 

suggesting a potential compensatory modulation of expression. Moreover, Metten and 

colleagues (2014) reported differential expression of Kcnq2 in the ventral striatum of 

mice selectively bred for high alcohol consumption/low withdrawal severity versus mice 

bred for low consumption/high withdrawal severity. These authors also reported a 

quantitative trait locus (QTL) on distal Chr 2, and alignment of the QTL with differential 

expression data identified Kcnq2 as a candidate cis-eQTL for alcohol consumption and 

withdrawal. Chromosomes 2 and 15 (locations of Kcnq2/3 have been previously linked 



	
   17	
  

to alcohol consumption as well (Drews et al., 2010). Together these data implicate a 

genetic component of Kcnq genes to a drinking phenotype and a role for M-current in the 

alcohol addiction process. 

 

Statement of Problem 

Pharmacological intervention is a critical component in the treatment of 

individuals with AUD. Presently, few options are available to AUD patients. Novel 

pharmaceuticals and targets for intervention are integral to treatment process. 

 

Over the last several decades, it has become clear that numerous environmental and 

genetic factors contribute to addiction disorders. Research indicates that some 

pharmacotherapies, such as naltrexone, are more efficacious for individuals with specific 

SNPs (Anton, 2008; Anton et al., 2008; Schacht et al., 2013). To better investigate the 

genetic components of addiction, massive databases have been compiled and made 

available to all research groups through in silico techniques. Recent evidence suggests 

that Kcnq2 and Kcnq3 are associated with alcohol-related phenotypes (Bell et al., 2009; 

Metten et al., 2014; Rodd et al., 2008). Therefore, the first study in this dissertation 

utilized in silico approaches to identify an association of the Kcnq family of genes with 

alcohol-related phenotypes. It was hypothesized that Kcnq genes occur in gene sets 

accompanying alcohol phenotypes.  

 

Several studies indicate a relationship between Kv7 channels and alcohol addiction. 

Some of these include evidence that the K7 channel opener retigabine can reduce DA 

release from the VTA (Hansen et al., 2008; Jensen et al., 2011; Koyama and Appel, 

2006; Koyama et al., 2007; Martire et al., 2007; Sotty et al., 2009), an association of Kv7 
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channels and the effects of acute alcohol on memory and tolerance (Cavaliere et al., 

2012; Cavaliere et al., 2013), and that retigabine can reduce consumption in a limited 

access, forced-drinking model (Knapp et al., 2014). Altogether these studies provide 

evidence that positive modulators of Kv7 channels can alter voluntary drinking in 

rodents. The second study in this dissertation sought to provide clear evidence that 

retigabine can reduce drinking in a model of voluntary alcohol-consumption that has high 

face validity. It was hypothesized that retigabine would reduce voluntary drinking 

in an alcohol-specific manner.  

 

The addiction neurocircuitry consists of multiple brain regions that are altered during the 

addiction process. In a small, but critical part of the circuitry, the ventral tegmental area 

(VTA) sends dopaminergic projections to the NAc (Kalivas, 2009). Studies indicate that 

there are alcohol-related adaptations in Kcnq2/3 mRNA expression in the nucleus 

accumbens (NAc) in rodent models (Bell et al., 2009; Metten et al., 2014; Rodd et al., 

2008), and modulation of M-current in the VTA alters firing and DA release (Hansen et 

al., 2008; Jensen et al., 2011; Martire et al., 2007; Sotty et al., 2009). These studies 

suggest that Kv7 channels in both the NAc and VTA may be key regulators in alcohol 

consumption. Therefore the third study in this dissertation sought to identify if Kv7 

channel function in the NAc and VTA affects alcohol-drinking behaviors. It was 

hypothesized that increased Kv7 channel function in the NAc and VTA would 

reduce drinking.  

 

Repeated episodes of drinking followed by withdrawal are known to induce adaptations 

in the expression of select proteins throughout CNS (Becker, 1999; Breese et al., 2011; 

Fadda and Rossetti, 1998). Recent genetic evidence indicates that there are alcohol-
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related adaptations in the expression of Kcnq2/3 in the NAc of rodents (Bell et al., 2009; 

Metten et al., 2014; Rodd et al., 2008). We found that microinjection of retigabine to the 

NAc is sufficient to reduce alcohol consumption and that alcohol-exposed rats are 

sensitive to seizures induced by blocking Kv7 channels. Together these studies indicate 

that Kv7 channel expression and/or function is altered in the NAc after long-term alcohol 

exposure. The final experiments of this dissertation sought to characterize alcohol-

induced adaptations in Kv7 channel expression in the NAc and identify a mechanism 

mediating the adaptation. It was hypothesized that prolonged alcohol consumption 

causes dysregulation in Kv7 channel expression and trafficking in the NAc. 

 

In summary, the work presented in this dissertation attempts to achieve the following 

goals related to the identification and characterization of a novel pharmacological 

therapeutic and target for the reduction of alcohol consumption: 

1. Identify Kv7 channels as a target for the reduction of alcohol drinking and 

further explore the role of Kcnq genes in alcohol-related behaviors. 

2. Characterize the effects of the anticonvulsant and Kv7 channel-opener 

retigabine on alcohol consumption. 

3. Identify regions of the addiction neurocircuitry sensitive to the effects of 

retigabine on alcohol consumption. 

4. Explore a biochemical basis for the pharmacological effects of retigabine in 

alcohol-exposed rats. 

This dissertation provides a narrative describing a complex interaction between Kv7 

channels and alcohol consumption from in silico genetics to behavioral pharmacology to 

alcohol-induced neuroadaptations. We identify the FDA-approved anticonvulsant 
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retigabine as a potential therapeutic for the reduction of voluntary alcohol consumption. 

We further provide evidence that Kv7 channels are targets for alcohol-induced plasticity, 

and that membrane localization of these channels is sensitive to alcohol exposure and 

withdrawal.  
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CHAPTER 2: KCNQ GENES AND DRINKING PHENOTYPES 
 

Introduction 

In Chapter 1 we discussed the alarming prevalence of AUD in our society and a 

decided lack of effective pharmacotherapies with minimal side effects. This is not a 

simple problem as addiction disorders result from complex interactions of environmental 

and genetic factors. Meta-analyses and twin studies have estimated that approximately 

50% of the variance associated with drug and alcohol dependence is heritable (Agrawal 

et al., 2012). Furthermore, there is evidence indicating that matching genetic variations 

to specific therapeutics can improve outcomes when treating AUDs (Heilig et al., 2011; 

Kranzler and McKay, 2012; Sturgess et al., 2011). Such an example is observed in 

clinical studies where naltrexone is more efficacious in carriers of the A118G 

polymorphism on the µ-opioid receptor gene OPRM1 (Anton, 2008; Anton et al., 2012; 

Schacht et al., 2013). Therefore, identifying genetic factors that contribute to alcohol and 

drug abuse is paramount to the development of new pharmacotherapies. 

The Kv7 family of voltage-gated potassium channels consists of 5 subunits, 

Kv7.1-Kv7.5, encoded by the genes Kcnq1-5. Four subunits come together to form the 

channels responsible for M-current in peripheral organs and the brain (Jentsch, 2000; 

Selyanko et al., 2002; Wang et al., 1998). Kv7.2-Kv7.5 are found abundantly in the CNS, 

and emerging evidence suggests that KCNQ genes may be influenced by or influence 

alcohol-related behaviors. At the genetic level, two studies have found that Kcnq3 

transcriptional levels are decreased in the nucleus accumbens (NAc) following both 
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alcohol self-administration and voluntary drinking paradigms in rodents (Bell et al., 2006; 

Rodd et al., 2008). A recent study has associated differential expression of Kcnq2 as a 

candidate cis-eQTL for alcohol consumption and withdrawal symptoms (Metten et al., 

2014). There is also evidence that KCNQ knockout drosophila are less sensitive to the 

effects of alcohol compared to wildtype controls (Cavaliere et al., 2012; Cavaliere et al., 

2013). While exciting, these studies only provide a small picture of any potential 

association between the KCNQ genes and alcohol consumption. We sought to further 

explore this connection through in silico means.  

As the –omics fields advance, researchers are able to collect vast amounts of 

data with single experiments. Massive, comprehensive databases are generated and 

made available to other groups through in silico approaches. We capitalized on this form 

of analysis to examine the association of the Kcnq family and alcohol-related 

phenotypes before pursuing behavioral approaches. The GeneWeaver software system 

(GeneWeaver.org) (Baker et al., 2012) consists of a curated database of functional 

genomics experimental results across 9 species and many types of experimental data 

including gene expression analyses, quantitative trait locus (QTL) positional candidate 

sets, curated literature annotations for gene functions, chemical interactions, and 

mutation screens. Using this software system we were able to query every available 

genetic study associated with an alcohol-phenotype in rodents. In this way we were able 

to identify a relationship between Kcnq genes and alcohol phenotypes as well as two 

compelling candidate SNPs implicating Kcnq2 with alcohol-related behaviors. These 

data provide compelling preliminary evidence to suggest that matching variations in 

genes to therapeutics can improve treatment outcomes in AUD patients, and that KCNQ 

genes and their products are targets for treating AUD.  
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Materials and Methods 

GeneWeaver Bioinformatics 

The GeneWeaver database was queried for ‘KcnqX alcohol’ to retrieve 

experiments that implicate Kcnq2-5 in alcohol-related behaviors. Results were refined to 

exclude studies in which alcohol-related behavior was not an explicit characteristic in the 

experiment. Two analyses were performed: the ‘gene set graph’ to display a bi-partite 

graph of genes and the studies to which they are connected, and ‘hierarchical similarity 

graph’ which generates a bootstrapped graph of all populated intersections among gene 

sets, arranged such that the highest order intersections are in the root or uppermost 

nodes of the graph, and individual gene sets are in the leaves, or lowest level nodes in 

the graph. Single nucleotide polymorphism (SNP) analyses were performed using the 

Sanger Mouse Genomes Project SNP viewer (Keane et al., 2011). 

 

Results 

Integrative Functional Genomics of Kcnq Genes 

The nature and extent of the relationship between the genes that encode Kv7 

channels and the behavioral effects of alcohol are largely unknown, thus we performed a 

GeneWeaver database search to identify previous whole genome studies in which Kcnq 

genes have been associated with alcohol. Kcnq2 and Kcnq3 (Table 2.1) are differentially 

expressed in a several alcohol-related experimental studies. Specifically, 12 gene sets 

were found to be associated with Kcnq2 and alcohol, and 14 gene sets were associated 

with Kcnq3 and alcohol. GeneWeaver analysis indicated Kcnq5 was associated with 5 

gene sets, and Kcnq4 was only found in 1 alcohol-related gene set (Table 2.2).  
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Table 2.1 | Gene sets associated with alcohol phenotypes containing Kcnq2/3  

Table&2.1&
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Hierarchical similarity analysis indicated that Kcnq2 (Figure A.1) and Kcnq3 

(Figure A.2) lie in multiple alcohol-related QTLs on mouse chromosomes (Chr) 2 and 

15, respectively. In both cases, only a few other genes were also in the same multi-QTL 

intersections, including Ppdpf on Chr 2 (Figure 2.1a) and Ptk2 or Adcy8 on Chr 15 

(Figure 2.1b). Analysis of Kcnq5 (Figure A.3) also indicates that this gene also lies in 

several alcohol-related QTLs, however, at the highest level of the hierarchy, Kcnq5 was 

found with 40 other genes. Altogether, these analyses indicate that Kcnq2 and Kcnq3 

are highly associated with alcohol-related phenotypes, and that while the Kcnq4 and 

Kcnq5 genes are also related to these phenotypes, it is to a much lesser extent. 

Because of the relatively low number of associated gene sets, subsequent analysis and 

discussion will focus on Kcnq2 and Kcnq3.  

Using the WTSI mouse genomes data, we performed a search for SNPs in the 

region of Kcnq2 and Kcnq3 with the goal of identifying SNPs that could account for QTL 

effects, which were mapped from different crosses. Therefore, we were looking for loci 

that differed between C57BL/6 versus both A and DBA/2 strains. These searches 

Table&2.2&

Table 2.2 | Gene sets associated with alcohol phenotypes containing Kcnq4/5  
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yielded two compelling candidate SNPs in Kcnq2, rs27642425 (missense variant) and 

rs2971971 (splice variant). 

 

Discussion 

Integrative functional genomic analyses using GeneWeaver software 

demonstrated that Kcnq2 and Kcnq3 are included in the support interval for replicated 

QTLs for alcohol consumption and alcohol-related behaviors on mouse Chrs 2 and 15. 
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Figure 2.1 | Gene sets containing Kcnq2 and Kcnq3 that are associated with 
multiple alcohol-related phenotypes . (A) Kcnq2 was found to lie in alcohol-related 
QTLs on mouse Chr 2.  Ppdpf was also identified in a subset (9 of 12 gene sets) of 
the multi-QTL intersections on mouse Chr 2. (B) Kcnq3 was found to lie in alcohol-
related QTLs on mouse Chr 15 in rats and mice.  Ptk2 and Adcy8 in rodents were 
also identified in some of the multi-QTL intersections. Phenotypes are grouped 
similarity. Dark blue = motility, red = preference QTLs, purple = consumption QTLs, 
orange = gene expression, light blue = acceptance QTLs, green = misc. QTLs. 

B 
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This suggests that Kcnq2 and Kcnq3 are candidates for genetic diversity in alcohol-

related behavior found in multiple inbred mouse crosses, selected line studies, and 

mutant studies. Differential expression of Kcnq2 and Kcnq3 in these populations is 

indicated as a mechanism of action of the polymorphisms in the region. Our results 

indicate that no other positional candidate in the intersection of the QTL loci is as highly 

connected to alcohol-related phenotypes as Kcnq2 or Kcnq3.  

The GeneWeaver analysis identified 3 studies investigating alcohol-associated 

genetic adaptations explicitly in the NAc. The NAc is a critical region to the addiction 

neurocircuitry, acting as a gateway to motor output (Kalivas, 2009). Kcnq genes are 

differentially expressed in the NAc of bHR (high drug-responding) and bLR (low drug-

responding) rats (Clinton et al., 2011). Two studies using RT-qPCR observed decreased 

Kcnq3 mRNA expression in the NAc of P rats after alcohol consumption (Bell et al., 

2009; Rodd et al., 2008). Finally, a recent study not included in the GeneWeaver 

analysis, has reported differential expression of Kcnq2 in the ventral striatum (NAc) of 

mice selectively bred for high alcohol consumption/low withdrawal severity versus mice 

bred for low consumption/high withdrawal severity (Metten et al., 2014). The authors 

also reported a quantitative trait locus (QTL) on distal Chr 2, and alignment of the QTL 

with differential expression data identified Kcnq2 as a candidate cis-eQTL for alcohol 

consumption and withdrawal.	
   Together these studies suggest that KCNQ genes 

specifically in the NAc are associated with alcohol phenotypes. 

 Several polymorphisms were identified in Kcnq2 that could account for the 

genetic effects observed among the various mouse crosses, most of which involved 

deviation from the C57BL/6 phenotype. The candidate SNPs identified in these 

analyses, rs27642425 and rs2972972, vary between the C57BL/6 and the A and DBA/2 

strains, and are not known to be clinically relevant. Alcohol consumption has not been 
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extensively characterized in the A strains of mice, however there are profound 

differences in the drinking patterns of C57BL/6 and DBA mice. C57BL/6 mice are an 

alcohol-preferring strain whereas the DBA mice avoid alcohol. Studies indicate that 

C57BL/6 mice drink more in 2-bottle choice paradigms (Meliska et al., 1995; Rhodes et 

al., 2007) and short-access models (Belknap et al., 1997; Le et al., 1994), and that DBA 

mice are less sensitive to alcohol-induced locomotor sensitization (Kiianmaa and 

Tabakoff, 1983). Numerous recombinant inbred (RI) strains have been developed from 

interbreeding the C57BL/6J and DBA/2J strains. These mice, referred to as “BXD” 

strains, represent continuum of alcohol phenotypes that strongly correlate to their 

genetic composition (DuBose et al., 2013; Mulligan et al., 2006; Padula et al., 2015; 

Vanderlinden et al., 2013). Given these differences in alcohol phenotypes, it would be of 

interest to the alcohol field to test the effects of the SNPs identified in our study on Kv7 

channel currents, gene products, and alcohol-related behaviors. 

Although preliminary, these data compelling pharmacogenetic evidence that 

suggests that matching variations in genes to therapeutics can improve treatment 

outcomes in individuals with AUDs (Anton et al., 2008; Anton et al., 2012; Kranzler and 

McKay, 2012; Schacht et al., 2013). Thus, KCNQ2 and KCNQ3 and their expressed 

proteins may be useful pharmacogenetic targets to treat AUDs. In the following 

experiments we directly tested the role of Kv7 channels as a pharmaceutical target to 

decrease alcohol consumption using the Kv7 channel opener retigabine in a home cage 

drinking in a long-term access, escalation of drinking model. 
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CHAPTER 3: SYSTEMIC RETIGABINE AND VOLUNTARY DRINKING 
 

Introduction 

In previous chapters we discussed the need for new pharmaceutical 

interventions for treating alcohol use disorder (AUD), and the high correlation of Kcnq 

genes with alcohol phenotypes across multiple rodent models of alcohol exposure. The 

in silico analysis from Chapter 2 provides evidence that Kv7 channels are involved with 

regulating alcohol-related behaviors and are a candidate target for treating AUD. As 

such, the FDA-approved anticonvulsant and positive modulator of Kv7 channels, 

retigabine may be a useful pharmacotherapy.  

There is emerging evidence that Kv7 channels are a target of the actions of 

alcohol on neuronal function and behavior. Acute alcohol attenuated M-current recorded 

from human embryonic kidney cells expressing mammalian KCNQ2/3, ventral tegmental 

area (VTA) dopamine (DA) neurons, and pyramidal neurons in hippocampus (Koyama et 

al., 2007; Moore et al., 1990). Studies in Drosophila have shown that Kv7 channels 

regulate acute alcohol tolerance and acute alcohol-induced memory impairments 

(Cavaliere et al., 2012; Cavaliere et al., 2013). A recent study using a short-term limited-

access (30 min) drinking paradigm showed that retigabine reduced voluntary alcohol 

consumption in rats (Knapp et al., 2014). Moreover, Metten et al. (2014) recently 

reported differential expression of Kcnq2 in the ventral striatum of mice selectively bred 

for high alcohol consumption/low withdrawal severity versus mice bred for low 

consumption/high withdrawal severity. These authors also reported a quantitative trait 

locus (QTL) on distal chromosome (Chr) 2, and alignment of the QTL with differential 
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expression data identified Kcnq2 as a candidate cis-eQTL for alcohol consumption and 

withdrawal. Altogether these studies suggest that positive modulators of Kv7 channels 

may reduce voluntary drinking in rodents.  

There are multiple commonly used rodent models of alcohol consumption 

(Becker, 2013; Spanagel et al., 2014), however for the purposes of this project, we 

utilized the 2-bottle choice intermittent alcohol access (IAA) model in Wistar rats. The 

IAA model was first introduced in the 1970s (Amit et al., 1970; Wayner and Greenberg, 

1972; Wise, 1973), and simply requires that rats have intermittent 24-hour access to a 

choice of water or 20% alcohol. No initiation procedure (e.g. sucrose fadeout, alcohol 

vapor chamber exposure, water deprivation) is necessary to induce or maintain drinking. 

Rats will escalate their daily alcohol intake over the first 6-9 drinking sessions and reach 

and maintain a stable baseline of high consumption (~5-6 g/kg/24 hrs) for several 

months (Simms et al., 2008; Wise, 1973). At baseline, outbred rat strains (e.g. Long-

Evans and Wistar) consume enough alcohol to reach pharmacologically relevant blood 

ethanol concentrations (BECs) (Bell et al., 2006; Simms et al., 2008) and drink as much 

as strains specifically bred to prefer drinking alcohol (e.g. P rats) (Bell et al., 2006; 

Spanagel et al., 2014). This drinking model is quite versatile having been implemented in 

microinjection studies (Carnicella et al., 2009), and is known to induce neuroadaptations 

during the maintenance period of drinking (Bell et al., 2006; Camp et al., 2006; Hopf et 

al., 2011). In summary, the IAA model induces outbred strains to consume high amounts 

of alcohol without any initiation procedure and represents voluntary, choice drinking in 

the rodents’ home cage.  

In the experiments described in this and subsequent chapters, we used the 2-

bottle choice IAA paradigm to investigate the potential of retigabine as a 

pharmacotherapeutic for the treatment of AUD and drinking-induced neuroadaptations in 
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Kv7 channels. In the following experiments we measured the effect of systemic 

retigabine on drinking behaviors and investigated the specificity of retigabine on alcohol 

(ethanol; EtOH) consumption by testing its effects on tastant preference and locomotor 

activity. Finally, because retigabine is known to have off-target activity at GABAA 

receptors (Otto et al., 2002; Rundfeldt, 1997; Rundfeldt and Netzer, 2000), we 

investigated the mechanism of action through which retigabine may reduce drinking.  

 

Materials and Methods 

Animals and Housing  

Male Wistar rats (150g; P39-45) were purchased from Harlan (Indianapolis, IN) 

and housed individually in standard home cages in temperature and humidity controlled 

environments. In all experiments, rats were exposed to 12 hr light/dark cycles with food 

and water available ad libitum during all procedures. Animals used throughout this 

project were given at least 1 wk to acclimate to their respective colony rooms. All 

procedures were approved by the Medical University of South Carolina Institutional 

Animal Care and Use Committee and were in accordance with the NIH guidelines for the 

humane care and use of laboratory animals (2011).  

 

Two-bottle Choice 24-hr Intermittent Access & Systemic Drug Treatment 

 Intermittent access to alcohol (20% v/v) was performed as previously described 

(Simms et al., 2008; Wise, 1973). Briefly, rats had 2 bottles of water available during 

habitation, and were allowed 24 hr access to one bottle of 20% alcohol (v/v tap water) 

and one bottle of tap water beginning just prior to the start of the dark cycle on Monday, 

Wednesday and Friday with 24 or 48 hrs of deprivation between drinking sessions. 

Placement of the alcohol solution (left or right side of the cage) was alternated between 
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sessions to control for side preference. Leakage from the sipper tubes was accounted 

for when weighing the bottles. Once rats reached a stable baseline alcohol consumption, 

drugs were administered via intraperitoneal (IP) injections in a final volume of 3 mL/kg 

30 minutes prior to alcohol availability once per week on Wednesdays following a within-

subjects design. Drug doses were as follows: 0 – 7.5 mg/kg retigabine (Axon MedChem, 

The Netherlands), 0-20 mg/kg ML-213 (Tocris Bioscience, Bristol, UK), 0 – 20 mg/kg 

ICA-069673 (Tocris Bioscience), and 0 – 1 mg/kg muscimol (Tocris Bioscience). Vehicle 

for all drug injections was 10% Tween80 v/v saline. For combined muscimol and ICA-

069673 injections, drugs were made up as a single solution. Bottle weights were taken 6 

and 24 hrs after alcohol availability.  

 

Blood Ethanol Concentration 

Once rats reached a stable baseline of alcohol consumption (3-4 wks), blood was 

taken from the tail vein 30 min, 1 hr, and 3 hr into a drinking session. Only one time point 

was collected per day with at least 1 wk between collections. Samples were collected 

from multiple cohorts and the data were collapsed for analysis (n = 27 samples total). 

BECs were determined using an Analox Instrument analyzer (Lunenburg, MA, USA).  

 

Intermittent Tastant Access  

Two separate cohorts of alcohol-naïve Wistar rats were placed in the 2-bottle 

choice intermittent access paradigm and were given access to either 0.02% saccharin 

(v/v tap water) or 15 µM quinine (Sigma-Aldrich, St. Louis, MO). Once stable 

consumption was established (2-3 wks), rats were treated with IP retigabine (7.5 mg/kg) 

or vehicle (10% Tween80 v/v saline) on Wednesdays using a within-subjects design. 
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Locomotor Activity Assay  

Two cohorts of alcohol-naïve Wistar rats were habituated to a 57 cm x 58 cm x 

63 cm opaque acrylic box for 1 hr per day for 2 consecutive days. Over the next 3 

consecutive days, rats received a vehicle (10% Tween80 v/v saline) or 7.5 mg/kg IP 

retigabine injection 1 hr prior to a 1 hr locomotor session. Drug was administered in a 

pseudo-randomized, repeated measures fashion. Activity was digitally recorded with an 

overhead video camera under red light. Total movement was automatically scored using 

EthoVision XT software (Noldus Information Technology, the Netherlands).  

 

Statistical Analysis 

A mixed-model analysis of variance procedure was used in the statistical 

software language SAS to analyze all drinking and locomotor data using repeated 

measures factors. A between-within subjects method was used to determine degrees of 

freedom. To follow up significant interactions and treatment effects, Fisher LSD post-hoc 

tests were used. Significant correlations between BEC and alcohol consumption were 

calculated using a linear regression analysis. Finally, all data are reported as mean ± 

SEM and statistical significance was established with p < 0.05. 
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Figure 3.1 | The intermittent alcohol access paradigm. In the IAA paradigm 20% 
EtOH or tastant solution and water are made available for 24 hrs at the start of the 
dark cycle on Monday, Wednesday, and Friday. Drugs were administered 30 min prior 
to EtOH availability (blue arrow) on Wednesdays in a repeated measures fashion.  
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Results 

Effect of Retigabine on Voluntary Alcohol Consumption 

Given the association of Kcnq genes with alcohol phenotypes and recent 

evidence showing that retigabine reduces drinking a short-access model (Knapp et al., 

2014), we hypothesized that retigabine would reduce drinking in the 2-bottle choice 

intermittent alcohol access drinking paradigm (Figure 3.1). In this model, rats regularly 

consumed ≥3g EtOH/kg/24 hrs (range 3.01 - 11.85 g/kg/24 hrs; average 5.43 ± 0.351 

g/kg/24 hrs; Figure 3.2a). Alcohol consumption (g/kg) significantly correlated with BECs 

during the first 30-180 mins of a given drinking session (R2 = 0.3741, p = 0.0007; Figure 

3.2b). BECs were 20.39 ± 7.504 mg/dL after 30 min of alcohol availability. After 9 wks of 

drinking, rats (n = 8-14) received systemic injections of retigabine prior to alcohol 

availability. Retigabine reduced alcohol consumption (Figure 3.3a) and preference 

(Figure 3.3b) as indicated by significant main effects of treatment (consumption: F(3,27) 

= 8.04; p = 0.0005; preference: F(3,27) = 11.21; p < 0.0001). Post-hoc analysis revealed 

that 7.5 mg/kg dose reduced drinking compared to vehicle (p < 0.0001), 2.5 mg/kg 

retigabine (p = 0.0055), and 5 mg/kg retigabine (p = 0.0048). 7.5 mg/kg similarly reduced 
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Figure 3.2 | Drinking in the IAA paradigm. (A) In the IAA model rats escalate their 
drinking (red line) and preference (purple line) over the first 6 drinking sessions, after 
which they maintain a stable baseline for an extended period of time. (B) EtOH 
consumption (g/kg) significantly correlated with blood EtOH concentration (BEC; mg/
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preference compared to vehicle (p < 0.0001), the 2.5 mg/kg dose (p = 0.0060), and the 5 

mg/kg dose (p = 0.0165). There was no effect of retigabine on total liquid consumption 

(F(3,25) = 1.25; p = 0.3127; Figure 3.3c). 

 

Studies investigating the ability of anticonvulsants to reduce drinking indicate that 

some are effective only in high-consuming patients and high-preferring rodent lines 

(Breslin et al., 2010; Chen and Holmes, 2009; Mitchell et al., 2012). Given that there are 

individual differences in alcohol intake levels in Wistar rats (Blomqvist et al., 1996; 

Momeni and Roman, 2014), we divided the rats into “high drinking” (HD; n = 4-7) or “low 

drinking” (LD; n = 4-7) rats using a median split. At the 24 hr time point, HD rats drank 

significantly more than LD rats after vehicle injections (t(12) = 4.750; p = 0.0005; mean 

HD: 6.771 ± 0.7586 g/kg/24 hrs; mean LD: 2.726 ± 0.3867 g/kg/24 hrs). Systemic 

retigabine had differential effects on the HD and LD groups. In HD rats, retigabine again 

reduced drinking as indicated by a significant main effect of drug treatment (F(3,12) = 

6.45; p = 0.0076; Figure 3.4a). Post-hoc analysis indicated that both 5.0 and 7.5 mg/kg 

retigabine significantly reduced drinking compared to vehicle (p = 0.0012 and p = 

0.0239, respectively). We also observed a main effect of treatment on alcohol 

preference (F(3,12) = 3.20; p = 0.0421; Figure 3.3d). Post-hoc analysis showed that 7.5 
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mg/kg retigabine reduces preference compared to vehicle (p = 0.0134). Retigabine had 

no effect on total liquid intake in HD rats (F(3,10) = 1.60; p = 0.2498; Figure 3.4c). 

In the LD group of rats, there was a significant interaction of treatment and time 

on alcohol consumption (F(3,12) = 4.21; p = 0.0300; Figure 3.4d). At the 6 and 24 hr 

time points, 7.5 mg/kg retigabine reduced drinking (post-hoc: p = 0.0499 and p = 0.0177, 

respectively). Interestingly, 5.0 mg/kg retigabine increased alcohol consumption 

compared to vehicle at 24 hrs (p = 0.0008). There was a main effect of treatment 

(F(3,12) = 9.30, p = 0.0019) on alcohol preference, indicating that 7.5 mg/kg retigabine 

reduced preference in LD rats (p = 0.0002; Figure 3.4e). Total fluid consumption was 

not affected by retigabine (F(3,12) = 2.59; p = 0.1012; Figure 3.4f). Together these data 

indicate that systemic retigabine can reduce drinking in some populations of rats and 

that the effect is dependent on dose and the individual’s propensity to drink.  
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Effect of Retigabine on Motility and Taste Perception 

It is possible that the effect of retigabine on drinking is due to non-alcohol related 

behaviors such as taste perception and motility. To investigate the effect of systemic 

retigabine on taste preference, alcohol-naïve rats (n = 8) were given access to either 

0.02% saccharin or 15 µM quinine in the IAA model. In these experiments, retigabine 

(7.5 mg/kg) did not significantly alter consumption of saccharin (F(1,6) = 0.18; p = 

0.6828; Figure 3.5a). However, retigabine did increase consumption of the aversive-
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Figure 3.4 | Systemic retigabine differentially affects consumption in high and 
low drinking populations of rats. Drinking rats were divided into two groups defined 
by the median level of EtOH consumption. (A) In HD rats, 5.0 and 7.5 mg/kg 
retigabine reduced EtOH consumption. (B) 7.5 mg/kg retigabine also reduced EtOH 
preference. There was not a significant effect of retigabine on (C) total fluid intake in 
high drinking rats. In LD rats (D) 7.5 mg/kg retigabine again reduced drinking 6 and 
24 hrs after EtOH availability. 5.0 mg/kg increased EtOH consumption at the 24 hr 
time point. (E) 7.5 mg/kg reduced preference, and there was no effect of retigabine 
on (F) total fluid consumption. (* p < 0.05 vs veh; φ p < 0.05 vs 2.5 mg/kg; × p < 0.05 
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tasting quinine (main effect of treatment: F(1,6) = 0.636; p = 0.0451; Figure 3.5a). We 

again divided the rats into HD and LD groups based on median tastant intake. There 

was no significant difference in drinking between HD and LD rats in the saccharin cohort 

(t(6) = 2.264; p = 0.0642; n = 4) or in the quinine cohort (t(5) = 1.917; p = 0.1143; n = 3-

4; data not shown), suggesting these cohorts cannot be segregated. In addition, this 

analysis would be underpowered to make strong conclusions. Subsequent discussion 

will consider the saccharin and quinine cohorts as single populations of drinkers. 

Together, these data indicate that retigabine does not simply decrease intake of all 

drinking solutions, but rather that the reduction appears specific for alcohol.  

 

Retigabine has also been shown to decrease locomotor activity (Hansen et al., 

2007), raising the possibility that this drug reduces drinking through motor impairments. 

To address this, alcohol-naïve rats (n = 8) received systemic retigabine (7.5 mg/kg) or 

vehicle prior to a 60 min open field exploration task. We found no effect of retigabine on 
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lateral movement when activity was binned in 10 min periods (F(1,7) = 4.35; p = 0.0756; 

Figure 3.5b). There was also no effect of retigabine on cumulative locomotor activity 

across the entire 60 min test period (t(7) = 0.1850; p = 0.8585; Figure 3.5c). These 

experiments indicate that retigabine reduces voluntary drinking in an alcohol-specific 

manner. 

 

Determining the mechanism of action of retigabine 

 Retigabine is a relatively non-selective Kv7 channel positive modulator and 

increases M-current in homo- and heterotetrameric channels (EC50  = 0.6-6.2 µM) 

(Gunthorpe et al., 2012). Furthermore at high enough concentrations (> 10 µM) (Otto et 

al., 2002; Rundfeldt, 1997; Rundfeldt and Netzer, 2000), retigabine can activate GABAA 

receptors. To determine a mechanism through which retigabine reduces drinking we 

administered Kv7 channel-specific and subunit-selective drugs to rats in the IAA 

paradigm (Brueggemann et al., 2014; Yu et al., 2010).  First we administered 20 mg/kg 

ML-213, a Kv7.2/Kv7.4-selective positive modulator to IAA rats (n = 10-11). As shown in 

Figure 3.6, ML-213 had no effect on alcohol consumption (F(1,9) = 2.14; p = 0.1774), 

preference (F(1,9) = 0.99; p = 0.3469), or total liquid intake (F(1,9) = 2.01; p = 0.1901).  
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Figure 3.6 | ML-213 does not affect alcohol consumption. Rats in the IAA 
paradigm received 20 mg/kg IP injections of the Kv7.2/Kv7.4 channel-selective 
positive modulator ML-213 and drinking was measured 6 and 24 hrs after EtOH 
availability. In the total population of rats, ML-213 had no affect on (A) EtOH 
consumption, (B) preference, or (C) total liquid intake.  
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We again divided the cohort into HD (n = 5) and LD (n = 5-6) groups, where HD 

rats consumed more alcohol than LD rats (t(9) = 3.378, p = 0.0082; mean HD: 4.716 ± 

0.4605 g/kg/24 hrs; mean LD: 2.591 ± 0.427 g/kg/24 hrs). In the HD group, ML-213 

reduced voluntary alcohol consumption (F(1,4) = 14.39; p = 0.0192; Figure 3.7a) and 

preference (F(1,4) = 11.63; p = 0.0270; Figure 3.7b) as indicated by significant main 

effects of treatment. There was no effect of ML-213 on total liquid intake (F(1,4) = 2.71; p 

= 0.1751; Figure 3.7c). In LD rats there was no effect of ML-213 on alcohol consumption 

(F(1,4) = 0.69; p = 0.4539; Figure 3.7d), preference (F(1,4) = 1.31; p = 0.3155; Figure 

3.7e), or total fluid intake (F(1,4) = 0.37; p = 0.5770; Figure 3.7f). Together these data 

suggest that Kv7.2 and Kv7.4 are important for the regulation of drinking behaviors in 

HD rats.  
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Figure 3.7 | ML-213 decreases voluntary alcohol consumption in HD rats. Rats 
in the IAA paradigm received 20 mg/kg IP injections of the Kv7.2/Kv7.4 channel-
selective positive modulator ML-213. In HD rats ML-213 reduced alcohol (A) 
consumption and (B) preference and had no effect on (C) total fluid intake. In LD rats 
there was no effect of ML-213 on alcohol (D) consumption, (E) preference, or (F) total 
liquid intake. (* p < 0.05 vs vehicle) 
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 Next we administered the Kv7.2/Kv7.3-selective positive modulator ICA-069673 

to IAA rats (n = 10-15). As shown in Figure 3.8, 20 mg/kg of ICA-069673 was unable to 

reduce alcohol consumption (F(3,57) = 1.027; p = 0.3877), preference (F(3,56) = 0.6152; 

p = 0.6080), or total fluid intake (F(3,57) = 2.407; p = 0.0765).  

 

We divided the cohort into HD (n = 4-8) and LD (n = 5-7) rats, where HD rats 

drank significantly more than the LD group (t(12) = 3.307; p = 0.0063; mean HD: 5.158 ± 

0.823 g/kg/24 hrs; mean LD: 2.218 ± 0.3353 g/kg/24 hrs). There was no effect of ICA-

069673 in the HD group on alcohol consumption (F(1,3) = 2.23; p = 0.2321; Figure 

3.9a), preference (F(1,3) = 3.39; p = 0.1627; Figure 3.9b), or total liquid intake (F(1,3) = 

2.46; p = 0.2150; Figure 3.9c). Similarly, in the LD group, there was no effect of the ICA 

compound on consumption (F(1,3) = 4.73; p = 0.1180; Figure 3.9d), preference (F(1,3) 

= 3.31; p = 0.1665; Figure 3.9e), or total fluid intake (F(1,3) = 2.35; p = 0.2520; Figure 

3.9f. Due to the lack of effect of ICA-069673 on the total population of rats and when 

divided into HD and LD groups, subsequent experiments and discussion will consider 

cohorts treated with ICA-069673 as a whole.  
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Figure 3.8 | ICA-069673 does not affect voluntary alcohol consumption. Rats in 
the IAA paradigm received IP injections of the Kv7 channel-specific agonist 
ICA-069673 (ICA) and drinking was measured 6 and 24 hrs after EtOH availability. In 
the total population of rats, ICA-069673 had no affect on (A) EtOH consumption, (B) 
preference, or (C) total liquid intake.  
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In a separate cohort of rats, we tested the ability of ICA-069673 (20 mg/kg) and 

muscimol (1 mg/kg), a GABAA-specific agonist, administered both separately and 

concurrently to reduce drinking. This dose of muscimol was selected because a previous 

report showed that 3 mg/kg of systemic muscimol reduced alcohol intake in an operant 

self-administration paradigm, however, a 1 mg/kg dose had no effect (Janak and 

Michael Gill, 2003). Individually, the ICA compound (20 mg/kg) and muscimol (1 mg/kg) 

did not alter drinking compared to vehicle (Figure 3.10a). As indicated by a main effect 

of treatment (F(3,18) = 4.96; p = 0.0110), the combined injection of ICA-069673 with 

muscimol reduced drinking compared to vehicle (p = 0.0059). There was a main effect of 

treatment on alcohol preference (F(3,18) = 9.46; p = 0.0006; Figure 3.10b), and post-

hoc analysis revealed that the combined injection of the ICA compound and muscimol 
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Figure 3.9 | ICA-069673 does not affect voluntary alcohol consumption in HD 
and LD rats. Rats in the IAA paradigm received IP injections of the Kv7 channel-
specific agonist ICA-069673 (ICA). In HD rats, ICA-069673 had no affect on (A) EtOH 
consumption, (B) preference, or (C) total liquid intake. The ICA compound also had 
no affect on these parameters when measured in LD rats (D, E, F).  
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resulted in decreased preference for alcohol compared to vehicle (p = 0.0009). 

Individually, ICA-069673 and muscimol did not reduce alcohol preference compared to 

vehicle. Finally, there was no treatment effect on total fluid consumption (F(3,18) = 0.52; 

p = 0.6767; Figure 3.10c). Taken together these data indicate opening Kv7.2/Kv7.3-

containing channels may be insufficient to alter drinking behaviors on their own but may 

work synergistically with GABAA receptors to reduce alcohol consumption. 

 

Discussion 

In these studies we showed that systemically administered retigabine, a Kv7 

channel positive modulator, reduces voluntary alcohol consumption in the IAA model. 

Analysis of individual drinking indicates that retigabine has differential effects on high 

and low drinking populations of rats. Furthermore, retigabine did not decrease saccharin 

or quinine consumption alcohol-naïve rats, and there was no effect of retigabine on 

motility. Collectively these experiments suggest that retigabine may be a useful 

treatment for AUD, and that Kv7 channels play a role in alcohol consumption.  

A key finding from these experiments is that positive modulation of Kv7 channels 

decreased voluntary intake and preference using a rodent model of long-term, 24 hr 
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Figure 3.10 | Co-administration of muscimol and ICA-069673 reduce voluntary 
drinking. Rats in the IAA paradigm received injections of 20 mg/kg ICA-069673 (ICA) 
and 1 mg/kg muscimol (Mus) both separately and concurrently. Joint injection of Mus 
and ICA decreased (A) EtOH consumption and (B) preference. There was no effect 
of the drugs individually on drinking. There was also no effect of any treatment on (C) 
total liquid intake. (* p < 0.05 compared to veh, Φ p < 0.05 compared to Mus, × p < 
0.05 compared to ICA) 
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intermittent alcohol consumption without saccharin fadeout (Simms et al., 2008; Wise, 

1973). Our findings are in agreement with a study which found retigabine to reduce 

drinking in a short-access (30 min) saccharin-induced drinking model (Knapp et al., 

2014). In our model, 7.5 mg/kg retigabine reduced consumption by approximately 50% 

without altering total fluid intake. Using the same IAA rodent model to compare 2 FDA-

approved drugs for treating AUDs (naltrexone and acamprosate), the high dose of 

retigabine was at least equally as effective at reducing drinking. Naltrexone and 

acamprosate reduced intake by approximately 30% and 10-50% at the 6 hr and 24 hr 

time points, respectively (Li et al., 2010; Sabino et al., 2013; Simms et al., 2008).  

Similar to inconsistent findings reported in clinical and preclinical studies testing 

anticonvulsants (Padula et al., 2013), we also observed bidirectional effects of retigabine 

on drinking that were dependent on level of intake and dose. When administered 

systemically, the two doses of retigabine (5 and 7.5 mg/kg) decreased intake in the HD 

rats. In the LD rats, the high dose decreased drinking whereas the intermediate dose 

increased drinking. Although there was no influence on saccharin consumption, we did 

find that retigabine increased quinine consumption, suggesting that this drug either 

enhances or antagonizes bitter taste perception. In turn, because alcohol has a bitter 

taste component (Scinska et al., 2000) and there is a genetic contribution to taste 

perception in mice (Blizard, 2007), alterations in gustatory processes could be a 

mechanism to explain increased alcohol consumption at moderate doses of retigabine 

by LD rats. Interestingly, others have reported similar dissociations between the 

amounts of alcohol consumed and anticonvulsant effects. In non-treatment seeking 

alcohol abusers, the anticonvulsant levetiracetam increased consumption in self-

reported moderate drinkers (Mitchell et al., 2012). In C57BL/6J mice, administration of 

25 mg/kg topiramate increased alcohol preference while 50 mg/kg topiramate reduced 
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alcohol preference (Gabriel and Cunningham, 2005). In rats, topiramate is efficacious at 

reducing drinking in alcohol-preferring strains (Breslin et al., 2010; Zalewska-Kaszubska 

et al., 2013) but fails to reduce drinking in strains not specifically bred for high alcohol 

preference (Breslin et al., 2010). Together, these studies indicate that while retigabine is 

able to reduce alcohol consumption, its efficacy may be dependent on individual 

differences and an underlying genetic disposition to drink.  

The mechanism through which systemic retigabine reduces alcohol consumption 

is not immediately clear. Unlike most other anticonvulsants, altering Kv7 channel 

function can influence DA transmission in mesencephalic/VTA DA neurons (Hansen et 

al., 2008; Koyama and Appel, 2006; Sotty et al., 2009), and Kv7 channel positive 

modulators can attenuate evoked DA efflux and synthesis in the striatum (Hansen et al., 

2006; Jensen et al., 2011; Martire et al., 2007; Sotty et al., 2009). Studies investigating 

differences between strains bred to prefer and avoid alcohol indicate that compared to 

the avoiding strains, alcohol preferring animals have decreased levels of dopamine 

receptor 2 (Drd2) mRNA expression in the NAc (Bice et al., 2011; Imperato and Di 

Chiara, 1986; Yim and Gonzales, 2000), decreased basal levels of DA in the NAc 

(Gongwer et al., 1989; Murphy et al., 1987; Stefanini et al., 1992; Zhou et al., 1995), and 

a greater DA response to an acute alcohol challenge (Bustamante et al., 2008). 

Together, these studies indicate that rodents bred for high alcohol consumption have 

decreased dopaminergic tone in the NAc and an increased dopaminergic response to 

alcohol challenge compared to their low alcohol-preferring counterparts. Chronic alcohol 

treatment sensitized VTA DA neurons to alcohol-induced excitation (Brodie, 2002) and 

enhanced NAc neuron firing after chronic alcohol exposure facilitated alcohol seeking 

after a period of abstinence (Hopf et al., 2007). Given that retigabine can decrease firing 

of VTA dopaminergic cells (Koyama and Appel, 2006), it is possible that retigabine 
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reduces drinking by restoring aberrant dopaminergic tone in high drinking rats. 

Subsequent studies further investigate role of Kv7 channels in the NAc and VTA. 

Although established as a Kv7 channel opener, it not highly selective for specific 

subunits (Kv7.2/7.3 EC50 = 1.6 µM; Kv7.4 EC50 = 5.2 µM), and some studies suggest 

that at high concentrations in vitro (10-50 µM), retigabine can increase activity at GABAA 

receptors (Otto et al., 2002; Rundfeldt, 1997; Rundfeldt and Netzer, 2000). Here we 

showed that the Kv7.2/Kv7.4-selective modulator ML-213 reduced voluntary drinking in 

HD rats, however there was no effect of the Kv7.2/Kv7.3-selevtive positive modulator 

ICA-069673. Together this suggests that the Kv7.2 and Kv7.4 subunits are particularly 

important for regulating drinking behaviors. In addition, because Kv7.4 is almost 

exclusively found in midbrain DA neurons (Hansen et al., 2008), this data indicates that 

Kv7 channels in the VTA are involved in the regulation of drinking behaviors.  

Evidence suggests that systemically increasing GABA function can influence 

operant responding for alcohol. IP injection of the GABAA agonist muscimol decreases 

self-administration (Janak and Michael Gill, 2003). Similarly, IP gamma-vinyl GABA (a 

GABA transaminase inhibitor) dose-dependently decreases alcohol consumption, 

suggesting that increased GABA concentration in the CNS leads to decreased drinking 

(Wegelius et al., 1993). These studies suggest that the ability of retigabine to reduce 

drinking in the IAA model might be mediated through combined action at Kv7 channels 

and GABAA receptors. Here we showed that separate administration of the Kv7 channel-

specific positive modulator, ICA-069673 (Amato et al., 2011), and muscimol, a GABAA 

receptor agonist did not reduce alcohol consumption in the IAA model. In contrast, a 

simultaneous injection of the ICA compound and muscimol reduced both alcohol 

consumption and preference. This data would indicate that systemic retigabine reduces 

drinking through its activity at both Kv7 channels and GABAA receptors; however, there 



	
   47	
  

are caveats to this conclusion. 20 mg/kg IP doses of retigabine in mice result in a brain 

concentration of 2.7898 µM (Zhou et al., 2015). It is therefore unlikely that a 7.5 mg/kg IP 

injection of retigabine in rats yields the > 10 µM brain concentration required to result in 

off-target activity at GABAA receptors in the CNS. In addition, the Kv7 channel-specific 

positive modulator, ML-213, reduced drinking in HD rats, indicating that modulation of 

Kv7 channels is sufficient to reduce alcohol consumption. Together these data suggest 

that the ability of the combined muscimol and ICA injection to reduce alcohol 

consumption recapitulates the effect of retigabine on drinking, but not necessarily the 

mechanism. The additive effect of muscimol and the ICA compound does suggest that 

Kv7 channel positive modulators, including retigabine, may be useful as an adjunct 

therapy with other anticonvulsants such as the GABA analogues (i.e. gabapentin and 

vigabatrin) discussed in Chapter 1. While further investigation of this possibility would be 

interesting, it is outside the scope of this project. Subsequent studies in this dissertation 

investigate alcohol consumption and the function of Kv7 channels by way of retigabine 

microinjected into nodes of the addiction neurocircuitry. 

In summary, these studies indicate that systemic administration of retigabine can 

reduce alcohol consumption in a rodent model of voluntary drinking in an alcohol-specific 

manner. Given that a recent study has shown retigabine to be well tolerated in moderate 

alcohol drinkers when co-administered with an intoxicating dose of alcohol (Crean and 

Tompson, 2013), retigabine may be useful as a pharmacotherapy for treating AUD. 

However, care should be taken clinically to insure that the dose is sufficient as to not 

increase the desire to drink in some patients. These studies further implicate Kv7 

channels in drinking-related behaviors. Subsequent experiments will investigate the 

effect of retigabine in regions of the addiction neurocircuitry on alcohol consumption.  
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CHAPTER 4: MICROINFUSION OF RETIGABINE IN THE ADDICTION NEUROCIRCUITRY AND 

VOLUNTARY DRINKING 
 

Introduction 

Studies from this project and previous reports indicate that systemic 

administration of the Kv7 channel positive modulator, retigabine, reduces voluntary 

alcohol consumption (Knapp et al., 2014). These results indicate not only that retigabine 

may be a suitable treatment for alcohol use disorder (AUD), but also that Kv7 channels 

may play a role in the addictive behaviors. Although the addiction neurocircuitry 

incorporates nearly the entire brain, certain regions are at the core of the addiction 

process. It would therefore be interesting to identify specific portions of the circuitry in 

which activation of Kv7 channels mediates a reduction in voluntary drinking.  

The central portion of the addiction neurocircuitry includes the prefrontal cortex 

(PFC), nucleus accumbens (NAc), the ventral pallidum (VP), and the ventral tegmental 

area (VTA) (Koob and Volkow, 2010)). These regions are also at the core of any 

behavior learned in response to salient environmental stimuli (Kalivas, 2002). Both 

aversive and rewarding (salient) stimuli increase the synaptic release of dopamine (DA) 

from the VTA onto neurons in every node of corticomesolimbic circuit (Berridge and 

Robinson, 1998). The PFC and other regions intimately associated with learning and 

memory (e.g. the hippocampus) send glutamatergic projections to the NAc. The NAc 

integrates its glutamatergic, dopaminergic, and limbic inputs to initiate an adaptive 

response through reciprocal GABAergic connections with the VP and downstream motor 

circuitry (Kalivas, 2002). Over repeated exposure to the same or similar stimuli, the DA 
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response stabilizes, and the habitual motor circuitry becomes primarily responsible for 

behavioral output.  

Acute exposure to drugs of abuse and alcohol induce a greater release of DA 

compared to naturally rewarding stimuli (Kalivas, 2009; Kuczenski and Segal, 1999; 

Marshall et al., 1997). Numerous studies have shown that acute and chronic alcohol 

exposure stimulates the activation of mesolimbic DA (Brodie, 2002; McBride and Li, 

1998; Yoshimoto et al., 2003), inducing a 25-50% increase in DA in the NAc over 

baseline (Weiss et al., 1996). The dopaminergic response elicited by chronic exposure 

to drugs of abuse and alcohol results in the formation of strong, salient memories of the 

drug in question. As a consequence, the individual becomes motivated by the perceived 

importance of drugs or alcohol, leading to addicted behaviors. Rodent models of chronic 

alcohol exposure indicate that during withdrawal, the activity of VTA neurons is 

suppressed, resulting in decreased DA in the NAc (Bailey et al., 1998; Shen, 2003). The 

NAc can be subdivided into two primary regions: the core and the shell. The NAc shell is 

primarily associated with drug reward (Rodd-Henricks et al., 2002; Sellings and Clarke, 

2003), whereas the core contributes to the initiation of motivated and conditioned 

behaviors (Cornish and Kalivas, 2000; McFarland et al., 2003). From this perspective, 

dopaminergic projections from the VTA to the NAc are critical to the learning and 

initiation of addictive behaviors.  

In the following experiments we investigated a role for Kv7 channel function in 

the NAc core and VTA in drinking behaviors. Here we microinfused retigabine to these 

regions of rats drinking in the intermittent alcohol access (IAA) paradigm and measured 

alcohol consumption. Similar to Chapter 3, retigabine reduced alcohol consumption with 

individual differences in drinking patterns. This study indicates that Kv7 channel 
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activation in key regions of the addiction neurocircuitry is sufficient to reduce alcohol 

consumption in high drinking populations of rats.  

 

Materials and Methods 

Animals and Housing 

Male Wistar rats (150g; P39-45) were purchased from Harlan (Indianapolis, IN) 

and housed individually in standard home cages in temperature and humidity controlled 

environments with a 12 hr light/dark cycle (lights out: 1000 hr). Food and water were 

available ad libitum throughout the study. All procedures were approved by the Medical 

University of South Carolina Institutional Animal Care and Use Committee and were in 

accordance with NIH guidelines for the humane care and use of laboratory animals 

(2011).  

 

Two-bottle Choice Drinking  

Intermittent access to alcohol (20% v/v) was performed as previously described 

in Chapter 3 (Simms et al., 2008; Wise, 1973). Briefly, rats had 2 bottles of water 

available during habitation, and were allowed 24 hr access to one bottle of 20% alcohol 

(v/v tap water) and one bottle of tap water beginning just prior to the start of the dark 

cycle on Monday, Wednesday and Friday. Placement of the alcohol solution (left or right 

side of the cage) was alternated between sessions to control for side preference. 

Leakage from the sipper tubes was accounted for when weighing the bottles. 

 

Cannula Implantation and Microinjections 

After reaching a stable baseline of alcohol consumption in the IAA drinking 

paradigm (2-3 wks), separate cohorts of rats were anesthetized with vaporized 
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isoflurane and placed in a stereotaxic instrument (David Kopf Instruments Tujunga, CA). 

For NAc microinjections, bilateral microinjection guide cannula (26 ga O.D.; PlasticsOne 

Roanoke, VA) were aimed to terminate 1 mm dorsal to the NAc core following previously 

established coordinates (anterior-posterior +1.18 mm, medial-lateral ± 1.2 mm, dorsal-

ventral -5 mm) (Gass et al., 2011). For VTA microinjections, bilateral cannula were 

aimed to terminate 2 mm dorsal to the region following previously established 

coordinates (anterior-posterior -5.6 mm, medial-lateral ± 2.1 mm, dorsal-ventral -7.1, 

10°) (Mahler et al., 2013). The guide cannulas were secured to the skull with stainless 

steel screws and dental cement (OrthoJet; Lang Dental Manufacturing Co., Inc). 33 ga 

removable obturators were used to limit the obstruction of the guides by tissue and 

contamination from external debris. We used topical 2% xylocaine and 2% triple 

antibiotic ointments to treat the wound and suture it closed. All rats were given carprofen 

(2.5 mg/kg, SC) for post-operative pain management for 4 consecutive days following 

the surgery. 

Rats received microinjections in their home cages beginning 30 min prior to 

alcohol availability. 33 ga injectors were connected to two Hamilton syringes mounted to 

a pump (Harvard Apparatus, 11 Plus, Holliston, MA) set to deliver fluids at a rate of 0.5 

µl/min. Injectors were inserted bilaterally to a depth of 1-2 mm beyond the tip of the 

guide cannula. Retigabine (2.5 - 10 ng in 0.01% DMSO v/v saline) or vehicle (0.01% 

DMSO v/v saline) was delivered in a final volume of 0.5 µl/side. After the infusion, the 

injectors were left in the guides for 1 min to allow drug diffusion. Rats were given at least 

15 min to rest in their home cages prior to alcohol availability. Drinking was measured at 

3, 6, and 24 hrs. Microinjections were completed as a pseudo-random within-subjects 

design (NAc: n = 13, 4-6 microinjections each; VTA: n = 12, 6 microinjections each). 

Upon completion of the experiment, rats were euthanized and the brains were Nissl 
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stained for cannula placement. Rats with cannulas that missed the NAc core (6 total) or 

VTA (no misses) were excluded from analysis for that brain region.  

 

Statistical Analysis 

A mixed-model analysis of variance procedure was used in the statistical 

software language SAS to analyze all drinking data using repeated measures factors. A 

between-within method was used to calculate degrees of freedom. Fisher LSD post-hoc 

tests were used to follow up significant interactions and treatment effects. Finally, all 

data are reported as mean ± SEM and statistical significance was established with p < 

0.05. 

 

Results 

Effect of Retigabine in the NAc Core on Voluntary Drinking 

Evidence indicates that the NAc core regulates alcohol-seeking behaviors 

(Abrahao et al., 2013; Hopf et al., 2010; Seif et al., 2013), and recent studies suggest 

that Kcnq gene expression is altered in this region after alcohol exposure (Bell et al., 

2009; Metten et al., 2014; Rodd et al., 2008). To investigate the role of Kv7 channels in 

the NAc, we infused retigabine to this region (Figure 4.1a) and measured alcohol 

consumption in the IAA paradigm (n = 13). Intra-accumbal retigabine had no effect on 

alcohol consumption (F(2,24) = 2.59, p = 0.0962; Figure 4.1b), preference (F(2,24) = 

2.70, p = 0. 0.0877; Figure 4.1c), or total fluid consumption (F(2,24) = 0.36; p = 0.7018; 

Figure 4.1d).  



	
   53	
  

 

In Chapter 3 we discussed individual differences in the Wistar strain associated 

with drinking (Blomqvist et al., 1996; Momeni and Roman, 2014), and found that 

systemic retigabine had differential effects on alcohol consumption that were dependent 

on the individual’s propensity to drink. We again divided the cohort into HD and LD 

populations based on the median value of alcohol consumption. HD rats (n = 5-6) drank 

significantly more than LD rats (n = 7) at baseline (t(11) = 3.385; p = 0.0061; mean HD: 

5.963 ± 0.7906 g/kg/24 hrs; mean LD: 2.871 ± 0.5095 g/kg/24 hrs). In HD rats there was 

a main effect of retigabine on drinking (F(2,10) = 6.39; p = 0.0163; Figure 4.2a) and 

preference (F(2,10) = 7.81; p = 0.0091; Figure 4.2b). Post-hoc analysis revealed that 10 
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Figure 4.1 | Retigabine in the NAc does not reduce drinking in the total 
population of rats. (A) Representative images of the placement of bilateral guide 
cannula targeting the NAc core. Grey circles indicate placements for individual rats. 
Microinfusion of 5 and 10 ng of retigabine did not affect (B) EtOH consumption, (C) 
preference, or (D) total liquid intake. 
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ng of retigabine reduced consumption (p = 0.0054) and preference (p = 0.0027) 

compared to vehicle. There was no effect of treatment on total liquid consumption 

(F(2,10) = 0.07; p = 0.9352; Figure 4.2c). In LD rats there was no effect of retigabine on 

alcohol consumption (F(2,12) = 2.41; p = 0.1317; Figure 4.2d), preference (F(2,12) = 

1.87; p = 0.1957; Figure 4.2e), or total liquid consumption (F(2,12) = 0.75; p = 0.4939; 

Figure 4.2f). Together these data suggest that Kv7 channels in the NAc core are 

involved with regulating alcohol intake in HD rats.  

 

Effect of Retigabine in the VTA on Voluntary Drinking 

 DA release from the VTA is a central aspect of the addiction process (Koob and 

Le Moal, 2005), and M-current and retigabine affect DA signaling. Retigabine can 
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Figure 4.2 | Retigabine in the NAc reduces alcohol consumption in HD rats. 
Rats were divided into high and low drinking groups based on the median value of 
EtOH consumption. In the HD population, 10 ng of retigabine reduced (A) EtOH 
consumption and (B) preference. There was no effect on (C) total fluid intake. In LD 
rats, retigabine had no effect on (D) EtOH consumption, (E) preference, or (F) total 
fluid intake. (* p < 0.05 vs veh)  
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decrease firing of DA VTA neurons (Koyama and Appel, 2006). Altering Kv7 cannel 

function can also influence DA transmission in mesencephalic/VTA DA neurons (Hansen 

et al., 2007; Koyama and Appel, 2006; Sotty et al., 2009), and Kv7 channel positive 

modulators can attenuate evoked DA efflux and synthesis in the striatum (Hansen et al., 

2006; Jensen and Yaari, 1997; Martire et al., 2007; Sotty et al., 2009). Thus Kv7 

channels in the VTA may regulate drinking behaviors. In IAA drinking rats (n = 11-12), 

we bilaterally implanted guide cannulas to target the VTA (Figure 4.3a). In the total 

population of drinking rats, retigabine had no effect on alcohol consumption (F(2,20) = 

0.23, p = 0.8001; Figure 4.3b), preference (F(2,20) = 0.29, p = 0.7546; Figure 4.3c), or 

total fluid consumption (F(2,20) = 3.15, p = 0.0649; Figure 4.3d).  

 

4.3$VTA:$MI$RTG$

3 hr 6 hr 24 hr
0

2

4

6

8

10

Et
O

H
 C

on
su

m
pt

io
n 

(g
/k

g)

Veh
5 ng
10 ng

3 hr 6 hr 24 hr
0.0

0.2

0.4

0.6

0.8

1.0

Et
O

H
 P

re
fe

re
nc

e
(m

l/k
g 

Et
O

H
/T

ot
al

 m
l/k

g)

3 hr 6 hr 24 hr
0

50

100

150

To
ta

l L
iq

ui
d 

In
ta

ke
 (m

l/k
g)

C 

B A 

D 

Figure 4.3 | Retigabine in the VTA does not reduce drinking in the total 
population of rats. (A) Representative images of the placement of bilateral guide 
cannula targeting the VTA. Grey circles indicate placements for individual rats. 
Microinfusion of 5 and 10 ng of retigabine did not affect (B) EtOH consumption, (C) 
preference, or (D) total liquid intake. 

-6.12mm -5.64mm 



	
   56	
  

We again grouped the rats into HD and LD populations based on median alcohol 

consumption. As expected, HD rats (n = 5-6) consumed more alcohol than LD rats (n = 

5-6) at baseline (t(9) = 4.379; p = 0.0018; mean HD: 6.787 ± 0.7439 g/kg/24 hrs; mean 

LD: 2.568 ± 0.5560 g/kg/24 hrs). In the HD group, there was an interaction of time and 

alcohol consumption (F(4,20) = 3.04; p = 0.0412; Figure 4.4a). Post-hoc analysis 

indicates that both 5 ng (p = 0.0004) and 10 ng (p = 0.0030) of retigabine reduced 

drinking at the 24 hr time point. As evidenced by a main effect of treatment (F(2,10) = 

5.21; p = 0.0282), retigabine also reduced alcohol preference (Figure 4.4b). Post-hoc 

analysis indicates that the 5 ng (p = 0.0122) and 10 ng (p = 0.0328) dose of retigabine 

reduced preference compared to vehicle. Finally, intra-VTA retigabine decreased total 

fluid intake (F(2,10) = 9.59, p = 0.0047; Figure 4.4c). Again, 5 ng (p = 0.0024) and 10 ng 

(p = 0.0057) retigabine reduced intake compared to vehicle. In LD rats (n = 5-6), there 

was no effect of retigabine on alcohol consumption (F(2,8) = 2.72, p = 0.1255; Figure 

4.4d). However, retigabine increased alcohol preference (F(2,8) = 4.86, p = 0.0416; 

Figure 4.4e) and total fluid intake (F(2,8) = 5.59, p = 0.0303; Figure 4.4f). Post-hoc 

analysis revealed that 5 ng of retigabine increased alcohol preference compared to 

vehicle (p = 0.0143). 5 ng (p = 0.0248) and 10 ng (p = 0.0164) also reduced total liquid 

intake compared to vehicle. These data indicate that Kv7 channel function in the VTA 

play a role in the regulation of drinking behaviors, although the effect may not be specific 

to alcohol.  
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Effect of Retigabine in Missed Cannula Placements 

 Given the nature of the coordinates used to target the NAc, 5 of the 6 missed 

cannula placements terminated in the lateral ventricle (Figure 4.5a), effectively resulting 

in an intracranial ventricle (ICV) microinjection. These rats drank more than the average 

median level of alcohol consumption across the other cohorts (> 4.47 g/kg/24 hrs). 

Retigabine significantly reduced alcohol consumption (F(2,8) = 12.09; p = 0.0038; 

Figure 4.5b), preference (F(2,8) = 12.42; p = 0.0035; Figure 4.5c), and total liquid 

intake (F(2,8) = 10.30; p = 0.0061; Figure 4.5d) as indicated by significant main effects 

of treatment. Post-hoc analysis indicated that both 5.0 and 10 ng of retigabine reduced 
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Figure 4.4 | Retigabine in the VTA reduces alcohol consumption HD rats. Rats 
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consumption at the 24 hr time point. (B) EtOH preference was reduced by 5 ng 
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alcohol consumption (p = 0.0020, p = 0.0041), preference (p = 0.0028, p = 0.0024), and 

liquid intake (p = 0.0076, p = 0.0026). These data indicate that ICV retigabine reduces 

voluntary alcohol consumption, but that it is it partially mediated through a reduction in 

total liquid intake.  

 

Discussion 

In these experiments we showed that microinfusion of retigabine to the NAc core 

or the VTA, key nodes of the addiction neurocircuitry, is sufficient to reduce voluntary 

alcohol consumption in the IAA paradigm. Similar to the findings from Chapter 3, we 

observed individual differences in the efficacy of microinjected retigabine: the drug was 

only able to reduce alcohol intake and preference in the high drinking population of rats. 
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Together these studies suggest that Kv7 channels in the VTA and NAc help regulate 

alcohol-drinking behaviors.  

The key finding from this set of experiments is that microinfusion of retigabine to 

the NAc core and VTA of high drinking rats reduces voluntary drinking and alcohol 

preference. Retigabine may accomplish this through the restoration of aberrant DA tone 

found in high drinking rats. Kv7 channel function can influence DA transmission in 

mesencephalic/VTA DA neurons (Hansen et al., 2008; Koyama and Appel, 2006; Sotty 

et al., 2009) and Kv7 channel positive modulators can attenuate evoked DA efflux and 

synthesis in the striatum (Hansen et al., 2006; Jensen et al., 2011; Martire et al., 2007; 

Sotty et al., 2009).  Decreased levels of dopamine receptor 2 (Drd2) mRNA expression 

are reported in the NAc of high-alcohol preferring mice compared to low-alcohol 

preferring mice (Bice et al., 2011; Imperato and Di Chiara, 1986; Yim and Gonzales, 

2000). Microdialysis studies indicate that high-alcohol drinking (HAD) rats have a lower 

baseline of DA in the ventral striatum (NAc) compared to low-alcohol drinking (LAD) rats 

(Gongwer et al., 1989; Murphy et al., 1987; Stefanini et al., 1992; Zhou et al., 1995). 

Finally alcohol-naïve University of Chile Bibulous rats (derived from Wistar rats) have a 

greater DA response in the NAc to an acute alcohol challenge compared to abstainer 

rats (Bustamante et al., 2008). Together these studies indicate that alcohol preferring 

rats have decreased dopaminergic tone in the NAc, and an increased dopaminergic 

response to alcohol exposure compared to their low alcohol-preferring counterparts. 

Thus, intra-accumbal and intra-VTA retigabine could be acting to restore abnormal DA 

tone in animals predisposed to consume higher amounts of alcohol.  

Alternatively, retigabine may reduce consumption through attenuating an alcohol-

induced increase in excitability. Studies indicate that chronic alcohol treatment sensitizes 

VTA DA neurons to alcohol-induced excitation (Brodie, 2002). Also, burst firing in the 
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VTA encodes the salience of a given environmental stimuli or drug (Overton and Clark, 

1997), and alcohol withdrawal increases the probability of burst firing in VTA neurons 

(Hopf et al., 2007). Furthermore, Kv7 channel positive modulators can prevent burst 

firing of VTA neurons (Sotty et al., 2009). Given that microinfusion of retigabine to VTA 

reduced alcohol consumption in HD rats, it is possible that retigabine reduces drinking 

by suppressing VTA activity. In addition, electrophysiology studies indicate that spike 

firing is increased in the NAc 3-5 weeks after prolonged alcohol self-administration (Hopf 

et al., 2010), and that medium spiny neurons (MSNs) in the NAc display increased mini-

excitatory postsynaptic currents and increased paired pulse ratios during withdrawal 

from prolonged alcohol exposure (Marty and Spigelman, 2012a; Spiga et al., 2014). 

Together these data suggest that the NAc is more excitable during withdrawal. In 

addition, Kv7 channel activation can prevent presynaptic release of DA in the NAc 

(Martire et al., 2007). Furthermore, inhibition of the NAc core inhibits the reinstatement of 

cocaine seeking (Stefanik and Kalivas, 2013), and alcohol self-administration (Hodge et 

al., 1997). Given that M-current activation is important for repolarizing the cell, fine-

tuning the resting membrane potential, and controlling action potential generation and 

frequency (Miceli et al., 2009), and retigabine potently reduces firing frequency (Dalby-

Brown et al., 2006; Tatulian et al., 2001; Wickenden et al., 2000), it is possible that intra-

accumbal core retigabine reduces voluntary alcohol consumption through a reduction in 

NAc core firing and subsequent initiation of drinking behaviors. 

In Chapter 3 we showed that a moderate and high dose of IP retigabine reduced 

alcohol consumption in HD rats, whereas the moderate dose increased consumption in 

LD rats. Here, we show that intra-accumbal retigabine had no effect on drinking in LD 

rats, suggesting that Kv7 channels in the NAc are not responsible for the increased 

drinking caused by moderate systemic doses of retigabine in LD rats. In contrast, 
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microinfusion of retigabine to the VTA increased alcohol preference in LD rats, and there 

was a trend towards increased alcohol consumption. This suggests that increased M-

current in the VTA mediates the increase in drinking caused by retigabine in LD rats. 

Given that retigabine alters DA release from the VTA to the NAc (Hansen et al., 2006; 

Jensen et al., 2011; Martire et al., 2007; Sotty et al., 2009), and the decreased release of 

DA in response to alcohol observed in alcohol avoiding rat (Bustamante et al., 2008), it 

is possible that in low drinking rats, retigabine in the VTA alters the rewarding perception 

of alcohol. 

Altogether these studies suggest that retigabine could act through several 

mechanisms in the NAc and VTA to affect drinking. Specifically, retigabine likely reduces 

activity in the NAc core, which prevents the initiation of alcohol drinking. Retigabine 

could also regulate aberrant DA release from the VTA to the NAc to alcohol, preventing 

its rewarding effects and subsequent consumption. Although outside the scope of this 

project, additional investigation into the interaction of retigabine, dopamine, and alcohol 

is necessary and will be an area of focus in future studies. 

In these experiments there was not a significant interaction of time and treatment 

on alcohol consumption when retigabine was infused to the NAc. However, visual 

inspection of the graphed values suggests that intra-accumbal retigabine does not begin 

to affect drinking until 6 hrs after presentation of alcohol. Given the instant availability of 

drug to bind receptors when microinfused, we predicted an immediate effect of 

retigabine on drinking. The delay in the effect may be contributed to multiple 

mechanisms. At 3 hrs into a drinking session, rats receiving vehicle infusions drink 

between 1.5 and 2 g/kg alcohol. Any variability in drinking between rats would prevent 

an effect of retigabine at such low intake. Another possible explanation for a lack of 

effect at 3 hrs is that the dopaminergic response to alcohol presentation and drinking in 
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the IAA model is slow. We argue that retigabine decreases alcohol consumption by 

stabilizing an aberrant DA response to alcohol. In most rat models of drinking, DA 

release is measured after an IP injection of an intoxicating amount of alcohol (Feduccia 

et al., 2014; Soderpalm et al., 2000; Steensland et al., 2012). Operant self-administration 

procedures with rats suggest a 10-20 min delay in peak DA release during short (30-60 

min) sessions where ~2 g/kg of alcohol is consumed (Melendez et al., 2002; Weiss et 

al., 1993). One study investigating DA release in a choice continuous access model for 

6% alcohol, found a 60 min delay in peak DA release (Ericson et al., 1998). How this 

and an operant self-administration paradigm correlate to our IAA home cage drinking is 

unclear. It would of great interest to use microdialysis techniques to measure DA release 

in the NAc during a drinking session in our model. 

In the HD population of rats, 5 and 10 ng of retigabine in the VTA reduced 

voluntary alcohol consumption at the 24 hr time point. However, alcohol preference did 

not correlate with consumption. 5 ng of retigabine reduced preference at the 3 and 24 hr 

time points. Retigabine also reduced total fluid consumption 6 and 24 hrs after alcohol 

availability. Clearly, these data are difficult to interpret; however disruption in naturally 

rewarding stimuli has been observed after modifying acetylcholine in the VTA. 

Cholinergic agonists infused to the VTA have been shown to reduce alcohol 

consumption and increase saccharin consumption in limited access models of drinking 

(Katner et al., 1997). Microinfusion of atropine, a metabotropic acetylcholine (mACh) 

receptor antagonist, to the VTA decreases food intake (Rada et al., 2000). Atropine can 

also prevent the reduction of M current by the mACh receptor agonist muscarine 

(Pfaffinger, 1988). Therefore in our studies, retigabine may be modifying the behavioral 

response to the potentially naturally rewarding perception of water. Although outside the 
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scope of this project, it would be interesting to investigate the role of VTA Kv7 channels 

in water and saccharin/sucrose consumption in both naïve and alcohol-exposed rats.  

The missed placements from the NAc microinjection study provided an 

opportunity to examine the effect of what were effectively ICV infusions of retigabine on 

alcohol consumption in HD rats. We found that 5 and 10 ng of retigabine reduced 

alcohol consumption and preference. These data are in agreement with ours and others’ 

studies showing that systemic retigabine reduces drinking (Knapp et al., 2014). 

Interestingly, we observed a decrease in total fluid intake, suggesting that the effect of 

retigabine administered directly to the CNS is not alcohol-specific.  

At high concentrations (> 10 µM), retigabine is known to have off target effects at 

GABAA receptors (Rundfeldt and Netzer, 2000). It is possible that the reduction in 

drinking when retigabine is microinfused into the NAc and VTA is mediated, in part, 

through GABAergic mechanisms. Here we microinfused a 5 – 10 ng of retigabine in a 

total volume of 0.5 µL, which corresponds to a concentration of 32.97 – 65.94 µM. This 

would be sufficient to activate GABAA receptors in vitro, however the drug is likely to 

rapidly diffuse throughout a volume of brain tissue greater than 0.5 µL, reducing the 

effective concentration. Furthermore, 100 µM retigabine does not alter the amplitude of 

GABAA receptor responses in patch clamp recordings from rat entorhinal cortex (Hetka 

et al., 1999), suggesting a minimal effect of retigabine on GABA signaling. Together, this 

suggests that the reductions in alcohol consumption by retigabine in the NAc and VTA 

are likely not mediated by GABAergic mechanisms.  

In summary, these studies indicate that retigabine differentially affects voluntary 

alcohol consumption in high and low drinking populations of outbred rats. Specifically, 

we showed that microinfusion of retigabine to the NAc core and VTA is sufficient to 

reduce alcohol consumption in high drinking rats with no effect in low drinking animals. 
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This suggests that Kv7 channels in key regions of the addiction neurocircuitry play a 

critical role in drinking behaviors in HD rats. Subsequent experiments will investigate 

alcohol-induced adaptations in Kv7 channels, which may underlie the effects of 

retigabine on drinking.  
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CHAPTER 5: DRINKING-INDUCED NEUROADAPTATIONS OF KV7 CHANNELS  
 
 
Introduction 

Studies from the previous chapters indicate that Kcnq genes are associated with 

alcohol phenotypes and that positive modulation of Kv7 channels reduces voluntary 

alcohol consumption both systemically and when microinjected into the nucleus 

accumbens (NAc) core or ventral tegmental area (VTA). The ability of retigabine to 

reduce drinking could be the result of an augmented baseline function of Kv7 channels 

or a stabilization of an alcohol-induced adaptation in Kv7 channel physiology. The crucial 

nature of the NAc to addictive behaviors (Kalivas, 2009; Russo et al., 2010) and 

evidence indicating a high level of alcohol-induced plasticity of excitatory mechanisms 

and Kcnq genes in the NAc, strongly suggest that Kv7 channels undergo adaptations 

after prolonged alcohol consumption. 

In Chapter 4, we discussed the brain regions associated with addiction as a 

circuit encompassing the prefrontal cortex (PFC), NAc, VTA, and ventral pallidum (VP) 

(Kalivas, 2002; Koob and Volkow, 2010). The traditional focus of addiction research has 

been the VTA and its dopaminergic projections, however in the past several decades, 

there has been a shift to focus on the corticostriatal circuitry in which DA terminals from 

the VTA are embedded (Kalivas, 2009). These regions are responsible for generating 

learned and habitual behaviors, and for dictating how an individual responds to 

environmental stimuli. The circuitry is composed of limbic regions including the NAc, 

PFC, amygdala, and VTA; and a motor subcircuit including the motor cortex, dorsal 

striatum, and the substantia nigra. In a simplified interpretation of the corticostriatal 
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circuit, the NAc acts as a gateway through which information processed in the limbic 

circuit gains access to the motor circuit (Groenewegen et al., 1996; Yin and Knowlton, 

2006). Over time repeated behaviors (such as taking drugs of abuse) reduce the 

involvement of the limbic regions, and the motor circuitry is more heavily relied upon until 

a novel stimulus reengages the limbic circuitry (Barnes et al., 2005; Doya, 2008; Yin and 

Knowlton, 2006). Many drugs of abuse, including alcohol, hijack this circuit reducing the 

glutamatergic input from the PFC to the NAc, resulting in behaviors mediated by the 

habitual motor circuitry (Kalivas, 2009). This view of addictive behaviors marks the NAc 

as a key region of the addiction neurocircuitry for therapeutic intervention.  

The NAc is well-researched in alcohol addiction, and studies indicate that 

prolonged alcohol exposure leads to aberrant glutamate signaling (Gass and Olive, 

2008; Griffin et al., 2014; Neasta et al., 2010; Neasta et al., 2011) and altered glutamate 

receptor expression in the NAc (Cozzoli et al., 2009; Neasta et al., 2011; Obara et al., 

2009; Szumlinski et al., 2008; Zhou et al., 2007). Previous research has shown that 

medium spiny neurons (MSNs) in the NAc become hyperexcitable after chronic alcohol 

exposure (Marty and Spigelman, 2012a, b; Padula et al., 2015; Spiga et al., 2014). 

Furthermore, a recent rodent proteomics study found over 50 proteins whose expression 

was altered in the NAc by alcohol exposure (Uys et al., 2015). Thus, the NAc is a region 

not only critical to the addition neurocircuitry, but also highly susceptible to alcohol-

induced adaptations. 

Studies highlighted in the GeneWeaver analysis discussed in Chapter 2 provide 

genetic evidence that Kv7 channel expression may be altered in the NAc by alcohol 

exposure. Two studies using RT-qPCR found that Kcnq3 mRNA expression in the NAc 

of P rats was decreased after alcohol consumption (Bell et al., 2009; Rodd et al., 2008). 

Also, Kcnq genes are differentially expressed in the NAc bHR (high drug-responding) 
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and bLR (low drug-responding) rats (Clinton et al., 2011). Finally a recent study has 

reported differential expression of Kcnq2 in the ventral striatum (NAc) of mice selectively 

bred for high alcohol consumption/low withdrawal severity versus mice bred for low 

consumption/high withdrawal severity (Metten et al., 2014). The authors also reported a 

quantitative trait locus (QTL) on distal Chr 2, and alignment of the QTL with differential 

expression data identified Kcnq2 as a candidate cis-eQTL for alcohol consumption and 

withdrawal. These studies indicate that prolonged alcohol consumption leads to 

adaptations of Kv7 channels in the NAc. 

 In the following experiments we systemically administered the selective Kv7 

channel antagonist XE-991 to long term drinking rats in the IAA model. We observed 

that blocking these channels induced convulsive activity, suggesting that drinking in the 

IAA model induces adaptations in the Kv7 channel expression and/or function. We then 

investigated IAA-induced adaptations in the expression patterns of the Kv7 channel 

subunit Kv7.2 in the NAc. The Kv7.2 subunit selected for analysis because it has been 

extensively studied in medium spiny neurons (MSNs) and is a key target for Kv7 channel 

regulation (Cooper et al., 2001; Delmas and Brown, 2005; Hansen et al., 2008; Martire 

et al., 2007; Shen et al., 2005). We observed that the expression of Kv7.2 in specific 

membrane microdomains is altered by alcohol withdrawal. Given that a recent study 

suggesting that hyper-SUMOylation of Kv7 channels decreases M-current (Qi et al., 

2014), we examined SUMOylation as a possible post translation modification that could 

mediate these expression patterns.  
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Materials and Methods 

Animals and Housing 

Male Wistar rats (150g; P39-45) were purchased from Harlan (Indianapolis, IN) 

and housed individually in standard home cages in temperature and humidity controlled 

environments with a 12 hr light/dark cycle (lights out: 1000 hr). Food and water were 

available ad libitum throughout the study. All procedures were approved by the Medical 

University of South Carolina Institutional Animal Care and Use Committee and were in 

accordance with NIH guidelines for the humane care and use of laboratory animals 

(2011).  

 

Two-bottle Choice Drinking  

Intermittent access to alcohol (20% v/v) was performed as previously described 

in Chapters 3 and 4 (Simms et al., 2008; Wise, 1973). Briefly, rats had 2 bottles of water 

available during a 1 wk habitation period. Rats were allowed 24 hr access to one bottle 

of 20% alcohol (v/v tap water) and one bottle of tap water beginning just prior to the start 

of the dark cycle on Monday, Wednesday and Friday with 24 or 48 hrs of deprivation 

between drinking sessions. Placement of the alcohol solution (left or right side of the 

cage) was alternated between sessions to control for side preference. Leakage from the 

bottles was accounted for when weighing the bottles. 

 

XE-991 Sensitivity 

While conducting the initial systemic retigabine studies described in Chapter 3, 

we tried to prevent the effects of retigabine on drinking with pretreatment of the selective 

Kv7 channel antagonist XE-991. However, XE-991 induced convulsive behaviors (e.g., 

wild jumping behavior) in all rats within 10 min of the injection and the study was 
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terminated. This was surprising given that the dose used (2 mg/kg) has been shown to 

be innocuous and even improve cognitive function (Fontan-Lozano et al., 2011). 

Although the outcome of this experiment was unexpected, it suggested that prolonged 

drinking in the IAA model alters Kv7 channel function and/or expression. To formally 

measure XE-991-induced convulsant activity, Wistar rats that had been drinking for 12 

wks in the IAA model received XE-991 (2 mg/kg; IP in sterile saline, 3 ml/kg; Tocris 

Bioscience; Ellisville, MO) or vehicle (saline) immediately prior to their dark cycle and 

returned to their home cage. Behavior was digitally recorded under red light for 20 min. 

A blinded observer manually scored behavioral abnormalities on a modified Rancine 

seizure scale (Luttjohann et al., 2009). Briefly, this scale uses 10 behavioral categories 

to assess seizure occurrence and intensity (from relatively least to most severe: MS = 

motionless staring, FJ = facial jerks, NJ = neck jerks, CS = clonic seizures while sitting, 

CLB = clonic seizures while lying on its belly, TCLB = tonic–clonic seizures while lying 

on its belly, T = tonic seizure, CLS = clonic seizures while lying on its side, TCLS = 

tonic–clonic seizures lying on its side, WJ = wild jumping). 

 

Subcellular Fractionation and Western Blot Analysis 

Bilateral tissue punches were taken targeting the NAc core from alcohol-naïve 

and long-term drinking rats (at least 12 wks of alcohol consumption) 72 hr after the last 

session. Detergent resistant membrane (DRM) and detergent soluble membrane (DSM) 

fractions were prepared using Triton X-100 (Mulholland et al., 2011). Briefly, a Dounce 

homogenate was prepared and centrifuged at 23,000 x g for 30 min. The supernatant or 

‘intracellular’ (IC) fraction that contains cytosolic proteins and intracellular light 

membranes (ILMs) was separated and the pellet was resuspended with buffer 

containing 0.5% Triton X-100. The suspension was rotated for 15 min at 4¹C and then 
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centrifuged at 12,000 x g for 20 min, generating the soluble (DSM) and insoluble (DRM) 

fractions. Western blots were performed on these fractions following previous methods 

(McGuier et al., 2014). Membranes were stained for total protein concentration with 

amido black, and blots were normalized to the total protein stain (Aldridge et al., 2008). 

Kv7.2 antibody was purchased from Alomone Labs (#APC-050; Jerusalem, Israel). 

AKAP150 antibody was purchased from EMD Millipore (#07-210; Billerica, MA). The 

SGK1 antibody (#S5188) and naphthol blue black were purchased from Sigma-Aldrich.  

 

SUMOylation Assay 

 To identify possible SUMOylation modification sites on Kv7.2 channels, we 

performed a bioinformatics search using SUMOplotTM with accession numbers O43526 

and O88543 for human and rat Kv7.2, respectively. The SUMOylation assay was 

completed using the VIVAbind SUMO kit (VIVA Bioscience, Exeter, UK) following the 

manufacturer’s instructions. Briefly, tissue was collected targeting the NAc core of rats 

and then subfractioned to generate DRM and DSM fractions using the methods 

described above. The protein concentrations of each DRM and DSM sample were 

determined using a Bradford assay kit (Pierce Scientific, Rockford, IL). Equal amounts of 

protein from each sample were rotated with 40 µL of the SUMO matrix overnight at 4°C. 

SUMOylated proteins were eluted at 95°C in 45 µL of 14% SDS (v/v PBS). An equal 

volume of each eluate was run on a polyacrylamide gel for western blot analysis as 

described above, and Kv7.2 (Alomone Labs, Jerusalem, Israel) was used for the 

detection of SUMOylated proteins. To characterize differences in Kv7.2 SUMOylated 

between fractions, tissue was collected from adult, male, alcohol-naïve Wistar rats. 

Tissue to quantify alcohol-induced differences in Kv7.2 SUMOylation was collected from 
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alcohol-naïve and IAA-exposed (at least 12 wks of alcohol consumption), male, rats after 

72 hr withdrawal from alcohol in the IAA paradigm.  

 

Statistical Analysis 

Due to the non-Gaussian distribution of the behavioral responses in the XE-991 

sensitivity study, non-parametric statistical analyses including a Chi-square test for trend 

and a Mann Whitney test were performed. Western blot data was analyzed using two-

tailed t-tests to compare samples from naïve and IAA rats. Finally, all data are reported 

as mean ± SEM and statistical significance was established with p < 0.05. 

 

Results 

Sensitivity to XE-991 After Long-term Drinking 

As an alternative approached to determining the role of Kv7 channels in alcohol 

drinking we treated IAA rats with an innocuous dose of the selective Kv7 channel blocker 

XE-991 in combination with retigabine, hypothesizing that this would block the effects of 

retigabine on consumption and increase drinking. To test this, we systemically 

administered 2 mg/kg XE-991 or vehicle 15 min prior to treatment with 7.5 mg/kg 

retigabine or vehicle. However, in our initial experiment with XE-991, treatment of long-

term drinking rats rapidly induced convulsive behaviors (e.g., wild jumping behavior) in 

all rats within 10 min of administration and the study was discontinued. This finding 

suggested that rats with a history of long-term alcohol consumption were sensitive to the 

proconvulsant effects of Kv7 channel blockade. We tested this hypothesis by 

administering XE-991 (2 mg/kg) or vehicle to a different cohort of alcohol-naïve and 

long-term drinking rats (n = 4-5/group) immediately prior to a normal drinking session 

such that the rats were 24 hrs withdrawn from alcohol. Vehicle injections did not produce 
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any seizure-like activity in naïve or alcohol exposed rats (data not shown). XE-991 

administration significantly increased the percentage of IAA rats that experienced more 

severe seizure activity compared to alcohol-naïve controls (χ2 for trend (1, n = 9) = 

4.908, p = 0.0267; Figure 5.1a). Rats with a 12-wk history of drinking also displayed a 

significant increase in the severity of the worst convulsive activity score compared to 

naïve rats that were treated with XE-991 (U = 2.000, p = 0.0238; Figure 5.1b), indicating 

that long-term drinking alters Kv7 channel function. 

 

Alcohol-Induced Adaptations in Kv7.2 Expression  

The results from the GeneWeaver analysis and microinjection study indicate that 

Kv7 channels in the NAc play a role in alcohol drinking. These data, combined with IAA 

rats being more sensitive to Kv7 blockade compared to naïve rats, suggest that Kv7 

channel expression and/or function in the NAc may be altered due to long-term drinking 
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Figure 5.1 | Rats with a history of drinking were more sensitive to Kv7 channel 
blockade-induced seizures. (A) More rats with a history of alcohol consumption 
showed enhanced convulsive activity in response to XE-991 (2 mg/kg) compared 
with alcohol naïve controls (in order of increasing severity MS = motionless staring, 
FJ = facial jerks, NJ = neck jerks, CS = clonic seizures while sitting, CLB = clonic 
seizures while lying on its belly, TCLB = tonic–clonic seizures while lying on its belly, 
T = tonic seizure, CLS = clonic seizures while lying on its side, TCLS = tonic–clonic 
seizures lying on its side, WJ = wild jumping). (B) XE-991 treatment significantly 
increased the severity of seizure-like activity in long-term drinking rats compared to 
naïve rats (e.g. wild jumping vs motionless staring). (* p < 0.05 compared to naïve) 
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in the IAA model. Tissue punches targeting the NAc core were obtained after 72-hr 

withdrawal from the last drinking session. Samples from control and IAA rats (n = 5-

6/group) were fractionated into detergent resistant membrane (DRM), detergent soluble 

membrane (DSM), and intracellular (IC) fractions. Figure 5.2a shows the relative 

expression levels of Kv7.2, AKAP150, and SGK1 in these subfractions. Consistent with 

previous reports, Kv7.2 was expressed in all 3 fractions, AKAP150 was primarily 

expressed in the DRM fraction, and SGK was primarily expressed in the IC fraction 

(Delmas and Brown, 2005; Garcia-Martinez and Alessi, 2008; Hoshi et al., 2003). 

Western blot analysis indicated that Kv7.2 expression was significantly increased in 

DRMs in IAA rats compared to naïve rats (t(10) = 2.250; p = 0.0482; Figure 5.2b), 

whereas Kv7.2 expression was decreased in the DSMs of IAA rats compared to naïve 

controls (t(10) = 7.237; p < 0.0001). Figure 5.3 depicts a cartoon of these expression 

patterns. There was no effect of alcohol drinking on Kv7.2 channel expression in the IC 

fraction (t(9) = 0.425; p = 0.6812). 72 hr withdrawal did not alter expression levels of 

AKAP150 (t(10) = 0.3578; p = 0.7279) or SGK1 (t(9) = 0.5282; p = 0.6101; Figure 

5.2c,d).  
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Figure 5.2 | Excessive drinking and abstinence altered surface trafficking of 
Kv7.2 channels in the NAc. (A) Representative blots showing relative expression 
patterns of Kv7.2, AKAP150, and SGK1 in detergent resistant membrane (DRM), 
intracellular (IC), and detergent resistant membrane (DSM) fractions. (B)  Kv7.2 
channel expression is altered in the DRM and DSM fractions after long-term drinking 
and 72 hr abstinence. A history of drinking did not affect (C) AKAP150 or (D) SGK1 
expression levels. (* p < 0.05 compared to naïve) 
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Alcohol-Induced SUMOylation Pattern of Kv7.2 Channels 

Post-translational modifications (PTMs) of proteins can influence their subcellular 

expression patterns (Perkins, 2006; Reed et al., 2006). SUMOylation is one such PTM 

that results in the covalent attachment of a small ubiquitin-like modifier (SUMO) protein 

that has recently been linked to multiple forms of synaptic plasticity and protein function 

(Luo et al., 2013). A recent report indicated that hyper-SUMOylation of Kv7 channels 

reduces M-current, suggesting that SUMOylation is be a key regulator of Kv7 channel 

function (Qi et al., 2014). A search for SUMOylation tetrapartite motifs (Ψ-K-x-D/E; 

where Ψ is a hydrophobic residue, K is an acceptor lysine, x is any amino acid, and D/E 

are acidic residues) revealed 12 possible SUMOylation modification sites on human and 

rat Kv7.2, 3 of which were identified as high probability motifs (human: K21, K625, and 

K662; rat: K21, K608, and K645). In rat Kv7.2, three consensus motifs were identified on 

the N-terminus (K21, K49, K66), 1 was cytosolic between transmembrane segments S2 
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Figure 5.3 | Illustration of 
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and S3 (K166), 1 was extracellular between S5 and the pore (K255), 1 was in the pore-

forming intramembrane (K283), and six were located on the C-terminus (Figure 5.4).  

 

Using a commercially available kit, we first characterized SUMOylated Kv7.2 

protein levels in the NAc of alcohol-naïve rats (n = 4). We observed no difference in the 

expression of SUMOylated Kv7.2 in the DRM and DSM of the NAc (t(4) = 1.202, p = 

0.2955; Figure 5.5a). We then performed a SUMOylation assay on fractionated tissue 

collected from the NAc of control and IAA rats (n = 6/group). The expression of 

SUMOylated Kv7.2 in the DSM fraction was significantly decreased in IAA rats 

compared to naïve rats (t(9) = 2.427; p = 0.0382; Figure 5.5b). There was no difference 

in SUMOylated Kv7.2 expression in the DRM fraction (t(10) = 0.9774; p = 0.3514). 

Finally, the ratio of SUMOylated Kv7.2 to total Kv7.2 was significantly decreased in the 

DRM after IAA (t(8) = 3.395; p = 0.0094; Figure 5.5c), but not in the DSM (t(8) = 1.260; 

p = 0.2431) Combined, these data indicate that long-term alcohol drinking modifies 

Kv7.2 channel trafficking and SUMOylation levels between DRM and DSM fractions. 

Fig.&5.4&SUMOyla>on&Sites&

F i g u r e 5 . 4 | P o t e n t i a l 
SUMOylation sites on the C-
terminus of Kv7.2. A search of 
the rat Kv7.2 peptide for the 
S U M O y l a t i o n c o n s e n s u s 
sequence ((Ψ-K-x-D/E; where 
Ψ is a hydrophobic residue, K 
is an acceptor lysine, x is any 
amino acid, and D/E are acidic 
residues) revealed 6 potential 
sites (orange circles with 
arrows) on the C-terminus. Two 
of these sites fall within the 
CaM and AKAP b ind ing 
regions. 
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Discussion 

Retigabine, a Kv7 channel positive modulator, is able to reduce voluntary alcohol 

consumption when systemically administered and when microinfused into the NAc core 

of HD rats in the IAA model. Here we show that long term drinking rats in the IAA 

paradigm are more sensitive to seizures induced by Kv7 blockade, indicating that 

prolonged alcohol consumption alters the expression and/or function of Kv7 channels in 

the CNS. Biochemical assays indicate that drinking and withdrawal alter the surface 

trafficking of the Kv7.2 subunit within the plasma membrane. Furthermore, this 

adaptation is associated with alcohol-induced plasticity in SUMOylation state of Kv7.2. 

Altogether these studies provide the first evidence that prolonged intermittent drinking 

and withdrawal induce adaptations in Kv7 channels that are likely mediated by changes 

in SUMOylation of the channel. 

A major finding in these studies is that rats with a long history of intermittent 

alcohol consumption were more sensitive to spontaneous seizures induced by systemic 

administration of a selective Kv7 channel blocker. Mutations in the Kcnq2 gene that 
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Figure 5.5 | Alcohol withdrawal alters the SUMOylation state of Kv7.2 in the 
NAc. (A) SUMOylated Kv7.2 is equally expressed in the detergent resistant 
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NAc. (B) Expression of SUMOylated Kv7.2 in the DSM is decreased in the the NAc of 
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cause benign familial neonatal convulsions, type 1 produce a decrease in M-current 

(Maljevic et al., 2008). Mice expressing mutations in Kv7.2 channels display reduced M-

current, decreased threshold for pentylenetetrazole (PTZ)-induced seizures, and 

hypersensitivity to the pro-convulsant effects of Kv7 channel blockade (Kapfhamer et al., 

2010; Otto et al., 2009; Otto et al., 2006; Otto et al., 2004; Watanabe et al., 2000). In 

contrast, the SGK1.1 transgenic mice with enhanced M-current display diminished 

sensitivity to kainic acid-induced seizures (Miranda et al., 2013). The dose of XE-991 

that produced wild jumping behavior and spontaneous clonic seizures in our long-term 

alcohol drinking rats has not been reported to cause adverse behaviors in alcohol-naïve 

rats and mice (Korsgaard et al., 2005; Sander et al., 2012; Xu et al., 2010), though one 

study reported cognitive enhancing effects in mice at a higher dose than we tested 

(Fontan-Lozano et al., 2011). While chronic alcohol exposure is known to produce 

neuroadaptations that alter sensitivity to proconvulsant drugs, this is not a global, non-

specific phenomenon (Becker et al., 1998; Finn and Crabbe, 1999; Stephens et al., 

2001). M-current is thought to regulate intrinsic excitability and counter 

afterdepolarizations and sustained NMDA receptor activation required to trigger burst 

firing in the hippocampus (Gu et al., 2005; Qiu et al., 2007; Yue and Yaari, 2006). Burst 

firing in CA1 neurons can synchronize population activity and drive seizure initiation 

(Jensen and Yaari, 1997). Moreover, while the distribution of Kv7.2 channels is 

widespread, this subunit is concentrated in specific subsets of neurons responsible for 

controlling neural network oscillations and rhythmic brain activity (Cooper et al., 2001; 

Leao et al., 2009). Thus, the hypersensitivity to XE-991 suggests that expression or 

function of Kv7 channels may be decreased by repeated periods of intoxication and 

withdrawal in brain regions that control motor output and seizure generation, such as the 

basal ganglia circuitry or hippocampus.  
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 We directly investigated alcohol-induced adaptations in the Kv7.2 subunit and 

observed that long-term consumption and abstinence produces microdomain-dependent 

neuroadaptations in Kv7.2 channels in the NAc. The most common pairing of Kv7 

channel subunits in the CNS is Kv7.2/Kv7.3 (Delmas and Brown, 2005), and studies 

indicate that most of the modifications and protein interactions that influence Kv7 

channel trafficking and function occur at or on the C-terminus of the Kv7.2 subunit (Bal 

et al., 2010; Hoshi et al., 2003; Suh and Hille, 2007). Evidence suggests that Kv7.2 

channels are expressed in multiple subcellular compartments in neurons, having been 

reported to localize to the axon initial segment (AIS), lipid rafts, nodes of Ranvier, 

somatodendritic domains of GABAergic output neurons, dendritic spines, and 

presynaptic terminals of tyrosine hydroxylase positive axonal projections (Arnsten et al., 

2010; Cooper et al., 2000; Devaux et al., 2004; Pan et al., 2006; Roche et al., 2002). 

Some plasma membrane proteins found in the AIS, lipid rafts, and dendritic spines are 

insoluble in Triton X-100 (DRMs), whereas some soluble proteins are expressed in 

extrasynaptic membranes (Abdi and Bennett, 2008; Carlin et al., 1980; Cooper et al., 

2000; Cotman et al., 1974; Ferrario et al., 2011a; Ferrario et al., 2011b; Goebel-Goody 

et al., 2009). Proteins isolated from the AIS, lipid rafts and dendritic spines are often part 

of the scaffolded signaling networks associated with these microdomains. Thus, it is 

possible that long-term drinking is shifting Kv7.2 channels from extrasynaptic 

membranes into specialized signaling domains, such as the AIS or dendritic spines 

where the channels can influence neuronal excitability.  

The possible mechanisms underlying Kv7.2 trafficking between membrane 

microdomains during abstinence are not immediately clear. As discussed in Chapter 1, 

there are multiple physical interfaces known to modulate Kv7 channel function. 

Interaction with AKAP150 and SGK1 standout as the most likely candidates of these to 
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regulate membrane trafficking (Delmas and Brown, 2005). However when we probed for 

expression of these proteins in alcohol-exposed rats, we found no difference in their 

expression compared to naïve animals. This suggests that Kv7.2 membrane trafficking 

may be mediated by a different mechanism. A recent study suggests that SUMOylation 

may play an important role in the regulation of Kv7 channel function (Qi et al., 2014). 

Although SUMOylation was once thought to exclusively regulate nuclear transport, 

several studies over the last decade indicate that this posttranslational modification plays 

a key role in synaptic plasticity (Review: (Luo et al., 2013)). 

Recent evidence suggests that SUMOylation of Kv2.1 and Kv7 channels 

decreases K+-current where as de-SUMOylation increases their function, indicating that 

SUMOylation state may regulate neuronal excitability (Dai et al., 2009; Plant et al., 2011; 

Qi et al., 2014). SUMOylation is the covalent attachment of a small ubiquitin-like 

modifying (SUMO) to a lysine residue via a series of proteins (E1-3; (Ren et al., 2009). 

The SENP proteases are primarily responsible for the de-SUMOylation process. Studies 

indicate that SUMOylated proteins and SUMO-related enzymes are enriched in 

synaptosomes (Feligioni et al., 2009; Martin et al., 2007a; Martin et al., 2007b), and co-

localize with pre- and postsynaptic membrane proteins (Jaafari et al., 2013; Martin et al., 

2007a; Plant et al., 2011). A recent study suggests that AMPA-induced depolarization of 

neurons increases SUMOylation (Feligioni et al., 2009), and preventing SUMOylation 

prevents synaptic insertion of AMPA receptors (Jaafari et al., 2013).  

In our study, we searched the rat Kv7.2 peptide for the SUMOylation consensus 

sequence and found multiple potential SUMOylation sites. Most noteworthy were the 6 

sites on the C-terminus and the single site in the pore-forming intramembrane. 

Modifications at the termini of membrane channels can directly affect protein trafficking 

(Lu and Roche, 2012; Mao et al., 2011). This concept is true of Kv7.2, which is 
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influenced by interaction of AKAP150 and CaM at the C-terminus (Delmas and Brown, 

2005). Of the 6 SUMOylation sites found on the C-terminus of Kv7.2, two lie within the 

AKAP150 and CaM binding regions of the terminus (Delmas and Brown, 2005). 

AKAP150 directly interacts with the Kv7.2 subunit and PKC such that AKAP binds the 

active site of the kinase, preventing phosphorylation-induced inhibition of M-current (Bal 

et al., 2010; Hoshi et al., 2003). Thus SUMOylation could prevent the AKAP150-Kv7.2 or 

Kv7.2-PKC interaction. CaM also directly interacts with the Kv7.2, and although its exact 

role in Kv7 channel trafficking and function has yet to be defined (Etxeberria et al., 2008; 

Gomez-Posada et al., 2011; Wen and Levitan, 2002), SUMOylation could alter channel 

trafficking by preventing this interaction. Posttranslational modifications within or near 

the Kv7.2 channel pore could potentially block ion conductance, leading to increased 

excitability. Alternatively, a modification near the pore domain could induce a 

conformational change in the channel leading to pore closure. Although this may not 

directly affect channel trafficking, altered Kv7 channel function could initiate other 

mechanisms to induce activity-dependent trafficking such as those observed with Kv4.2 

channels (Kim et al., 2007) and AMPA receptors (Groc et al., 2004; Ju et al., 2004). 

Our study showing alcohol-induced increased sensitivity to Kv7 channel blockade 

suggests that the shift in trafficking patterns has a functional consequence on membrane 

excitability. A recent study has shown that hyper-SUMOylation of Kv7 channels results in 

a reduction in M-current not associated with changes in channel expression that leads to 

deleterious hyperexcitable state (Qi et al., 2014). This suggests that SUMOylation 

prevents current through Kv7 channels. Altogether, SUMOylation is a likely candidate 

mechanism for regulating withdrawal-induced trafficking of Kv7.2. Indeed, withdrawal 

from alcohol decreases the expression of SUMOylated Kv7.2 in DSM, and the ratio of 

SUMOylated Kv7.2 to total Kv7.2 expression in the DRM. It is interesting to note that 
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surface expressed Kv2.1 channels also move fluidly in and out of similar microdomains 

within the plasma membrane (O'Connell et al., 2006), and that current through these 

channels is affected by SUMOylation state (Dai et al., 2009; Plant et al., 2011; Qi et al., 

2014). Chronic alcohol exposure is known to produce activity-dependent homeostatic 

neuroadaptations to counteract the inhibitory actions of ethanol (Mulholland and 

Chandler, 2007), and activity-dependent processes alter Kv7.2 channel protein and 

Kcnq2 transcript expression in hippocampus and amygdala (Penschuck et al., 2005; 

Zhang and Shapiro, 2012). Furthermore, a recent study associated differential 

expression of Kcnq2 as a candidate cis-eQTL for alcohol consumption and withdrawal 

symptoms (Metten et al., 2014). Electrophysiology studies indicate that spike firing is 

increased in the NAc 3-5 weeks after prolonged alcohol self-administration (Hopf et al., 

2010), and that MSNs in the NAc display increased mini-excitatory postsynaptic currents 

and increased paired pulse ratios during withdrawal from prolonged alcohol exposure 

(Marty and Spigelman, 2012a; Padula et al., 2015; Spiga et al., 2014). These studies 

indicate that NAc neurons are more excitable during withdrawal. Although speculative, 

our experiments suggest that during withdrawal, when cells are in a hyperexcitable state, 

Kv7 channels in the membrane are de-SUMOylated and recruited to the signaling 

networks where they can help regulate neuronal excitability. 

In summary these studies indicate that prolonged alcohol consumption leads to 

increased sensitivity to Kv7 channel blockade possibly resulting from the observed 

adaptations in the Kv7 channel expression and SUMOylation state during alcohol 

withdrawal. These studies are the first to show that Kv7 channel trafficking within the 

plasma membrane can be affected by external stimuli, and provide the first direct 

evidence that SUMOylation may regulate Kv7 channel expression.  
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CHAPTER 6: CONCLUSIONS AND FUTURE DIRECTIONS 
 

Conclusions 

Alcohol use disorders (AUDs) represent a substantial social and economic 

burden around the world. Current FDA-approved pharmacotherapies for AUDs are 

efficacious in only a subset of individuals and suffer from deleterious side effects. It is 

therefore essential to find improved medications for the management of these disorders. 

The experiments described in this dissertation provide strong evidence for retigabine, an 

FDA-approved anticonvulsant, as a pharmacotherapy for aiding in drinking cessation to 

treat AUD. This work further describes a complex relationship between Kv7 channels 

and alcohol-drinking behaviors that spans genetic variation, behavioral pharmacology, 

and biochemical adaptations.  

Results from the bioinformatics search described in Chapter 2 showed that 

Kcnq2/3 contribute to an alcohol drinking phenotype across multiple strains of rodents. 

The data suggest that Kcnq2 and Kcnq3 and their encoded proteins may be useful 

pharmacogenetic targets to treat AUDs. The behavioral pharmacology studies in 

Chapters 3 strengthened this relationship by showing that systemic administration 

retigabine and the Kv7 channel-specific positive modulator ML-213 reduce alcohol 

consumption in a long-term intermittent access model. Furthermore, in Chapter 4 we 

showed that microinjections of retigabine to the ventral tegmental area (VTA) and 

nucleus accumbens (NAc) core also reduce voluntary drinking. Notably, retigabine was 

more effective at reducing drinking in Wistar rats with a heavy drinking phenotype. An 

aberrant dopaminergic response is associated with prolonged alcohol exposure (Brodie, 
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2002) and heavy drinking phenotypes (Bice et al., 2008; Bustamante et al., 2008; 

Gongwer et al., 1989; Imperato and Di Chiara, 1986; Zhou and Palmiter, 1995). Given 

that retigabine, unlike most other anticonvulsants, can alter dopamine (DA) 

neurotransmission (Hansen et al., 2006; Koyama and Appel, 2006; Sotty et al., 2009), 

these data suggest that retigabine may decrease alcohol consumption through 

restoration of the DA response. In a clinical context, these experiments indicate both that 

retigabine may be a promising candidate for treating AUDs and that Kv7 channel 

function in key nodes of the addiction neurocircuitry regulates drinking behaviors.  

In Chapter 5 we described experiments showing that long-term drinking 

enhanced sensitivity to the pro-convulsant effects of Kv7 channel blockade and altered 

surface trafficking of Kv7.2 channels between detergent resistant and soluble 

membranes in the NAc. The surface trafficking was associated with reduced Kv7.2 

channel SUMOylation in the DRM fraction. To our knowledge, these data are the first to 

show evidence for post-translational modification by SUMOylation in a model of alcohol 

or drug exposure. Repeated exposure to alcohol induces a hyperexcitable state in MSNs 

of the NAc (Marty and Spigelman, 2012b; Padula et al., 2015; Spiga et al., 2014). Given 

that hyper-SUMOylation of Kv7 channels reduces M-current (Qi et al., 2014), these 

biochemical experiments suggest that Kv7 channel function may be dependent both on 

localization within distinct microdomains in the plasma membrane and SUMOylation 

state.  

In summary the work described in this dissertation provide strong evidence for 

the use of retigabine as a pharmacotherapy for the treatment of AUDs. Furthermore, 

these data highlight Kv7 channels as targets of alcohol-induced neuroplasticity.  
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Future Directions 

 Detailed discussions and interpretations of the results from the experiments 

performed during this dissertation are provided within their individual chapters. However 

some of these explanations warrant additional thought and further experimentation. The 

following sections highlight future directions and experiments that would provide direct 

insight to particular conclusions from this dissertation. 

 

Kv7 Channel Trafficking, Alcohol Withdrawal, and Retigabine 

 One of the most exciting observations from this work is that withdrawal from long-

term drinking in the IAA model induces a shift in Kv7.2 expression from detergent 

soluble membrane (DSM) to detergent resistant membrane (DSM). Some plasma 

membrane proteins found in the axon initial segment (AIS), lipid rafts, and dendritic 

spines are insoluble in Triton X-100 (DRMs), whereas some soluble proteins are 

expressed in extrasynaptic membranes (Abdi and Bennett, 2008; Arnsten et al., 2010; 

Carlin et al., 1980; Cooper et al., 2000; Cotman et al., 1974; Ferrario et al., 2011a; 

Ferrario et al., 2011b; Goebel-Goody et al., 2009). Proteins isolated from the AIS, lipid 

rafts and dendritic spines are often part of the scaffolded signaling networks associated 

with these microdomains. Thus, it is possible that long-term drinking is shifting Kv7.2 

channels from extrasynaptic membranes into specialized signaling domains, such as the 

AIS or dendritic spines where the channels can influence neuronal excitability. Studies 

indicate that chronic alcohol exposure induces a hyperexcitable state in MSNs of the 

NAc (Marty and Spigelman, 2012b; Padula et al., 2015; Spiga et al., 2014). The AIS is a 

likely candidate microdomain for alcohol-induced neuroplasticity of excitatory 

mechanisms because it is the point of initiation an action potential (Harty et al., 2013) 

and is enriched with Kv7 channels (Pan et al., 2006). Moreover, Kv7 channels in the AIS 
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modulate spike initiation and adaptation (Cooper, 2011), and Kv7.2 co-assembly with 

Kv7.3 is required for the recruitment of Kv7 channels to this region (Cooper et al., 2000). 

The AIS is also susceptible to activity-dependent relocation relative to the soma in such 

a manner as to regulate neuronal excitability in dissociated hippocampal cultures (Grubb 

and Burrone, 2010). A recent study showed that hyper-SUMOylation of Kv7 channels 

substantially decreased M-current (Qi et al., 2014). In our experiments, Kv7.2 

SUMOylation in the NAc was decreased in the DSM fraction during withdrawal. Although 

speculative, it is possible that during an alcohol withdrawal-induced hyperexcitable state, 

Kv7 channels are de-SUMOylated and recruited to the signaling networks within the AIS 

where they can help control aberrant excitability. 

 The ability of retigabine to reduce voluntary alcohol consumption could capitalize 

on withdrawal-induced trafficking adaptations. In Chapter 4 we argued that microinfusion 

of retigabine to the NAc core could reduce alcohol consumption by suppressing activity 

and subsequent initiation of alcohol-seeking behaviors. In our experiments, retigabine is 

administered 10-30 minutes prior to alcohol availability after a 24-hour withdrawal period 

from the previous session. At this point, Kv7 channels may have already been recruited 

to the AIS and other DRMs in the NAc to ease withdrawal-induced hyperexcitability 

(Marty and Spigelman, 2012b; Padula et al., 2015; Spiga et al., 2014), making these 

membranes particularly sensitive to the inhibitory effects of retigabine. Alternatively, if 

24-hour withdrawal is not sufficient to alter Kv7 channel trafficking, retigabine could 

simply stabilize membrane excitability by augmenting the function of the few channels 

remaining in the AIS.  

These hypotheses could be tested through a series of experiments using 

immunohistochemistry (IHC) and electrophysiology. Specifically, tissue from the NAc 

taken at 0, 24 and 72 hours withdrawal from IAA drinking could be fixed and probed for 
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co-expression of Kv7.2 and ankyrin-G, a necessary component to AIS scaffolding 

(Kordeli et al., 1995). If Kv7 channels are recruited to the AIS to regulate excitability, we 

would predict greater co-expression of Kv7.2 and ankyrin-G during withdrawal compared 

to alcohol-naïve rats. The role SUMOylation may be better visualized using an 

alternative model of alcohol exposure because it is dependent on active processes 

within the cell. No SUMO-Kv7 channel antibodies currently exist; therefore to capture 

SUMOylation-related changes in channel trafficking, the system would need to be 

treated with a SUMOylating enzyme (i.e. Ubc-9) or a de-SUMOylating enzyme (i.e. 

SENP2) and then immediately fixed for IHC. However, drinking rats must be perfused 

with PFA and before IHC, but organotypic hippocampal slice cultures (OHSCs) can be 

chronically treated with cycles alcohol exposure and withdrawal, recapitulating some of 

the biochemical adaptations seen in models of alcohol consumption (Mulholland et al., 

2011). We could induce the de-SUMOylation using the SENP enzyme process in 

OHSCs and then immediately fix the tissue. IHC experiments could then be conducted 

examining the co-expression of Kv7.2 and ankyrin-G in the AIS of pyramidal neurons. 

We would predict that during withdrawal, de-SUMOylation process would recruit Kv7 

channels to the AIS in naïve cultures in a manner similar to alcohol-exposed cultures.  

The physiological relevance of alcohol-induced Kv7 channel trafficking could be 

investigated using patch-clamp recordings of M-current within and immediately adjacent 

to the AIS of MSNs in NAc tissue from IAA rats during various withdrawal time points. 

The effects of retigabine on M-current could also be measured at these time points. 

Furthermore, by treating the tissue with SENP2, we could potentially measure the 

physiological relevance of SUMOylated Kv7 channels. Here we would predict that M-

current is increased in the AIS both compared to adjacent areas and compared to the 

AIS of alcohol-naïve rats. Also, de-SUMOylating the channels should increase M-current 
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in membrane adjacent to the AIS, regardless of the withdrawal time point. Both the IHC 

and electrophysiological experiments were outside the scope of this dissertation, but 

would provide valuable insight to alcohol-induced adaptations in Kv7 channel expression 

and function. 

 

Alternative Kv7 Channel Regulation 

Experiments described in Chapters 3 and 4 we show that retigabine reduces 

voluntary alcohol consumption both when administered systemically and when 

microinfused into nodes of the addiction neurocircuitry. While altered DA transmission 

likely represents the downstream effect of retigabine on the addiction neurocircuitry, 

upstream activity is equally noteworthy. Antagonists of the peptide hormone ghrelin are 

able to reduce alcohol consumption (Jerlhag et al., 2011; Landgren et al., 2008) and 

there is an established role of ghrelin in multiple addictive substances (review: 

(Panagopoulos and Ralevski, 2014)). Recent evidence indicates that ghrelin enhances 

neuronal excitability by inhibiting Kv7 channels (Shi et al., 2013). Given the results of our 

experiments, these studies suggest that the ability of ghrelin antagonists to reduce 

drinking may ultimately be through an increase in Kv7 channel function, and that ghrelin 

may be an upstream target of alcohol’s effect on Kv7 channel function.  

 

Kv7 Channels and Alcohol Withdrawal Syndrome 

In Chapter 5 we found that rats with a history of alcohol consumption are 

susceptible to seizure-like activity induced by blocking Kv7 channels, which provided 

evidence that prolonged drinking leads to changes in Kv7 channel function and/or 

expression. Although convulsant activity is a symptom of alcohol withdrawal syndrome 

(AWS) (Bayard et al., 2004), the IAA paradigm has not been previously reported to 
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induce such symptoms in rats. As previously mentioned, there is indeed a shift in Kv7.2 

expression from DSM to DRM in the NAc during withdrawal that has the potential to 

affect neuronal excitability and behaviors. To date, M-current has only been recorded 

from dopaminergic neurons in response to acute bath application of alcohol (Koyama 

and Appel, 2006). We hypothesize that during withdrawal from prolonged IAA drinking, 

M-current would be elevated compared to naïve controls, however, studies to quantify 

changes in Kv7 channel expression and M-current in regions critical to seizure 

generation (i.e. the hippocampus and amygdala) (Engel, 1995) would provide a better 

understanding of the convulsant activity associated with alcohol withdrawal syndrome.  

 

Individual Differences, Retigabine, and Alcohol 

One of the key findings in this dissertation is that retigabine reduces voluntary 

alcohol consumption when systemically injected and when microinfused to the NAc and 

VTA of high drinking rats but not low drinking rats (Chapters 3 and 4). Numerous studies 

have observed quantifiable characteristics associated with drinking behaviors in cohorts 

of outbred rat strains. Wistar rats in a choice drinking paradigm were divided into high (~ 

4.2 g/kg/24 hrs) and low drinking (~ 2.1 g/kg/24 hrs) subpopulations (Momeni and 

Roman, 2014). In addition, alcohol consumption in Long Evans rats is predictive of 

anxiety-like behaviors (Hayton et al., 2012). Multiple inbred rodent inbred strains have 

been generated to either prefer or avoid alcohol. Two strains P (alcohol preferring) and 

NP (non-preferring) were derived from the outbred Wistar strain (Waller et al., 1983). 

These strains represent the extreme ends of the continuum of drinking observed in the 

cohorts used in our studies, and have less genetic variation compared to their outbred 

parent strain (Funk et al., 2006). Consequently, these strains more definitively represent 

high and low drinking populations, and using them in the IAA model would provide an 
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alternative to measuring the effect of retigabine on high and low drinking rats.  Given that 

retigabine decreased alcohol consumption in high drinking Wistar rats and increased 

consumption in the low drinking population, we would expect similar results of systemic 

retigabine in P and NP strains. The microinjection studies could also be replicated in P 

and NP rats to provide further insight into the role of Kv7 channel function in high and 

low drinking populations.  

Using selectively-bred high and low preferring strains to measure the efficacy of 

retigabine on drinking would provide insight into the two ends of the drinking spectrum, 

however the BXD strains of mice would provide an opportunity to examine the spectrum 

of alcohol consumption in mice with different drinking phenotypes. C57BL/6 mice are an 

alcohol-preferring strain whereas the DBA mice avoid alcohol. Studies indicate that 

C57BL/6 mice drink more in 2-bottle choice paradigms (Meliska et al., 1995; Rhodes et 

al., 2007) and short-access models (Belknap et al., 1997; Le et al., 1994), and that DBA 

mice are less sensitive to alcohol-induced locomotor sensitization (Kiianmaa and 

Tabakoff, 1983). Numerous recombinant inbred (RI) strains have been developed from 

interbreeding the C57BL/6J and DBA/2J strains. These mice, referred to as “BXD” 

strains, represent continuum of alcohol phenotypes that strongly correlate to their 

genetic composition (DuBose et al., 2013; Mulligan et al., 2006; Padula et al., 2015; 

Vanderlinden et al., 2013). By exposing the parent strains (C57BL/6 and DBA) and a 

selection of BXD strains from across the drinking spectrum to the IAA paradigm, we 

would be able to precisely investigate the effects of retigabine on populations with 

different dispositions to consume alcohol. We predict that the reduction in drinking by 

retigabine would be more effective in high drinking BXD strains. Similarly, increased 

consumption by retigabine would diminish as we move from non-preferring to preferring 
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strains. In the middle of this spectrum of drinkers we would predict no effect of retigabine 

on drinking. 

Several studies have also identified a strong correlation between individual 

differences in drinking with differences in anxiety. A recent study grouped Long Evans 

rats into high anxiety and low anxiety groups, and found that the high anxiety group 

voluntarily consumed more alcohol compared low anxiety rats from the same cohort 

(Hayton et al., 2012).  Finally, high anxiety in Wistar rats in an elevated plus maze was 

predictive of high anxiety in other models (Ho et al., 2002). These studies suggest that 

high drinking rats are prone to higher levels of anxiety, and that alcohol consumption 

may alleviate that anxiety. Chronic stress can increase anxiety-like behavior in multiple 

strains of mice (Kim and Han, 2006; Mineur et al., 2006), and repeated exposure to 

stressors is known to increase alcohol consumption (Becker et al., 2011). This suggests 

a correlation between anxiety and alcohol consumption, and retigabine is known to have 

anxiolytic effects. Specifically, retigabine and other Kv7 channel positive modulators 

reduce anxiety-like behaviors associated with a zero maze in mice (Blackburn-Munro 

and Jensen, 2003; Korsgaard et al., 2005). Furthermore, newer-generation 

anticonvulsants (e.g. gabapentin and lamotrigine) are often prescribed as off-label 

treatments for patients with anxiety disorders, which like epilepsy, are characterized by 

overactive neuronal activity (Blackburn-Munro et al., 2005). In our drinking model we 

anecdotally observed some anxiety-like behaviors (i.e. excessive forearm grooming and 

porphyrin staining), however we did not formally assess these behaviors. It would also 

be interesting to examine the effects of retigabine on anxiety associated with alcohol-

withdrawal. It is possible that the ability of retigabine to reduce drinking is mediated 

through a combination dopaminergic, anxiolytic, and anticonvulsant mechanisms. 

Although outside the scope of this project, this possibility warrants further investigation. 
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Dopamine Release in the IAA Model 

 As previously mentioned, we observed individual differences in the efficacy of 

retigabine in high and low drinking rats from the same cohort. Of particular interest was 

that retigabine reduced alcohol consumption when microinfused to the NAc and VTA in 

high drinking rats but had no effect on drinking when administered to low drinking rats 

(Chapter 4). Individual differences such as these likely relate to slight genetic variation 

within the cohort, and studies investigating inbred rat strains specifically selected to 

prefer or avoid alcohol have found numerous dopaminergic discrepancies.  Compared to 

alcohol-avoiding strains, alcohol-preferring rats have decreased Drd2 mRNA expression 

in the NAc (Bice et al., 2008; Imperato and Di Chiara, 1986), a lower baseline level of 

DA in the ventral striatum (Gongwer et al., 1989; Zhou and Palmiter, 1995), and an 

increased dopaminergic response to acute alcohol (Bustamante et al., 2008). These 

studies indicate that, under basal conditions, alcohol-preferring rats have an aberrant DA 

tone.  

Given that retigabine can alter DA neurotransmission (Hansen et al., 2008; 

Koyama and Appel, 2006; Sotty et al., 2009), we argue that retigabine reduces alcohol 

consumption by restoring dopaminergic tone. This could be directly tested through 

microdialysis experiments. Specifically, dopamine release could be measured in the NAc 

during the first several hours of drinking in the IAA paradigm after systemic retigabine 

was administered. Such an experiment would provide two highly interesting pieces of 

information. The first would be to better elucidate the mechanism through which 

retigabine reduces alcohol consumption. The second would be to provide insight into the 

DA response during voluntary drinking in the IAA paradigm. To our knowledge, most 

microdialysis studies measuring DA response to alcohol in drinking rats have either been 

completed in operant administration models (Melendez et al., 2002; Weiss et al., 1993) 
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or after an intoxicating IP dose of alcohol (Feduccia et al., 2014; Soderpalm et al., 2000; 

Steensland et al., 2012). We found one study measuring accumbal DA in a continuous 

access choice drinking model for 6% alcohol and DA was only collected for 60 minutes 

after alcohol availability (Ericson et al., 1998). Such an experiment in our IAA model is 

beyond the current project, but would provide valuable knowledge. Given the critical 

nature of DA release from the VTA to the NAc in addiction processes and the ability of 

retigabine to modulate this release, experiments to directly investigate the relationship 

between retigabine, drinking, and DA will be a major focal point in future studies. 

 

The work presented in this dissertation illustrates an intricate relationship between Kv7 

channels and alcohol consumption spanning genetic variation, pharmacology, and 

biochemical adaptations. Genetic meta-analysis demonstrated that Kcnq2/3 contribute to 

an alcohol drinking phenotype and alcohol-related behaviors in rodents. Behavioral 

pharmacology experiments indicate that positive modulation of Kv7 channels both 

systemically and in key nodes of the addiction neurocircuitry can reduce voluntary 

alcohol consumption. Furthermore, this effect is dependent on individual differences and 

observed in rats with a heavy drinking phenotype. Finally, Kv7 channels in the NAc are 

susceptible to alcohol-induced neuroadaptations and posttranslational modification, as 

evidenced by biochemical assays.   Together, these experiments support retigabine as a 

potential pharmacotherapy for the treatment of AUD, and highlight Kv7 channels as 

mediators of alcohol-related behaviors as well as targets of alcohol-induced 

neuroadaptations.  
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Figure A.3 | A visual representation of the hierarchy of individual genes 
common to multiple gene sets identified by GeneWeaver that contain Kcnq3.  
Gene sets are listed in bold in each box. The number of unique genes or specific 
gene names that are contained within those gene sets are listed in plain text. 
Connecting lines link sets that are completely contained within each other. 
GeneWeaver GeneSet ID #: 1: 84098, 2: 84097, 3: 135279, 4: 84096, 5: 84101 
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