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This study utilizes electronic health record data from the Medical University of 

South Carolina’s intensive care units as the basis for this Monte Carlo simulation study—

which compares four methods for handling missing SOFA scores, both at the composite 

and component levels. The four methods examined herein include: complete case 

analysis, median imputation, zero imputation (the method recommended by the creators 

of the SOFA score), and multiple imputation. This study found that zero imputation 

introduced the most bias across all three outcomes studied, and therefore is not 

recommended. Complete case analysis, or ignoring missing data, caused varying amounts 

of bias—as did median imputation. Multiple imputation, on the other hand, performed 

well for all three outcomes studied, both at the composite and component levels, 

demonstrating this method’s superior value in the presence of missing SOFA scores. 
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1 INTRODUCTION 

The cost of caring for critically-ill patients has grown from $55.5 billion in 2000 [1] to $81.7 

billion in 2005 [2]. The increase in expenditures on critical care medicine from 2000-2005 

represents an 17.9% increase in percent of gross domestic product (GDP) over a five-year span, 

from 0.56% to 0.66% of GDP, accounting for 4.1% of health expenditures nationwide—

demonstrating the costs are growing in comparison with overall national expenditures. This rapid 

increase in expenditures on critical care could be partially attributed to the rise in incidence of 

mechanical ventilation amongst adults in intensive care units (ICU), which increased from 284 

per 100,000 adults in 1996 to 314 per 100,000 in 2002 [3]. While these figures are in need of 

refreshing with more recent estimates, they illustrate the magnitude of money that is spent in one 

area of medicine, critical care medicine, and how this area has a measurable impact on our 

nation’s budget. 

Admission to an ICU not only has large financial consequences, sequelae of stays in the ICU 

also manifest. One such outcome is the development of acute post-traumatic stress disorder 

(PTSD) related symptoms, possibly due to delirium during the patient’s ICU stay [4, 5]. 

Approximately 1 in every 5 ICU survivors have clinically-significant PTSD symptoms within 12 

months of ICU discharge [6]. Several recommendations for decreasing the likelihood of PTSD 

symptoms and other psychiatric morbidities exist. The first recommendation includes offering 

lighter amounts of sedation to improve patient recall [7]. Another recommendation is to have ICU 

diaries, written in the second person in patient-friendly language by clinicians caring for the 

patient and family members [6]. Finally, another recommendation is to use the ABCDEF bundle 

(Assess, prevent, and manage pain; Both spontaneous awakening trials and spontaneous breathing 

trials; Choice of analgesia and sedation; Delirium: assess, prevent, and manage; Early mobility 

and exercise; and Family engagement and empowerment [8]) to improve outcomes [5]. Other 
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potential sequalae of ICU stays include anxiety, depression, cognitive impairments, family and 

social network distress, sleep abnormalities, general distress, and diminished quality of life [9].  

The problems of increasing costs of caring for the critically ill, as well as comorbidities 

associated with that care, drive the need for research to improve patient outcomes and reduce 

overall costs. This is accomplished through both interventional and retrospective studies. 

Interventional studies within the intensive care unit are increasingly using designs such as the 

pragmatic cluster-randomized stepped wedge design. This design specifies that all clusters—in 

this case ICUs—will be randomly crossed over from the control group to the intervention group 

[10]. In both interventional and retrospective outcomes studies, use of a patient severity score—

such as the Sequential Organ Failure Assessment (SOFA) score—is vital in multivariable models 

to control for baseline patient severity. While caution has been given for using these patient 

severity scores on the individual level for prognosis, they work well for severity adjustment and 

case-mix adjustment [11]. Therefore, the use of severity score systems for ICU patients is 

common, but not without imperfections in their execution. 

Severity scores such as the SOFA score are component scores of multiple datapoints. In the 

case of the SOFA score, there are 6 items that are physiological clues of organ failure, such as 

platelet counts (indicative of coagulation dysfunction), bilirubin levels (indicative of liver 

dysfunction), and the Glasgow Coma Scale (indicative of central nervous system dysfunction). It 

is not uncommon that one value may be missing from the medical record, preventing the 

calculation of the SOFA score.  

When this baseline measurement of disease severity is missing in retrospective observational 

studies, patients may be excluded from the analysis as either an a priori methodological decision 

or inadvertently through complete case analysis. The result of this methodological choice has the 

potential to bias the study’s results and will certainly decrease the statistical power to find a 
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difference in groups, should a difference exist. As the utilization of EHR data is necessarily 

retrospective—there is nothing that a researcher can do to improve the rates of data collection—

focus needs to be given to methods of dealing with these missing data, rather than preventing 

missing data.  

This study has been designed to examine the effects of missing SOFA score data in 

retrospective observational studies that use electronic health record data capturing patient stays in 

the intensive care unit for ventilator-dependent respiratory failure (VDRF) to accomplish the 

following: 

1) Ascertain the degree to which results may be biased at various percentages of 

missing SOFA score data 

2) Examine methods of dealing with missing data that are commonly available in 

statistical software packages used by Health Services Researchers 

AIM 1 

 To examine the impact of missing SOFA score data on ICU clinical outcomes studies 

among patients with ventilator-dependent respiratory failure at various percentages of 

missingness, along with various statistical techniques for handling missing data at the composite 

score level.  

AIM 2 

 To examine the impact of missing SOFA score data on ICU clinical outcomes studies 

among patients with ventilator-dependent respiratory failure at various percentages of 

missingness, along with various statistical techniques for handling missing data at the component 

item level. 

 

Rationale of Importance (AIMS 1 & 2) 
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 Examination of techniques for handling missing SOFA score data that are available in 

statistical software that is most commonly used by applied researchers—SAS, SPSS, and Stata—

will provide valuable insight to researchers and clinicians. The insights this study will provide 

include suggestions for the best methods of handling missing data; whether missing data should 

be handled at the component level of the SOFA score or at the composite level of the SOFA 

score; and how missingness of the SOFA score affects various outcomes. Finally, the findings of 

these aims will provide researchers with guidelines for determining at what percentage of 

missingness of the SOFA score should one be worried, as currently most recommendations for 

missing data are ballpark figures and are not specific to the SOFA score in particular, nor ICU 

severity scoring systems in general. 

 

  



 

 

2 REVIEW OF THE LITERATURE 

2.1 Problem Statement: Why Missing Data are Problematic 

Missing data present a special problem in statistics in that it is impossible to use 

numbers that are not present. While this may seem obvious, its implications are serious as data 

which are missing have the potential to seriously bias results—possibly resulting in inaccurate 

estimates of effect size and even direction. While the general advice is to avoid missing data at 

all costs, this point is irrelevant in areas where research uses secondary data sources—such as 

billing or electronic health records (EHR). For researchers who use secondary data sources, the 

only option is to deal as effectively as one can with the available data to try to answer research 

questions with as much accuracy and precision as possible. 

In multivariable regression models, where multiple independent variables (or 

covariates) are contributing toward explaining a single dependent variable (or outcome) the 

problem with missing data may not even be realized by the researcher. If one covariate’s value 

is missing in a regression analysis the default behavior in all major statistical software is to 

simply exclude this entire observation from the analysis. This exclusion is indifferent to the 

importance of the missing value—that covariate may offer little (or very much) explanatory 

value to the model. The exclusion is also indifferent to the amount of other data available in 

that observation; there may be scores of other covariates that provide rich information toward 

explaining the outcome variable. Yet the entire observation is excluded from the analysis due 

to a missing value in one covariate—something termed complete case analysis (CCA). While 

missingness of less than 5% is considered trivial [12], the amount of missing data and the 

implications of omitting these observations from analysis needs attention. 

In other cases, the problem with missing data may be realized by the researcher—yet 

ignored due to the large number of cases available for analysis. This is the case with research 
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that uses electronic medical records of large health systems or research that uses billing 

records. In these cases, sufficient numbers of cases with complete covariate data may exist for 

analysis—resulting in a study that is well powered to find a difference if one exists, even with 

excluding lots of records due to missing data. The researcher simply makes the decision to set a 

study inclusion criterion that all cases must have complete data. Little consideration to the 

amount and types of missing data is given in presentation of how the cohort was developed. It 

is no wonder Paul Allison (2009) describes missing data as the, “dirty little secret of statistics” 

(p. 72). 

Reporting guidelines are available to aid HSR studies to improve the quality and aid 

reproducibility of research. One guideline is the Strengthening The Reporting of Observational 

Studies in Epidemiology (STROBE), whose purpose is offering full disclosure in the analysis 

to allow for reproducibility and provide candor. STROBE underscores the importance of 

handling missing data—requiring an explanation of how missing data were handled along with 

an explanation of the number of subjects with missing data for each item of interest with the 

methods section of a peer-reviewed paper [13]. Another guideline is the Reporting of studies 

Conducted using Observational Routinely-collected health Data (RECORD), an extension of 

STROBE, upholds all the requirements of STROBE but adds the requirement of discussing the 

implications of missing data in the limitations section of the paper [14]. In fact, the 

International Conference on Medical Journal Editors (ICMJE) highly encourages that journal 

articles be submitted with completed guideline checklists, such as those discussed above [15]. 

Unfortunately, the International Society for Pharmacoeconomics and Outcomes Research’s 

(ISPOR) guidelines for retrospective database studies merely mentions missing data as a 

quality check of the data source, and not as a potential source of bias [16]. However, a recent 

taskforce report from ISPOR and the International Society for Pharmacoepidemiology (ISPE) 
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acknowledges that missing data are a threat to validity that should be addressed [17], and offers 

suggestions for how describing how missing data were handled [18]. Finally, the Patient-

Centered Outcomes Research Institute (PCORI) published methodology standards for 

scientifically valid patient-centered outcomes research [19]. There are 12 detailed standards, 

with one entire standard devoted toward the prevention and handling of missing data.  

While most of the guidelines provide a cautious set of recommendations for handling 

missing data, all of them mention it as an item for methodological and statistical 

consideration—demonstrating the importance of properly handling missing data in health 

services research studies. 

2.2 Current State of Handling Missing Data in Health Services Research 

Unfortunately, methods for handling missing data are not widely used in health services 

research. One review of the utilization of multiple imputation (MI) in two top-tier journals—The 

Lancet and New England Journal of Medicine—over a 6-year period (2008 through 2013) found 

only 103 articles that used MI, 45 in NEJM and 58 in The Lancet [20]. Of these 103 studies only 

30 (29.1%) were observational with 11 (10.7%) being studies using routinely collected data. The 

study also found nearly all the papers handled these data with insufficient rigor. The study does 

not give the total number of studies in the two journals during that timeframe that were evaluated, 

which would have informed readers about the incidence of MI during the time examined. 

However, a manual search for this dissertation revealed 1,373 research articles in NEJM and 

1,064 in The Lancet, totaling 2,437 articles. This shows that only 4.2% of articles in these two 

top-tier journals used MI; 3.3% in NEJM, 5.5% in The Lancet. This suggests that missing data are 

a somewhat rare phenomenon, perhaps being dealt with methodologically in the analysis (but not 

reported), or are simply being ignored; the latter of these possibilities, rather than the former is 

more likely.  
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Therefore, a more systematic approach to help understand how well health services 

researchers are doing with handling missing data is warranted. In the next section, an examination 

of missing data approaches will be conducted to determine the extent to which missing data 

techniques are utilized, or if missing data are mentioned anywhere in the paper, for a one-month 

period of all literature that used a popular commercial claims database. 

 Truven Health Analytics MarketScan® research databases are widely-used for health 

services research. The most commonly used MarketScan databases are the Commercial and 

Medicare supplemental databases. These databases provide de-identified health insurance claims 

across the continuum of care (e.g. inpatient, outpatient, outpatient pharmacy, carve-out behavioral 

healthcare) as well as enrollment data from roughly 350 large employers and health plans across 

the United States who provide private healthcare coverage for more than 50 million employees, 

their spouses, dependents, and Medicare-eligible retirees with supplemental plans [21]. This 

administrative claims database includes a variety of fee-for-service, preferred provider 

organizations, and capitated health plans. In total, there are more than 20 billion service records in 

these databases spanning back to 1995. A review of research published using MarketScan 

databases provides illustration of the breadth, depth, and quality of research being conducted in 

health services research. 

In August 2017, a review of all papers published in January of 2017 that used 

MarketScan research databases was conducted to determine the extent to which missing data 

techniques were utilized, or if missing data were mentioned anywhere in the paper. To locate 

these papers a search of the Ovid MEDLINE database for the terms Truven or MarketScan in the 

title or abstract was conducted, which yielded 18 papers. These papers were then searched for any 

of the terms listed in Appendix A—which includes terms for all the major analytical approaches 

to handling missing data, as well as indicators that missing data were considered (e.g. the term 
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missing). These papers were also manually reviewed to ascertain if missing data were mentioned, 

or if addressed using any analytical technique for handling missing data. 

Of these 18 papers, 13 (72.2%) did not mention missing data or any analytical approaches 

to handling missing data anywhere in the text [22-34]; only 5 papers (27.8%) mentioned missing 

data at all [35-39]. Of these 5 papers, 4 collapsed categories in potential covariates to include 

missing with another category (e.g. Other/Missing) [35, 36, 38, 39] and one used missingness as 

an exclusion criterion without discussion of potential bias as a result of that decision [37]. In 

summary, none of the papers investigated over this one-month sample of time utilized a 

satisfactory method of handling missing data. This illustrates the common practice within health 

services research when using large secondary data sources—such as billing data—of simply 

excluding subjects with missing data, or when the data are categorical, of lumping together 

missing with the smaller categorical groups. 

In summary, the case has been made that missing data are problematic for research 

studies as they can bias the findings. An examination into the state of handling missing data in 

health services research has also been made, showing a large area for improvement in using 

missing data methods. In sections that follow we will examine the clinical syndrome through 

which we explore missing data, examining respiratory failure and a severity of illness scoring 

system used for intensive care unit patients. We will then explore electronic health record data as 

a data source for observational research. Finally, we will take a look at the statistical topic of 

handling missing data, to include mechanisms for missingness, missing data patterns, amount of 

missing data, analytical approaches available to deal with missing data, and finally existing 

guidelines for working with missing data. 
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2.3 Electronic Health Record Data for Research 

Electronic health record (EHR) data as a source for research purposes was promised to be 

the “golden egg” for research. A seemingly unlimited amount of data available to researchers for 

asking clinical research questions held the promise of forever changing research. The thought was 

that since the full record was available to researchers for retrospective studies, this would allow 

any pertinent question to be asked as all the key information—diagnoses, medications 

administered, radiological tests, and laboratory results—are available. This opened the door for a 

variety of research, including comparative effectiveness research, rare disease research, and 

evaluation of quality improvement initiatives.  

Prior to the availability of EHR data for research, retrospective studies relied on previously 

recorded data, such as billing records or clinical trials data that was being repurposed to pose new 

research questions. These data sources have their limitations, as they were created for a specific 

purpose and are subject to their inherent limitations. However, EHR data are different as the 

entire clinical picture of care for populations of patients is seemingly captured; one would think 

that everything that is pertinent is available within the EHR—just waiting to be queried. 

Combining quasi-experimental techniques that minimize selection bias, such as propensity score 

matching [40, 41], with this rich source of EHR data further underscored the possibility of 

conducting causal analyses using these retrospective data. Further, having EHRs would transform 

healthcare by, in part, allowing implementation of research findings for disease prevention and 

chronic disease management [42]. The future looked bright for research, but reality had not yet 

set in. 

Unfortunately, electronic health record data are a bit more difficult to work with than 

administrative data, due to the nature of these data. Administrative data are already coded with 

diagnosis and procedure codes. However, EHR data—while also having this information—has 
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much more information that is unstructured in free-text fields, such as provider notes, as well as 

bedside and laboratory data that are harder to turn into discrete fields by which research questions 

can be asked. For free-text fields, natural language processing is required for automated chart 

review. This approach requires validation for each disease or condition being phenotyped, and is 

subject to common problems—such as misspellings, abbreviations, and negation terms (e.g., 

“absence of hepatocellular nodules”) that might otherwise give a false-positive [43].  

A systematic literature review of all health outcomes research studies conducted in the 

United States from 2000-2007 that used EHR data was conducted in 2009 to examine how EHRs 

were being used for outcomes research and to describe the methods used therein [44]. This review 

found 98 EHR-based outcomes research studies, with 88% being published in specialty medical 

journals. Of the outcomes studied, clinical and pharmacologic outcomes were the most common 

(31% and 19% respectively), whereas economic outcomes were the least common (3%). The 

study also examined 28 conference abstracts from ISPOR and Academy Health’s Annual 

Research Meeting. Of these 124 studies, only 78 (63%) used multivariable regression methods to 

control for confounding, and only 1 study used propensity score methods to control for selection 

bias. Further, no consideration of handling of missing data in the studies evaluated was given. 

Finally, this literature review perpetuates the misconception that, “[EHR] data can easily be 

queried to identify patients based on diagnoses, procedures, and dispensed medications” and that 

these data are “readily accessible in real time” (p. 618). Such assertions are typical in earlier EHR 

research literature and are demonstrative of oversimplification of the challenges researchers face 

when using EHRs for research. As we will see next, more modern papers acknowledge some of 

these challenges. 

In a study that used the biorepositories of five large institutions which are part of the 

Electronic Medical Records and Genomics Network (eMERGE) [45] for genome-wide 
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association studies, investigators sought to phenotype diseases [46]. In this study, all sites had 

different EHRs—including both internally-made and commercially-procured—that were all 

exceeding meaningful use requirements for EHRs, set forth by the Office of the National 

Coordinator. However, race, ethnicity, exposure history, and family history of illness had varying 

rates of capture within the EHR. Further, when captured, these items were often stored in a free-

text (structured format), in inconsistent nomenclatures, meaning it had to be parsed out with 

natural language processing [46]. It is worth re-emphasizing these sites that are part of the 

eMERGE network, in spite of the challenges presented by EHRs have found 48 disease or 

condition phenotypes to date [47]. While many of these phenotypes rely on natural language 

processing, some do not.  

In spite of the challenges inherent within the scope of using EHR data for research, the 

field of EHR data research is still promising. It is just not the easy, golden egg researchers once 

thought. Other problems still persist, such as censoring, missing data, and attrition. The United 

States is still a long ways off from having a comprehensive, single medical record for each 

patient—which some thought simply hinged on increased Internet bandwidth and financial 

incentives [48]. Even once we have overcome challenges inherent within EHR records, more 

challenges are systematic due to our system of healthcare delivery, which is highlighted by 

fragmented care. Unless a patient is seen solely within one integrated health system, her records 

are in many EHRs—including primary care, emergency care (if not in the same system), and 

specialty care. Nonetheless, while there are many challenges that must be overcome, including 

dealing with missing data, it is imperative we press forward to solve some of these challenges as 

the data within the EHR—while not a golden egg—holds promise. 



 

13 

 

2.4 Clinical Background – Respiratory Failure 

Respiratory failure is a syndrome whereby the lungs fail in their primary function of gas 

exchange; the lungs fail to adequately expel carbon dioxide or oxygenate the blood. Many 

conditions can result in respiratory failure, such as chronic obstructive pulmonary disease 

(COPD), cystic fibrosis, pneumonia, emphysema, chronic bronchitis, pulmonary embolism, and 

stroke [49, 50]. Further, respiratory failure can be a sequela of surgery or trauma.  

Respiratory failure is of large concern for medicine, as it is the leading cause of in-hospital 

death, and the 3rd leading cause of death in the United States [51, 52]. For patients who 

experience respiratory failure and require the assistance of a ventilator (VDRF), this typically 

involves admission to the ICU.  

In the following sections the epidemiology of respiratory failure will be reviewed, 

including where it ranks for cause of death in the United States and its prevalence in the 

community and among the aged in institutionalized settings. Then a brief examination of the 

etiology of respiratory failure will be undertaken.  

2.4.1 Respiratory Failure: Population Statistics 

Chronic lower respiratory disease was the 3rd leading cause of death in the United States in 

2014 according the the Centers for Disease Control and Prevention (CDC), claiming 147,101 

lives and comprising 5.6% of all deaths [52]. Further, acute respiratory distress was the 8th 

leading cause of death among newborns, claiming 460 lives and comprising 2.0% of all newborn 

deaths [52]. In 2010, of the more than 700,000 people who died as an inpatient (2% of all 

admissions), respiratory failure was the leading first-listed diagnosis (16.5% of deaths), followed 

by septicemia (16.3%), and pneumonitis due to solids or liquids (13.6%) [51]. Further, the 

mortality rate among adults has been shown to steadily increase with age, with nonagenarians—

those in their 90s—experiencing a nearly four-fold rate of mortality when compared with adults 
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aged 18-40 (83% vs. 21%) [53]. While the in-hospital death rate for adult patients with 

respiratory failure has been on the decline—25.3% in 2000, 19.3% in 2005, and 16.5% in 2010—

it has been the leading first diagnosis among in-hospital deaths during this period, and the trend is 

reflective of the overall trend in the decline of in-hospital deaths [51].  

A 2010 national survey of assisted living and similar residential care facilities found 4.2% 

had asthma, 2.0% chronic bronchitis, 10.8% COPD, and 1.2% emphysema—all conditions that 

could lead to respiratory failure [54]. Of this same population, nearly one-quarter (23.8%) had 

one or more overnight inpatient stays in a hospital in the 12 months prior. 

An examination of the costs of patients who ventilator-dependent using Healthcare Cost 

and Utilization Project (HCUP) National Inpatient Sample (NIS) data using 2009 data showed the 

costs per ventilated patient varied widely [53]. The highest costs per patient were seen among 

surviving pre-term infants, with those aged 24 weeks or younger having a median cost around 

$200,000. The median costs per patient among adult patients was fairly steady, ranging from 

$17,000 to $25,000 depending on the age group. In nearly all age groups, a similar amount of per-

capita money was spent on surviving and non-surviving ventilated patients. 

2.4.2 Ventilator-Dependent Respiratory Failure 

A prospective study was conducted in 2008 of 60 pediatric ICUs (PICUs) in 13 countries 

of all children admitted to the PICU in a one-month period during the season when acute lower-

respiratory infections were more prevalent in each respective country [55]. This study found that 

50.1% of admissions to the PICU required invasive mechanical ventilation, either intubation or 

tracheotomy. Further, patients who required reintubation following planned extubation was 24%, 

with the mortality rate being higher amongst patients who required reintubation (21% vs. 1%). 

For ventilated patients overall in the ICU, the mortality rate estimates vary—ranging from 20-

31% in the adult population [56-58] and 13% in the pediatric population [55]. 
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2.4.3 Respiratory Failure: Pathology  

Respiratory failure is a syndrome whereby the lungs fail in their primary function of gas 

exchange; the lungs fail to adequately expel carbon dioxide or oxygenate the blood. Respiratory 

failure is diagnosed through arterial blood gas measurements [49]. Respiratory failure is classified 

as hypercapnic, meaning the level of CO2 in the arterial blood is excessive (PaCO2 > 45 mm Hg), 

or hypoxemic, meaning the level of oxygen in the arterial blood is inadequate (PaO2 < 55 mm Hg 

when the fraction of inspired oxygen [FiO2] ≥ 0.60 mm Hg) [49]. It is not uncommon for 

respiratory failure to be both hypercapnic and hypoxemic. 

2.5 Severity of Illness Scoring 

There are a number of severity of illness scoring systems in use in the ICU, including the 

Acute Physiology and Chronic Health Evaluation (APACHE), Logistic Organ Dysfunction 

System (LODS), Mortality Prediction Model (MPM), Simplified Acute Physiology Score 

(SAPS), and Sequential Organ Failure Assessment (SOFA). These ICU scoring systems are 

widely used for outcome prediction (most commonly mortality), severity of illness 

stratification—both in clinical trials and research that uses administrative data—and as a case-mix 

adjustment for comparing quality of care [11].  

Severity of illness scores are different, however, from comorbidity scores—such as the 

Charlson and Elixhauser scores. The Charlson comorbidity score was created to estimate the 1-

year mortality risk from comorbidities in longitudinal studies using information manually 

extracted from inpatient medical record review [59]. The Charlson comorbidity score was 

modified by Deyo et al. to allow for use with administrative databases by mapping International 

Classification of Diseases, 9th revision, clinical modification (ICD-9-CM) diagnosis codes to the 

diseases described by Charlson et al., listing seventeen diagnostic categories, each containing 

multiple ICD-9-CM diagnoses [60]. The Elixhauser comorbidity score was created specifically 
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for use with administrative data, giving a set of 30 comorbidities for which a researcher can use 

for statistical control in multivariable analyses to predict charges, length of stay, or in-hospital 

mortality [61]. Severity of illness scores differ from comorbidity scores, however, in that they 

measure physiological derangement—using clinical and laboratory data—rather than presence or 

absence of comorbid conditions associated with death. As such, they are used in two different 

manners for risk adjustment, with one adjusting for baseline health and the other adjusting for 

severity of illness. To be certain, two patients in the ICU with the same comorbidities and 

Charlson score could have markedly different severity of illness scores, and therefore prognosis.  

Further, while both the Charlson and Elixhauser comorbidity scores have been shown to 

have good predictive ability of mortality among ICU patients—Charlson had 65% area under the 

Receiver Operating Characteristic Curve (AUROC) and Elixhauser 66% AUROC for 30-day 

mortality among ICU patients [62]—their predictive ability is likely to be lower than that of 

severity of illness based scores due to using patient comorbidities, rather than severity of illness 

scores which measure actual physiological derangement and are more real-time. One study 

examined the predictive ability of the Charlson score to that of one severity of illness score 

(SAPS II), finding the severity of illness-based SAPS II score to be superior in prediction of 30-

day mortality than the Charlson score at α=0.05, 0.821 vs. 0.607 AUROC respectively [63]. 

Therefore, when available, the researcher is wise to use physiology-based severity of illness 

scores in addition to comorbidity scores for baseline risk adjustment. For this dissertation, focus 

will be given to one of the more commonly-used physiology-based severity of illness scoring 

systems, the SOFA score. 

2.5.1 SOFA Score 

The Sequential Organ Failure Assessment (SOFA) score was created by the European 

Society of Intensive Care Medicine (ESICM) in 1994 via a consensus meeting—essentially using 
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the Delphi technique—to provide an objective scale to describe the degree of organ dysfunction 

or failure [64]. The score uses information that is routinely-collected in the ICU, making it a 

scoring system that is easily implemented. The SOFA score was envisioned to have two 

applications [64]. The first application was to understand the course of organ dysfunction (and 

failure), including the relationship of multiple organ failure. The second application was as an 

instrument to be used for baseline severity assessment and measurement of the effects of 

interventions. The authors of the SOFA score emphatically asserted that it was designed as a tool 

for description, not prediction [64]. However, its usage has changed over time as it has 

demonstrated to be a good prognostic tool among ICU patients. The SOFA score is recommended 

for assessment of septic patients by the Third International Consensus Definitions for Sepsis and 

Septic Shock (Sepsis-3) guidelines [65] and is even used as an element of consideration in 

emergency triage in some states’ crisis standard of care plans [66]. 

The SOFA score ranges from 0 to 24, composed of 6 sub-scores. The sub-scores have a 

range of 0 to 4 points being assigned to each of six organ systems: respiratory, hematologic, 

hepatic, cardiac, neurologic, and renal. A higher score represents a higher level of dysfunction, 

and thus greater severity. Calculation of the SOFA score is shown in Table 2.1, representing the 6 

organ systems covered. 
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Table 1 SOFA score calculation 

 Assigned Score 

System 0 1 2 3 4 

Respiration 
     PaO2/FiO2,  
     mmHg 

 
≥ 400 

 
< 400 

 
< 300 

 
< 200a 

 
< 100a 

Coagulation 
     Platelets   
     x 103/mm3 

 
≥ 150 

 
< 150 

 
< 100 

 
< 50 

 
< 20 

Hepatic 
     Bilirubin, mg/dl  
      (µmol/l) 

 
< 1.2 
(< 20) 

 
1.2 – 1.9 
(20 – 32) 

 
2.0 – 5.9 

(33 – 101) 

 
6.0 – 11.9 

(102 – 204) 

 
≥ 12.0 
(> 204) 

Cardiovascular 
     Hypotension 

 
MAP ≥ 
70 mm 

Hg 

 
MAP <  
70 mm  

Hg 

 
Dopamine ≤ 5 

or 
Dobutamine 
(any dose)b 

 
Dopamine > 5 

or 
Epinephrine ≤ 0.1 

or 
Norepinephrine ≤ 0.1 

or 
Phenylephrinec ≤ 0.22 

 
Dopamine > 15 

or 
Epinephrine > 0.1 

or 
Norepinephrine > 0.1 

or 
Phenylephrinec > 0.22 

Central Nervous 
System 
     Glasgow Coma  
     Scale Score 

 
15 

 
13 – 14 

 
10 – 12 

 
6 – 9 

 
< 6 

Renal 
     Creatinine, 
     mg/dl (µmol/l) 

 
< 1.2 

(< 110) 

 
1.2 – 1.9 

(110 – 170) 

 
2.0 – 3.4 

(171 – 299) 

 
3.5 – 4.9 

(300 – 440) 

 
> 5.0 

(> 440) 

     Urine output,    
     ml/day 

   < 500 < 200 

a With respiratory support 
b Administered for at least 1 hour 
c Phenylephrine added by Knox et al. to list of vasopressors according to standard equivalency [67] 

 

The first organ system is respiratory dysfunction, which is calculated as the ratio of the 

partial pressure of oxygen (PaO2) to the fraction of inspired oxygen (FiO2)—often referred to as 

the Carrico index or P/F ratio [50]. The partial pressure of oxygen (PaO2) measures the level of 

oxygenation within the arterial blood, with normal values ranging from 70-95 mm Hg [68]. The 

fraction of inspired oxygen (FiO2) measures the percentage of oxygen in the air being inhaled. 

This P/F ratio then measures the degree of hypoxemia, with the scores of 2, 3, and 4 matching the 
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mild, moderate, and severe categories respectively of the Berlin definition of acute respiratory 

distress syndrome [69].  

The second organ system measured by the SOFA score is coagulation, measured as 

platelet count, where decreasing levels of platelet counts confer a higher coagulation score in the 

SOFA system. Platelet counts considered to thrombocytopenic—less than 150,000/mm3 [70]—

are assigned a score of at least one, with lower counts garnering a higher coagulation component 

SOFA score.  

The third organ system measured by the SOFA score is hepatic, measured as the 

concentration of bilirubin in the blood. Elevation of serum bilirubin, known as 

hyperbilirubinemia, occurs when the liver fails to adequately metabolize bilirubin—a byproduct 

of the metabolism of heme, which is approximately 70-90% hemoglobin of erythrocytes (red 

blood cells) [71]. Hyperbilirubinemia is typically caused by liver dysfunction or disease, bilirubin 

metabolism disorders (such as Gilbert syndrome), or biliary tract obstructions [57]. Further, 

elevated serum bilirubin levels have been shown to be predictive of short-term mortality [72-75]. 

Increasing amounts of bilirubin correspond to a higher hepatic component SOFA score. 

The fourth organ system measured by the SOFA score is cardiovascular, measuring 

hypotension and pharmaceuticals administered to return the patient to a normotensive state. A 

patient is assigned a score of 1 when deemed hypotensive, defined as a mean arterial pressure 

(MAP) < 70 mm Hg. Mean arterial pressure is calculated as follows,  

𝑀𝐴𝑃 ൌ 𝑑𝑖𝑎𝑠𝑡𝑜𝑙𝑖𝑐 𝑏𝑙𝑜𝑜𝑑 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 
𝑠𝑦𝑠𝑡𝑜𝑙𝑖𝑐 െ 𝑑𝑖𝑎𝑠𝑡𝑜𝑙𝑖𝑐

3
 

and a hypotensive state means the body’s organs are being insufficiently perfused [76]. As the 

patient exhibits greater hypotension, increased amounts of vasopressive drugs are administered—

such as dopamine, dobutamine, epinephrine, or norepinephrine—to constrict the blood vessels, 
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with the goal of raising the MAP and returning the patient to a normotensive state [76]. 

Increasing doses of vasopressors correspond to a higher cardiovascular component SOFA score. 

The fifth organ system measured by the SOFA score is the central nervous system, as 

measured by the Glasgow Coma Scale. The Glasgow Coma Scale (GCS) was developed in 1974 

by two physicians to quantify the level of consciousness of critically ill patients by measuring 

three aspects of behavior: eye, verbal, and motor response to allow for longitudinal monitoring 

[77]. The GCS is scored as shown below, from 3 to 15—with a lower composite score 

representing a worse prognosis. Each category is rated as the best response for the category that 

uses a standardized approach for evaluation. 

 
Table 2 Scoring of the Glasgow Coma Scale (GCS) 

Eye Response Verbal Response Motor Response 

1. None 
2. Open to pain 
3. Open to speech 
4. Open spontaneously 

1. None 
2. Incomprehensible speech 
3. Inappropriate speech 
4. Confused conversation 
5. Orientated 

1. None 
2. Extension 
3. Abnormal flexion 
4. Normal flexion (withdrawal) 
5. Localizing response 
6. Obeys commands 

 

The GCS has been integrated into intensive care medicine in over 80 countries, with the 

three components being used to describe the impairment of consciousness on individual patients 

[78]. Further, the GCS is used as a risk-adjustment or prognostic tool in outcomes research [78]. 

Finally, a demonstration of the clinical importance of the GCS is its incorporation into the 

International Classification of Diseases, 10th revision, Clinical Modification (ICD-10-CM) which 

allows for component and composite GCS scores to be coded (code R40.2xx), along with the time 

of measurement [79].  

The sixth, and final, organ system measured by the SOFA score is renal, measured as 

creatinine clearance or daily urine output. An elevated serum creatinine or decreased urine output 
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are signs of diminished kidney function, possibly acute kidney injury [80]. Worldwide the 

incidence of acute kidney injury was estimated at 21.6% in hospitalized adults and 33.7% in 

hospitalized children, with mortality rates of 23.9% and 13.8% respectively in a meta-analysis of 

154 studies of 3.6 million people [81]. Further, two classification systems of acute kidney 

injury—which involve change in serum creatinine levels and daily urine output—have been 

shown to be predictive of outcomes in ICU patients, including mortality, renal failure, and length 

of stay [82, 83]. 

2.5.2 Interpretation of SOFA Score 

According to the Sepsis-3 consensus paper, the baseline SOFA score—which is 

calculated upon admission to a critical care unit—should be assumed to be zero, unless the patient 

has a known organ dysfunction [65]. A change in total SOFA score of at least two points 

represents organ dysfunction, and a SOFA score that is 2 or greater is associated with a 10% in-

hospital mortality rate [65]. 

The SOFA score was validated in an ICU setting, which demonstrated the presence of 

sepsis was associated with higher component organ SOFA scores [84]. Further, of the patients 

whose ICU stay was for at least 7 days, an increase of SOFA scores from baseline was correlated 

with greater odds of death (44% of non-survivors vs. 20% of survivors; p < .001); whereas a 

decrease in SOFA score from baseline was correlated with greater odds of survival (21% of non-

survivors vs. 33% of survivors; p < .001) [84]. When examined as the maximum SOFA score 

throughout an ICU admission, there is a trend toward increasing in-ICU mortality as the 

maximum SOFA score increased, as shown below in Figure 2.1 (below).  
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Figure 2.1 Maximum SOFA score vs. in-ICU mortality rate [84] 

 

 

The SOFA score has been examined for other clinical populations as well. The SOFA 

score has been modified and adapted for the pediatric population (pSOFA) in predicting in-

hospital mortality, showing excellent discrimination of 0.94 AUROC (95% CI: 0.92-0.95) using 

age-adjusted SOFA parameters [85]. Additionally, the SOFA score on the day of admission to the 

ICU has been compared to the APACHE II score in oncology patients admitted to the ICU and 

found superior at predicting in-ICU mortality (0.925 AUROC, 95% CI: 0.859-0.991 vs. 0.710, 

95% CI: 0.578-0.843 respectively), and similar in predicting in-hospital mortality (0.835 

AUROC, 95% CI: 0.734-0.934 vs. 0.655, 95% CI: 0.491-0.819) [86]. The SOFA score on the 

seventh day post-transplant has also been shown to be highly predictive of mortality for living-

donor liver transplant recipients in predicting 3-month post-operative mortality (0.952 AUROC, 

95% CI: 0.874-1.00) [87]. Similarly, the SOFA score has been used to predict mortality among 

trauma patients [88], those with hematological malignancies [89], patients in acute geriatric care 

settings [90], and even ICU-treated refractory status epilepticus patients [91]. Finally, the 



 

23 

 

admission SOFA score has also been shown to be associated with diminished quality of life one 

year post-discharge among ICU survivors, as measured by the EuroQoL-5D [92]. 

2.5.3 Examples of SOFA Score in the Literature 

The SOFA score is often used in outcomes studies of ICU-treated conditions as a predictor 

or adjustment variable. The SOFA score serves as a measure of patient severity within the ICU, 

which is a measure upon which one can statistically control to examine outcomes. 

One prospective, multicenter study of adult ventilated ICU patients examined the risk of 

developing adult respiratory distress syndrome (ARDS) [93]. In the final statistical model that 

examined risk of ARDS, the baseline SOFA score—along with other covariates, such as BMI and 

functional status—were used to predict risk of developing ARDS among ICU patients. However, 

the study admitted that data were missing for elements of the SOFA score, with those cases 

simply being omitted from the analysis. This is problematic, as the number of cases excluded was 

not mentioned and the potential for biased findings due to the missingness was not discussed. 

2.5.4 Missingness of SOFA Score Items 

Missingness of SOFA score items, or the total score itself, varies across studies. In one 

study the admission SOFA score had 0% missingness, but was a prospective one-year study [92]. 

In the validation study for the SOFA score, bilirubin values were the most commonly 

missing item, whereas platelet counts were the most infrequently missing—however the percent 

of time these items were missing was not mentioned [84]. For imputation of missing items, the 

mean of the value prior to and after the missing value was imputed; in cases where multiple 

observations were missing, the missing value was left untouched—resulting in available case 

analysis being used for the analyses [84]. In a later study by some of the same authors as the 

validation study, similar missingness was found, with bilirubin being the most commonly missing 

item, and platelets and PaO2/FiO2 ratios being the most infrequently missing items [94].  
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2.6 Mechanisms of Missingness 

The mechanism of missingness is the process that governs whether data are missing. The 

theory for missing data mechanisms was first proposed by Rubin—applying it to survey designs 

[95], which was simplified by Little & Rubin [96] to remove the response parameter that is 

inherent in survey methodology. Using the groundwork laid therein, the mechanisms of 

missingness can be defined symbolically.  

If a complete dataset is specified as 𝑌 ൌ ሺ𝑦ሻ with i representing subjects (as rows) and j 

representing variables (as columns), with a size of (n x K). Then 𝑦  is the vector of variables for 

subject i, which can be expressed as 𝑦 ൌ ሺ𝑦ଵ, … 𝑦ሻ. This complete dataset is shown below in 

Figure 2.1, which shows a matrix Y with a size of (3 x 4), representing 3 observations—each 

observation containing 4 variables. In this table you can see cell 𝑦ଷ,ସ, which represents the 4th 

variable for the 3rd subject. 

 

Figure 2.2 Complete data matrix 

 

 

To indicate whether data are missing, 𝑀 ൌ ሺ𝑚ሻ is a matrix of binary variables of the 

same size as Y, with 𝑚 ൌ 1 indicating the datum at 𝑦 is missing and 𝑚 ൌ 0  indicating the 

datum at 𝑦 is observed. The mechanism of missingness is represented by a conditional 
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distribution of 𝑀, where 𝑓ሺ𝑀|𝑌, 𝜙ሻ, where 𝜙 are latent parameters. And thus, the groundwork of 

introducing the symbols for defining the missing data mechanisms has been laid. 

2.6.1 Missing Completely at Random (MCAR) 

The first missing data mechanism is known as Missing Completely At Random (MCAR), 

meaning the probability of missingness does not depend values of Y, whether observed (Yobs) or 

missing (Ymiss). Using the Little & Rubin equation, MCAR can be written as  

𝑓ሺ𝑀|𝑌, 𝜙ሻ ൌ 𝑓ሺ𝑀|𝜙ሻ 

for all values of Y and 𝜙. In the case of MCAR, when data are missing it is equivalent to a simple 

random sample of the full dataset [97]. This is equivalent to asserting that the function of 

missingness cannot be described by the data, but rather is a stochastic process modeled by the 

latent parameters 𝜙. Further, the probability of missingness for one variable can be related to the 

probability of missingness of another variable, such as is the case of unit non-response in a survey 

[97]. The MCAR equation given above has been made more comprehensible by Allison [97]—

who adds X as a vector of fully-observed variables, writing MCAR as  

Prሺ𝑌௦௦|𝑌, 𝑋ሻ ൌ Prሺ𝑌௦௦ሻ 

 The MCAR mechanism is akin to taking a completely random sample (𝑌௦) from a 

population (Y). Further, excluding Ymiss from any analysis should not bias the results of an 

analysis at moderate percentages of missingness. 

2.6.2 Missing at Random (MAR) 

The second missing data mechanism is known as Missing At Random (MAR), which 

means that the probability of missingness does not depend on the missing values of Y, (Ymiss), but 

may depend on the observed values of Y, (Yobs). The MAR equation can be written as 

𝑓ሺ𝑀|𝑌, 𝜙ሻ ൌ 𝑓ሺ𝑀|𝑌௦, 𝜙ሻ 
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for all values of Ymiss and 𝜙. Once again Allison makes this equation more comprehensible, 

representing it as 

Prሺ𝑌௦௦|𝑌, 𝑋ሻ ൌ Pr ሺ𝑌௦௦|𝑋ሻ 

MAR means that the missing values do not depend on the values themselves, but can depend on 

other observed values [98]. Some authors assert that it is possible to take data from NMAR to 

MAR in survey and intervention designs through asking subjects how likely they are to drop out 

of a study, or by using proxy measures that are highly correlated with the missing covariate [99], 

thus adding a predictor of missingness to the Yobs vector.  

2.6.3 Missing Not at Random (MNAR) 

The third, and final, missing data mechanism is known as Missing Not At Random 

(MNAR), which means that the probability of missingness depends on the missing values of Y, 

(Ymiss) themselves. The MNAR equation can be written as 

𝑓ሺ𝑀|𝑌, 𝜙ሻ ൌ 𝑓ሺ𝑀|𝑌௦௦, 𝜙ሻ 

for all values of Y and 𝜙. An example of MNAR is found in job applications where a question 

asking if a person has ever been arrested would depend on the answer itself. A person who has 

never been arrested will readily answer no, however one who has been arrested would be 

apprehensive to answer that question. Another example of MNAR from the literature is the issue 

of non-response of income reporting to the U.S. Census Bureau, where those with higher incomes 

were less likely to report their incomes [100].  

The importance of understanding the missing data mechanism—whether MCAR, MAR, or 

MNAR—has been covered well in the literature [19, 95, 98]. Several studies have suggested less 

discrete definitions of these mechanisms. One study posits a more fluid definition of missingness, 

asserting it is more like a continuum between MCAR and MNAR [101], although interesting, the 

point is quixotically impractical. Another theory-building simulation study that examined missing 
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data methods using all three missing data mechanisms asserted one single mechanism is unlikely 

to be the cause of missingness [102]. The focus must remain on having a solid understanding of 

the missing data process, as selecting an analytical approach to missing data is predicated on an 

understanding of the missing data mechanism. 

2.6.4 Tests for Missing Data Mechanism 

Unfortunately, few tests exist to distinguish between the three missing data mechanisms 

and the ones that do exist have their limitations. The most commonly-cited test is known as 

Little’s test, which gives a single χ2 test statistic for testing the MCAR assumption on multivariate 

continuous data [103]. It is useful for situations where the researcher is trying to ascertain if the 

data are MCAR or MAR. Essentially, Little observed that one would need to split the data into 

two groups, those with missing values for a given variable and those without missing values. 

Then one would compare the distributions for each variable in the dataset between these two 

groups using a two-sample Student’s t-test, with a significant difference indicating the data are 

not MCAR. However, for p  number of variables in a dataset this would yield p(p - 1) t-tests. To 

get around the multiple comparisons, Little created his likelihood ratio test that is asymptotically 

chi-squared. However, situations where missingness is due to the MCAR mechanism are rare [97, 

104], and categorical data are common, limiting the utility of this test.  

Other tests aimed at longitudinal data include ones developed by Park & Davis, which is an 

extension of Little’s test but for repeated measures categorical data that tests for MCAR [105], 

and a test by Park & Lee based on generalized estimating equations that uses a missing indicator 

using a pattern-mixture model [106].  

Heitjan & Basu examined the MCAR and MAR missing data mechanisms from both the 

Bayesian and Frequentist statistical inference perspective showing different ignorability 

requirements exist through statistical simulation [107]. For Bayesian inference—such as would be 
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done through using maximum likelihood estimation (MLE) to deal with missing data—showing 

the ignorability condition is met if the likelihood function is the same with or without accounting 

for the missing data mechanism. However, for Frequentist inference—such as would be done 

through multiple imputation—the ignorability condition is only met if the data are MCAR. 

2.7 Missing Data Patterns 

The pattern of missing data is important to understand, as various methods require a certain 

data pattern. The pattern of missing data is essentially the unique patterns of values of the missing 

data vectors, 𝑚, in the missing data matrix 𝑀 ൌ ሺ𝑚ሻ. Recall that i represents subjects (as rows) 

and j represents variables (as columns). These patterns of missing data vectors are arranged from 

most number of observed variables to least number of observed variables, as shown in Figure 2.3 

below. 

 

Figure 2.3 Missing data patterns, monotonic vs. non-monotonic 

 

 

In Figure 2.3 one can see columns of three variables and the number of observations with 

that pattern. In the cells below an X represents an observed value (𝑌௦), whereas a dot represents 

a missing value (𝑌௦௦). A monotonic missing data pattern is one that will follow a stepwise 

fashion as shown, where once a variable a missing in the list of patterns, that variable will always 

be missing in subsequent patterns (c.f. Figure 2.3, V2). By definition, a dataset which has only 
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one missing variable will be necessarily monotonic. Further, when only one variable is missing, 

analytical methods to address the missing data are known as univariate methods—regardless of 

whether the imputed variable is a dependent or independent variable in later analyses; when more 

than one variable is missing, analytical methods to address the missing data are known as 

multivariate methods. 

2.8 Amount of Missing Data 

The amount of missing data, represented symbolically by 𝛾, is of concern in all statistical 

analyses due to risk of bias. The amount of missing data that is permissible prior to unacceptably 

biasing results is not well-established. The general guideline in the missing data literature is 𝛾 

5% is considered trivial [12]. However, for clinical trials data Yeatts and Martin caution the 

range of 5-20% is of most concern because the rate is high enough to cause statistical bias, yet not 

high enough for the findings to be rejected solely on the basis of missingness [108].  

2.9 Analytical Approaches to Missing Data 

How to handle missing data is a subject that has been explored deeply in statistical 

literature; a taxonomy of analytical approaches to missing data is given below in Figure 2.4. 

Moreover, strategies may vary depending on whether the missing data are outcomes or 

covariates; the discussion henceforth centers on missing covariate data.  

In addition to CCA—which relies on MCAR—there are other more sophisticated 

techniques, all of which depend on the missing data mechanism. Alternatively, there exists 

multiple imputation (MI) techniques which allow for multiple datasets to be created with various 

values imputed for each missing value when the MAR mechanism for missing data is likely. Each 

dataset is analyzed separately, then the parameter estimates and confidence intervals from each 

separate analysis combined using Rubin’s rules [98]. MI techniques allow for the uncertainty 

surrounding the values of the missing data to be accounted for in the analysis.  
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Figure 2.4 Taxonomy of analytical approaches to missing data 

 

 

2.9.1 Adjustment Methods 

Missing data are a problem in research, as statistical software rely on complete data for 

all variables in a regression model. If one value for a variable is missing the entire observation 

is excluded from the analysis, which leads to problems of potential bias and reduced power due 

to smaller sample size. There are four main adjustment methods for dealing with missing 

values: complete case analysis, available case analysis, dummy variable adjustment, and 

missing data stratification.  
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The first adjustment method is known as complete case analysis (CCA), or listwise 

deletion. With this method the researcher removes all observations that have a missing value 

for any of the outcome or explanatory variables, for all intended analyses.  

The second adjustment method is known as available case analysis (ACA), or pairwise 

deletion—the default method of all statistical software. With this method any observation that 

has a missing outcome or explanatory variable is excluded from the analysis. This leads to 

problems of changing samples, as during model fitting as potential covariates are added and 

removed the sample size will change. Further, secondary analyses will also have different 

sample sizes—and essentially different samples—than the primary analysis. Clearly, such a 

strategy is problematic as will be discussed next. 

The first problem with CCA and ACA methods is that reduced statistical power is 

achieved due to a smaller sample size. While the magnitude of this problem varies based on the 

total sample size and the percent of missing data, it is still a problem. The second problem with 

CCA and ACA is that unless the data that are missing are missing completely at random 

(MCAR), the results will likely be biased [109]. If it is completely a chance occurrence the data 

are missing— or MCAR—removing the case will not bias the results using CCA [109]. 

However, CCA and ACA will result in a loss of precision of the estimate, yielding a wider 

confidence interval. Therefore, dealing with the missing data, rather than ignoring it, is 

warranted. 

The third adjustment method available is dummy variable adjustment. With this 

method, a constant value is imputed for all missing values—often the mean of the observed 

data—when a value is missing for a predictor in a regression model [110]. Then a missing data 

indicator is added, such that 1 indicates the datum was missing and 0 indicates the datum was 

observed. In the analysis both the predictor with the missing and imputed data along with the 
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indicator are regressed on the outcome of interest. This model has the prima facie advantage of 

using all available data. However, dummy variable adjustment has been shown to create 

severely biased parameter estimates—both in magnitude and direction and often in an 

unpredictable direction—even when data are MCAR or the percent of missing data is low (e.g. 

2.5%) [109, 111]. 

The fourth method available to the researcher is missing data stratification. This 

method is common in health services research when categorical data are missing, such as race 

or marital status. In this method an additional missing stratum is created. As was the case with 

the dummy variable adjustment method, missing data stratification has the prima facie 

advantage of using all available data. However, despite the fact that this results in severely 

biased parameter estimates [111], it is still of common use [112].   

2.9.2 Imputation Methods 

There are two classes of imputation techniques. The first class is deterministic 

imputation, which fills-in—or imputes—one value for every missing value. The second class of 

imputation techniques incorporates randomness into the imputed values, with two variants of this 

class. The first variant imputes one value for every missing value, which is known as single 

imputation. The second variant is known as multiple imputation (MI), which also imputes values, 

but does so a number of times—creating multiple datasets. These datasets are then analyzed using 

normal analysis techniques, whereby the point estimates and standard errors are combined using 

standard combining rules known as Rubin’s rules [98]. 

2.9.2.1 Deterministic Imputation 

There are at least three variants of deterministic imputation methods: last observation 

carried forward (LOCF), mean imputation, and regression imputation. All of the deterministic 
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imputation techniques create one complete dataset by filling in the missing values to allow all the 

data to be used.  

The first deterministic imputation method is known as last observation carried forward, 

which is used in repeated measures data. The researcher simply imputes the last observation’s 

value for all subsequent missing observations, until (and if) a subsequent observation is recorded. 

Unfortunately, in longitudinal data one must be concerned about the mechanism of missingness, 

as there is likely a systematic difference between those who complete a study and those who do 

not, likely making these data MAR or MNAR.  

The second deterministic imputation method is known as mean imputation. Here the 

researcher simply imputes the mean value, or median in the case of skewed data, value for all 

missing continuous data. This method has been rejected by Rubin as being unacceptable for 

research [113], and has been repeatedly shown in studies to introduce unacceptable bias and over-

precise confidence intervals [114] because it artificially reduces overall variance. 

The third, and final, deterministic imputation method is known as regression imputation. 

Here the researcher uses linear regression to predict missing values using the complete cases. For 

instance, if there are three variables in our dataset (𝑋ଵ, 𝑋ଶ, 𝑋ଷሻ with 𝑋ଷ containing missing values, 

one would regress 𝑋ଷ on 𝑋ଵ, 𝑋ଶ. This would yield 𝐸ሺ𝑋ଷሻ ൌ 𝛽   𝑋ଵ𝛽ଵ   𝑋ଶ𝛽ଶ   𝜀, allowing the 

researcher to impute the missing values of 𝑋ଷ.  

Deterministic imputation techniques allow for standard statistical techniques to be used, 

as if no data were missing. However, these methods suffer from various drawbacks—including 

biased estimates, and naively-small confidence intervals of those estimates, as the uncertainty 

surrounding the missing data is not accounted for in the analysis [98, 113, 115]. 
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2.9.2.2 Single Imputation 

Similar to the deterministic imputation methods, single imputation methods create a 

complete dataset by filling in the missing values with plausible values to allow all the data to be 

used—rather than discarded, as is the case with CCA. However, single imputation methods differ 

from the deterministic methods in that they introduce random variation into the imputed values. 

There are at least two main variants of single imputation: hot deck imputation, and regression 

imputation with a random component. 

The first single imputation method, known as hot deck imputation, was developed at the 

U.S. Census Bureau in the 1960s to address survey item non-response to the question of 

household income in the Current Population Survey [100]. Essentially, the hot deck method finds 

all the observations in the dataset that are similar to the observation with a missing variable—the 

hot deck—then randomly picks one of the observations from the group of similar fully-observed 

observations and imputes that value into the observation with missing data.  

To illustrate hot deck imputation, suppose income is missing for a Caucasian male, 33 

years of age, who worked full-time in a professional occupation, in the state of Florida. Hot deck 

imputation would find all males in the age group 25-34, who are full-time professionals in the 

Southeastern United States. Then, a random pick of one person from this group of fully-observed 

data would be made, and the income of this individual being imputed into the missing 

observation. 

Advantages of hot deck imputation include that is makes a logical assumption regarding 

imputed values, as one would expect a missing value to be very similar to a nearly identical 

person’s value. Another advantage is that hot deck imputation imputes realistic values for missing 

observations, since the imputed values are drawn from the fully-observed dataset.  
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A number of adaptations of hot deck imputation exist, including predictive mean 

matching (PMM) which uses linear regression to estimate the values of missing continuous data, 

then randomly picks one of the similar case’s values to use as the imputed value [116, 117]. 

Interestingly, the hot deck imputation method is still being used by the U.S. Census Bureau today 

[118, 119].  

Another single imputation method is known as regression imputation with a random 

component, also referred to as stochastic regression imputation. Here the method is nearly 

identical to the deterministic regression imputation technique, however a random component is 

introduced. Using the previous example with three variables in our dataset (𝑋ଵ, 𝑋ଶ, 𝑋ଷሻ where 

𝑋ଷ contains missing values, one would again regress 𝑋ଷ on 𝑋ଵ, 𝑋ଶ. This would yield 

𝐸ሺ𝑋ଷሻ ൌ 𝛽   𝑋ଵ𝛽ଵ   𝑋ଶ𝛽ଶ   𝜀. However, one would then introduce randomness by adding a 

random component through multiplying the error term 𝜀 (which is the root mean squared error of 

the regression equation) times a random draw from the standard normal distribution (~𝑁ሺ0,1ሻ). 

This regression equation with the random component added then allows the researcher to impute 

the missing values of 𝑋ଷ.  

Single imputation methods suffer from the same drawbacks as deterministic imputation 

techniques, such as biased estimates and small confidence intervals of those estimates, and the 

uncertainty surrounding the missing data is not accounted for in the analysis [98]. 

2.9.2.3 Multiple Imputation 

Multiple imputation (MI) techniques are similar to single imputation techniques, but they 

create multiple datasets which Rubin (1987, p.2) described as “ representing a distribution of 

possibilities” [98]. Multiple imputation is used when the MAR missing data mechanism is likely. 

Multiple imputation techniques are also believed to be an option when the data are MNAR, so 
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long as the missing data mechanism is correctly specified [97]. However, the probability of 

correctly modeling the missing data mechanism is unlikely to occur. 

The goal of MI is not to make up data, but rather to allow all the data that are present to 

be used in analyses to achieve valid statistical inference, not perfect point prediction [113]. In 

fact, even when the percentage of missing data is small and the data are MCAR—meaning the 

point estimates generated in an analysis will be unbiased—MI has the advantage of increased 

power, yielding tighter confidence intervals around those estimates. This was demonstrated in 

Bounthavong et al. (2015) which compared CCA to MI to study the outcome of dyslipidemia in 

the Veteran population using electronic medical record (EMR) data [120]. This study found that 

with 22% missingness the point estimates changed very little, but the confidence intervals were 

much narrower using MI (m  = 5), demonstrating the utility of MI even when data are believed to 

be MCAR. 

There are techniques for univariate and multivariate missingness. The techniques for 

univariate missingness are the same as the single imputation techniques described previously, 

varying only by creating m number of multiply-imputed datasets. However, prior to explaining 

specifics of various MI techniques, it is prudent to explain the general process of multiple 

imputation process. 

Essentially, MI fills in the values that are missing with plausible values, to allow all of 

the existing data to be used—rather than discarded, as is the case with CCA. Multiple imputation 

is composed of three phases [95, 98], see Figure 2.5 below. The first phase fills in the missing 

values for each variable through one of several MI techniques, repeating this process a certain 

number of times (m times). This first phase is where all MI techniques vary. The second phase is 

where each of the m multiply-imputed datasets are analyzed separately using normal regression 

analysis techniques, yielding m number of vectors of parameter estimates and standard errors. 
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The third, and final, phase is where the m vectors of parameter estimates and standard errors are 

pooled together using a technique commonly known as Rubin’s rules [98], which essentially 

averages the repeated parameter estimates and standard errors from the m datasets to give one 

vector of parameter estimates and another of standard errors. 

 

Figure 2.5 Conceptual diagram of multiple imputation 

 

 

There are two common methods of MI for multivariate missing data, multivariate 

imputation through chained equations (MICE) and Markov-Chain Monte Carlo (MCMC) 

multiple imputation. These two MI methods vary based on their statistical assumptions and 

execution, which are discussed below. 

The first MI method is Multivariate Imputation through Chained Equations (MICE), 

which also is known as Fully-Conditional Specification (FCS) in the literature [121]. MICE is a 

special type of MI whereby various regression-based techniques—typically generalized linear 

models, such as linear or logistic regression—can be used for each type of missing variable in the 
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data, using the observed variance and covariance matrices. In other words, a logistic regression 

model can be used to help predict missing binary values; an ordinary least-squares (linear) 

regression model can be used to help predict missing continuous variables. The MICE method 

also has further flexibility through allowing discriminant function methods to predict missing 

binary or nominal data [12], and predictive mean matching (PMM) for continuous data [122]. 

One model is created for each variable with missing data. Each of these models are used to to 

impute the missing values, with MICE iterating through m times to create m multiply-imputed 

datasets, which are then combined in the same manner as all other MI models, using Rubin’s 

rules.  

The amount of missing data, 𝛾, is of concern with any missing data model. The MICE 

method has demonstrated good results across a range of missingness, from 𝛾 = 5 to 90%. One 

study by Janssen et al. (2010) compared MICE to other simpler methods—namely CCA and 

dropping of predictors with missing data [123]. The study examined a wide-range of missingness 

(from 𝛾 = 10 to 90%) under the MAR missing data mechanism for three predictors of deep 

venous thrombosis (DVT), using 500 simulated datasets. For the MICE method, m=10 multiply-

imputed datasets were created. The MICE method worked well at all percentages of missingness, 

yielding less bias in the regression coefficients for these predictors and better coverage of the 

95% confidence interval of the full dataset regression coefficient. 

Another theory-building simulation study by Knol et al. (2010) compared MICE to CCA 

and the missing indicator method (MIM) for dealing with missing observations for one predictor 

of major depressive disorder (income) using data from a prior clinical trial [109]. The study 

examined five levels of missingness (𝛾 = 2.5%, 5%, 10%, 20%, and 30%) under the MCAR and 

MAR missing data mechanisms, using 1,000 simulated datasets. For the MICE method, m=5 

multiply-imputed datasets were created. This study found that both CCA and MIM resulted in 
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biased results, with the amount of bias increasing with the amount of missing data. The authors 

recommended that MIM and CCA never be used, even with small percentages of missing data. 

Unfortunately, MICE does not always converge to the correct posterior distribution. 

There is at least one example from the literature where MICE failed to converge in a study that 

used EHR data, albeit there was 70% missingness [124]. Nonetheless, MICE has advantages in 

CER studies due to the wide range in the types of variables for which one might control in a 

regression analysis, allowing separate imputation models to be used for each variable with 

missing data. Typically, continuous, ordinal, categorical, and binary variables will all be used in 

the same analysis as covariates—demonstrating the appeal of using MICE. 

The second MI method is Markov Chain Monte Carlo MI (MCMC), which is a method of 

multivariate normal imputation (MVNI) that assumes multivariate normality of all continuous 

variables [12]. In contrast to the MICE method, which specifies a conditional distribution to 

predict missing values for each missing data type, the MCMC method specifies a single joint 

distribution for all variables with continuous data. For continuous variables that are skewed, 

transformation prior to using the MCMC method can yield good results [125]. 

2.9.3 Likelihood Methods 

Likelihood methods rely on maximum likelihood estimation (MLE) to estimate 

parameters for predictors that predict an outcome. Maximum likelihood estimation is similar to 

MI in that a guess is made at the missing values, however it is done in a more implicit—rather 

than explicit—manner [126]. The manner in which this is accomplished is through finding the 

parameter estimates that would maximize the probability of observing what has been observed, 

known as the maximum likelihood method [115]. Maximum likelihood is also the method by 

which generalized linear models are solved, whereby the difference between the observed and 

predicted data is minimized. For one familiar with calculus, this is akin to finding the maxima of 
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a function by conducting a second derivative test; in this case, the likelihood function is 

maximized to find the point of highest probability. Upon completion of MLE, parameter 

estimates will have been made, along with standard error estimates, without the need of creating 

multiple datasets.  

Maximum likelihood estimation is used when the MAR missing data mechanism is 

likely. However, MLE methods are also believed to be an option when the data are MNAR, so 

long as the missing data mechanism is correctly specified [115]. Unfortunately, MLE methods 

rely on the assumption of multivariate normality—meaning that all continuous variables are 

normally distributed and can be defined as a linear function of all the other variables, with the 

error terms having equal variance (homoscedastic) and a mean of zero—a very strong assumption 

[104]. 

2.9.3.1 Maximum Likelihood Estimation with EM Algorithm 

 The first type of maximum likelihood method is maximum likelihood estimation using 

the Estimation-Maximization (EM) algorithm [101, 127]. This method relies on the MAR or 

MCAR assumption [127] and produces unbiased parameter estimates, but has a drawback in that 

it does not provide estimates of the standard error for each parameter estimate [104, 115].  

There are two steps involved with this method: expectation and maximization [127]. The 

first step, Expectation, imputes values for each missing value in the dataset. Next a regression 

equation is constructed using the other variables to predict the missing value. Values are then 

imputed into the dataset for all variables with missing data (𝑌௦௦ሻ, creating the initial full dataset. 

The second step, Maximization, involves recalculating the means, variances, and 

covariances using the dataset from the prior step. When calculating the variances and covariances 

the residual, or error, term used in the regression equation would be incorporated into these 

calculations. For example, if Var1 and Var2 were used to predict Var3, meaning 𝐸ሺ𝑉𝑎𝑟ଷሻ ൌ
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𝑉𝑎𝑟ଵ𝛽ଵ   𝑉𝑎𝑟ଵ𝛽ଵ   𝜖, then 𝜖 would help inform the variance and covariance matrix for all Var3 

[104]. 

2.9.3.2 Full Information Maximum Likelihood 

The second type of maximum likelihood method is Full Information Maximum 

Likelihood estimation (FIML), also known as Direct Maximum Likelihood. One downside to 

FIML is that it converges more slowly than with MLE using the EM algorithm [127]. However, it 

is often preferred over MLE using the EM algorithm because it gives accurate estimates of the 

standard error estimates [104]. 

2.9.4 Methods Available in Common Statistical Software 

 Surveying the statistical software for analytical approaches available is predicated on 

knowing which statistical software packages are used in health services research—unless one’s 

goal is an exhaustive review of all statistical software. One comprehensive review of statistical 

software conducted in 1997 identified 220 statistical programs—of which 39 were general 

statistical (e.g. SAS, SPSS), 25 were for mathematical statistics (e.g. Matlab), 14 for 

econometrics, and 142 were specialized statistical software for multivariate analyses, specialized 

modeling, or power and sample size calculation [128]. Keeping to an approach which favors 

brevity, the literature was consulted to answer this question. Those software with broad 

representation in health services research journals seems to be SAS (SAS Institute, Inc.; Cary, 

North Carolina), SPSS (IBM Corp.; Armonk, NY), Stata (StataCorp LLC; College Station, TX), 

and infrequently RStudio (RStudio Inc.; Boston, MA).  

 One study in 2014 examined the statistical methods and software used by all studies that 

used the Canadian community health survey data, published from 2002-2012 (n=663) [129]. This 

study found the most common statistical software to be SAS (30.8%), followed by Stata (13.1%), 

SPSS (12.8%), SUDAAN (6.5%), and all others (2.6%). Another study published in 2011 
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examined statistical software used in health services research published in the United States from 

2007-2009 (n=877) [130]. This study found the most common statistical software to be Stata 

(46.0%), followed by SAS (42.6%), SUDAAN (6.2%), and SPSS (5.8%). However, only 61% of 

these articles mentioned the statistical software used. Of note, many of the articles mentioned 

more than one statistical application being used—explaining why the percentages exceed 100%. 

As one can see, the three most common statistical packages appear to be SAS, SPSS, Stata, and 

SUDAAN. However, SUDAAN is typically used for more complex research designs—such as 

correlated, clustered, or stratified designs [131]. The next step is to clearly define the approaches 

available in these software packages to handling missing data—as they will be the ones most 

handily available to health services researchers. 

 A review of the documentation for the latest versions of SAS (v. 9.4; SAS/STAT 14.3; 

released December 2017), SPSS (v. 25; released August 2017), and Stata (v. 15; released June 

2017) was conducted. The results of this review are included below in Table 3.  
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Table 3 Missing data methods available in SAS, SPSS, and Stata 

  
SAS SPSS Stata 

Adjustment Methods    

 Listwise Deletion (Complete Case Analysis) Yes Yes Yes 

 Pairwise Deletion (Available Case Analysis) Yes Yes Yes 

 
Imputation Methods 

   

 Default # datasets 25 5 10 

 
Monotonic Imputation 

   

 Regression - Linear, Logistic, Ordered Logistic Yes Yes Yes 

 Predictive Mean Matching Yes Yes Yes 

 Discriminant Function (Nominal data) Yes No No 

 Propensity Score (Continuous data) Yes No No 

 Pattern-Mixture Models Yes No No 

 
Non-Monotonic Imputation 

   

 Markov-Chain Monte Carlo - Full dataset Yes No Yes 

Markov-Chain Monte Carlo - Monotone Yes No No 

Multivariate Imputation through Chained  
Equations(MICE) 

Yes Yes Yes 

 Pattern-Mixture Models Yes No No 

 
Likelihood Methods 

   

 Expectation Maximization (EM) algorithm Yes Yes Yes 

 Full Information Maximum Likelihood (FIML) Yes No Yes 

 

 The default missing data method for a statistical analysis in all three of these programs is 

listwise deletion (or complete case analysis). All three programs also offer maximum likelihood 

estimation using the common expectation-maximization algorithm. All the programs also offer 

multiple imputation (MI), with varying levels of features—which are discussed next.  

SAS offers the most methods for addressing both monotonic and non-monotonic 

missingness patterns, offering all the major MI methods. While Stata allows for MCMC MI, it 

only does so as a full imputation of the dataset for every missing variable. SAS, however, allows 

the researcher to use MCMC MI to move the dataset from a non-monotonic to monotonic missing 
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data pattern—imputing data for variables until a monotonic missing data pattern is reached. 

Neither SPSS nor Stata allow the researcher to use Discriminant Function nor Propensity Score 

methods for MI for monotonic missingness. However, it is worth mentioning these two methods 

are possible through some statistical programming as SPSS and Stata have built-in methods for 

discriminant function analysis and propensity score methods. Finally, the default number of 

datasets constructed with multiple imputation, m, varies greatly by software program—from 5 in 

SPSS, to 10 in Stata, and 25 in SAS (which was changed from 5 with SAS/STAT 14.2). 

This section has shown for non-monotonic missingness there are two major options for the 

researcher who decides not to ignore the missing data: MICE or MLE. With monotonic 

missingness, such as when only one predictor is missing, a few more options abound: monotonic 

regression, predictive mean matching, or maximum likelihood estimation—however monotonic 

missingness is not the usual scenario. 

2.10 Recapitulation 

 In December 2015, PCORI convened a workgroup to discuss missing data and data 

quality for research using electronic medical records and claims data—identifying problems, 

highlighting current solutions to some of those problems, and suggesting areas for future research 

[132]. One identified need was for research to understand the effects of various amounts of 

missing data, whether the results would be significantly altered by the amount of missing data. 

Another need was to understand which covariates experience missingness, what the mechanism 

for missingness is (e.g. MAR), and whether simulations could be used to learn more about these 

covariates and the impact of missing data. Finally, the PCORI workgroup asserted one of the next 

steps would be to bring researchers who have experienced success in handling missing data in 

EMR studies with researchers who are new to EMR studies to help disseminate this knowledge.  



 

 

3 METHODS 

3.1 Specific Aims and Hypotheses 

This study has been designed to examine the effects of missing data in studies that use 

electronic health record data capturing patient stays in the intensive care unit for ventilator-

dependent respiratory failure (VDRF) to accomplish the following: 

 

1) Ascertain the degree to which results may be biased at various percentages of 

missing data 

2) Examine methods of dealing with missing data that are commonly available in 

statistical software packages used by Health Services Researchers 

 

Therefore, the aims of this study are as follows: 

 

AIM 1 

 To examine the impact of missing SOFA score data on ICU clinical outcomes studies 

among patients with ventilator-dependent respiratory failure at various percentages of 

missingness, along with various statistical techniques for handling missing data at the composite 

score level. 

 

Hypothesis 1: All methods for handling missing data will result in more accurate 

parameter estimates for all outcomes studied than simple pairwise deletion. 
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Hypothesis 2: Multiple imputation (MI) methods will result in the most accurate 

parameter estimates, when compared with the three other methods for dealing with 

missing data. 

 

 

AIM 2 

 To examine the impact of missing SOFA score data on ICU clinical outcomes studies 

among patients with ventilator-dependent respiratory failure at various percentages of 

missingness, along with various statistical techniques for handling missing data at the component 

item level. 

 

Hypothesis 1: All methods for handling missing data will result in more accurate 

parameter estimates for all outcomes studied than simple pairwise deletion. 

 

Hypothesis 2: Multiple imputation (MI) methods will result in the most accurate 

parameter estimates, when compared with the three other methods for dealing with 

missing data. 

 

3.2 Data Source 

The data used in this study were provided by the Medical University of South Carolina’s 

Clinical Data Warehouse (CDW), which contains electronic medical record data. These data 

include patient demographics, procedures, diagnoses, encounters, laboratory results, as well as 

medications ordered or administered during an inpatient admission [133]. The Medical University 

of South Carolina’s CDW provides access to MUSC investigators with Institutional Review 
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Board approved studies for the purposes of retrospective research and patient recruitment [134]. 

The MUSC CDW has records collected since 1993 on 2.1 million patients, comprising 1.5 

million inpatient admissions, 26.6 million outpatient encounters, 228 million laboratory results, 

and 5.5 million procedures as of October 2017 [135, 136]. These data were made available 

through funds from the South Carolina Clinical & Translational Research (SCTR) Institute, with 

an academic home at the Medical University of South Carolina, and a Duke Endowment 

Foundation Healthcare Division grant. These deidentified data were examined by the Institutional 

Review Board at the Medical University of South Carolina and deemed as non-human research.  

The data used for this study contains demographics (age, sex, race), height, weight, 

primary payer, length of stay in the ICU, components of SOFA score upon admission to the ICU, 

duration of mechanical ventilation, diagnosis codes, procedure codes, discharge disposition, and 

total charges. Other pertinent clinical data were also retrieved, including Richmond Agitation-

Sedation Scale (RASS) scores, Confusion Assessment Method for the ICU (CAM-ICU) scores, 

and results of Spontaneous Breathing Trials (SBT).  

3.3 Study Population 

The study population is composed of adults, aged 18 years or older on the date of 

admission, who were admitted to one of the ICUs at the Medical University of South Carolina 

from January 1, 2015 through October 31, 2017 and placed on a ventilator due to respiratory 

failure. Respiratory failure was defined as being indicated with an ICD-9 procedure code of 

96.70, 96.71, 96.72; or an ICD-10 procedure code of 5A1935Z, 5A1945Z, 5A1955Z. The 

descriptions of these ICD procedure codes are listed below in Table 4. 
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Table 4 ICD-9 and ICD-10 procedure codes for study inclusion 

ICD 
Version 

Procedure  
Code 

Description 

9 96.70 Continuous mechanical ventilation of an unspecified duration 

 96.71 Continuous mechanical ventilation of ≥ 96 consecutive hours 

 96.72 Continuous mechanical ventilation of < 96 consecutive hours 

10 5A1935Z Respiratory ventilation, < 24 consecutive hours 

 5A1945Z Respiratory ventilation, 24-96 consecutive hours 

 5A1955Z Respiratory ventilation, > 96 consecutive hours 

 

3.4 Statistical Software and Data Management 

The data used for this dissertation was provided by the MUSC CDW team in comma 

separated value (CSV) format. The data were then imported into SAS software format, using 

SAS® software, version 9.4 for Windows (SAS Institute Inc., Cary, NC, USA). All simulations 

and analyses were performed using SAS/STAT® version 14.3 for the Microsoft Windows 

operating system. 

3.5 Methods for Multiple Item Instruments 

Instruments that have multiple component items present a decision point for the 

researcher, as one can handle these at the item (or component) level or the composite level. For 

instance, if a patient has values as shown below (Table 5), 4 out of 6 of the item level scores can 

be calculated.  
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Table 5 Example calculations of the SOFA score 

System Value Item Score 

Respiration 
        PaO2/FiO2, mmHg 280 2 

Coagulation 
        Platelets x 103/mm3 130 1 

Hepatic 
        Bilirubin, mg/dl  . . 

Cardiovascular 
        MAP, mm Hg 

68 2 

Central Nervous System 
        Glasgow Coma Scale  

. . 

Renal 
        Creatinine, mg/dl  

1.1 0 

SOFA Score  ? 

 

Unfortunately, the SOFA score itself—a summation of the 6 component scores—cannot 

be calculated in the case of one or more missing component scores. In the case of one or more 

missing component scores, the most one can say is that the SOFA score is at a minimum the sum 

of the observed component scores (i.e. 2 + 1 + 2 + 0 = 5), and at most the observed component 

scores plus the maximum scores available for the missing component items (i.e. 2 + 1 + 2 + 0 + 

4 + 4 = 14). To further highlight the decisions available to the researcher, single imputation will 

be used for illustration. 

In the case of single imputation for the above hypothetical scenario, the researcher can do 

single imputation for each component item missing, or for the composite SOFA score. However, 

this is complicated in the approach for the component items, as two options present themselves. 

The first option is to impute the missing values themselves (i.e. bilirubin level in mg/dl, and 

Glasgow Coma Scale score), then calculate the component scores—allowing the composite 

SOFA score to be calculated. The second option is to impute the component SOFA score—
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allowing the composite SOFA score to then be calculated. The importance of this decision has 

been shown in the literature. 

At least several studies have examined handling multiple item instruments at the composite 

versus component level. One study examined the Pain Coping Inventory, a 12-item instrument, 

using multiple imputation at both the composite and component levels [114]. This study found 

that when the percentage of missing data exceeded 25%, multiple imputation at the component 

level outperformed both mean imputation and multiple imputation at the composite level. 

 

3.6 Aim 1 – Univariate Missingness (SOFA Score, Composite Level) 

Aim 1 of this dissertation is to examine the impact of missing SOFA score data on ICU 

clinical outcomes studies among patients with ventilator-dependent respiratory failure at various 

percentages of missingness, along with various statistical techniques for handling missing data at 

the composite score level. The effects of various methods for handling missing data, described in 

subsequent sections, will be considered for their impact on the significance of three outcomes—

both magnitude and direction—for three common outcomes that use SOFA score data as a risk 

adjuster. Essentially, using a dataset with complete SOFA scores, various percentages of 

missingness will be imposed so that we can compare the parameter estimates from various 

missing data techniques to those of the estimates from the full dataset.   

3.7 Aim 2 – Multivariate Missingness (SOFA Score, Item Level) 

Aim 2 of this dissertation is to examine the impact of missing SOFA score data on ICU 

clinical outcomes studies among patients with ventilator-dependent respiratory failure at various 

percentages of missingness, along with various statistical techniques for handling missing data at 

the component item level. The effects of various methods for handling missing data, described in 

subsequent sections, will be considered for their impact on the significance of three outcomes—
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both magnitude and direction—for three common outcomes that use SOFA score data as a risk 

adjuster. Essentially, component SOFA score items will be deleted at various percentages of 

missingness to compare the parameter estimates from various missing data techniques to those of 

the estimates from the full dataset. 

3.8 Simulation Process & Outcomes Analysis 

This study is designed as a simulation study to compare four statistical missing data 

methods to a known truth—the full dataset, to assess the performance of each. To aid in this 

endeavor, the published guide on conducting simulation studies in medical statistics by Burton et 

al. (2006) served as a guide for the simulation methods [137].  

3.8.1 Simulation Algorithm 

The simulation is represented in Figure 3.1 below. At the start of the simulation a 

complete dataset is provided; all component values of the SOFA score, composite SOFA score, 

potential covariates, and outcomes are fully-observed.  

The two simulation parameters are specified. The first simulation parameter, S, denotes 

the number of simulation runs. Typically, S will be 1,000 runs—each looping through the 

simulation steps. The second simulation parameter, γ, denotes the percentage of observations 

within the dataset that will contain one or more missing values.  

Once the simulation parameters have been specified and the fully-observed dataset 

chosen, the simulation loop proceeds as follows. From the complete dataset missing data will be 

generated by choosing γ percent of the observations to have a missing SOFA score value, and 

these values set to missing in the dataset. Then for each of the four missing data methods chosen, 

the missing data method will be applied to the dataset. Then it will be analyzed for the three 

outcomes chosen. For each analysis key results will be output to a table for later comparison. This 

simulation loop will run from the beginning, until S simulation loops have been completed. 
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Figure 3.1 Simulation algorithm 

 

  

3.8.2 Simulation Parameters 

There are two simulation parameters—S and γ. The first simulation parameter, S (not 

shown in diagram), denotes the number of simulation runs. Typically, S will be 1,000 runs—each 

looping through the simulation steps shown above in Figure 3.1. This creates S number of 

independent datasets from which the simulation can proceed. 

The second simulation parameter, γ, denotes the percentage of observations within the 

dataset that will contain one or more missing values. For this study, a range of percent missing 

data will be studied to help understand the behavior of these data at various percentages of 

missingness. Studying a broad range of missing data percentages will further help Health Services 

Researchers to better understand how bias varies in these data based on the percent of missing 

data. Further, recommendations within the literature on the tolerable percentage of missing data 
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varies. Two guidelines state that 5% missingness is where one needs to worry about bias [12, 

138], whereas another states 10% [139]. These guidelines are sufficiently broad, and varying, so 

further consideration in different types of data is warranted. To illustrate, while 5% missingness 

of the SOFA score may be reasonable within a large ICU dataset studying mortality, 5% 

missingness of race is likely excessive in disparities studies. Therefore, the tolerable percent 

missing would vary based on the missing predictor’s strength of association with the outcome as 

well as the research question being asked.  

3.8.2.1 Missing Data Mechanism & Generation of Missing Data 

Data can rarely be considered to be missing completely at random (MCAR) due to the 

strict nature of these data—meaning it is akin to taking a random sample of the full data, 

dependent only on a stochastic process. Whereas one can never be fully certain whether data are 

missing at random (MAR) or missing not at random (MNAR). Even if one can model with good 

accuracy the missing data mechanism under MAR, there exists the possibility that data may also 

be missing due to a latent process—making those data MNAR. This was examined by Geert 

Molenberghs et al. (2008), when they demonstrated that any MAR missing data mechanism 

model has a corresponding MNAR model with equal fit, rendering empirical distinction between 

the two missing data mechanisms impossible [140]. Therefore, generation of missing data shall 

be conducted under the MAR and MNAR missing data mechanisms.  

The MAR mechanism will be modeled using demographic missingness, similar to what 

has been used in other studies [102]. Using the original ICU dataset, which includes both missing 

and fully-observed data, we will model how demographic variables contribute toward 

missingness. If the existing data’s missing data process were fully-MAR, then this would mimic 

the MAR missing data process. The method of accomplishing this is as follows. 
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If a subject’s ICU record contains a missing SOFA score element, the record will be 

denoted as missing (SOFAmiss = 1), otherwise if all SOFA score elements are present then this 

will be denoted as (SOFAmiss = 0). A multivariable logistic regression model will then be fit to 

ascertain the estimated probability that a subject’s SOFA score is missing, given their observed 

demographic and clinical factors—such as age, sex, race, and primary payor. Using the notation 

of Hosmer, Lemeshow, and Sturdivant (2013) [141], if there are p independent predictor 

variables, the vector of predictors is represented as 𝑥ᇱ ൌ ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥ሻ and the conditional 

probability that the SOFA score is missing is denoted as follows: 

Prሺ𝑆𝑂𝐹𝐴௦௦ ൌ 1|𝑥′ሻ ൌ 𝜋ሺ𝑥′ሻ 

 From the multiple logistic regression model, we obtain parameter estimates for each of 

the p predictors, yielding the logit transformation, 𝑔ሺ𝑥ሻ, shown below: 

𝑔ሺ𝑥ᇱሻ ൌ ln ቈ
𝜋ሺ𝑥ᇱሻ

1 െ 𝜋ሺ𝑥ᇱሻ
 ൌ 𝛽  𝛽ଵ𝑥ଵ  𝛽ଶ𝑥ଶ  ⋯  𝛽𝑥 

 Finally, assigning the empirically-derived probability of having a missing SOFA score to 

each record will be defined as follows: 

Prሺ𝑆𝑂𝐹𝐴௦௦ሻ ൌ 𝜋ሺ𝑥ᇱሻ ൌ
𝑒ሺ௫ᇲሻ

1  𝑒ሺ௫ᇲሻ
 

These values will not change across simulation iterations. However, for each run through 

the simulation (depicted in Figure 3.1), random variation will be introduced to these probabilities. 

To accomplish this, a random component R will be added to Prሺ𝑆𝑂𝐹𝐴௦௦ሻ. This random 

component will consist of a random draw from the standard uniform distribution, where 𝑅 ∈

ሾ0,1ሿ, by using the SAS function RAND(‘UNIFORM’,0,1). The fully-observed dataset will then 

be sorted in descending order by its probability of missing, with the first γ% of observations 

having their SOFA score (or 1 or more SOFA score components) set to missing.   



 

55 

 

The MNAR mechanism will be modeled using three basic strategies. The first strategy 

will be to impose missingness more commonly in the lower SOFA score categories, in the left 

side of the observed SOFA distribution (hereinafter referred to as MNAR Left). This means that 

SOFA scores closer to zero would have a higher likelihood of being deleted. This strategy aligns 

well with the SOFA score creators’ guidelines to impute a zero when the score (or one of the sub-

scores) is missing.  

The second strategy will impose missingness more in the median SOFA score categories, 

in the center of the observed SOFA distribution (hereinafter referred to as MNAR Mid). Finally, 

the third strategy will be to impose missingness in the higher SOFA score categories, in the right 

side of the observed SOFA distribution (hereinafter referred to as MNAR Right). These will be 

accomplished using the methods outlined by Jaap Brand et al. (1993) using SAS/STAT software 

[142], yielding γ% of the fully-observed dataset having missing SOFA score observations. 

3.8.2.2 Assignment of Missing Data Patterns 

The assignment of missingness patterns proceeded as follows. First for each observation 

within the fully-observed dataset, a missing data pattern was assigned to each observation 

according to the frequencies with which these patterns occurred within the dataset extracted from 

electronic health record. Then, observations were chosen to be selected to have missing data 

according to the respective missing data mechanism and percentage of missingness as prescribed 

by the parameters within the simulation. If an observation was selected to be missing, the missing 

data pattern that was previously assigned was then applied. 

3.8.2.3 Simulation Runs & Percent Missingness 

As mentioned previously, two simulation parameters are specified: the number of 

simulation runs (S), and percentage of observations within the dataset that will contain one or 

more missing values (γ). It is common within simulation studies that the number of simulation 



 

56 

 

runs be set to a large number ranging from 200-1,000 [142]. Of the simulation studies examined 

for this research, 1,000 simulation runs seemed to be the most common [102, 143-145], followed 

by 500 simulation runs [114, 142]. Therefore, in this study the number of simulation runs, S, will 

be set to 1,000—each looping through the simulation steps shown in Figure 3.1.  

The second simulation parameter that will be specified, γ, denotes the percentage of 

observations within the dataset that will contain one or more missing values. In this study, any 

observation that has one or more items of the SOFA score missing contributes toward the number 

of missing observations.  

The most common guideline has asserted that >5% missingness is the level where a 

researcher needs to worry about biasing the results of a study [12]. While this particular 

percentage of missingness merits further investigation in these data, it would be wise to go much 

higher than this amount. Further, sufficiently small steps to aid in decision making should be 

taken between the percentage of missingness levels. Therefore, in this research project 

percentages of missingness from 0% to 40% at 10% increments were investigated; we 

investigated γ=0%, 10%, 20%, 30%, and 40% missingness. The baseline of 0% missingness—the 

fully-observed dataset—was used as the referent group from which truth was derived, and all 

comparisons in this study were be made.  

3.8.3 Missing Data Methods 

In this study we investigated four methods for handling missing data. These methods 

include the most common method used in health services research, pairwise deletion (complete 

case analysis), two deterministic imputation techniques (median imputation and imputation per 

SOFA guidelines), and multiple imputation. Maximum likelihood estimation was not be 

considered due to the assumption of multivariate normality, and the limitation of only being able 

to model continuous outcomes using standard software—such as SAS, SPSS, and Stata; one 



 

57 

 

would have to use specialized software such as Mplus for such applications of generalized linear 

models [146]. As all three outcomes compared in this analysis required generalized linear models 

(see Section 3.8.4), MLE was not considered for comparison in this study. 

Therefore, the effects of these four methods for handling missing data were considered 

for their impact on the significance of three outcomes—both magnitude and direction—that use 

SOFA score data as a risk adjuster. These methods will be operationalized at the composite 

SOFA score level (in support of Aim 1), and at the component SOFA score level (in support of 

Aim 2). These missing data methods will be briefly explored below.  

3.8.3.1 Method 1: Complete Case Analysis 

The first method for handling missing data that that was explored in this study is 

complete case analysis (CCA), whereby only those cases for which data exists on all outcomes 

and potential explanatory variables are retained in the analysis. The second method is available 

case analysis (ACA), also known as pairwise deletion, which is the default method of most 

statistical software. With this method any observation that has a missing outcome or explanatory 

variable is excluded from the analysis. This leads to problems of changing samples, as during 

model fitting as potential covariates are added and removed the sample size will change. Further, 

secondary analyses will also have different sample sizes—and essentially different samples—than 

the primary analysis. Clearly, such a strategy is problematic as will be discussed next. 

The first problem with CCA and ACA methods is that reduced statistical power is 

achieved due to a smaller sample size. While the magnitude of this problem varies based on the 

total sample size and the percent of missing data, it is still a problem. The second problem with 

CCA and ACA is that unless the data that are missing are missing completely at random 

(MCAR), the results will likely be biased [109]. If it is completely a chance occurrence the data 

are missing— or MCAR—removing the case will not bias the results using CCA [109]. However, 
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CCA and ACA will result in a loss of precision in the confidence interval. Therefore, dealing with 

the missing data, rather than ignoring it, is warranted. However, in order show the magnitude of 

bias at varying percentages of missing data, as well as mechanisms of missingness, it is 

imperative that we explore this as a missing data method herein. 

For this study any observation where the composite SOFA score is missing (in the case of 

Aim 1), or any one component of the SOFA score is missing (in the case of Aim 2) will be 

deleted. Then three outcomes will be analyzed, as described in Section 3.8.4. 

3.8.3.2 Method 2: Median Imputation 

The second method for handling missing data that was explored in this study is median 

imputation. Median imputation is a deterministic imputation technique that creates one complete 

dataset by filling in the missing values to allow all the data to be used. Essentially, the researcher 

simply imputes the median value of the missing item and proceeds with analysis as if no data 

were previously missing.  

Granted, this method has been rejected by Rubin as being unacceptable for research 

[113], and has been repeatedly shown in studies to introduce unacceptable bias and over-precise 

confidence intervals [114]. However, it is important that this method be demonstrated within this 

current research for the same reason that pairwise deletion will be used—this method is still being 

used in scientific studies.  

For this study the median composite SOFA score (in the case of Aim 1), or the median 

component SOFA score (in the case of Aim 2) will be imputed in cases of missing values. Then 

three outcomes will be analyzed, as described in Section 3.8.4. 

3.8.3.3 Method 3: Imputation per SOFA Guidelines (Zero) 

The third method for handling missing data that was explored in this study was to impute 

a zero for each missing composite SOFA score (in the case of Aim 1), or a zero for each 
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component item missing (in the case of Aim 2). This methodology of assuming the score is zero, 

meaning there is no organ dysfunction, is in line with the SOFA score guidelines, outlined in the 

2016 Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) consensus 

paper. According to the Sepsis-3 consensus paper, the baseline SOFA score—which is calculated 

upon admission to a critical care unit—should be assumed to be zero, unless the patient has a 

known organ dysfunction [65]. In the quantitative study which informed the Sepsis-3 task force, 

single imputation of a normal value (zero) was used [147], with the assertion made that this usage 

“mirrors how clinicians would use the score at the bedside” (p. 764). While this observation has 

merit, it is worth noting that a treating clinician would have access to information—the full 

clinical picture—to which a later researcher would not have access.  

Similar to median imputation, imputing a zero for data that are missing is a deterministic 

imputation technique that creates one complete dataset by filling in the missing values with 

zeroes to allow all the data to be used. For this missing data method, any observation where the 

composite SOFA score is missing (in the case of Aim 1), a zero will be imputed.  For cases where 

any component of the SOFA score is missing (in the case of Aim 2), a zero will be imputed for 

missing component scores. Then three outcomes will be analyzed, as described in Section 3.8.4. 

3.8.3.4 Method 4: Multiple Imputation 

The fourth method for handling missing data that was explored in this study is multiple 

imputation. As discussed in-depth in Chapter 2, multiple imputation creates multiple datasets—

imputing values with a random component added, which represent the variation that we might 

expect when sampling from a population. These datasets are then analyzed using normal analysis 

techniques. Finally, the point estimates and standard errors are combined using standard combing 

rules. Multiple imputation is used when the MCAR or MAR missing data mechanisms are likely, 

but have been used with MNAR. 
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The goal of MI is not to make up data, but rather to allow all the data that are present to 

be used in analyses to achieve valid statistic inference, not perfect point prediction [113]. 

Essentially, MI fills in the values that are missing with plausible values, to allow all of the 

existing data to be used—rather than discarded.  

There are two common methods of MI for multivariate missing data that could be 

considered for this study, multivariate imputation through chained equations (MICE) and 

Markov-Chain Monte Carlo (MCMC) multiple imputation. Multivariate imputation through 

chained equations is a type of MI whereby various regression-based techniques—typically 

generalized linear models, such as linear or logistic regression—can be used for each type of 

missing variable in the data. In other words, a logistic regression model can be used to help 

predict missing binary values; an ordinary least-squares (linear) regression model can be used to 

help predict missing continuous variables.  

The second type of MI is Markov Chain Monte Carlo MI (MCMC), which assumes 

multivariate normality of all continuous variables [12]. The MCMC method specifies a single 

joint distribution for all variables with continuous data, which would be difficult to achieve. 

Particularly in attempting to impute missing SOFA scores, as the components thereof are count 

data rather than continuous, which would be required to specify a single joint distribution.  

Multivariate imputation through chained equations has advantages in health services 

research studies due to the wide range in the types of variables for which we might control in a 

regression analysis, allowing separate imputation models to be used for each variable with 

missing data. Typically, continuous, ordinal, categorical, and binary variables will all be used in 

the same analysis as covariates—demonstrating the appeal of using MICE. For the foregoing 

reasons, MICE will be the MI method explored herein. 
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The number of imputations, denoted by m, is also of concern. The recommendation by 

Rubin in 1987 was that between 2 and 10 imputations are sufficient [98], which he reemphasized 

a decade later [113] asserting m = 3 or 5 is often sufficient.  

The ground for Rubin’s assertion comes from his earlier work, which states that the 

relative efficiency (in standard deviations) of m imputations and γ percent missingness, compared 

to m=∞ is estimated as 
ଵ

ටଵାሺఊ
ൗ ሻ

 [98]. As an example, with 30% missing data, and 25 imputations 

performed (m=25), the relative efficiency is 99.4%. This is a small increase over simply 

performing 10 imputations (m=10) at γ=30%, which has a relative efficiency of 98.5%. 

Nonetheless, some of the more recent literature have demonstrated imputation variability with 

smaller numbers of imputations, which coupled with the modest increase in processing time for 

doing larger numbers of imputations make the case for doing more imputations than previously 

recommended [148]. This thinking has been adopted by major statistical software packages, such 

as SAS—which now defaults to m=25. For the MICE method, the default number of multiply-

imputed datasets in SAS (m=25) will be used. Finally, the m number of datasets—specifically the 

m number of parameter estimate vectors and standard error vectors—will be combined using 

Rubin’s rules [98].  

3.8.4 Analysis of Outcomes 

There are three outcomes to be analyzed to compare the performance of the four methods 

for handling missing data—death, total hospital charges, and the length of stay within the ICU. 

Comparisons of the missing data methods were made using these three outcomes as indicators of 

missing data method performance. The various missing data methods were compared to results 

from the full dataset for these three outcomes. These three outcomes will be discussed in greater 

depth in the sections that follow.  
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For all of these analyses, the fully-observed model were fit first—prior to simulation 

runs—to find parsimonious models that best predict each of the three outcomes. Then the chosen 

model for each of the outcomes were used in the simulation runs without further model fitting. 

Details of model fitting for each outcome, along with the importance of each outcome, will be 

discussed next. 

3.8.4.1 Outcome 1: Death 

The outcome of in-hospital death is important, and often studied when using SOFA score 

as an instrument for baseline severity assessment. While the authors of the SOFA score 

emphatically asserted that it was designed as a tool for description, not prediction, [64] its usage 

has changed over time as it has demonstrated to be a good prognostic tool among ICU patients. 

As discussed in Section 2.5.3, the SOFA score is widely-used as a prognostic tool to predict in-

hospital (and in-ICU) death. As such, investigating the impact of missing SOFA score data on the 

clinical outcome of in-hospital death among ICU patients with ventilator-dependent respiratory 

failure at various percentages of missingness, along with various statistical techniques for 

handling missing data is important. 

This model will be fit with a multiple logistic regression model. This analysis will be 

performed using PROC LOGISTIC with SAS/STAT. The first model will be fit on the full-

observed dataset, then the same model will be used in all of the simulations without subsequent 

model fitting.  

Multicollinearity between covariates will be evaluated using Spearman’s rank correlation 

coefficients (𝜌ො௦), along with variance inflation factors (VIF) during modeling. Model fitting will 

proceed as described by Hosmer, Lemeshow, and Sturdivant (2013), using manual backwards 

selection, using the smallest Akaike Information Criterion (AIC) or Schwarz Criterion (SC), and 

likelihood ratio tests, along with individual covariate significance (p-values) [141]. Clinically-
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relevant variables will be used to determine which covariates will initially be included in the 

model to control for differences in comparison groups and potential confounding. Overall model 

fit will be assessed using the Hosmer-Lemeshow goodness of fit test. Model assumptions of 

linearity of the logit for continuous predictor variables will be assessed using graphical methods 

(LOWESS scatterplot). Statistical significance for this outcome was determined a priori to be at 

the α=0.05 level. 

3.8.4.2 Outcome 2: Total Charges 

Studies that examine total charges are useful in economic evaluations of treatment, such 

as cost effectiveness analysis studies. However, without severity adjustment such evaluations will 

have large confidence intervals in point estimates of cost savings. Herein shall be examined one 

study that did not adjust for severity within the ICU, and another study that did.  

The first study is one that did not adjust for patient severity within the ICU using a 

validated severity of illness scoring system, such as the SOFA score. is a random-effects meta-

analysis of 12 studies that examined early versus late tracheostomies among ventilated ICU 

patients, showed the average ICU cost difference was $4,316 (95% CI: $403-8,229), favoring 

early tracheostomies [149]. However, in this study severity adjustment was not made—which 

might have shrunk those confidence intervals, to give better estimates of the cost difference 

between early versus late tracheostomy among ventilated ICU patients.  

The second study is one that did adjust for patient severity within the ICU using a 

validated severity of illness scoring system. In this study the authors investigated, via simulation, 

how to optimize telemedicine delivery to ICUs (Tele-ICU) based on patient severity of illness—

as measured by the Acute Physiology and Chronic Health Evaluation IV (APACHE-IV) score 

[150]. The authors wanted to know at what severity of illness—typically associated with poorer 

outcomes and higher costs of care—would tele-ICU prove to be cost effective. The study found 
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that using Tele-ICU among the 30-40% of highest risk patients demonstrated optimal cost 

effectiveness, with an incremental cost effectiveness ratio (ICER) of $25,392 per quality-adjusted 

life year (QALY). This study demonstrated the use of telemedicine among ICU patients with the 

30-40% of highest severity could be cost effective, which could inform an intervention study. 

In the first study mentioned, cost effectiveness of an intervention (early tracheostomy) 

was studied—without adjusting for patient severity, which likely led to imprecision in cost 

savings. The second study of cost effectiveness of tele-ICU was investigated, using patient 

severity as a criterion for tele-monitoring; the optimal patient severity to demonstrate cost 

effectiveness was found, which can aid decision-makers and clinicians.  

Cost effectiveness studies will continue to be performed, as balancing the allocation of 

resources among treatment alternatives, and patients, remains a priority in health services 

research. In all such economic studies, severity of illness (along with other potential confounders) 

should be adjusted for in analyses. As such, investigating the impact of missing SOFA score data 

on the financial outcome of total hospital charges among ICU patients with ventilator-dependent 

respiratory failure at various percentages of missingness, along with various statistical techniques 

for handling missing data is important. 

Total charges measure the acute episode of care, both professional and facility charges. 

These charges do not include follow-up care, including post-acute, specialty referrals, nor any 

therapy. To quantify the effect of SOFA scores (e.g. a patient’s severity of illness) on the total 

charges—which is a measure of intensity of care—generalized linear modeling will be used.  

This model will be fit with a gamma-distributed generalized linear model with a log-

transformed link function. In a gamma distribution, the standard deviation of the outcome is 

proportional to the mean (𝜎 ∝  𝜇) [151]. Further, the generalized linear model has been shown to 
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work well in healthcare cost studies, where costs are heavily right-skewed, as long as the log-

transformed variable does not have excessive heteroscedasticity [152].  

This analysis will be performed using PROC GENMOD with SAS/STAT. The first 

model will be fit on the fully-observed dataset, then the same model will be used in all of the 

simulations without subsequent model fitting. Multicollinearity between covariates will be 

evaluated using Spearman’s rank correlation coefficients (𝜌ො௦), along with variance inflation 

factors (VIF) during modeling. Initial modeling will proceed with manual backwards selection, 

using the smallest Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC) 

values, and individual covariate significance (p-values). Clinically-relevant variables will be used 

to determine which covariates will initially be included in the model to control for differences in 

comparison groups and potential confounding. Statistical significance for this outcome was 

determined a priori to be at the α=0.05 level. 

3.8.4.3 Outcome 3: ICU Length of Stay 

The outcome of ICU length of stay is clinically-important. One large benchmark study of 

all ICU admissions at 271 ICUs in the United States in 2008 found that for each day in the ICU, a 

patient will spend 1.5 days in a non-ICU bed [153]. With the typical cost per day of an ICU stay 

being $3,518 in 2005, and the typical non-ICU stay at $1,153 [2], reductions in ICU length of 

stay can reap large reductions in healthcare expenditures. As such, investigating the impact of 

missing SOFA score data on the clinical outcome of length of stay within the ICU among patients 

with ventilator-dependent respiratory failure at various percentages of missingness, along with 

various statistical techniques for handling missing data is important. 

This model will be fit with either a negative binomial- or Poisson-distributed generalized 

linear model, depending upon model fit. Typically, for count data a Poisson-distributed model 

will be appropriate when the variance of the outcome equals the mean, whereas a negative 
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binomial-distributed model will be appropriate when the variance of the outcome is a quadratic of 

the mean [151]. Selection of appropriate model—negative binomial or Poisson—will be assessed 

by comparing the model’s deviance per degree of freedom, 
௩

ௗ..
, with the chosen model 

exhibiting a value closest to unity (1.0). This analysis will be performed using PROC GENMOD 

with SAS/STAT. The first model will be fit on the fully-observed dataset, then the same model 

will be used in all of the simulations without subsequent model fitting.  

Multicollinearity between covariates will be evaluated using Spearman’s rank correlation 

coefficients (𝜌ො௦), along with variance inflation factors (VIF) during modeling. Initial modeling 

will proceed with manual backwards selection, using the smallest Akaike Information Criterion 

(AIC) or Bayesian Information Criterion (BIC) values, and individual covariate significance (p-

values). Clinically-relevant variables will be used to determine which covariates will be initially 

added to the model to control for differences in comparison groups and potential confounding. 

Statistical significance for this outcome was determined a priori to be at the α=0.05 level. 

3.8.5 Output of Results from Simulations 

For each analysis, parameter estimates (𝛽መ), standard errors (SE), sample size used in the 

analysis, and the calculated variance of the parameter estimate (𝜎ଶ ൌ ሺ𝑆𝐸
√𝑛ൗ ሻଶ) will be output to 

a table along with identifiers of the simulation run (i, γ, identifier for the outcome being modeled 

[e.g. death], and the missing data method used) for later comparison. An example of the output 

table is below, in Table 3.3. 

 



 

67 

 

Table 6 Simulation output table (example) 

Row 
ID 

i γ 
Missing Data 
Method 

Modeled 
Outcome 

β  
Estimate 

Standard 
Error 

n Variance 

1 0 0 Full Dataset Death 0.406 0.179 1000 32.005 
2 1 20 Complete Case Death 0.559 0.135 800 14.558 
3 1 20 Multiple Imputation Death 0.414 0.162 1000 26.374 
4 1 20 Guidelines (Zero) Death 0.429 0.198 1000 39.363 
5 1 20 Median Death 0.465 0.206 1000 42.601 

 

As one can see from the above Table, there are 5 rows, where column i represents the 

number of the iteration through the simulation loop. Where i=0, these are the initial analyses on 

the fully-observed dataset, against which comparisons will be made. Column γ denotes the 

percent missing data generated in that run. Therefore, with 4 missing data methods chosen for 

comparison in the simulation loop, each simulation loop iteration will yield 4 rows (as shown 

above) for each outcome being modeled, which will be output to the results table for each 

outcome being analyzed; for a simulation run where S=1,000 with 4 missing data methods and 3 

outcomes being modeled, 12,000 rows (1,000 * 4 * 3) will be output to a table. These statistics 

will be used to compute the test statistics described in the next section, allowing for comparison 

of methods. 

3.8.6 Assessment of Simulation 

The simulation runs were compared using summary statistics of the three test statistics, 

yielding the properties of the performance of each of the missing data methods examined. These 

three statistics are described below. 

1. Relative Bias is calculated as 
ఉିఉ

ఉ
.  

Relative bias will be calculated for each simulation run and missing data method. With 

this, 𝛽መ represents the parameter estimate for the SOFA score for simulation run i for each 

of the i = 1,…,S simulation runs in the generalized linear model, and 𝛽 represents the 
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population parameter of the SOFA score from the fully-observed dataset. Ideally, this 

number will be 0%—meaning no bias exists in the missing data technique incorporated. 

Means and 95% confidence intervals of the relative bias for each missing data technique 

at each percentage of missingness will be calculated, allowing the observation of the 

magnitude and direction of bias that a missing data technique introduces. 

2. Efficiency is calculated as 
ఙෝೞ

మ

ఙమ.  

Efficiency will be calculated for each simulation run and missing data method. Efficiency 

is a simple ratio of the variance of the parameter estimate of the SOFA score 𝛽መ, denoted 

as 𝜎ො
ଶ, compared to the variance of the parameter estimate for the SOFA score in the 

fully-observed dataset 𝛽, denoted as 𝜎ଶ. Means and 95% confidence intervals of the 

efficiency for each missing data technique at each percentage of missingness will be 

calculated. 

3. Coverage Probability is the proportion of simulation runs for each missing data method 

where the parameter estimate for the SOFA score in the fully-observed dataset 𝛽, is 

contained within the confidence interval for the estimated coefficient  𝛽መ. Since α=0.05 

has already been set for this study, we desire a 1-α = 95% or greater coverage probability. 

In general, for this alpha level 95% coverage is considered to be ideal, whereas coverage 

of less than 95% is indicative of higher than expected Type-I error rate [137]. 

 

3.8.7 Monitoring of Simulation Process 

For each simulation run one log was output to monitor the status of each simulation, 

along with five tables. The simulation log contained all notes, warnings, and errors for each 

simulation run, along with the times to accomplish each of the critical steps.  
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The first table created was the fully-observed dataset’s parameter estimates for all three 

outcomes. These parameter estimates were used as the truth against which each simulation 

method’s parameter estimates would be compared.  

The second table created contained the convergence status of each of the analyses was 

conducted. This table was later analyzed to ensure all models converged.  

The third table created contained all seeds used in the multiple imputation process. All 

seeds for the multiple imputation processes were generated using a hybrid 1998/2002 32-bit 

Mersenne twister pseudorandom number generation algorithm in SAS, exhibiting good statistical 

qualities in mimicking a stochastic process [154]. This pseudorandom number generator has a 

period of 219,937-1, which is the number of calls to the pseudorandom number generator one would 

have to make in order to have a repeated sequence of values [155]. In spite of the infinitesimally 

small probability of seed repetition across the simulation runs, the seeds generated in each 

simulation loop were saved to a table for later evaluation of repetition. As expected, the 40,000 

random number seeds generated were all unique integers, with no duplicates found across the 

simulation runs—ensuring good statistical independence of each multiple imputation run.  

The fourth table created contained the parameters from the multiple imputation process, along 

with the variance of the parameter estimates used for multiple imputation.  

Finally, and most critically, the fifth table created contained the parameter estimates from 

each of the three analyses across the four missing data methods. The information within this table 

was used to calculate the summary statistics used in this study—coverage, relative bias, 

efficiency, and root mean square error in fulfillment of Aim 1 and Aim 2 of this study. 

For each simulation run, approximately four minutes were required to build the 1,000 datasets 

and impose missingness in accordance with the simulation parameters (i.e. missing data 

mechanism, and percent missingness). Each of the first three methods for handling missing data 
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took approximately 30 seconds to run for the 1,000 datasets—including both handling the missing 

data and performing the analyses.  

However, for the multiple imputation process, the multiple imputation of the 1,000 datasets 

took approximately four hours to run. This is predominantly due to the scaling of the analyses; for 

each dataset, the multiple imputation process is repeated 25 times. Therefore, for the 1,000 

datasets in a single simulation, multiple imputation occurred 25,000 times. Following the multiple 

imputation process, these 25,000 datasets were analyzed separately for each of the three 

outcomes, with the results of each multiple imputation process being combined using Rubin’s 

Rules—all of which occurs in one step in SAS using PROC MIANALYZE. Each analysis took 

approximately five minutes to run. Therefore, the total time to run one full simulation was 

approximately five hours. Given that this study examined two aims, each having 4 missing data 

mechanisms (MAR, MNAR Left, MNAR Mid, MNAR Right) and 4 levels levels of missing data 

(γ = 10%, 20%, 30%, 40%), a total of 32 simulations were ran, consuming approximately 160 

hours of processing time. 

 

 



 

 

4 RESULTS 

4.1 Data Used in Dissertation 

From the MUSC Enterprise Data Warehouse records for 4,384 patient admissions 

to the various ICUs at MUSC from the period of January 1, 2015 through October 31, 

2017 for ventilator-dependent respiratory failure among patients 18 or older were 

extracted. Of these patients, 292 had multiple ICU admissions — therefore, only the first 

admission to an ICU at MUSC were used. An additional 303 of these admissions were 

missing either the start or end of ventilation dates resulting in exclusion from this study 

due to the inability to calculate total time on a ventilator. This resulted in 3,789 patients 

being eligible for the study. Of these patients, 1,930 (50.9%) had sufficient data to 

calculate a full SOFA score; 1,859 of these patients (49.1%) were missing one or more 

data elements required to calculate the SOFA score. The former of these two groups will 

hereinafter be referred to as the fully-observed cohort, whereas the latter of these two 

groups will be referred to as the partially-observed cohort. This process of building the 

cohort from which this simulation study would pull—the fully-observed cohort—is 

depicted below in Figure 4.1. 
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Figure 4.1 Data flow diagram 
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4.1.1 Descriptive Characteristics 

A total of 3,789 unique patient admissions to the ICU were extracted from the 

Medical University of South Carolina’s electronic health record during the time period 

of January 1, 2015 through October 31, 2017 and placed on a ventilator due to 

respiratory failure. Of these patient admissions, sufficient data elements were present 

within the data extract to calculate SOFA scores for 1,930 patient admissions, whereas 

insufficient data were present to calculate SOFA scores for 1,859 patient admissions—

representing 49.1% missingness within the original data extract. The demographics and 

characteristics of these two groups of patients, grouped on whether or not the SOFA 

score was able to be calculated, are represented below in Table 7. 
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Table 7 Demographics and characteristics of patients in the original dataset 
 SOFA Score Present?  

 
Yes 

(n = 1,930) 
No 

(n = 1,859) 
p-value† 

Age, years 56.6 ±17.1 55.6 ±17.7 0.0844 

Male 1,126 (58.3) 1,099 (59.1) 0.6277 

Race   0.1631 
Black 794 (41.1) 735 (39.5)  
White 1,042 (54.0) 1,051 (56.5)  
Other/Unknown 94 (4.9) 73 (3.9)  

Insurance   0.9739 
Commercial 598 (31.0) 577 (31.0)  
Medicare/Medicaid 1,078 (55.9) 1,042 (56.1)  
Other/Unknown 254 (13.1) 240 (12.9)  

Charlson Score 3.0 ±3.0 3.2 ±2.8 0.0919 

Length of Staya    
ICU 10.0 ±10.7 9.9 ±11.3 0.8137 
Overall 17.1 ±21.6 17.3 ±19.4 0.7547 

Total Charges $198,539  
±219,757 

$200,896 
±225,994 

0.7449 

Died 704 (36.5) 507 (27.3) <0.0001 
    
SOFA Score 8.8 ±4.1 

8 [6]b 
  

SOFA Components c    
CNS 2 [0-4]   
Cardiovascular 1 [0-4]   
Coagulation 0 [0-4]   
Hepatic 0 [0-4]   
Renal 1 [0-4]   
Respiratory 3 [0-4]   

Note. All values are expressed as mean ±S.D., n (%), or as otherwise indicated.  
† P-values were calculated using the Wilcoxon Mann-Whitney U test for continuous measures, and the χ2 
or Fisher’s Exact tests for categorical measures (as appropriate). Statistically-significant comparisons at 
the α=0.05 level are given in bold.  
a Expressed in days 
b median [Interquartile range] 
c median [Range] 
Other/Unknown race is comprised of Asian, Hawaiian, Indian/Alaskan, and where this value was missing 
from the original dataset. 
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Comparison of the demographics and characteristics of these two groups of 

patients reveals very little differences between the two groups. These two groups did not 

differ significantly with respect to age, sex, race, insurance status, Charlson score, length 

of stay, nor total charges. However, these groups did differ in the overall death rate. The 

overall death rate was 36.5% among the patients for whom we were able to calculate a 

SOFA score, whereas this rate was 27.3% among those for whom we could not calculate 

a SOFA score (p<.0001).  

As a higher SOFA score is indicative of greater patient acuity, this statistically-

significant difference suggests that the SOFA scores among those patients who have a 

missing SOFA score in this data extract would have been on the lower end of the scale, 

meaning that these patients had less organ derangement and were therefore more healthy 

and less likely to die. Furthermore, this suggests that the missing data mechanism in 

these data may be dependent upon the SOFA score value, as those patients whose SOFA 

scores are missing have a lower rate of death, which would be evidence toward 

concluding the missing not at random (MNAR) missing data mechanism may be 

present. However, as with any missing data process, other factors may be influential or 

this statistically significant difference may be spurious. 

4.1.2 Bivariate Analyses 

Bivariate analyses examining the relationship between the SOFA score, 

components of the SOFA score, and all potential predictors was undertaken. Spearman’s 

rank correlation coefficients (𝜌ො௦) were calculated, along with p-values. These measures 

are given in Table 24 of Appendix C. Correlation table, on page 154. Interpretation of 

the coefficients is according to Shi (2008; p. 371; [156]), as shown below in Table 8. 

 



 

76 

 

Table 8 Interpretation of Spearman’s rank correlation coefficients 

|𝜌ො௦| Strength of correlation 

0.00 to 0.19 Little to none 

0.20 to 0.39 Slight 

0.40 to 0.59 Substantial 

0.60 to 0.79 Strong 

0.80 to 1.00 Very Strong 
|𝜌ො௦| are given, with sign indicating direction of relationship, where 𝜌ො௦ ≥ 0.01 indicates a 
positively-correlated relationship and 𝜌ො௦ ≤ -0.01 indicates a negatively-correlated relationship. 
This table is adapted from Shi (2008), page 371. 

 

4.1.3 SOFA Scores 

In this section, an examination of the possible missing data mechanism of the 

SOFA score, the missing data patterns observed for the components of the SOFA score, 

as well as the distribution of the SOFA score within the fully-observed dataset will be 

examined. 

4.1.3.1 Missing Data Mechanism 

A logistic regression model was fit to determine which covariates might predict 

missingness of the SOFA score in the original data. A binary indicator variable 

indicating whether or not the SOFA score was able to be calculated (SOFA_missing), 

served as the primary outcome variable for the logistic regression model, with all 

potential and relevant demographics and clinical outcomes measured in this study used 

as potential predictors of missingness of the SOFA score. These potential predictors 

tested were: discharge disposition, race, payor group, age group, sex, ICU length of stay, 

Charlson score, and the natural logarithm of total charges. For records with total charges 

equal to $0.00 (n=2; one from each SOFA_missing group), these charges were changed 

to $1.00. The minimum RASS score and the maximum CAM-ICU score during the first 

two days of ventilation were investigated for potential prediction ability. However, these 
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variables were missing in 5.0% and 36.6% of the cases respectively, prohibiting 

inclusion into the prediction model. 

The final parsimonious model was selected using a backwards stepwise process, 

retaining only those predictors that had a statistically significant ability to predict a 

SOFA score to be missing (SOFA_missing = 1). The final model included only one 

variable, discharge disposition. Discharge disposition was divided into three groups: (1) 

died or sent to hospice, (2) sent home, and (3) sent to institutionalized care. The 

Hosmer-Lemeshow goodness of fit test showed excellent model fit, with a p-value of 

1.0.  

The logistic regression model to predict a missing SOFA score showed 

statistically-significant differences in missingness were found in the disposition groups. 

Patients who died or were sent to hospice care had lower odds of having a missing 

SOFA score when compared with patients who were discharged home (OR 0.571, 95% 

CI: 0.491-0.665). Similarly, patients who were discharged to institutionalized care had 

lower odds of having a missing SOFA score when compared with patients who were 

discharged home (OR 0.764, 95% CI: 0.651-0.897). The results of the final logistic 

regression model predicting a missing SOFA score are shown below in Table 9. 
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Table 9 Odds ratios and 95% confidence intervals for predicting a SOFA score 
being missing in the original data 

Effect Odds Ratio 

95% 
Confidence 

Interval p-value 
Discharge Destination    

Died/Hospice 0.571 0.491-0.665 <0.0001 
Institutionalized 0.764 0.651-0.897 0.0008 
Home †   

Note. Odds ratio estimates and Wald 95% confidence intervals given. Statistically-significant 
comparisons at the α=0.05 level are given in bold.  
† indicates the reference group.  

 

 Patients in the ICU who died, were sent to hospice, or were institutionalized are 

patients who, in general, would be expected to have poorer outcomes in comparison 

with those ICU patients who were sent home. This former group of patients who have 

poorer outcomes would, in general, have higher SOFA scores; the latter group of 

patients who are sent home would generally have better health outcomes and lower 

SOFA scores. Certainly, the group who experienced death as their discharged 

destination had a poor outcome, and likely higher rates of organ derangement, as 

indicated by a higher SOFA score. However, for those who were also sent to hospice or 

who were institutionalized following their ICU stay, their discharge destination would 

be demonstrative of a poorer outcome than a patient who was deemed well enough to go 

home by the Intensivist. Moreover, as a higher SOFA score positively correlates with 

greater patient acuity within the intensive care setting as well as poor outcomes 

following the ICU stay, it is probable that the SOFA scores for the patients whose scores 

we were unable to calculate as a result of one or more missing components would have, 

on average, lower SOFA scores than those whose SOFA scores we were able to 

calculate. Therefore, if this is the case, a missing not at random (MNAR) mechanism is 



 

79 

 

present within the data—where lower SOFA scores have a greater likelihood of being 

missing. Thus, special attention should be paid to results of the MNAR simulations at 

the low end of the SOFA score range (MNAR Left). However, this finding is given with 

caution as other studies have shown a single mechanism is unlikely to be the sole cause 

of missingness [102]. Moreover, any MAR missing data mechanism model has a 

corresponding MNAR model with equal fit, rendering empirical distinction between the 

two missing data mechanisms impossible [140].  

 

4.1.3.2 Missing Data Patterns 

An examination of the missing data patterns that were present within the data was 

conducted using PROC MI in SAS. This examination revealed 1,859 of the 3,789 ICU 

admissions (49.1%) had one or more items from the SOFA score that were missing (c.f. 

Table 10). The hepatic component of the SOFA score (measured by bilirubin) was the 

item most commonly missing; this finding matches that of another study [94]. The 

central nervous system component (measured by the Glasgow Coma Scale) was the 

second most common missing item. The cardiovascular component (measured by mean 

arterial pressure [MAP] and vasopressors) was the most infrequently missing; this 

differs from another study, which found platelets (coagulation SOFA component) and 

PaO2/FiO2 ratios (respiration SOFA component) to be the most infrequently missing 

items [94].  

In total, there were 45 distinct missing data patterns across the six component 

items of the SOFA score, out of the 26 = 720 possible patterns. The top 25 most common 

missing data patterns—which accounts for 92.8% of all observations with missing 

SOFA score data—are shown below in Table 11. Of the 45 missing data patterns, only 
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10 patterns exceeded more than 1% of the total missingness of the data. Therefore, these 

10 missing data patterns along with their observed frequencies within the original 

dataset are used as the missing data patterns for this simulation study. 

 

Table 10 Frequency of missing SOFA score components in 
original data 

SOFA Component 
# 

Missing 
% 

Missing 

 

Central Nervous System 753 19.9  
Cardiovascular 113 3.0  
Coagulation 215 5.7  
Hepatic 1,040 27.5  
Renal 186 4.9  
Respiratory 222 5.9  

Overall, any item missing 1,859 49.5  
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Table 11 Twenty-five most common missing data patterns 

SOFA Score Component   

CNS Card Coag Hep Ren Resp Freq % 

1 1 1 0 1 1 718 38.6 
0 1 1 1 1 1 495 26.6 
0 1 1 0 1 1 133 7.2 
1 1 1 1 1 0 93 5.0 
1 1 1 0 1 0 41 2.2 
1 1 0 1 1 1 38 2.0 
1 0 1 1 1 1 34 1.8 
1 1 0 0 0 1 33 1.8 
1 1 0 1 0 1 31 1.7 
0 1 1 1 1 0 30 1.6 
1 1 1 0 0 1 17 0.5 
1 1 0 0 1 1 16 0.4 
1 1 1 1 0 1 15 0.4 
0 1 1 0 1 0 15 0.4 
1 0 0 1 0 1 12 0.3 
0 1 0 1 0 1 12 0.3 
1 1 0 0 0 0 11 0.3 
0 0 1 1 1 1 10 0.3 
1 0 1 0 1 1 9 0.2 
1 0 0 0 0 1 8 0.2 
0 1 1 1 0 1 8 0.2 
0 1 0 1 1 1 8 0.2 
0 1 0 0 0 1 8 0.2 
0 0 0 1 0 1 7 0.2 
1 0 0 1 1 1 6 0.2 

Note: The 1/0 elements here represent items within a response vector, where 1 equals a 
response (the SOFA score element is observed) and 0 represents a non-response (the SOFA 
score element is missing). The component names are shortened as follows: CNS (central 
nervous system), Card (cardiovascular system), Coag (coagulation system), Hep (hepatic 
system), Ren (renal system), and Resp (respiratory system). 
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4.1.3.3 Distribution of SOFA Scores 

The histogram shown below in Figure 4.2 shows the distribution of SOFA 

scores within the fully-observed dataset. An overlay of the normal and kernel densities 

is also given, which shows the distribution is right-skewed, with a maximum observed 

SOFA score of 22 out of 24. 

 

Figure 4.2 Histogram of SOFA scores in the fully-observed dataset 

 

 Another method of examining the distribution of the SOFA scores is shown in 

Table 12 below. Here the scores are binned into four categories. The first category is 0 

to 3, which represents a range from no organ derangement (a SOFA score of zero) to at 

most moderate organ derangement in only one organ system measured by the SOFA 

score (a SOFA score of 3) or minor organ derangements in more than one organ system. 
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The second category is 4 to 8, which represents fairly severe organ derangement in up to 

two organ systems. This group represents most of the patients found within our fully-

observed dataset, representing 45.0% of all ICU admissions. The third category is 9 to 

11, which represents fairly severe organ derangement and up to three organ systems. 

The fourth, and final, category is 12 to 22 — which represents patients who could have 

organ derangement in up to five SOFA score-measured organ systems, and are expected 

to have, on average, poorer outcomes than patients with lower SOFA scores. 

 

Table 12 Distribution of SOFA scores in the fully-observed dataset 

SOFA Score Freq %  

0-3 137 7.1  
4-8 868 45.0  
9-11 428 22.2  
12-22 497 25.7  

 

4.2 Fully-Observed Dataset Outcomes 

All three outcomes that were analyzed in this simulation study were first 

analyzed using the fully-observed dataset, which contained 1,930 records. These 

outcomes were analyzed using the same covariates across all three outcomes. The main 

predictor, SOFA score, was used in all regression models, as were the categorical 

covariates age and race, and the binary covariate sex.  

The age variable was grouped as follows: 18-29, 30-39, 40-49, 50-59, 60-69, 

70-79, and 80 or older; the reference group was 18-29. The race variable was comprised 

of White, Black, and Other/Unknown; the reference group was White. The Other 

category was comprised of Asian, Hawaiian, and Indian/Alaskan. The sex variable was a 

dichotomous variable indicating male or female; the reference group was male. The 
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SOFA score variable, while used as a continuous variable in the simulations and in most 

research studies as a risk adjuster, is shown below in four groups for better illustration of 

effect size and magnitude on the three outcomes. The SOFA score is grouped as 

previously shown in Table 12: 0-3, 4-8, 9-11, and 12-24. 

4.2.1 Outcome 1: Death 

A logistic regression model was fit to examine the first outcome of this study, 

death (a binary indicator variable with 1 representing an in-hospital death, and 0 

representing the patient survived the admission). The Hosmer-Lemeshow goodness of fit 

test showed that the model was a good fit, with a p-value of 0.4490, and a c-statistic of 

0.712. The odds ratios and 95% confidence intervals for these predictors are given in 

Table 13, and graphically in Figure 4.3. 

 As one can see from Figure 4.3, as the SOFA score increases, the odds of in-

hospital death increase in a stepwise fashion when compared with a low SOFA score 

range of 0-3. The relatively wide confidence interval for the SOFA score group of 12-22 

is attributable to the fewer number of patients within this dataset that contain this high 

score. Likewise, as age of the patient in the ICU increases, so too does the odds of death. 

Females exhibited 39.8% higher odds of death in comparison to males (OR 1.398, 95% 

CI 1.142-1.711). Finally—regarding race—Blacks had 25.4% lower odds of death in 

comparison to Whites (OR 0.746, 95% CI 0.605-0.919), whereas the Other/Unknown 

group’s odds of death were not statistically different from patients who were White. 

 For this outcome using SOFA score as a continuous variable, how it was used in 

the simulations, the univariate results showed SOFA score to be statistically-significant 

predictor of death (OR 1.192, 95% CI 1.162-1.222, p<0.0001). In the adjusted model—

adjusting also for age, race, and sex—SOFA score was similarly predictive of death (OR 
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1.205, 95% CI 1.174-1.237, p<0.0001). The odds ratios for the other predictors were 

very similar to those shown below in Table 13, where SOFA score was categorized. 

 
Table 13 Odds ratios and 95% confidence intervals for predicting in-hospital death 
in the fully-observed dataset 

Effect 
Odds 
Ratio 

95% Confidence Interval 
p-value 

SOFA score    
0-3 †   
4-8 2.463 1.455 – 4.170 0.0008 
9-11 4.445 2.584 – 7.648 <0.0001 
12-24 10.472 6.111 – 17.942 <0.0001 

Age group    
18-29 †   
30-39 1.413 0.851 – 2.347 0.1811 
40-49 1.077 0.667 – 1.739 0.7608 
50-59 1.702 1.114 – 2.602 0.0140 
60-69 2.088 1.377 – 3.167 0.0005 
70-79 3.050 1.972 – 4.717 <0.0001 
80+ 3.320 2.015 – 5.469 <0.0001 

Female 1.398 1.142 – 1.711 0.0012 

Race    
Black 0.746 0.605 – 0.919 0.0060 
Other/Unknown 1.109 0.693 – 1.773 0.6672 
White †   

Note. Odds ratio estimates and Wald 95% confidence intervals given. Statistically-significant 
comparisons at the α=0.05 level are given in bold. 
† indicates the reference group.  
Other/Unknown race is comprised of Asian, Hawaiian, Indian/Alaskan, and where this value was 
missing from the original dataset. 
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Figure 4.3 Forest plot of the odds ratios and 95% confidence intervals for predicting in-
hospital death in the fully-observed dataset 
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4.2.2 Outcome 2: Total Charges 

A gamma–distributed log–linked generalized linear model was fit to examine the second 
outcome of this study, total charges. This model exhibited good fit, with a deviance of 
0.8934 per degree of freedom. In   
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Table 14 below, the exponentiated least square means estimates and 95% 

confidence intervals differences of a group compared with a referent group (expressed 

as a ratio of the reference group) are shown. The exponentiated least squares means 

estimates of total charges, expressed in 1,000s of dollars, are shown below in Table 15.  

Interestingly, these tables show no difference in total charges between SOFA 

score group 4-8 when compared with the reference group, scores 0-3. However, the total 

charges for those patients with SOFA scores in the range of 9-11 were 31.64% higher 

than those in the reference group (ratio 1.316, 95% CI 1.045-1.658), and those with 

SOFA scores in the range of 12-24 were 36.0% higher than those in the reference group 

(ratio 1.360, 95% CI 1.148-1.707). This demonstrates the expected behavior that as the 

SOFA score increases, so do total charges. 

For this outcome using SOFA score as a continuous variable, how it was used in 

the simulations, the univariate results showed SOFA score to be statistically-significant 

predictor of total charges (β 0.0291, SE 0.0051, p<0.0001). In the adjusted model—

adjusting also for age, race, and sex—SOFA score was similarly predictive of total 

charges (β 0.0255, SE 0.0051, p<0.0001). 
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Table 14 Differences (expressed as a ratio) between the point estimates and 95% 
confidence intervals for Total Charges in comparison to reference groups in the fully-
observed dataset 

Effect Difference Ratio 95% CI p-value 
SOFA score    

0-3 †   
4-8 1.146 0.975 – 1.346 0.0977 
9-11 1.316 1.108 – 1.563 0.0017 
12-24 1.360 1.148 – 1.611 0.0004 

Age group    
18-29 †   
30-39 0.893 0.741 – 1.075  0.2303 
40-49 0.938 0.789 – 1.115 0.4674 
50-59 0.820 0.703 – 0.957 0.0119 
60-69 0.781 0.670 – 0.910 0.0015 
70-79 0.663 0.563 – 0.780 <0.0001 
80+ 0.553 0.456 – 0.671 <0.0001 

Female    

Race    
Black 0.979 0.901 – 1.065 0.6203 
Other/Unknown 1.027 0.850 – 1.241 0.7820 
White †   

Note. Differences in total charges, expressed as a ratio from the reference group, are reported along with 
Wald 95% confidence intervals. Statistically-significant comparisons at the α=0.05 level are given in bold. 
† indicates the reference group.  
Other/Unknown race is comprised of Asian, Hawaiian, Indian/Alaskan, and where this value was missing 
from the original dataset. 
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Table 15 Least squares means exponentiated point estimates and 95% confidence 
intervals for Total Charges, expressed in thousands of dollars, in the fully-observed 
dataset 

Effect 
Total Charges 

* $1,000 95% CI  
SOFA score    

0-3 184 169 – 200  
4-8 211 191 – 233   
9-11 218 198 – 240   
12-24 160 137 – 188   

Age group    
18-29 242 210 – 279   
30-39 216 186 – 250   
40-49 227 200 – 258   
50-59 199 179 – 220   
60-69 189 171 – 209   
70-79 160 143 – 180   
80+ 133 115 – 157   

Sex    
Male 197 182 – 213  
Female 187 171 – 204  

Race    
Black 187 175 – 201   
Other/Unknown 197 164 – 236   
White 191 179 – 204   

Note. Total charges, expressed in 1000s of US dollars ($), are reported along with Wald 95% confidence 
intervals. Charges have been rounded to the nearest $1,000.  
Other/Unknown race is comprised of Asian, Hawaiian, Indian/Alaskan, and where this value was missing 
from the original dataset. 
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4.2.3 Outcome 3: ICU Length of Stay 

A negative binomial-distributed log-linked generalized linear model was fit to 

examine the third outcome of this study, ICU length of stay. This model exhibited good 

fit, with a deviance of 1.0625 per degree of freedom. In Table 16 below, the 

exponentiated least square means estimates and 95% confidence intervals differences of 

a group compared with a referent group (expressed as a ratio of the reference group) are 

shown. The exponentiated least squares means estimates of ICU length of stay, 

expressed in days, are shown below in Table 17. 

As expected, patients with higher SOFA scores did exhibit higher ICU lengths 

of stay on average, as shown in Table 4.9 and 4.10. Interestingly, there were no 

differences in ICU length of stay amongst the various race categories nor between male 

and female. However, patients aged 80 or older had lengths of stay in the ICU that were 

18.2% shorter in duration than those patients in the reference group, below the age of 30 

(difference ratio 0.818, 95% CI 0.673-0.994, p=0.0432). Given that this group’s odds of 

in-hospital death were greater than the reference group, the shorter length of stay in the 

ICU should not be attributable to better outcomes. 

For this outcome using SOFA score as a continuous variable, how it was used in 

the simulations, the univariate results showed SOFA score to not be a statistically-

significant predictor of ICU length of stay (β 0.0097, SE 0.0052, p=0.0642). In the 

adjusted model—adjusting also for age, race, and sex—SOFA score was similarly not 

predictive of total charges (β 0.0081, SE 0.0053, p=0.1210). 
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Table 16 Differences (expressed as a ratio) between the point estimates and 95% 
confidence intervals for ICU Length of Stay in comparison to reference groups in the 
fully-observed dataset 

Effect 
Difference 

Ratio 95% CI p-value 
SOFA score    

0-3 †   
4-8 1.192 1.011 – 1.404 0.0361 
9-11 1.306 1.097 – 1.555 0.0027 
12-24 1.201 1.011 – 1.426 0.0373 

Age group    
18-29 †   
30-39 0.891 0.739 – 1.074 0.2258 
40-49 1.131 0.951 – 1.344 0.1648 
50-59 0.987 0.845 – 1.152 0.8650 
60-69 1.014 0.870 – 1.181 0.8609 
70-79 0.892 0.757 – 1.050 0.1688 
80+ 0.818 0.673 – 0.994 0.0432 

Female 0.965 0.890 – 1.048 0.3974 

Race    
Black 1.065 0.979 – 1.158 0.1418 
Other/Unknown 1.063 0.879 – 1.285 0.5302 
White †   

Note. ICU length of stay, expressed in days, is reported along with Wald 95% confidence intervals. 
Statistically-significant comparisons at the α=0.05 level are given in bold. 
† indicates the reference group.  
Other/Unknown race is comprised of Asian, Hawaiian, Indian/Alaskan, and where this value was 
missing from the original dataset. 
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Table 17 Least squares means exponentiated point estimates and 95% confidence 
intervals for ICU Length of Stay, expressed in days, in the fully-observed dataset 

Effect 
Estimate, 
in days 

95% CI 
 

SOFA score    
0-3 8.2 7.0 – 9.6  
4-8 9.8 9.0 – 10.6  
9-11 10.7 9.7 – 11.8  
12-24 9.9 8.9 – 10.9  

Age group    
18-29 10.0 8.7 – 11.6  
30-39 8.9 7.7 – 10.4  
40-49 11.3 10.0 – 12.9  
50-59 9.9 8.9 – 11.0  
60-69 10.2 9.2 – 11.2  
70-79 8.9 7.9 – 10.1  
80+ 8.2 7.0 – 9.6  

Sex    
Female 9.4 8.6 – 10.3  
Male 9.8 9.0 – 10.6  

Race    
Black 9.8 9.1 – 10.5  
Other/Unknown 9.8 8.1 – 11.8  
White 9.2 8.6 – 9.8  

Note. ICU length of stay, expressed in days, is reported along with Wald 95% confidence intervals.  
† indicates the reference group.  
Other/Unknown race is comprised of Asian, Hawaiian, Indian/Alaskan, and where this value was 
missing from the original dataset. 
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4.3 Aim 1 – Results 

The simulation runs were compared using three summary test statistics, yielding 

the properties of the performance of each of the missing data methods examined. As 

previously mentioned in Section 3.8.6–Assessment of Simulation, these three statistics 

are (1) relative bias, (2) efficiency, and (3) coverage probability.  

The first statistic, relative bias, gives the magnitude and direction of bias that a 

missing data introduces. This statistic is calculated as 
ఉିఉ

ఉ
, where 𝛽 represents the 

population parameter of the SOFA score from the fully-observed dataset and  𝛽መ 

represents the parameter estimate for the SOFA score for each simulation run. Ideally, 

this number will be 0%—meaning no bias exists in the missing data technique 

incorporated. 

The second statistic, efficiency, is a simple ratio of the variance of the parameter 

estimate of the SOFA score. This statistic is calculated as 
ఙෝೞ

మ

ఙమ, where the variance of the 

parameter estimate of the SOFA score  𝛽መ, denoted as 𝜎ො
ଶ, is compared to the variance of 

the parameter estimate for the SOFA score in the fully-observed dataset 𝛽, denoted as 

𝜎ଶ. 

The third statistic, coverage probability, is the proportion of simulation runs for 

each missing data method where the parameter estimate for the SOFA score in the fully-

observed dataset 𝛽, is contained within the confidence interval for the estimated 

coefficient  𝛽መ. Since α=0.05 has already been set for this study, we desire a 1-α = 95% 

or greater coverage probability. In general, for this alpha level 95% coverage is 

considered to be ideal.  
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A discussion of the three outcomes examined in this simulation study follows, 

using the three aforementioned statistics. 

4.3.1 Outcome 1: Death 

As mentioned in Section 4.2.1, in the full dataset, the SOFA score was 

predictive of death in the adjusted model (OR 1.205, 95% CI 1.174-1.237, p<0.0001). 

The four methods for handling missing data at the composite level for the outcome of 

death vary in their performance. The coverage probability statistic for these methods at 

the various percentages of missingness are given in Figure 4.4. Complete case analysis 

as well as multiple imputation produce results at all percentages of missingness that 

exceed 95%. However, median imputation quickly has low coverage at 20% or greater 

missingness for MAR and MNAR right. Zero imputation, the recommended method by 

the creators of the SOFA score, exhibits poor coverage regardless of missing data 

mechanism and percent missingness. 

The relative bias statistic for these methods at the various percentages of 

missingness are given in Figure 4.5 (MAR missing data mechanism), Figure 4.6 (MNAR 

Left missing data mechanism), Figure 4.7 (MNAR Middle missing data mechanism), and 

Figure 4.8 (MNAR Right missing data mechanism). For the MAR missing data 

mechanism, both median imputation and zero imputation show increasing amounts of 

bias of the SOFA parameter estimates in the negative direction. Both complete case 

analysis and multiple imputation show relatively unbiased estimates of the SOFA 

parameter estimate, however the variance of these estimates increases as the percent of 

missing data increases. This pattern of increasing variance with increasing percent of 

missing data is the same for all missing data mechanisms (c.f. Figures 4.5 through 4.8).  
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The efficiency statistic for these methods at increasing percentages of 

missingness are given in Figure 4.9 (MAR missing data mechanism), Figure 4.10 

(MNAR Left missing data mechanism), Figure 4.11 (MNAR Middle missing data 

mechanism), and Figure 4.12 (MNAR Right missing data mechanism). Figure 4.9 shows 

that with the MAR missing data mechanism, efficiency rapidly increases—as does the 

spread of efficiency, showing much larger variance in the SOFA parameter estimates in 

comparison to the true parameter estimates, and large change in variance across 

simulation runs (as demonstrated by the spread of these estimates). This pattern is 

repeated for all missing data mechanisms for the complete case analysis method (c.f. 

Figures 4.9 through 4.12). Across all of the missing data mechanisms and increasing 

percentages of missing data, MI shows good efficiency—near 1.0—for most of the 

simulation scenarios. 
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Figure 4.4 Comparison of percent coverage of the 95% confidence interval for the 
parameter estimates of the SOFA score in the logistic regression model predicting Death 
(Aim 1 – Composite Level) 
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Figure 4.5 Comparison of relative bias of parameter estimates of the SOFA score 
among the methods for handling missingness at the composite-level in the logistic 
regression model predicting Death, with the MAR missing data mechanism (Aim 1 – 
Composite Level) 

 

Figure 4.6 Comparison of relative bias of parameter estimates of the SOFA score 
among the methods for handling missingness at the composite-level in the logistic 
regression model predicting Death, with the MNAR Left missing data mechanism (Aim 1 
– Composite Level) 
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Figure 4.7 Comparison of relative bias of parameter estimates of the SOFA score 
among the methods for handling missingness at the composite-level in the logistic 
regression model predicting Death, with the MNAR Middle missing data mechanism 
(Aim 1 – Composite Level) 

 

Figure 4.8 Comparison of relative bias of parameter estimates of the SOFA score 
among the methods for handling missingness at the composite-level in the logistic 
regression model predicting Death, with the MNAR Right missing data mechanism (Aim 
1 – Composite Level) 
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Figure 4.9 Comparison of the efficiency of parameter estimates of the SOFA score 
among the methods for handling missingness at the composite-level in the logistic 
regression model predicting Death, with the MAR missing data mechanism (Aim 1 – 
Composite Level) 

 

Figure 4.10 Comparison of efficiency estimates for the SOFA score among the methods 
for handling missingness at the composite-level in the logistic regression model 
predicting Death, with the MNAR Left missing data mechanism (Aim 1 – Composite 
Level) 
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Figure 4.11 Comparison of efficiency estimates for the SOFA score among the methods 
for handling missingness at the composite-level in the logistic regression model 
predicting Death, with the MNAR Middle missing data mechanism (Aim 1 – Composite 
Level) 

 

Figure 4.12 Comparison of efficiency estimates for the SOFA score among the methods 
for handling missingness at the composite-level in the logistic regression model 
predicting Death, with the MNAR Right missing data mechanism (Aim 1 – Composite 
Level) 
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4.3.2 Outcome 2: Total Charges 

As mentioned in Section 4.2.2, in the full dataset, the SOFA score was 

predictive of total charges in the adjusted model (β 0.0255, SE 0.0051, p<0.0001). The 

four methods for handling missing data at the composite level for the outcome of death 

vary in their performance. The four methods for handling missing data at the composite 

level for the outcome of total charges vary in their performance as well. The coverage 

probability statistic for these methods at the various percentages of missingness are 

given in Figure 4.13. Multiple imputation produces results at all percentages of 

missingness that exceed 95%. Complete case analysis and median imputation produced 

similar results for MNAR middle, but the performance of these methods dropped below 

95% for MAR, MNAR left, and MNAR right. Zero imputation, the recommended 

method by the creators of the SOFA score, exhibited poor coverage regardless of 

missing data mechanism and percent missingness, with the only exception being the 

MNAR left mechanism at 10% missingness. 

The relative bias statistic for these methods at the various percentages of 

missingness are given in Figure 4.14 (MAR missing data mechanism), Figure 4.15 

(MNAR Left missing data mechanism), Figure 4.16 (MNAR Middle missing data 

mechanism), and Figure 4.17 (MNAR Right missing data mechanism). For the MAR 

missing data mechanism, both median imputation and zero imputation show increasing 

amounts of bias of the SOFA parameter estimates in the negative direction. Both 

complete case analysis and multiple imputation show relatively unbiased estimates of 

the SOFA parameter estimate, however the variance of these estimates increases as the 

percent of missing data increases, with complete case having consistently equal or 

greater variability across simulation runs than multiple imputation. This pattern of 
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increasing variance with increasing percent of missing data is the same for all missing 

data mechanisms (c.f. Figures 4.14 through 4.17).  

The efficiency statistic for these methods at increasing percentages of 

missingness are given in Figure 4.18 (MAR missing data mechanism), Figure 4.19 

(MNAR Left missing data mechanism), Figure 4.20 (MNAR Middle missing data 

mechanism), and Figure 4.21 (MNAR Right missing data mechanism). Figure 4.18 

shows that with the MAR missing data mechanism, efficiency rapidly increases—as 

does the spread of efficiency for all methods besides zero imputation, showing much 

larger variance in the SOFA parameter estimates in comparison to the true parameter 

estimates, and large change in variance across simulation runs (as demonstrated by the 

spread of these estimates). This pattern is repeated for all missing data mechanisms 

except for the MNAR middle mechanism (c.f. Figures 4.18 through 4.21).  

In contrast to the other methods, the efficiency rapidly decreases for the zero 

imputation method, with little variance in these estimates, across all missing data 

mechanisms (c.f. Figures 4.18 through 4.21). Across all of the missing data mechanisms 

and increasing percentages of missing data, MI shows good efficiency—near 1.0—for 

most of the simulation scenarios, albeit with increasing variance as the percentage of 

missing data increases. 
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Figure 4.13 Comparison of percent coverage of the 95% confidence interval for the 
parameter estimates of the SOFA score in the gamma-transformed log linked 
generalized linear model predicting Total Charges (Aim 1 – Composite Level) 
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Figure 4.14 Comparison of relative bias of parameter estimates of the SOFA score in 
the gamma-transformed log linked generalized linear model predicting Total Charges, 
with the MAR missing data mechanism (Aim 1 – Composite Level) 

 

Figure 4.15 Comparison of relative bias of parameter estimates of the SOFA score in 
the gamma-transformed log linked generalized linear model predicting Total Charges, 
with the MNAR Left missing data mechanism (Aim 1 – Composite Level) 
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Figure 4.16 Comparison of relative bias of parameter estimates of the SOFA score in 
the gamma-transformed log linked generalized linear model predicting Total Charges, 
with the MNAR Middle missing data mechanism (Aim 1 – Composite Level) 

 

Figure 4.17 Comparison of relative bias of parameter estimates of the SOFA score in 
the gamma-transformed log linked generalized linear model predicting Total Charges, 
with the MNAR Right missing data mechanism (Aim 1 – Composite Level) 
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Figure 4.18 Comparison of the efficiency of parameter estimates of the SOFA score in 
the gamma-transformed log linked generalized linear model predicting Total Charges, 
with the MAR missing data mechanism (Aim 1 – Composite Level) 

 

Figure 4.19 Comparison of the efficiency of parameter estimates of the SOFA score in 
the gamma-transformed log linked generalized linear model predicting Total Charges, 
with the MNAR Left missing data mechanism (Aim 1 – Composite Level) 
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Figure 4.20 Comparison of the efficiency of parameter estimates of the SOFA score in 
the gamma-transformed log linked generalized linear model predicting Total Charges, 
with the MNAR Middle missing data mechanism (Aim 1 – Composite Level) 

 

Figure 4.21 Comparison of the efficiency of parameter estimates of the SOFA score in 
the gamma-transformed log linked generalized linear model predicting Total Charges, 
with the MNAR Right missing data mechanism (Aim 1 – Composite Level) 
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4.3.3 Outcome 3: ICU Length of Stay 

As mentioned in Section 4.2.3, in the full dataset, the SOFA score was not 

predictive of ICU length of stay in the adjusted model (β 0.0081, SE 0.0053, p=0.1210). 

The four methods for handling missing data at the composite level for the outcome of 

ICU length of stay vary in their performance as well, as they did for the previous 

outcomes. The coverage probability statistic for these methods at the various 

percentages of missingness are given in Figure 4.22. Multiple imputation produced 

results at all percentages of missingness that exceed 95%. Complete case analysis and 

median imputation produced similar results for MNAR middle, but the performance of 

these methods dropped below 95% for MAR, MNAR left, and MNAR right. Zero 

imputation, the recommended method by the creators of the SOFA score, exhibited poor 

coverage for all missing data mechanisms and percent missingness, with the only 

exception being the MNAR left mechanism. 

The relative bias statistic for these methods at the various percentages of 

missingness are given in Figure 4.23 (MAR missing data mechanism), Figure 4.24 

(MNAR Left missing data mechanism), Figure 4.25 (MNAR Middle missing data 

mechanism), and Figure 4.26 (MNAR Right missing data mechanism). For the MAR 

missing data mechanism, both median imputation and zero imputation show increasing 

amounts of bias of the SOFA parameter estimates in the negative direction. Both 

complete case analysis and multiple imputation show relatively unbiased estimates of 

the SOFA parameter estimate, however the variance of these estimates increases as the 

percent of missing data increases; moreover, the variance of the relative bias on the 

multiple imputation estimates is smaller than those of the complete case analysis 

missing data method. This pattern of increasing variance with increasing percent of 
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missing data is the same for all missing data mechanisms (c.f. Figures 4.23 through 

4.26).  

The efficiency statistic for these methods at increasing percentages of 

missingness are given in Figure 4.27 (MAR missing data mechanism), Figure 4.28 

(MNAR Left missing data mechanism), Figure 4.29 (MNAR Middle missing data 

mechanism), and Figure 4.30 (MNAR Right missing data mechanism). Figure 4.27 

shows that with the MAR missing data mechanism, efficiency rapidly increases—as 

does the spread of efficiency for all methods besides zero imputation and multiple 

imputation, showing much larger variance in the SOFA parameter estimates in 

comparison to the true parameter estimates, and large change in variance across 

simulation runs (as demonstrated by the spread of these estimates). This pattern is 

repeated for all missing data mechanisms except for the MNAR middle mechanism (c.f. 

Figures 4.27 through 4.30).  

In contrast to the other methods, the efficiency rapidly decreases for the zero 

imputation method, with little variance in these estimates, across all missing data 

mechanisms except for MNAR Right (c.f. Figures 4.27 through 4.30). Across all of the 

missing data mechanisms and increasing percentages of missing data, MI shows good 

efficiency—near 1.0—for most of the simulation scenarios, albeit with increasing 

variance as the percentage of missing data increases. 
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Figure 4.22 Comparison of percent coverage of the 95% confidence interval for the 
parameter estimates of the SOFA score in the negative binomial generalized linear 
model predicting ICU Length of Stay (Aim 1 – Composite Level) 
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Figure 4.23 Comparison of relative bias of parameter estimates of the SOFA score in 
the negative binomial generalized linear model predicting ICU Length of Stay, with the 
MAR missing data mechanism (Aim 1 – Composite Level) 

 

Figure 4.24 Comparison of relative bias of parameter estimates of the SOFA score in 
the negative binomial generalized linear model predicting ICU Length of Stay, with the 
MNAR Left missing data mechanism (Aim 1 – Composite Level) 
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Figure 4.25 Comparison of relative bias of parameter estimates of the SOFA score in 
the negative binomial generalized linear model predicting ICU Length of Stay, with the 
MNAR Middle missing data mechanism (Aim 1 – Composite Level) 

 

Figure 4.26 Comparison of relative bias of parameter estimates of the SOFA score in 
the negative binomial generalized linear model predicting ICU Length of Stay, with the 
MNAR Right missing data mechanism (Aim 1 – Composite Level) 
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Figure 4.27 Comparison of the efficiency of parameter estimates of the SOFA score in 
the negative binomial generalized linear model predicting ICU Length of Stay, with the 
MAR missing data mechanism (Aim 1 – Composite Level) 

 

Figure 4.28 Comparison of the efficiency of parameter estimates of the SOFA score in 
the negative binomial generalized linear model predicting ICU Length of Stay, with the 
MNAR Left missing data mechanism (Aim 1 – Composite Level) 
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Figure 4.29 Comparison of the efficiency of parameter estimates of the SOFA score in 
the negative binomial generalized linear model predicting ICU Length of Stay, with the 
MNAR Middle missing data mechanism (Aim 1 – Composite Level) 

 

Figure 4.30 Comparison of the efficiency of parameter estimates of the SOFA score in 
the negative binomial generalized linear model predicting ICU Length of Stay, with the 
MNAR Right missing data mechanism (Aim 1 – Composite Level) 
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4.4 Aim 2 – Results  

As with Aim 1, these simulation runs were compared using three summary test 

statistics, yielding the properties of the performance of each of the missing data methods 

examined. As previously mentioned in Section 3.8.6–Assessment of Simulation, these 

three statistics are (1) relative bias, (2) efficiency, and (3) coverage probability.  

4.4.1 Outcome 1: Death 

As mentioned in Section 4.2.1, in the full dataset, the SOFA score was 

predictive of death in the adjusted model (OR 1.205, 95% CI 1.174-1.237, p<0.0001). 

The four methods for handling missing data at the composite level for the outcome of 

death vary in their performance. The four methods for handling missing data at the 

component level for the outcome of death vary in their performance, as they did at the 

composite level (Aim 1). The coverage probability statistic for these methods at the 

various percentages of missingness are given in Figure 4.31. Complete case analysis as 

well as multiple imputation produce results at all percentages of missingness that exceed 

95%. Median imputation falls below 95% coverage only for the MAR missing data 

mechanism at 40% missingness. Zero imputation, the recommended method by the 

creators of the SOFA score, exhibits poor coverage at 20% or greater missingness with 

the MAR missing data mechanism, and at 40% missingness with the MNAR left and 

MNAR right missing data mechanisms. 

The relative bias statistic for these methods at the various percentages of 

missingness are given in Figure 4.32 (MAR missing data mechanism), Figure 4.33 

(MNAR Left missing data mechanism), Figure 4.34 (MNAR Middle missing data 

mechanism), and Figure 4.35 (MNAR Right missing data mechanism). For the MAR 

missing data mechanism, both median imputation and zero imputation show increasing 
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amounts of bias of the SOFA parameter estimates in the negative direction, with zero 

imputation exhibiting larger amounts of bias. Both complete case analysis and multiple 

imputation show relatively unbiased estimates of the SOFA parameter estimate, 

however the variance of these estimates increases as the percentage of missing data 

increases. This pattern of increasing variance with increasing percent of missing data is 

the same for all missing data mechanisms (c.f. Figures 4.32 through 4.35).  

The efficiency statistic for these methods at increasing percentages of 

missingness are given in Figure 4.36 (MAR missing data mechanism), Figure 4.37 

(MNAR Left missing data mechanism), Figure 4.38 (MNAR Middle missing data 

mechanism), and Figure 4.39 (MNAR Right missing data mechanism). With all of the 

missing data mechanisms and at increasing percentages of missingness, the efficiency of 

the complete case method’s parameter estimates rapidly increases, far outpacing the 

efficiency growth of the other missing data methods (c.f. Figures 4.36 through 4.39). For 

the other three missing data methods at increasing percentages of missingness, the 

efficiency stays closer to zero—although the effect is somewhat distorted in these 

figures, due to scaling.  
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Figure 4.31 Comparison of percent coverage of the 95% confidence interval for the 
parameter estimates of the SOFA score in the logistic regression model predicting Death 
(Aim 2 – Component Level) 
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Figure 4.32 Comparison of relative bias of parameter estimates of the SOFA score 
among the methods for handling missingness at the composite-level in the logistic 
regression model predicting Death, with the MAR missing data mechanism (Aim 2 – 
Component Level) 

 

Figure 4.33 Comparison of relative bias of parameter estimates of the SOFA score 
among the methods for handling missingness at the composite-level in the logistic 
regression model predicting Death, with the MNAR Left missing data mechanism (Aim 2 
– Component Level) 
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Figure 4.34 Comparison of relative bias of parameter estimates of the SOFA score 
among the methods for handling missingness at the composite-level in the logistic 
regression model predicting Death, with the MNAR Middle missing data mechanism 
(Aim 2 – Component Level) 

 

Figure 4.35 Comparison of relative bias of parameter estimates of the SOFA score 
among the methods for handling missingness at the composite-level in the logistic 
regression model predicting Death, with the MNAR Right missing data mechanism (Aim 
2 – Component Level) 
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Figure 4.36 Comparison of the efficiency of parameter estimates of the SOFA score 
among the methods for handling missingness at the composite-level in the logistic 
regression model predicting Death, with the MAR missing data mechanism (Aim 2 – 
Component Level) 

 

Figure 4.37 Comparison of the efficiency of parameter estimates of the SOFA score 
among the methods for handling missingness at the composite-level in the logistic 
regression model predicting Death, with the MNAR Left missing data mechanism (Aim 2 
– Component Level) 
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Figure 4.38 Comparison of the efficiency of parameter estimates of the SOFA score 
among the methods for handling missingness at the composite-level in the logistic 
regression model predicting Death, with the MNAR Middle missing data mechanism 
(Aim 2 – Component Level) 

 

Figure 4.39 Comparison of the efficiency of parameter estimates of the SOFA score 
among the methods for handling missingness at the composite-level in the logistic 
regression model predicting Death, with the MNAR Right missing data mechanism (Aim 
2 – Component Level) 
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4.4.2 Outcome 2: Total Charges 

As mentioned in Section 4.2.2, in the full dataset, the SOFA score was 

predictive of total charges in the adjusted model (β 0.0255, SE 0.0051, p<0.0001). The 

four methods for handling missing data at the component level for the outcome of total 

charges vary in their performance as well, as they did at the composite level (Aim 1). 

However, the performance for this outcome of handling missing data at the component 

level (Aim 2) is overall improved over handling missing data at the composite level 

(Aim 1). The coverage probability statistic for these methods at the various percentages 

of missingness are given in Figure 4.40. Multiple imputation produced results at all 

percentages of missingness that exceed 95%. Complete case analysis and median 

imputation produced similar results for MNAR middle, but the performance of these 

methods dropped below 95% for MAR, MNAR left, and MNAR right. Zero imputation, 

the recommended method by the creators of the SOFA score, exhibited poor coverage 

only for the MAR mechanism at 20% or greater missingness. 

The relative bias statistic for these methods at the various percentages of 

missingness are given in Figure 4.41 (MAR missing data mechanism), Figure 4.42 

(MNAR Left missing data mechanism), Figure 4.43 (MNAR Middle missing data 

mechanism), and Figure 4.44 (MNAR Right missing data mechanism). For the MAR 

missing data mechanism, both median imputation and zero imputation show increasing 

amounts of bias of the SOFA parameter estimates in the negative direction. Both 

complete case analysis and multiple imputation show relatively unbiased estimates of 

the SOFA parameter estimate, however the variance of these estimates increases as the 

percent of missing data increases, with complete cases being consistently more variable 

than multiple imputation. However, while the pattern of increasing variance with 
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increasing percent of missing data is the same for all MNAR missing data 

mechanisms—MNAR left, MNAR middle, and MNAR right (c.f. Figure 4.42, Figure 

4.43, and Figure 4.44, respectively)—most of the methods yielded results that had little 

or moderate bias.  

The efficiency statistic for these methods at increasing percentages of 

missingness are given in Figure 4.45 (MAR missing data mechanism), Figure 4.46 

(MNAR Left missing data mechanism), Figure 4.47 (MNAR Middle missing data 

mechanism), and Figure 4.48 (MNAR Right missing data mechanism). These figures 

show that with all missing data mechanisms, efficiency rapidly increases—as does the 

spread of efficiency for the complete case method, showing much larger variance in the 

SOFA parameter estimates in comparison to the true parameter estimates, and large 

change in variance across simulation runs (as demonstrated by the spread of these 

estimates). Similarly, efficiency for the zero imputation method moved away from 1.0 

(fully-efficient) as function of increasing percentages of missingness in the negative 

direction for MNAR left (c.f. Figure 4.46) and MNAR middle (c.f. Figure 4.47), but in 

the positive direction for MNAR right (c.f. Figure 4.48). Across all of the missing data 

mechanisms and increasing percentages of missing data, median imputation and MI 

shows good efficiency—near 1.0—for most of the simulation scenarios, albeit with 

increasing variance as the percentage of missing data increases.  
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Figure 4.40 Comparison of percent coverage of the 95% confidence interval for the 
parameter estimates of the SOFA score in the gamma-transformed log linked 
generalized linear model predicting Total Charges (Aim 2 – Component Level) 
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Figure 4.41 Comparison of relative bias of parameter estimates of the SOFA in the 
gamma-transformed log linked generalized linear model predicting Total Charges, with 
the MAR missing data mechanism (Aim 2 – Component Level) 

 

Figure 4.42 Comparison of relative bias of parameter estimates of the SOFA in the 
gamma-transformed log linked generalized linear model predicting Total Charges, with 
the MNAR Left missing data mechanism (Aim 2 – Component Level) 

 



 

127 

 

Figure 4.43 Comparison of relative bias of parameter estimates of the SOFA in the 
gamma-transformed log linked generalized linear model predicting Total Charges, with 
the MNAR Middle missing data mechanism (Aim 2 – Component Level) 

 

Figure 4.44 Comparison of relative bias of parameter estimates of the SOFA in the 
gamma-transformed log linked generalized linear model predicting Total Charges, with 
the MNAR Right missing data mechanism (Aim 2 – Component Level) 
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Figure 4.45 Comparison of the efficiency of parameter estimates of the SOFA score in 
the gamma-transformed log linked generalized linear model predicting Total Charges, 
with the MAR missing data mechanism (Aim 2 – Component Level) 

 

Figure 4.46 Comparison of the efficiency of parameter estimates of the SOFA score in 
the gamma-transformed log linked generalized linear model predicting Total Charges, 
with the MNAR Left missing data mechanism (Aim 2 – Component Level) 
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Figure 4.47 Comparison of the efficiency of parameter estimates of the SOFA score in 
the gamma-transformed log linked generalized linear model predicting Total Charges, 
with the MNAR Middle missing data mechanism (Aim 2 – Component Level) 

 

Figure 4.48 Comparison of the efficiency of parameter estimates of the SOFA score in 
the gamma-transformed log linked generalized linear model predicting Total Charges, 
with the MNAR Right missing data mechanism (Aim 2 – Component Level) 
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4.4.3 Outcome 3: ICU Length of Stay 

As mentioned in Section 4.2.3, in the full dataset, the SOFA score was not 

predictive of ICU length of stay in the adjusted model (β 0.0081, SE 0.0053, p=0.1210). 

The four methods for handling missing data at the component level for the outcome of 

ICU length of stay vary in their performance as well, as they did at the composite level 

(Aim 1). The coverage probability statistic for these methods at the various percentages 

of missingness are given in Figure 4.49. Multiple imputation produced results at all 

percentages of missingness that exceed 95%. Coverage using the complete case analysis 

method dropped below 95% at 40% missingness for all missing data mechanisms except 

MNAR middle. Median imputation had coverage for all methods except for MAR at 

40% missingness. Zero imputation, the recommended method by the creators of the 

SOFA score, exhibited poor coverage at 20% and greater missingness for the MAR 

mechanism. 

The relative bias statistic for these methods at the various percentages of 

missingness are given in Figure 4.50 (MAR missing data mechanism), Figure 4.51 

(MNAR Left missing data mechanism), Figure 4.52 (MNAR Middle missing data 

mechanism), and Figure 4.53 (MNAR Right missing data mechanism). For the MAR 

missing data mechanism, both median imputation and zero imputation show increasing 

amounts of bias of the SOFA parameter estimates in the negative direction, however the 

bias was not enough to affect coverage rates (c.f. Figure 4.49). Both complete case 

analysis and multiple imputation show relatively unbiased estimates of the SOFA 

parameter estimate, however the variance of these estimates increases as the percent of 

missing data increases; moreover, the variance of the relative bias on the multiple 

imputation estimates is smaller than those of the complete case analysis missing data 
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method. This pattern of increasing variance with increasing percent of missing data is 

the same for all missing data mechanisms (c.f. Figures 4.50 through 4.53).  

The efficiency statistic for these methods at increasing percentages of 

missingness are given in Figure 4.54 (MAR missing data mechanism), Figure 4.55 

(MNAR Left missing data mechanism), Figure 4.56 (MNAR Middle missing data 

mechanism), and Figure 4.57 (MNAR Right missing data mechanism).  

These figures show that with all missing data mechanisms, efficiency rapidly 

increases—as does the spread of efficiency for the complete case method, showing 

much larger variance in the SOFA parameter estimates in comparison to the true 

parameter estimates, and large change in variance across simulation runs (as 

demonstrated by the spread of these estimates). Similarly, efficiency for the zero 

imputation method moved away from 1.0 (fully-efficient) as function of increasing 

percentages of missingness in the negative direction for MNAR left (c.f. Figure 4.55) 

and MNAR middle (c.f. Figure 4.56), but in the positive direction for MNAR right (c.f. 

Figure 4.57). Across all of the missing data mechanisms and increasing percentages of 

missing data, median imputation and MI shows good efficiency—near 1.0—for most of 

the simulation scenarios, albeit with increasing variance as the percentage of missing 

data increases. 
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Figure 4.49 Comparison of percent coverage of the 95% confidence interval for the 
parameter estimates of the SOFA score in the negative binomial generalized linear 
model predicting ICU Length of Stay (Aim 2 – Component Level) 
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Figure 4.50 Comparison of relative bias of parameter estimates of the SOFA score in 
the negative binomial generalized linear model predicting ICU Length of Stay, with the 
MAR missing data mechanism (Aim 2 – Component Level) 

 

Figure 4.51 Comparison of relative bias of parameter estimates of the SOFA score in 
the negative binomial generalized linear model predicting ICU Length of Stay, with the 
MNAR Left missing data mechanism (Aim 2 – Component Level) 
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Figure 4.52 Comparison of relative bias of parameter estimates of the SOFA score in 
the negative binomial generalized linear model predicting ICU Length of Stay, with the 
MNAR Middle missing data mechanism (Aim 2 – Component Level) 

 

Figure 4.53 Comparison of relative bias of parameter estimates of the SOFA score in 
the negative binomial generalized linear model predicting ICU Length of Stay, with the 
MNAR Right missing data mechanism (Aim 2 – Component Level) 
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Figure 4.54 Comparison of the efficiency of parameter estimates of the SOFA score in 
the negative binomial generalized linear model predicting ICU Length of Stay, with the 
MAR missing data mechanism (Aim 2 – Component Level) 

 

Figure 4.55 Comparison of the efficiency of parameter estimates of the SOFA score in 
the negative binomial generalized linear model predicting ICU Length of Stay, with the 
MNAR Left missing data mechanism (Aim 2 – Component Level) 
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Figure 4.56 Comparison of the efficiency of parameter estimates of the SOFA score in 
the negative binomial generalized linear model predicting ICU Length of Stay, with the 
MNAR Middle missing data mechanism (Aim 2 – Component Level) 

 

Figure 4.57 Comparison of the efficiency of parameter estimates of the SOFA score in 
the negative binomial generalized linear model predicting ICU Length of Stay, with the 
MNAR Right missing data mechanism (Aim 2 – Component Level) 
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4.5 Summary and Comparison of Results 

 This chapter examined the effects of missing SOFA scores at increasing 

percentages of missingness (γ = 10%, 20%, 30%, 40%), under four different missing 

data mechanism scenarios (MAR, MNAR Left, MNAR Middle, MNAR Right) for three 

different outcomes (Death, Total charges, ICU LOS), to help researchers understand the 

effects of methodological choice of method for handling missing data. From the 

complete dataset (n=1,930) simple random sampling from the dataset, with replacement, 

were made (n=1,000). From this dataset parameter estimates were calculated, then 

missingness was imposed at the given percent of missing data and under the assigned 

missing data mechanism. The four missing data methods were then applied to this 

dataset; handling of the missing data was accomplished at the composite level (Aim 1) 

and the component level (Aim 2). Finally, analyses for the three outcomes were 

conducted. Results from these analyses of the sampled datasets were compared to those 

from the complete data.  

Overall, for most of the methods studied herein, bias for the SOFA score 

parameter estimates tended to increase with increasing levels of missingness, as 

measured by the relative bias statistic. Similarly, the variance of these estimates also 

tended to increase with increasing levels of missingness, as measured by the efficiency 

statistic. Finally, coverage probability for the SOFA score tended to decrease with 

increasing levels of missingness—indicating a higher than expected Type-I error rate. 

However, ceteris paribus, handling missing data at the component level (Aim 2) 

generally yielded better results than handing missing data at the composite level (Aim 

1). Therefore, it is prudent to examine how each of the strategies—composite versus 

component level—fared by outcome studied. 
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Regarding the outcome of death in the full dataset, mentioned in Section 4.2.1, 

the SOFA score was predictive in the adjusted model (OR 1.205, 95% CI 1.174-1.237, 

p<0.0001). Handling missingness at both the composite and component levels at all 

percentages of missingness was good for both complete case analysis and multiple 

imputation methods. Using zero imputation at the composite level (at all percentages of 

missingness) and the component level (above γ = 20% under MAR; above γ = 30% 

under MNAR Left and MNAR Middle) results in poor coverage and increasing amounts 

of bias in the parameter estimates. 

Regarding the outcome of total charges in the full dataset, mentioned in Section 

4.2.2, the SOFA score was predictive in the adjusted model (β 0.0255, SE 0.0051, 

p<0.0001). Handling missingness at both the composite and component levels was good 

for complete case analysis (at or below γ = 30%) and multiple imputation (at all 

percentages of missingness). Using zero imputation at the composite level (above γ = 

10% under MNAR Left; at all missingness levels under other missing data mechanisms) 

and the component level (above γ = 10% under MAR) results in poor coverage and 

increasing amounts of bias in the parameter estimates. 

Regarding the outcome of ICU length of stay in the full dataset, mentioned in 

Section 4.2.3, the SOFA score was not predictive in the adjusted model (β 0.0081, SE 

0.0053, p=0.1210). With that in mind, handling missingness at both the composite and 

component levels was good for complete case analysis (at or below γ = 30%) and 

multiple imputation (at all percentages of missingness). Using zero imputation at the 

composite level was poor under all missing data mechanisms, except for MNAR Left. 

Using zero imputation at the component level worked well under all the MNAR missing 

data mechanisms studied, and at MAR with γ = 10%.



 

 

5 DISCUSSION 

In December 2015, PCORI convened a workgroup to discuss missing data and data quality 

for research using electronic medical records and claims data—identifying problems, highlighting 

current solutions to some of those problems, and suggesting areas for future research [132]. One 

identified need was for more research to understand the effects of various amounts of missing 

data, whether the results would be significantly altered by the amount of missing data. Another 

need was to understand which covariates experience missingness, what the mechanism for 

missingness is (e.g. MAR), and whether simulations could be used to learn more about these 

covariates and the impact of missing data. Finally, the PCORI workgroup asserted one of the next 

steps would be to bring researchers who have experienced success in handling missing data in 

EMR studies with researchers who are new to EMR studies to help disseminate this knowledge. 

This study has sought to provide evidence in regards to missingness in the SOFA score within 

electronic medical records.  

5.1 Integration of Findings 

The SOFA score is a physiology-based severity of illness score that measures organ 

derangement in six systems, and is often used in outcomes studies of ICU-treated conditions as a 

predictor or severity adjustment variable. Severity of illness scores (e.g. SOFA score) differ from 

comorbidity scores (e.g. Charlson or Elixhauser indices) in that they measure physiological 

derangement—using clinical and laboratory data—rather than presence or absence of comorbid 

conditions. As such, severity of illness and comorbidity scores are used in two different manners 

for risk adjustment, with one adjusting for baseline health (i.e. chronic health) and the other 

adjusting for severity of illness (i.e. acute health). Therefore, when available, the prudent 

researcher ought to use physiology-based severity of illness scores in addition to comorbidity 

scores for baseline risk adjustment. However, when a researcher is unable to calculate a 



 

140 

 

physiology-based severity of illness score, such as the SOFA score, methodological choices for 

handling (or ignoring) these missing scores must be made. 

This dissertation has examined four techniques for handling missing data for SOFA 

scores: (1) complete case analysis, (2) median imputation, (3) zero imputation, and (4) Multiple 

Imputation through Chained Equations (MICE)—a technique that is readily available in the three 

most common statistical software packages used by applied researchers (SAS, SPSS, and Stata). 

These techniques have been applied using two approaches, both at the composite level (in support 

of Aim 1) and at the component level (in support of Aim 2). These techniques were examined 

using increasing percentages of missingness (γ = 10%, 20%, 30%, 40%), under four different 

missing data mechanism scenarios (MAR, MNAR Left, MNAR Middle, MNAR Right) for three 

different outcomes (death, total charges, and ICU length of stay), to help researchers understand 

the effects of methodological choice for handling missing data. 

Overall, methods for handling missing data at the component level resulted in superior 

parameter estimates than handling at the composite level for all methods other than MICE. 

Multivariate Imputation through Chained Equations, however, had equally good results handling 

at both the composite and component levels; MICE was demonstrated to be an excellent method 

for modeling all of the data within the dataset, yielding parameter estimates with excellent 

coverage, little to no bias, and good efficiency. The value of using an MI approach, of which 

MICE is but one choice among many, over other approaches tested herein should be discussed. 

While in many of the simulations complete case analysis (CCA) resulted in unbiased 

estimates of the SOFA parameter for many of the outcomes tested, one could see that the 

precision of the estimate decreased across simulations. Further, the sample size is decreased with 

this method—yielding lower powered estimates of effect size, and possibly biased estimates of 

treatment effect and invalid statistical inference due to increased variation. The ramification of a 
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lower powered study, even when using big data such as in EHR studies, is that the likelihood of 

committing a Type II error increases—especially when studying a rare outcome.   

Median imputation occasionally performed well, however it often resulted in biased 

estimates and confidence intervals that belied the true certainty around the estimate given the 

percent of missing data. It is no wonder this method has been rejected by Rubin as being 

unacceptable for research [113], and has been repeatedly shown in studies to introduce 

unacceptable bias and over-precise confidence intervals [114], as has been shown again in this 

study. 

The multiple imputation technique of MICE was investigated for its performance. 

Multiple imputation by chained equations (MICE) demonstrated excellent statistical qualities. In 

comparison, two of the alternatives tested herein—median and zero imputation, both 

deterministic imputation techniques—yielded tighter confidence intervals than they should due to 

lack of accounting for the missing data. Conversely, multiple imputation techniques create 

multiple datasets which Rubin (1987, p. 2) described as “representing a distribution of 

possibilities” [98]. As previously stated, the goal of multiple imputation is not to make up data, 

but rather to allow all the data that are present to be used in analyses to achieve valid statistical 

inference, not perfect point prediction [113].  

Finally, and perhaps most importantly, the research conducted herein directly examined 

the SOFA score creators’ recommendations on handling missing SOFA score data. According to 

the Sepsis-3 consensus paper, the baseline SOFA score—which is calculated upon admission to a 

critical care unit—should be assumed to be zero, unless the patient has a known organ 

dysfunction [65]. While this may work within the clinical setting, later down the road when 

research is being conducted such an assertion deserves investigation, as an important 

methodological choice is being made. In this study, we have demonstrated that zero imputation 
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results in biased estimates in nearly all of the scenarios examined, yielding estimates that were 

biased in the negative direction. Because of this, it is the recommendation of this study that zero 

imputation not be used as a methodological approach for handling missing SOFA scores.  

As an alternative, a multiple imputation approach should be considered because of its 

demonstrated performance; MICE resulted in strong coverage, almost always containing the true 

parameter estimate, and little bias in most of the scenarios tested in this Monte Carlo simulation 

study. After proper investigation into potential missing data mechanisms—which will ultimately 

inform any missing data method—the researcher should opt to use a multiple imputation 

technique, such as MICE, at either the component or composite level. Consideration should be 

given to using MI at the composite level, as this can save complexity in statistical programming. 

Regarding MI methods, MICE in particular should be given special consideration when handling 

missingness at the component level, as this method does not require the specification of a joint 

model for all missing variables, but rather as many conditional distributions as there are missing 

variables. Moreover, when imputing at the component level for a multiple-item instrument, MICE 

has appealing qualities—such as not requiring the researcher to specify the scale structure, nor the 

numbers of factors, and does not assume conditional independence of scale items [157].  

5.2 Limitations 

This research used data from one academic medical center in the Southeastern United 

States in Charleston, South Carolina. Further, by nature of the study design of requiring a starting 

point of a complete dataset, the present study was only able to use those observations for which 

complete SOFA scores could be calculated. Resultantly, at least three limitation arise.  

The first limitation is that the overall percentage of missingness in this dataset was 49.1%, 

with a missing data mechanism believed to be MNAR Left, where lower SOFA scores (those who 

have lower amounts of organ derangement, and are therefore expected to have a better prognosis, 
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shorter length of stay, and lower charges) were more likely to be missing. This could have an 

effect on the interpretation of these results, as patient admissions to the ICU who had little to no 

organ derangement are under-represented in this study—which leads to another limitation. 

The second limitation is in the distribution of the observed SOFA scores within our data. 

Notwithstanding the aforementioned likely mechanism of higher probability of missing SOFA 

scores in what is likely the lower end of the SOFA score range, the SOFA scores within our 

dataset did not span the full range of SOFA scores. The range of SOFA scores in our fully-

observed dataset ranged from 0 to 22, whereas the full range of SOFA scores is 0 to 24. This 

limits generalizability to the very highest SOFA scores, as they were not available in our data. 

However, it is not known from the literature the approximate percentage of patients within an 

ICU setting who would be expected to have the two highest SOFA scores (scores of 23 or 24) 

among patients with ventilator-dependent respiratory failure. If these highest scores are rare, then 

this limitation would be of less concern. 

The third, and final, limitation regards generalizability. This study was performed using 

data from one academic medical center in the Southeastern United States. Because of this, the 

performance of the missing data methods may vary based on patient characteristics, although this 

concern is minimal. This limitation shall be addressed in the following section. 

5.3 Future Research 

It is the goal of this author to replicate this study using a larger dataset, with ideally a 

smaller percent of missing data from which to sample for the Monte Carlo simulations. 

Additionally, is important to test the generalizability of this study’s findings, specifically 

geographic and historical transportability [158], to determine if these findings remain consistent 

in a different population of patients. The MIMIC-III (Medical Information Mart for Intensive 

Care) database seems like a viable choice for a replication study, as this database contains over 
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40,000 patient ICU stays at the Beth Israel Deaconess Medical Center (the academic affiliate of 

Harvard Medical School) in Boston, Massachusetts between 2001 and 2012 [159]. This source 

may be an excellent source for a replication study, as it contains rich, longitudinal EHR data 

including both in- and out-of-hospital mortality on a diverse and large population of ICU patients. 

Moreover, the data are provided free of charge to researchers worldwide. 

Results from this future study, if similar to the results found in the present study, could 

bolster the argument for the power of multiple imputation methods at the component level for 

handling large percentages of non-random missing SOFA score data in studies that use electronic 

health record data—for a variety of research, including quality improvement, comparative 

effectiveness research, and healthcare cost studies. Importantly, as the setting is in a markedly 

different geographical region (Northeast United States vs. Southern United States) on a more 

racially-diverse population, the generalizability of the findings from the current study could be 

tested. 
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Appendix A. Analytical approaches to missing data, search terms 

 

available case analysis missing 
complete case analysis missing at random 
dummy variable adjustment missing completely at random 
entropy balance missing data 
expectation maximization missing not at random 
expectation-maximization missing value 
FCS missing-at-random 
Fully Conditional Specification missing-completely-at-random 
Fully-Conditional Specification missingness 
Heckman missing-not-at-random 
hot deck MNAR 
hot-deck monotonic 
imputation multiple imputation 
incomplete data NMAR 
incomplete observations non informative missingness 
informative missingness noninformative missingness 
inverse probability weighting non-informative missingness 
IPW nonresponse 
last observation carried forward non-response 
LOCF pattern mixture 
Markov Chain Monte Carlo pattern mixture model 
Markov-Chain Monte Carlo pattern-mixture 
MCAR pattern-mixture model 
MCMC predictive mean matching 
mean imputation selection model 
median imputation  
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Appendix B. Performance of missing data methods, tables  

Table 18 Coverage of the 95% confidence interval for various missing data methods (Aim 1) 
   Missing Data Method 

Outcome Mechanism Gamma 
Complete 

Case Analysis 
Median 

Imputation 
Zero 

Imputation 
Multiple 

Imputation 
Death MAR 10 100 99.4 0 100 

20 99.9 57.6 0 100 
30 98.8 6.6 0 100 
40 95.4 0 0 99.5 

MNAR Left 10 100 100 33.4 100 
20 99.9 99.9 0 100 
30 100 99.2 0 100 
40 98.4 93.2 0 99.9 

MNAR Middle 10 100 100 1.0 100 
20 100 100 0 100 
30 100 100 0 100 
40 100 100 0 100 

MNAR Right 10 100 100 0 100 
20 100 90.9 0 100 
30 99.7 91.8 0 100 
40 98.9 68.6 0 100 

ICU Length of Stay MAR 10 100 100 0 100 
20 99.2 89.1 0 100 
30 95.7 48.4 0 100 
40 88.0 9.9 0 100 

MNAR Left 10 100 100 99.9 100 
20 99.9 99.6 98.8 100 
30 96.9 97.5 96.0 100 
40 85.1 85.6 96.0 100 

MNAR Middle 10 100 100 91.4 100 
20 100 100 74.0 100 
30 100 100 59.4 100 
40 100 100 42.2 100 

MNAR Right 10 100 100 87.9 100 
20 99.9 99.7 74.9 100 
30 96.2 96.9 68.6 100 
40 87.4 90.7 68.1 100 

Total Charges MAR 10 100 99.5 0 100 
20 98.4 92.3 0 100 
30 96.9 65.7 0 100 
40 90.4 26.4 0 100 

MNAR Left 10 100 100 97.2 100 
20 99.9 99.8 74.3 100 
30 99.0 99.6 49.4 100 
40 95.4 96.2 31.2 100 

MNAR Middle 10 100 100 68.3 100 
20 100 100 23.3 100 
30 100 100 11.3 100 
40 100 100 4.6 100 

MNAR Right 10 100 100 49.7 100 
20 99.7 98.6 21.0 100 
30 98.1 97.7 13.1 100 
40 94.4 95.0 6.0 100 
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Table 19 Coverage of the 95% confidence interval for various missing data methods (Aim 2) 
   Missing Data Method 

Outcome Mechanism Gamma 
Complete 

Case Analysis 
Median 

Imputation 
Zero 

Imputation 
Multiple 

Imputation 
Death MAR 10 100 100 100 100 

20 100 100 2.4 100 
30 98.0 99.9 0 100 
40 95.4 93.5 0 100 

MNAR Left 10 100 100 100 100 
20 100 100 100 100 
30 100 100 99.3 100 
40 99.3 100 86.4 100 

MNAR Middle 10 100 100 100 100 
20 100 100 100 100 
30 100 100 99.2 100 
40 100 100 93.8 100 

MNAR Right 10 100 100 100 100 
20 100 100 100 100 
30 99.8 100 100 100 
40 99.0 100 100 100 

ICU Length of Stay MAR 10 99.9 100 98.9 100 
20 99.1 100 14.7 100 
30 96.9 99.7 0 100 
40 89.1 89.1 0 100 

MNAR Left 10 100 100 100 100 
20 99.6 100 100 100 
30 97.5 100 100 100 
40 83.6 100 100 100 

MNAR Middle 10 100 100 100 100 
20 100 100 100 100 
30 100 100 100 100 
40 100 100 100 100 

MNAR Right 10 100 100 100 100 
20 99.6 100 100 100 
30 95.9 100 100 100 
40 85.8 100 99.9 100 

Total Charges MAR 10 99.9 100 99.6 100 
20 99.6 100 38.6 100 
30 96.0 100 0.3 100 
40 90.8 99.1 0 100 

MNAR Left 10 100 100 100 100 
20 99.8 100 100 100 
30 99.3 100 100 100 
40 95.6 100 100 100 

MNAR Middle 10 100 100 100 100 
20 100 100 100 100 
30 100 100 100 100 
40 100 100 99.9 100 

MNAR Right 10 100 100 100 100 
20 99.7 100 100 100 
30 97.6 100 99.9 100 

  40 92.5 100 100 100 
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Table 20 Relative bias for various missing data methods (Aim 1) 
   Missing Data Method 

Outcome Mechanism Gamma 
Complete 

Case Analysis 
Median 

Imputation 
Zero 

Imputation 
Multiple 

Imputation 
Death MAR 10 0.011 (0.265) -0.029 (0.108) -0.061 (0.372) -0.001 (0.045) 

20 0.027 (0.427) -0.050 (0.178) -0.086 (0.521) -0.002 (0.030) 
30 0.053 (0.657) -0.071 (0.242) -0.141 (0.585) 0.006 (0.042) 
40 0.084 (1.106) -0.079 (0.447) -0.248 (0.586) 0.007 (0.050) 

MNAR Left 10 -0.035 (0.187) 0.002 (0.070) -0.016 (0.093) -2.753 (0.027) 
20 -0.082 (0.298) 0.002 (0.127) -0.025 (0.119) 0.000 (0.016) 
30 -0.144 (0.407) 0.014 (0.170) -0.029 (0.136) -0.000 (0.017) 
40 -0.221 (0.564) 0.021 (0.251) -0.028 (0.134) -0.000 (0.022) 

MNAR Middle 10 0.004 (0.212) -0.002 (0.031) -0.030 (0.167) 0.001 (0.041) 
20 0.014 (0.306) -0.004 (0.042) -0.041 (0.229) 0.003 (0.024) 
30 0.027 (0.404) -0.005 (0.049) -0.046 (0.265) -0.002 (0.029) 
40 0.043 (0.507) -0.009 (0.055) -0.050 (0.289) -0.002 (0.034) 

MNAR Right 10 0.034 (0.232) -0.013 (0.105) -0.051 (0.297) -0.005 (0.067) 
20 0.092 (0.366) -0.030 (0.186) -0.061 (0.408) -0.006 (0.050) 
30 0.171 (0.528) -0.030 (0.221) -0.072 (0.456) 0.014 (0.064) 
40 0.300 (0.773) -0.052 (0.314) -0.079 (0.462) 0.016 (0.075) 

ICU Length 
of Stay 

MAR 10 0.013 (0.802) 0.002 (0.060) 0.004 (0.372) -0.000 (0.041) 
20 -0.022 (1.375) 0.002 (0.107) -0.038 (0.686) 0.001 (0.026) 
30 -0.119 (1.943) 0.003 (0.163) -0.087 (1.010) -0.000 (0.025) 
40 -0.384 (2.586) -0.001 (0.244) -0.220 (1.305) -0.001 (0.032) 

MNAR Left 10 0.010 (0.687) 0.001 (0.038) -0.000 (0.042) 0.002 (0.061) 
20 -0.012 (1.156) 0.001 (0.066) -0.000 (0.053) 0.006 (0.038) 
30 0.020 (1.549) 0.003 (0.079) -0.000 (0.052) -0.005 (0.044) 
40 0.027 (2.104) 0.003 (0.110) -0.000 (0.051) -0.003 (0.054) 

MNAR Middle 10 -0.003 (0.570) 0.000 (0.016) 0.000 (0.070) -0.008 (0.090) 
20 0.005 (0.872) 0.001 (0.025) 0.001 (0.091) -0.011 (0.070) 
30 0.017 (1.145) 0.002 (0.027) 0.002 (0.099) 0.025 (0.086) 
40 0.024 (1.433) 0.002 (0.033) -0.000 (0.128) 0.030 (0.094) 

MNAR Right 10 -0.019 (0.654) 0.000 (0.047) 0.001 (0.097) -0.000 (0.053) 
20 -0.072 (1.086) 0.001 (0.073) 0.001 (0.114) 0.002 (0.035) 
30 -0.080 (1.527) 0.000 (0.091) 0.000 (0.119) -0.002 (0.034) 
40 -0.156 (2.079) 0.004 (0.120) 0.002 (0.117) -0.002 (0.043) 

Total Charges MAR 10 -0.006 (0.437) 0.009 (0.076) 0.033 (0.243) 0.005 (0.076) 
20 -0.029 (0.717) 0.017 (0.120) 0.039 (0.425) 0.011 (0.049) 
30 -0.079 (0.948) 0.024 (0.158) 0.030 (0.621) -0.010 (0.057) 
40 -0.195 (1.215) 0.027 (0.187) -0.017 (0.801) -0.006 (0.068) 

MNAR Left 10 0.058 (0.365) 0.006 (0.046) 0.005 (0.074) -0.013 (0.113) 
20 0.155 (0.591) 0.013 (0.076) 0.009 (0.088) -0.018 (0.103) 
30 0.273 (0.841) 0.019 (0.089) 0.012 (0.095) 0.041 (0.112) 
40 0.454 (1.138) 0.026 (0.113) 0.014 (0.093) 0.051 (0.116) 

MNAR Middle 10 -0.023 (0.342) 0.002 (0.027) 0.013 (0.108) -0.000 (0.062) 
20 -0.053 (0.527) 0.005 (0.039) 0.022 (0.137) 0.003 (0.045) 
30 -0.121 (0.695) 0.008 (0.046) 0.027 (0.137) -0.003 (0.045) 
40 -0.174 (0.866) 0.011 (0.053) 0.030 (0.139) -0.003 (0.053) 

MNAR Right 10 -0.052 (0.365) 0.002 (0.072) 0.012 (0.164) 0.007 (0.090) 
20 -0.158 (0.597) 0.007 (0.116) 0.018 (0.188) 0.017 (0.063) 
30 -0.252 (0.817) 0.008 (0.133) 0.024 (0.195) -0.017 (0.069) 

  40 -0.429 (1.088) 0.018 (0.165) 0.029 (0.183) -0.011 (0.093) 
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Table 21 Relative bias for various missing data methods (Aim 2) 
   Missing Data Method 

Outcome Mechanism Gamma 
Complete 

Case Analysis 
Median 

Imputation 
Zero 

Imputation 
Multiple 

Imputation 
Death MAR 10 0.009 (0.258) -0.008 (0.040) -0.012 (0.084) -0.001 (0.025) 

20 0.028 (0.420) -0.015 (0.066) -0.023 (0.141) -0.002 (0.037) 
30 0.050 (0.658) -0.022 (0.085) -0.032 (0.199) -0.004 (0.049) 
40 0.060 (1.085) -0.027 (0.109) -0.038 (0.254) -0.004 (0.060) 

MNAR Left 10 -0.034 (0.183) -0.002 (0.016) -0.005 (0.033) 0.001 (0.018) 
20 -0.085 (0.291) -0.004 (0.025) -0.009 (0.046) 0.003 (0.027) 
30 -0.133 (0.406) -0.006 (0.032) -0.012 (0.056) 0.005 (0.035) 
40 -0.219 (0.552) -0.008 (0.037) -0.015 (0.061) 0.007 (0.042) 

MNAR Middle 10 0.004 (0.213) -0.004 (0.024) -0.007 (0.045) -0.001 (0.023) 
20 0.013 (0.312) -0.008 (0.035) -0.014 (0.067) -0.002 (0.034) 
30 0.022 (0.410) -0.011 (0.044) -0.018 (0.082) -0.002 (0.043) 
40 0.040 (0.490) -0.014 (0.051) -0.024 (0.094) -0.003 (0.051) 

MNAR Right 10 0.032 (0.229) -0.001 (0.035) -0.002 (0.055) -0.001 (0.026) 
20 0.097 (0.372) -0.004 (0.050) -0.005 (0.077) -0.002 (0.039) 
30 0.163 (0.548) -0.007 (0.061) -0.006 (0.091) -0.005 (0.048) 
40 0.319 (0.757) -0.008 (0.072) -0.004 (0.109) -0.007 (0.057) 

ICU Length 
of Stay 

MAR 10 -0.000 (0.812) 0.001 (0.031) 0.004 (0.087) -0.000 (0.015) 
20 -0.018 (1.418) 0.003 (0.060) 0.008 (0.181) -0.000 (0.023) 
30 -0.139 (1.949) 0.003 (0.092) 0.005 (0.270) -0.001 (0.031) 
40 -0.373 (2.621) 0.004 (0.123) 0.002 (0.350) -0.001 (0.038) 

MNAR Left 10 0.006 (0.664) 0.000 (0.009) -0.000 (0.015) 0.000 (0.010) 
20 0.016 (1.125) 0.000 (0.013) -0.000 (0.021) 9.358 (0.014) 
30 -0.001 (1.558) 0.000 (0.017) -0.000 (0.026) -6.661 (0.019) 
40 0.033 (2.073) 0.000 (0.019) -0.000 (0.027) -0.000 (0.021) 

MNAR Middle 10 -0.002 (0.552) 0.000 (0.011) 0.000 (0.021) 3.916 (0.010) 
20 -0.006 (0.870) 0.000 (0.017) 0.000 (0.033) -8.288 (0.016) 
30 0.020 (1.122) 0.000 (0.020) 0.001 (0.037) 0.000 (0.018) 
40 0.001 (1.412) 0.001 (0.024) 0.001 (0.048) -0.000 (0.022) 

MNAR Right 10 -0.019 (0.651) 0.000 (0.015) 0.000 (0.025) 6.951 (0.011) 
20 -0.064 (1.042) 0.000 (0.022) 0.000 (0.036) -0.000 (0.018) 
30 -0.094 (1.536) 0.000 (0.027) 0.001 (0.044) -0.000 (0.023) 
40 -0.139 (2.137) 0.000 (0.029) 0.001 (0.049) -5.602 (0.028) 

Total Charges MAR 10 -0.006 (0.452) 0.003 (0.035) 0.009 (0.070) 0.000 (0.023) 
20 -0.039 (0.702) 0.007 (0.053) 0.019 (0.114) 0.001 (0.034) 
30 -0.075 (0.962) 0.010 (0.071) 0.025 (0.163) 0.001 (0.042) 
40 -0.191 (1.218) 0.013 (0.091) 0.032 (0.211) 0.000 (0.052) 

MNAR Left 10 0.058 (0.356) 0.000 (0.013) -0.000 (0.024) 0.000 (0.015) 
20 0.158 (0.593) 0.001 (0.019) 0.000 (0.035) 0.000 (0.022) 
30 0.290 (0.851) 0.001 (0.024) 0.000 (0.041) 0.001 (0.028) 
40 0.456 (1.129) 0.002 (0.030) 0.001 (0.045) 0.001 (0.035) 

MNAR Middle 10 -0.021 (0.335) 0.000 (0.018) 0.000 (0.034) -0.000 (0.017) 
20 -0.065 (0.539) 0.001 (0.027) 0.004 (0.049) -0.001 (0.026) 
30 -0.099 (0.702) 0.001 (0.032) 0.005 (0.056) -0.002 (0.032) 
40 -0.187 (0.883) 0.002 (0.038) 0.008 (0.063) -0.003 (0.037) 

MNAR Right 10 -0.060 (0.379) 0.001 (0.025) 0.001 (0.041) 0.000 (0.019) 
20 -0.153 (0.601) 0.002 (0.037) 0.003 (0.060) 0.001 (0.029) 
30 -0.274 (0.850) 0.004 (0.043) 0.006 (0.069) 0.002 (0.037) 

  40 -0.419 (1.106) 0.006 (0.049) 0.008 (0.078) 0.003 (0.045) 
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Table 22 Efficiency for various missing data methods (Aim 1) 

   Missing Data Method 

Outcome Mechanism Gamma 
Complete 

Case Analysis 
Median 

Imputation 
Zero 

Imputation 
Multiple 

Imputation 
Death MAR 10 1.315 (0.070) 0.971 (0.014) 0.894 (0.023) 1.004 (0.010) 

20 1.856 (0.178) 0.946 (0.019) 0.889 (0.031) 1.009 (0.016) 
30 3.006 (0.516) 0.923 (0.023) 0.935 (0.037) 1.016 (0.024) 
40 6.860 (2.641) 0.890 (0.028) 1.082 (0.083) 1.025 (0.039) 

MNAR Left 10 1.212 (0.043) 0.991 (0.011) 0.980 (0.014) 1.003 (0.006) 
20 1.505 (0.085) 0.975 (0.017) 0.972 (0.016) 1.008 (0.010) 
30 1.923 (0.144) 0.969 (0.019) 0.970 (0.016) 1.013 (0.014) 
40 2.557 (0.242) 0.950 (0.023) 0.971 (0.016) 1.021 (0.021) 

MNAR Middle 10 1.242 (0.059) 0.998 (0.005) 0.963 (0.019) 1.004 (0.007) 
20 1.590 (0.110) 0.997 (0.006) 0.950 (0.022) 1.010 (0.011) 
30 2.115 (0.184) 0.996 (0.008) 0.943 (0.021) 1.016 (0.015) 
40 2.945 (0.288) 0.994 (0.008) 0.942 (0.021) 1.023 (0.019) 

MNAR Right 10 1.264 (0.057) 0.981 (0.016) 0.922 (0.024) 1.004 (0.010) 
20 1.660 (0.133) 0.955 (0.023) 0.896 (0.028) 1.009 (0.015) 
30 2.299 (0.326) 0.941 (0.026) 0.885 (0.028) 1.014 (0.020) 
40 3.470 (0.982) 0.913 (0.027) 0.890 (0.027) 1.017 (0.024) 

ICU Length of Stay MAR 10 1.271 (0.045) 1.000 (0.002) 0.989 (0.012) 1.000 (0.001) 
20 1.641 (0.095) 1.001 (0.004) 0.954 (0.021) 1.000 (0.002) 
30 2.112 (0.172) 1.000 (0.005) 0.888 (0.037) 1.001 (0.003) 
40 2.531 (0.318) 0.997 (0.007) 0.769 (0.052) 1.002 (0.004) 

MNAR Left 10 1.243 (0.038) 1.000 (0.001) 0.999 (0.002) 1.000 (0.000) 
20 1.595 (0.076) 1.001 (0.002) 1.000 (0.002) 1.000 (0.001) 
30 2.124 (0.159) 1.001 (0.003) 1.000 (0.002) 1.000 (0.002) 
40 2.947 (0.321) 1.001 (0.004) 1.000 (0.002) 1.001 (0.003) 

MNAR Middle 10 1.242 (0.046) 1.000 (0.000) 1.000 (0.003) 1.000 (0.000) 
20 1.590 (0.088) 1.000 (0.001) 1.000 (0.003) 1.000 (0.001) 
30 2.111 (0.141) 1.000 (0.001) 1.000 (0.004) 1.000 (0.001) 
40 2.925 (0.232) 1.000 (0.001) 1.000 (0.004) 1.000 (0.002) 

MNAR Right 10 1.225 (0.042) 1.000 (0.002) 0.999 (0.004) 1.000 (0.001) 
20 1.531 (0.087) 1.000 (0.003) 1.000 (0.005) 1.000 (0.001) 
30 1.970 (0.150) 0.999 (0.004) 1.000 (0.005) 1.000 (0.002) 
40 2.617 (0.253) 1.000 (0.005) 1.000 (0.005) 1.000 (0.002) 

Total Charges MAR 10 1.251 (0.045) 1.004 (0.005) 1.008 (0.012) 1.001 (0.003) 
20 1.593 (0.087) 1.007 (0.007) 0.991 (0.019) 1.003 (0.005) 
30 2.031 (0.153) 1.009 (0.008) 0.951 (0.032) 1.005 (0.006) 
40 2.485 (0.259) 1.010 (0.009) 0.879 (0.041) 1.008 (0.008) 

MNAR Left 10 1.242 (0.041) 1.001 (0.003) 1.000 (0.004) 1.000 (0.002) 
20 1.592 (0.080) 1.003 (0.005) 1.001 (0.005) 1.001 (0.003) 
30 2.121 (0.162) 1.005 (0.006) 1.001 (0.005) 1.003 (0.004) 
40 2.940 (0.340) 1.007 (0.008) 1.001 (0.004) 1.005 (0.006) 

MNAR Middle 10 1.241 (0.044) 1.000 (0.002) 1.003 (0.007) 1.000 (0.002) 
20 1.587 (0.084) 1.001 (0.002) 1.005 (0.007) 1.001 (0.003) 
30 2.104 (0.134) 1.001 (0.003) 1.006 (0.008) 1.002 (0.004) 
40 2.916 (0.224) 1.002 (0.003) 1.007 (0.008) 1.003 (0.005) 

MNAR Right 10 1.226 (0.042) 1.001 (0.005) 1.005 (0.010) 1.000 (0.002) 
20 1.535 (0.086) 1.003 (0.008) 1.007 (0.010) 1.001 (0.004) 
30 1.978 (0.145) 1.004 (0.009) 1.008 (0.011) 1.002 (0.005) 

  40 2.637 (0.257) 1.007 (0.010) 1.008 (0.010) 1.002 (0.006) 
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Table 23 Efficiency for various missing data methods (Aim 2) 
   Missing Data Method 

Outcome Mechanism Gamma 
Complete 

Case Analysis 
Median 

Imputation 
Zero 

Imputation 
Multiple 

Imputation 
Death MAR 10 1.314 (0.069) 1.272 (0.047) 1.251 (0.045) 0.989 (0.006) 

20 1.000 (0.001) 1.002 (0.002) 0.971 (0.008) 1.000 (0.002) 
30 1.004 (0.003) 1.002 (0.005) 1.000 (0.000) 1.000 (0.001) 
40 1.857 (0.173) 1.638 (0.095) 1.589 (0.088) 0.978 (0.008) 

MNAR Left 10 1.001 (0.002) 1.003 (0.003) 0.947 (0.012) 0.999 (0.005) 
20 1.008 (0.005) 1.004 (0.008) 1.000 (0.001) 1.000 (0.002) 
30 3.003 (0.531) 2.110 (0.175) 2.029 (0.156) 0.969 (0.010) 
40 1.001 (0.002) 1.005 (0.003) 0.929 (0.014) 0.996 (0.007) 

MNAR Middle 10 1.010 (0.007) 1.007 (0.011) 1.000 (0.001) 1.001 (0.003) 
20 6.811 (2.671) 2.534 (0.315) 2.491 (0.254) 0.960 (0.012) 
30 1.001 (0.003) 1.007 (0.004) 0.916 (0.017) 0.991 (0.009) 
40 1.010 (0.009) 1.009 (0.013) 1.000 (0.001) 1.001 (0.003) 

MNAR Right 10 1.212 (0.043) 1.244 (0.038) 1.244 (0.041) 0.998 (0.003) 
20 1.000 (0.000) 0.999 (0.000) 0.995 (0.006) 0.999 (0.000) 
30 0.999 (0.001) 1.001 (0.003) 1.000 (0.000) 1.000 (0.001) 
40 1.504 (0.086) 1.592 (0.075) 1.590 (0.081) 0.996 (0.004) 

ICU Length of Stay MAR 10 1.000 (0.000) 0.999 (0.001) 0.992 (0.007) 0.999 (0.001) 
20 0.999 (0.002) 1.002 (0.005) 1.000 (0.000) 1.000 (0.001) 
30 1.924 (0.151) 2.122 (0.152) 2.116 (0.158) 0.995 (0.006) 
40 1.000 (0.000) 0.999 (0.001) 0.990 (0.009) 0.999 (0.001) 

MNAR Left 10 0.999 (0.002) 1.003 (0.006) 1.000 (0.001) 1.000 (0.002) 
20 2.547 (0.231) 2.957 (0.319) 2.950 (0.338) 0.993 (0.006) 
30 1.000 (0.000) 0.999 (0.001) 0.988 (0.010) 0.999 (0.001) 
40 0.999 (0.002) 1.005 (0.007) 1.000 (0.001) 1.000 (0.002) 

MNAR Middle 10 1.241 (0.059) 1.242 (0.046) 1.242 (0.044) 0.997 (0.003) 
20 1.000 (0.000) 1.000 (0.001) 0.994 (0.007) 1.000 (0.000) 
30 1.000 (0.002) 1.000 (0.003) 1.000 (0.000) 1.000 (0.001) 
40 1.591 (0.102) 1.589 (0.086) 1.589 (0.081) 0.995 (0.005) 

MNAR Right 10 1.000 (0.000) 1.000 (0.001) 0.990 (0.010) 1.000 (0.001) 
20 1.000 (0.003) 1.000 (0.005) 1.000 (0.000) 1.000 (0.001) 
30 2.111 (0.179) 2.108 (0.147) 2.107 (0.141) 0.993 (0.006) 
40 1.000 (0.000) 1.000 (0.002) 0.987 (0.011) 1.000 (0.001) 

Total Charges MAR 10 1.001 (0.003) 1.000 (0.006) 1.000 (0.000) 1.000 (0.002) 
20 2.943 (0.293) 2.927 (0.231) 2.916 (0.221) 0.991 (0.007) 
30 1.000 (0.001) 1.000 (0.002) 0.985 (0.012) 1.000 (0.001) 
40 1.001 (0.003) 1.000 (0.008) 1.000 (0.001) 1.001 (0.002) 

MNAR Left 10 1.263 (0.056) 1.225 (0.043) 1.227 (0.042) 0.997 (0.006) 
20 1.000 (0.000) 1.000 (0.002) 0.994 (0.010) 1.000 (0.001) 
30 1.000 (0.003) 1.000 (0.005) 1.000 (0.000) 1.000 (0.001) 
40 1.661 (0.141) 1.535 (0.085) 1.535 (0.085) 0.993 (0.009) 

MNAR Middle 10 1.000 (0.001) 1.000 (0.002) 0.987 (0.014) 1.000 (0.001) 
20 1.001 (0.004) 1.001 (0.007) 1.000 (0.000) 1.001 (0.002) 
30 2.300 (0.335) 1.969 (0.150) 1.975 (0.147) 0.989 (0.010) 
40 1.000 (0.001) 1.001 (0.003) 0.982 (0.015) 1.000 (0.002) 

MNAR Right 10 1.002 (0.005) 1.000 (0.009) 1.000 (0.001) 1.002 (0.002) 
20 3.480 (0.935) 2.619 (0.252) 2.640 (0.254) 0.986 (0.012) 
30 1.000 (0.001) 1.001 (0.003) 0.978 (0.017) 1.000 (0.002) 

  40 1.003 (0.005) 1.001 (0.011) 1.000 (0.001) 1.002 (0.003) 
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Appendix C. Correlation table 
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Appendix D. Example SAS Code 

 

Missing data generation macro – MAR missing data mechanism 
 
This macro selects records based on the MAR missing data mechanism, whereby 75% of the γ% 
of observations are selected at random among patients who died during their admission and 25% 
of the γ% of observations are selected at random among patients whose Charlson comorbidity 
score is ≥ 2 and who survived the admission. A Charlson comorbidity score of 2 is the median 
value among patients who survived the admission. 
 
%macro mar(in=,out=,percent=); 
 data _NULL_; *** output the # obs to variable nrows; 
  if 0 then set &in nobs=n; 
  call symputx('nrows',n); 
  stop; 
 run; 
 %let n_SetMissing = %sysevalf(&nrows *  

(&percent/100),ceil);  
*round up to the nearest integer (e.g. 3.1 becomes 4); 

 %let n_SetMissing1 = %sysevalf(&n_SetMissing *  
0.75,ceil);  

*75% from Died=1; 
 
%let n_SetMissing2 = %sysevalf(&n_SetMissing –  

&n_SetMissing1,ceil);  
*25% from Died=0 and CharlsScore > 2; 

 
 data _temp1; 
  set &in; 
  where died=1; 
  prob_SOFA_miss = rand("normal",0,1); 
 run; 
 
 data _temp2; 
  set &in; 
  where died=0; 
  if CharlsScore > 2 then prob_SOFA_miss =  

rand("normal",0,1); 
   else prob_SOFA_miss = -9; 
 run; 
 
 proc sort data=_temp1; 
  by descending prob_SOFA_miss; 
 run; 
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 data _temp1; 
  set _temp1; 
  if _n_ <= &n_SetMissing1 then Selected=1; 
   else Selected=0; 
  drop prob_SOFA_miss; 
 run; 
 
 proc sort data=_temp2; 
  by descending prob_SOFA_miss; 
 run; 
 
 data _temp2; 
  set _temp2; 
  if _n_ <= &n_SetMissing2 then Selected=1; 
   else Selected=0; 
  drop prob_SOFA_miss; 
 run; 
 
 data &out; 
  set _temp1 _temp2; 
 run; 
 
 proc delete data=_temp1; run; 
 proc delete data=_temp2; run; 
 
%mend; 
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Missing data generation macro – MNAR missing data mechanism 
 
This macro selects records based on the MNAR missing data mechanism with 3 variants: MNAR 
Left, MNAR Middle, and MNAR Right. These 3 variants correspond to a missing data 
mechanism whereby SOFA scores in the left, middle, and right sides of the empirical SOFA 
distribution respectively are selected for deletion. 
 
/* Quantiles 
                              LEFT  MID   RIGHT 
       Scores  n      Rate  Rate  Rate 
  Q1:  0-5     469    52    00    00 
  Q2:  6-8     536    48    50    00 
  Q3:  9-11    428    00    50    48 
  Q4: 12-24    497    00    00    52 
 

Type= can be LEFT, MID, or RIGHT 
*/ 
 
%macro mnar(in=,out=,type=,percent=); 
 data _NULL_; *** output the # obs to variable nrows; 
  if 0 then set &in nobs=n; 
  call symputx('nrows',n); 
  stop; 
 run; 
 %let n_SetMissing = %sysevalf(&nrows *  

(&percent/100),ceil);  
 
 %if &type=LEFT %then %do; 
  %let Q1rate = 0.52; 
  %let Q2rate = 0.48; 
  %let n_Q1 = %sysevalf(&Q1rate * (&percent/100) *  

&nrows, ceil); 
  %let n_Q2 = %sysevalf(&Q2rate * (&percent/100) * 

&nrows, ceil); 
 
  proc surveyselect data=&in(where=(0<=SOFA<=5)) 
   out=mnar1 method=SRS outall 
   sampsize=&n_Q1 
   noprint; 
  run; 
  proc surveyselect data=&in(where=(6<=SOFA<=8)) 
   out=mnar2 method=SRS outall 
   sampsize=&n_Q2 
   noprint; 
  run; 
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  data mnar3; 
   set &in; 
   where SOFA>=9; 
   selected=0; 
  run; 
 %end; 
 
 %if &type=MID %then %do; 
  %let Q2rate = 0.50; 
  %let Q3rate = 0.50; 
  %let n_Q2 = %sysevalf(&Q2rate * (&percent/100) *  

&nrows, ceil); 
  %let n_Q3 = %sysevalf(&Q3rate * (&percent/100) *  

&nrows, ceil); 
 

  proc surveyselect data=&in(where=(6<=SOFA<=8)) 
   out=mnar1 method=SRS outall 
   sampsize=&n_Q2 
   noprint; 
  run; 
  proc surveyselect data=&in(where=(9<=SOFA<=11)) 
   out=mnar2 method=SRS outall 
   sampsize=&n_Q3 
   noprint; 
  run; 
  data mnar3; 
   set &in; 
   where (SOFA <= 5) or (SOFA >= 12); 
   selected=0; 
  run; 
 %end; 
 
 %if &type=RIGHT %then %do; 
  %let Q3rate = 0.48; 
  %let Q4rate = 0.52; 
  %let n_Q3 = %sysevalf(&Q3rate * (&percent/100) *  

&nrows, ceil); 
  %let n_Q4 = %sysevalf(&Q4rate * (&percent/100) *  

&nrows, ceil); 
 

  proc surveyselect data=&in(where=(9<=SOFA<=11)) 
   out=mnar1 method=SRS outall 
   sampsize=&n_Q3 
   noprint; 
  run; 
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  proc surveyselect data=&in(where=(12<=SOFA<=24)) 
   out=mnar2 method=SRS outall 
   sampsize=&n_Q4 
   noprint; 
  run; 
  data mnar3; 
   set &in; 
   where SOFA <= 8; 
   selected=0; 
  run; 
 %end; 
 
 data &out; 
  set mnar1 mnar2 mnar3; 
 run; 
 
 proc delete data=mnar1; run; 
 proc delete data=mnar2; run; 
 proc delete data=mnar3; run; 
 
%mend; 
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Multiple Imputation – Composite (Aim 1) 
 
proc mi data=&SimTable nimpute=25 out=temp_Method4; 
 by sim_run; 
 class Age_Group Male Race2 payor_group2;  

* Died should not be a class variable, per prior      
  literature; 

 var SOFA 
  Age_Group Male Race2 payor_group2 
  Died ICU_LOS TotalCharges       /* Outcomes */    
      SOFA_CNS SOFA_Coag SOFA_Hep SOFA_Ren SOFA_Resp   
          CharlsScore; 
 fcs reg(SOFA); 
 transform log(TotalCharges) log(ICU_LOS);  
 ods output ModelInfo=MI_Seeds1  

VarianceInfo=MI_Variance1  
ParameterEstimates=MI_Parms1; 

run; 
 
proc sql; 
 create index sim_mi on temp_Method4 (sim_run,  

_imputation_ ); 
quit; 
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Multiple Imputation – Component (Aim 2) 
 
proc mi data=&SimTable nimpute=25 out=temp_Method4; 
 by sim_run; 
 class Age_Group Male Race2 payor_group2;  
 var Age_Group Male Race2 payor_group2 
  Died ICU_LOS TotalCharges       /* Outcomes */ 
          SOFA_CNS SOFA_Card SOFA_Coag SOFA_Hep SOFA_Ren   
          SOFA_Resp CharlsScore; 
 fcs reg(SOFA_CNS SOFA_Card SOFA_Coag SOFA_Hep SOFA_Ren  
             SOFA_Resp); 
 transform log(TotalCharges) log(ICU_LOS);  
 ods output ModelInfo=MI_Seeds1  

VarianceInfo=MI_Variance1  
ParameterEstimates=MI_Parms1; 

run; 
 
data temp_Method4;    *Set MIN component score to zero ; 
 set temp_Method4; 
 if SOFA_CNS  < 0 then SOFA_CNS  = 0; 
 if SOFA_Card < 0 then SOFA_Card = 0; 
 if SOFA_Coag < 0 then SOFA_Coag = 0; 
 if SOFA_Hep  < 0 then SOFA_Hep  = 0; 
 if SOFA_Ren  < 0 then SOFA_Ren  = 0; 
 if SOFA_Resp < 0 then SOFA_Resp = 0; 
 SOFA = SOFA_CNS + SOFA_Card + SOFA_Coag + SOFA_Hep +  
            SOFA_Ren + SOFA_Resp; 
run; 
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