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Abstract

The neurobiological basis of individual differences in personality is still poorly
understood. Previous research has previously linked personality traits to risk fac-
tors for developing mental illness or engaging in high-risk behavior. Previous
research has also linked personality traits to individual differences in resting state
functional connectivity, which describes regional interactions in the brain when a
person is not engaged in an active task. This study aimed to apply a theory of per-
sonality derived from behavioral neuroscience and ethology known as Reinforce-
ment Sensitivity Theory (RST) to the characterization of brain networks underly-
ing personality. RST defines four motivational systems in the brain, the Behav-
ioral Approach System (BAS), Behavioral Inhibition System (BIS), Fight-Flight-
Freeze System (FFFS), and Executive Control System (ECS) which enable learning
from and responding to current environmental demands. Individual variation
in the functioning of these motivational systems creates different propensities to
seek out rewarding stimuli and avoid potentially threatening ones, correspond-
ing to the ubiquitous presence of reward and punishment sensitivity related traits
across personality models. However, RST has not been applied to characterizing
the relationship of brain development to the maturation of personality and the
relationship of the RST systems to resting state networks. Understanding how
these circuits change developmentally from adolescence to adulthood is vital to
identify how high-risk personality traits become stable parts of adult personality.
In this study, 25 adolescents and 52 adults each completed a battery of personality
assessments and a six minute resting state fMRI scan. It was hypothesized that a
factor analysis of each personality trait would reveal factors corresponding to the
RST motivational systems. For each participant factor scores were computed cor-
responding to these traits. Network analysis was completed using a graph theory
approach to characterize important nodes in the brain. Following this, an a priori
set of brain regions derived from RST was used for a regression analysis to test the
hypothesis that nodes within the RST systems would predict the corresponding
personality trait. The results support the notion that important resting state net-
work nodes within the RST systems correspond to personality traits. The results
also suggest that these networks are established during adolescence and change
little into young adulthood, with the exception of the ECS. Therefore, early inter-
vention to teach adaptive coping skills and behaviors is desirable to ameliorate
the potential life outcomes of high-risk personality traits for drug abuse or mood
disorders.
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1 Introduction

The neurobiological basis of individual differences in personality is still poorly

understood. Previous research has linked personality traits such as neuroticism,

extraversion, and conscientiousness with neuropsychiatric conditions such as anx-

iety disorders, substance use disorders, and attention-deficit hyperactivity disor-

der (Terracciano, Löckenhoff, Zonderman, Ferrucci, & Costa, 2008; Valero et al.,

2012; Jeronimus, Riese, Sanderman, & Ormel, 2014). Understanding the neuro-

biological basis of personality is important for two reasons. First, understand-

ing what combination of traits puts one at risk for developing neuropsychiatric

problems or poor treatment outcomes can allow clinicians to identify high-risk

groups for preventative care. Second, understanding the neurobiological basis of

personality traits can assist in personalized treatments. It has been documented

that personality traits can modulate responsiveness to psychiatric medications

(Mizuki, Suetsugi, Ushijima, & Yamada, 1996, 1997; Bagby, Levitan, Kennedy,

Levitt, & Joffe, 1999; Quilty, Meusel, & Bagby, 2008; Quilty, De Fruyt, et al., 2008).

However, research on the interface between personality and neuroscience often

utilizes a variety of different approaches to measuring personality.

1.1 Current Theories of Personality

There are a large number of personality theories which purport to character-

ize the basic traits forming human personality. The dominant theory in person-

ality psychology is the five factor model, which includes Openness to Experi-

ence/Intellect, Conscientiousness, Extraversion, Agreeableness, and Neuroticism

(McCrae & Costa, 1987; Digman, 1989; Tupes & Christal, 1992; McCrae & John,

1992; Goldberg, 1993). However, it is without biological basis due to the athe-
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oretical approach to its development. This presents a difficult problem in neu-

roscientific studies of personality because it can be difficult to link broadly de-

fined traits to specific neural processes. Other approaches have taken into ac-

count that the basic human traits must have evolutionary or neurobiological ba-

sis. For example, there exists an alternative Big Five model based on phylogenetic

considerations of what kind of traits should be regarded as basic (Zuckerman,

Michael Kuhlman, Thornquist, & Kiers, 1991; Zuckerman, 1992; Mizuki, Suetsugi,

Ushijima, & Yamada, 1994; Zuckerman & Cloninger, 1996). The traits the alterna-

tive Big Five contains are Neuroticism-Anxiety, Sociability, Aggression-Hostility,

Activity Level, and Impulsive-Sensation Seeking. Historically preceding this is

Eysenck’s three factor model based in learning theory and what was known about

neurobiology at the time. Eysenck’s three factor model includes Neuroticism, Ex-

troversion, and Psychoticism in later versions of the theory (Eysenck, Eysenck,

& Barrett, 1985). Cloninger’s similar model proposes Harm Avoidance, Nov-

elty Seeking, and Reward Dependence as fundamental features of personality

(Cloninger, 1986). However, these biologically based theories are theoretically

difficult to apply to the rich information neuroscience can provide due to vague

connections to current neuroscientific knowledge. Nevertheless, the conceptual

overlap provides clues as to what one might expect from a fully developed the-

ory of personality. All agree on traits tied to reward seeking behavior, negative

mood and harm avoidance, and impulsivity.

1.2 Reinforcement Sensitivity Theory

A model of personality more closely tied to learning theory, ethology, and behav-

ioral neuroscience was proposed by a former student of Hans Ensyeck named

6



Jeffrey Alan Gray (Gray, 1970, 1982). Gray’s theory is known as Reinforcement

Sensitivity Theory (RST). RST posits three major behavioral systems that under-

lie individual differences in personality: the Behavioral Approach System (BAS),

Fight-Flight-Freeze System (FFFS), and Behavioral Inhibition System (BIS). Con-

ceptually, the BAS corresponds to Eysenck’s Extraversion and Cloninger’s Re-

ward Dependence and Novelty Seeking. The BIS and FFFS correspond to Neu-

roticism and Harm Avoidance.

The BAS responds to both unconditioned and conditioned rewarding stimuli.

The BAS consists primarily of dopaminergic striatal structures and their connec-

tions in the medial frontal and orbital frontal cortex. The BAS also contains certain

amygdala circuits and the hypothalamus. Importantly, the BAS also contributes

to the persistence of behavior in the face of non-reward. When an organism no

longer receives an expected reinforcer, it may perseverate and continue to try. A

rat may keep pushing a lever or display response variability as it tries new things

to get the reward. Such scenarios may also elicit emotional reactions from the

FFFS known as frustrative non-reward (Amsel, 1958). Originally such responses

were thought to be driven entirely by the FFFS, but more recent evidence from

studies using human subjects suggests individuals sensitive to reward tend to

experience frustrative non-reward(Corr, 2002; Carver, 2004, 2006).

The FFFS and BIS were once considered as a single system due to the factor an-

alytic origins of the theory and the then-current state of knowledge (Gray, 1970).

As a better understanding of the limbic system developed the theory was revised.

It was proposed that the BIS was responsible for learning conditioned stimuli pre-

dicting aversive situations and initiating inhibitory behaviors (such as avoidance

or freezing) in order to avoid the aversive outcome, while the then-named FFS

initiated fight or flight responses to (innate) aversive stimuli (Gray, 1982). This
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was a substantial improvement to the theory. In 2000 the theory received another

major revision. Hippocampus researcher Neil McNaughton contributed to the

third and most complete statement of the theory (Gray & MacNaughton, 2000).

The FFS was renamed the FFFS, so that this system was completely responsible

for defensive behaviors. The FFFS consists of neural circuits in the amygdala

and projections to the periaqueductal gray for the identification of threats and

execution of defensive responses. The BIS is comprised primarily of the anterior

cingulate and hippocampal structures.

The primary purpose of the BIS is to detect goal conflicts in situations where

the conflict is severe enough to result in equivalent activation of the FFFS and BAS

(approach-avoidance conflict). Such equivalent activation will produce incompat-

ible motor programs where one must be inhibited. In this situation the function of

the BIS is to increase arousal and bias decision making towards the FFFS. Hence,

the "inhibition" in BIS now refers to the termination of a motor program, and

no longer to inhibition responses such as freezing (Gray & MacNaughton, 2000).

This may sound strange, but consider that evolutionarily speaking, an organism

with only exploratory reward responses and defensive responses would have no

means of properly adapting to its environment. Were its BAS the most sensitive, it

would always opt to explore and obtain rewards in spite of aversive consequences

or danger. Were its FFFS the most sensitive, it would live in fear and be unable

to properly develop within its ecological niche. By acting as a mediating third

party to nudge responses towards the FFFS when there is equivalent activation

between the BAS and FFFS, the BIS allows an organism to engage in the adaptive

response and survive.

The BIS also increases arousal, which makes an organism alert and attend to a

potential threat if it is uncertain or distant. The BIS may allow the current behav-
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ior to remain ongoing but constantly assess the likelihood or imminence of threat.

This is known as defensive distance (Gray & MacNaughton, 2000; McNaughton &

Corr, 2004; McNaughton, DeYoung, & Corr, 2016). The arousal increasing nature

of the BIS can lend to the development of compulsive checking for danger or suf-

fering intrusive worrisome thoughts or feelings of danger. Such behaviors are a

major part of human clinical anxiety disorders as obsessive-compulsive disorder

and generalized anxiety disorder. These disorders can occur due to insufficient

inhibition of the FFFS by the BIS, allowing spatiotemporaly distant aversive stim-

uli to induce unwarranted degrees of psychological and physiological discomfort

and maladaptive behaviors. In light of these functions, a better name for the BIS in

current theory might be "Conflict Monitoring System", but keeping with current

tradition the name BIS will be used.

One limitation is that RST does not account for variation in executive func-

tions in humans as a personality trait. This is likely the result of the behavioral

and biological support for the theory being largely drawn from behavior analytic

and ethological studies. Attempts have been made to relate the components of

RST to executive function. Higher scores on the flight facet of a FFFS scale was

negatively correlated with faster scores on the stroop task and greater speed at

accomplishing tasks (Jackson, Loxton, Harnett, Ciarrochi, & Gullo, 2014). The

authors propose when resources are directed towards escaping aversive situa-

tions resources are taken away from top-down executive functions (Jackson et al.,

2014). This is consistent with the activation of limbic alpha-1 adrenergic receptors

in the presence of a threat reducing prefrontal activity, as well as the reduction

of noradrenergic tone in limbic areas and additional enhancement of prefrontal

cortical activity by alpha-2A receptors in the presence of lower noradrenaline lev-

els (Arnsten, 2011; Sallee, Connor, & Newcorn, 2013). High scores on FFFS and
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BIS scales have also been associated with increased severity of symptoms as well

as tic disorders among those diagnosed with ADHD (Heym, Kantini, Checkley,

& Cassaday, 2014). However, while FFFS and BIS activity may reduce executive

functions, they are not responsible for maintaining executive functions such as

voluntary behavioral activation and inhibition, working memory, or sustained

attention.

In order to deal with this shortcoming of RST a proposal was made to add

the Executive Control System (ECS) to RST (Kennis, Rademaker, & Geuze, 2013).

The ECS consists of neural circuits in the frontal lobe and parietal lobe for the

top-down control of behavior and emotion. While the ECS is associated with

behavioral inhibition, its function is to enable voluntary behavioral control and

regulate neural processes such that an individual is able to successfully interact

with their world. Breakdown of the ECS can lead to attention and working mem-

ory deficits, behavioral disinhibition, as well as disorganized and even delusional

thinking (Kennis et al., 2013; Jackson et al., 2014).

1.3 Evidence for the Hippocampus as Part of the BIS

The most important aspect of reinforcement sensitivity theory is the unique pre-

diction that the hippocampus is an important part of the neural basis of anxiety.

The functions of the hippocampus are often considered to relate to memory and

spatial reasoning (Scoville & Milner, 1957; Nadel, O’Keefe, & Black, 1975; Mor-

ris, 2007). However, hippocampectomized rodents struggle to extinguish learned

aversive associations and also display reward learning deficits (Altman, Brunner,

& Bayer, 1973). Although supporters of the memory and spatial learning view

have criticized the behavioral inhibition view, a purely memory oriented per-
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spective fails to address the fact that hippocampectomized rodents also display

hyperactive behavior (Nadel et al., 1975; Altman et al., 1973). This suggests the

hippocampus plays a role in executive functions as well as approach-avoidance

conflict in smaller mammals. Other evidence for linking the hippocampus to

mood related processes comes from the fact that increasing neurogenesis in the

hippocampus appears to be how antidepressant therapies mediate their effects

(Anacker et al., 2011). The hippocampus is rich with GABA-A receptors contain-

ing benzodiazapene receptor subunits as well as serotonin binding 5-HT1A post-

synaptic receptors. Both of these receptors are targets of clinically used anxiolytic

drugs such as the benzodiazapenes and 5-HT1A agonists (Lader, 1988; Sanger,

Perrault, Morel, Joly, & Zivkovic, 1991; Blanchard, Yudko, Rodgers, & Blanchard,

1993).

Magnetic resonance spectroscopy has yielded evidence that lower levels of

GABA in the hippocampal-medial frontal pathway are associated with increased

vulnerability to intrusive thoughts, which is a major characteristic of the subjec-

tive human experience of anxiety (Schmitz, Correia, Ferreira, Prescot, & Ander-

son, 2017). This both explains the efficacy of anxiolytic drugs and confirms hip-

pocampal involvement in anxiety. Indeed, theta oscillations between the septal-

hippocampal and medial frontal regions (midline frontal theta) have been linked

to anxiolysis in MEG and EEG studies of anxiolytic drugs (Mizuki et al., 1994;

Suetsugi, Mizuki, Ushijima, Yamada, & Imaizumi, 1998; Mitchell, McNaughton,

Flanagan, & Kirk, 2008; Cavanagh & Frank, 2014; Cavanagh & Shackman, 2015).

There are also several neuroimaging studies which offer evidence from task-based

studies that the hippocampus is involved in approach-avoidance conflict moni-

toring and anxiety (Frodl et al., 2006; Bach et al., 2014; Strange, Witter, Lein, &

Moser, 2014; O’Neil et al., 2015; Oehrn et al., 2015; Yu & Frank, 2015; Ito & Lee,
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2016; Khemka, Barnes, Dolan, & Bach, 2017). Other evidence has continued to

accumulate linking the hippocampus to behavioral inhibition and anxiety from

both animal and human studies, suggesting the hypotheses of Altman, Gray, and

McNaughton have more credibility than critics have historically granted (Satpute,

Mumford, Naliboff, & Poldrack, 2012; Cominski, Jiao, Catuzzi, Stewart, & Pang,

2014; Ito & Lee, 2016).

1.4 Resting State Functional Connectivity

Although support for RST is strong from animal behavior, psychopharmacology,

and neuroimaging studies, little is said concerning how the sensitivities of the RST

systems underlying personality are reflected in the brain in the absence of active

behavior. One way to study the brain while a person is not actively interacting

with the world is the resting state functional connectivity approach. Resting state

functional connectivity is defined by the correlation of brain activity across dif-

ferent parts of the brain. It can be characterized using a variety of brain imaging

techniques including EEG and fMRI. fMRI based functional connectivity calcu-

lates the correlation between the resting state BOLD signal. It can then be sorted

into different networks using a variety of different techniques including indepen-

dent components analysis or network theoretic approaches (Fransson, 2005).

Previous research has linked personality with resting state functional connec-

tivity (Gao et al., 2013; Dubois, Galdi, Han, Paul, & Adolphs, 2018). However,

no research has yet characterized the relationship of brain regions specified by

RST. The goal of this project is to characterize key regions within each of the RST

systems that predict RST-derived personality traits. In order to understand how

personality development may unfold an additional research goal is to investigate
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the changes in brain networks associated with maturation from adolescence to

young adulthood.

1.5 Hypotheses

In this study, it is hypothesized that traits corresponding to the Behavioral Ap-

proach System, Behavioral Inhibition System, Fight-Flight-Freeze System, and

Executive Control System (BAS, BIS, FFFS, and ECS) will be revealed through

factor analysis of the measures collected. It is expected, however, that the BIS

and FFFS will be reflected by a single factor because BIS engagement dictates

that the FFFS and BAS are co-activated, therefore the influences of the FFFS and

BIS to trait-anxiety behavior are be difficult to disentangle through questionnaires

(McNaughton & Corr, 2008).

For each corresponding trait, specific brain regions are hypothesized to bear

relationships to the traits. The BIS-FFFS trait is expected to be predicted by the

resting state functional connectivity of the hippocampus, (dorsal) amygdala, and

anterior cingulate.The BAS trait is expected to be predicted by the caudate, puta-

men, nucleus accumbens, and (medial) amygdala. The ECS trait is expected to be

predicted by the the dorsolateral frontal cortex and medial frontal cortex. Nodes

for both the left and ride sides will be selected located at coordinates mirroring

one another to the closest extent possible. Because many of these regions cover

large swathes of brain tissue multiple nodes may contain the region. Since they

are likely to be correlated only one node (per hemisphere) for a region will be

selected based on a literature review. The literature review was conducted us-

ing Neurosynth (Yarkoni, Poldrack, Nichols, Van Essen, & Wager, 2011). A list of

node coordinates is provided in Table 1. A visualization of these coordinates can

13



be found in Figure 1.

The nodes in the dorsolateral frontal cortex were chosen on the basis of exper-

iments showing these particular coordinates are involved in response inhibition

(Booth et al., 2003; Stevens, Kiehl, Pearlson, & Calhoun, 2007; Jamadar, Hughes,

Fulham, Michie, & Karayanidis, 2010). The nodes in the medial frontal cortex

were chosen based on studies showing involvement in working memory, vol-

untary movement inhibition, as well as trait-impulsivity modulated activity in

reward learning tasks (Jaffard et al., 2008; Sripada, Gonzalez, Phan, & Liberzon,

2011; Wager, Spicer, Insler, & Smith, 2014).

The nodes in the anterior cingulate were chosen based on their connection to

trait anxiety constructs relevant to the BIS (Xu et al., 2013). The nodes in the hip-

pocampus were selected based on studies showing that the nodes are active dur-

ing approach-avoidance tasks, consistent with the predictions of reinforcement

sensitivity theory (Ploghaus, 2001; L. M. Williams et al., 2009; Schlund, Magee,

& Hudgins, 2011; Oehrn et al., 2015). It was specifically hypothesized that the

posterior hippocampus will bear the greatest relation to a BIS trait. There is ev-

idence that the posterior hippocampus decreases general functional connectivity

with age relative to the anterior hippocampus in a normal sample (Damoiseaux,

Viviano, Yuan, & Raz, 2016). Hence, if trait anxiety is related to the posterior

hippocampus, and the posterior hippocampus has a relative trend towards less

functional connectivity with age, then it may be that trait anxiety maintains its

connectivity. Therefore, the relative effect in adolescents (the interaction) of the

posterior hippocampus is hypothesized to be negative.

The dorsal amygdala coordinates were chosen on the basis that the dorsal

amygdala has been linked to both state and trait anxiety as well as to social anx-

iety (Choi, Padmala, & Pessoa, 2012; Xu et al., 2013; Schlund et al., 2011; Bickart,

14



Figure 1: Visualization of nodes hypothesized to predict personality traits
corresponding to the RST systems. See Table 1 for the MNI coordinates and
labels for each node.

Hollenbeck, Barrett, & Dickerson, 2012; Bickart, Dickerson, & Feldman Barrett,

2014).

The caudate, putamen, and nucleus accumbens are well known to be involved

in reward learning and positive affect. However, to help assure that the nodes

chosen have construct validity to reward learning, the coordinates used for the

caudate have been shown to be involved in reward learning (Staudinger, Erk, &

Walter, 2011). The medial amygdala has been shown to be involved in social re-

ward/affiliation networks (Bickart et al., 2012, 2014). Nodes used for the putamen

have been shown to relate to reward learning (Kirsch et al., 2003).
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2 Procedures

2.1 Participants

25 adolescents (14 female, 11 male) and 52 adults (32 female, 20 male) were re-

cruited to complete a resting state fMRI scan and complete a battery of personality

questionnaires. 15 of the adults were recruited at the University of Kentucky. All

remaining subjects were recruited at the Medical University of South Carolina.

Prospective participants completed the Brief Sensation-Seeking Scale (BSSS) on

the website RedCap (Hoyle, Stephenson, Palmgreen, Lorch, & Donohew, 2002;

Harris et al., 2009). Survey responders with scores in the top and bottom quartiles

were contacted and invited to participate in the study. Some subjects had to be

excluded due to excessive head motion in the fMRI scan. The remaining sample

consisted of 23 adolescents (13 female, 10 male) and 51 adults (31 female, 20 male).

The average adolescent age is 13.17 adult age is 22.9. The average education level

of the adolescents is 7 years of education, and 16 years of education for young

adults.

2.2 Personality Assessments

The personality assessments used in present study are listed in Table 2.2. Because

these data are from a previous study, some assessments and measures collected

but not used in the present study include the Pubertal Developmental Scale (PDS)

(Petersen, Crockett, Richards, & Boxer, 1988), forward and backward digit span

(Rosenthal, Riccio, Gsanger, & Jarratt, 2006) , Peabody Picture Vocabulary Test,

Fourth Edition (PPVT) (Dunn & Dunn, 2007) and Ruff’s 2-7 selective attention

test (Ruff, Niemann, Allen, Farrow, & Wylie, 1992).
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Personality Assessment

Big-Five Inventory (BFI; John & Srivastava, 1999)

Urgency, Premeditation, Perseverance, and Sensation Seeking Scale
(UPPS; Whiteside & Lynam, 2001)

BIS/BAS Scales (Carver & White, 1994)

Eysenck Personality Questionnaire (EPQ, Eysenck & Eysenck, 1975)

Sensitivity to Punishment and Sensitivity to Reward Questionnaire
(SPSRQ, Torrubia, Avila, Molto, & Caseras, 2001)

Impulsive-Sensation Seeking; Zukerman-Kuhlman Personality Questionnaire
(ZKPQ; Aluja, Rossier, García, Angleitner, Kuhlman, & Zuckerman, 2006)

Sensation Seeking Scales Form V (SSSV; Zuckerman, Eysenck, & Eysenck, 1978)

Table 2: Personality assessments utilized in the factor analysis.

2.3 fMRI Data Acquisition

25 adolescents (14 female, 11 male) and 52 adults (32 female, 20 male) completed

a resting state fMRI (rs-fMRI) scan in a Siemens TIM Trio 3T scanner using a 12-

channel head coil and single-shot gradient echo echo-planar imaging (repetition

time = 3.4 seconds, echo time = 30 ms, flip angle = 85◦ , field of view = 210 mm,

51 2.5-mm thick AC-PC parallel). Each scan lasted six minutes and yielded 178

volumes. T1-weighted structural scans (TR = 2530 ms, TE = 2.77 ms, flip angle =

7◦, field of view = 256 mm2 ,1.0-mm thick slices) were also acquired.
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2.4 Analytic Approach

2.4.1 Factor Analysis Approach

The data have a smaller amount of participants than are usually used for factor

analysis. For these reasons, some would warn against the use of factor analysis

and instead recommend principal components analysis. However, principal com-

ponents analysis is a data reduction method meant for the reduction of a priori

known correlated variables into a smaller meaningful set that is easier to work

with. Certainly it is known a priori that many of the traits in the present data are

correlated, so this does not seem entirely unreasonable. However, factor analysis

is the appropriate method to identify what theoretical variables might be driving

these correlations (Bandalos & Boehm-Kaufman, 2009). Investigations of various

sample size recommendations have found them to be largely unfounded. For ex-

ample, the recommendation that the number of observations per variable should

be greater than the number of variables has born out to be of less importance

than the number of variables per latent factor. It has been shown that increasing

the number of variables relevant to the latent factors of interest results in better

estimates of the latent factors for the same sample size (Velicer & Fava, 1999).

Alpha factoring, a method of factor analysis that fits factors based on maxi-

mizing Cronbach’s alpha, is used here (Kaiser & Caffrey, 1965). Alpha factoring

shares in common with least squares methods the lack of distributional assump-

tions, while maximum likelihood assumes multivariate normality (Kaiser & Der-

flinger, 1990; MacCallum & Browne, 2007). Alpha factoring differs from least

squares and maximum likelihood in its treatment of error. Instead of treating

error as originating from individual measurement error, error is treated as orig-

inating from the fact that there is a theoretical pool of all possible relevant vari-
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ables and any given factor analysis only has sampled a portion of these variables

(MacCallum & Browne, 2007).

Any factor analysis requires a covariance or correlation matrix. However,

the Pearson correlation is highly non-robust and vulnerable to small changes in

the marginal distributions (Wilcox, 1994). Outliers frequently cause Pearson’s

method to overestimate ρ. The percentage-bend correlation coefficient, ρpbcor is

less vulnerable to errors of magnitude and has a minimal loss of power under

conditions of normality (Wilcox, 1994; Pernet, Wilcox, & Rousselet, 2012). The

percentage-bend correlation is correlated by down-weighting a specified percent-

age of observations deviating from the median and computing Pearson’s ρ on the

weighted data (Pernet et al., 2012). Given the relatively small sample size of the

current study compared to that traditionally used in factor analysis individual

measurement error is still of concern to the author. For this reason, the correlation

matrix of personality traits is estimated using ρpbcor.

The next methodological decision concerns the method of factor rotation. Or-

thogonal rotations are the most commonly used methods, which rotates recov-

ered factors such that they have minimal correlation. However, there are theoret-

ical reasons to suspect that RST related factors are not uncorrelated. Heightened

sensitivity of the BIS to goal conflict would produce a tendency towards fearful

behavior through FFFS activation even when direct FFFS sensitivity is not the un-

derlying cause of fearful behavior (McNaughton & Corr, 2004; McNaughton et al.,

2016). Therefore, it is unlikely that separable factors for the BIS and FFFS would

be recovered from a factor analysis of existing trait measures not designed to mea-

sure them separately. However, even if this turns out to be the case it is expected

that FFFS and BIS factors would be correlated rather than orthogonal. It is how-

ever possible that traits related to functions of the FFFS such as (dis)agreeableness
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and urgency may comprise a factor related to the FFFS separately measurable

from the BIS.

Another reason to expect obliqueness in factors is that BIS sensitivity would

bias an individual towards passive avoidance behavior and consequently less be-

havioral approach. For this reason Gray originally postulated the BIS factor as

being at a 45 to 30 degree rotation from Neuroticism, corresponding to Neurotic-

Introversion. Therefore, one might expect a BAS trait to be negatively correlated

with measures of the BIS & FFFS. Furthermore, if the data suggest that the la-

tent factors are orthogonal, an oblique rotation will result in orthogonal results.

Oblique rotations permit, but do not force, correlated factors (Bandalos & Boehm-

Kaufman, 2009).

2.4.2 Regression Modeling

One initially considered strategy was to utilize stepwise regression to test the hy-

potheses. However, stepwise regression is prone to false positives. Another con-

sidered strategy was to utilize a penalized regression method such as LASSO or

ridge regression on all 294 nodes. This was decided against because the expected

effect sizes for the hypothesized predictors were expected to be small and poten-

tially missed due to the strong shrinkage of each coefficient towards zero. Instead,

a Bayesian approach was taken.

2.5 Graph Theory

A graph is a set of nodes connected by edges. The nodes are vertices, which

represent entities capable of bearing relationship to other vertices in the graph,

and the edges representations of their relationships. In functional brain imaging
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these nodes can be defined as voxels or regions which correlate with one another

by virtue of their BOLD signal. This can be used to characterize which brain re-

gions communicate with one another. Low frequency fluctuations in the range

0.01–0.1 Hz characterize resting state networks. BOLD signal fluctuations in this

range are negatively correlated with the brain when engaged in a task (Fox et

al., 2005; Fransson, 2005). These resting state networks have been characterized

through other methods such as independent components analysis or seed-based

networks. While these approaches can characterize which functional networks

exist or the correlation of a seed region with other network components graph

theory can provide richer information about the network as a whole and the indi-

vidual nodes in a network.

The most basic graph theoretic measures are degree and strength. Degree char-

acterizes the number of connections a node has in a binary network. The counter-

part in a weighted network is strength, which adds the connection weights (cor-

relations in the case of an fMRI network). Strength has two components, positive

strength and negative strength. Positive strength adds the positive connection

weights together and negative strength adds the negative connection weights.

These can be combined into strength*. The formula from this is given in Equation

1 (Rubinov & Sporns, 2011). The formula calculates a weighted sum of both pos-

itive and negative edges, giving the positive edges more weight because they are

typically of more interest.

S∗ = S+ −

(

S−

S− + S+

)

S− (1)

While strength* offers a straightforward measure of whole-brain network inte-

gration for a given node, graph theory can also provide higher order information
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about the connectivity of a network. Consider for instance the concept of central-

ity. One measure of how central a node is to the network is eigenvector centrality.

Eigenvector centrality accounts for both the number and strength of a node’s con-

nections. It also considers both the strength of a given node and the strength of

its neighbors. An eigenvector is a vector x that when multiplied by a connectivity

matrix M is equal to M · x = λ · x. λ is the eigenvalue that can be multiplied by

x to obtain M · x. The eigenvector centrality for nodei sums together the values of

the multiplier x (also called the individual centrality x for each other node in the

network. The equation for this is given in Equation 2 (Newman, 2010; Fornito,

Zalesky, & Bullmore, 2016).

CEigen =
1

λ1

n

∑
j=1

Mijxj (2)

What does Eigenvector centrality offer that strength* does not? Practically, a

node with a high eigenvector centrality is important to the overall network. This

is either because it is highly connected to many nodes or it shares connections that

are themselves highly connected. Consider that the CEO of a company may only

frequently communicate with a few higher-up workers in the company. Despite

the small number of direct connections the CEO has, the CEO is highly central

to the company. If you only consider the people with whom the CEO directly

communicates with on a regular basis the strength of his or her connections to

the company might appear weak, but if you consider that those individuals can

quickly spread any decisions the CEO has made to the company then the CEO

appears highly connected. Eigenvector centrality does the latter.
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2.5.1 fMRI Preprocessing

The data were pre-processed using FMRIB’s FSL program. (Jenkinson & Smith,

2001; Jenkinson et al., 2002) Pre-processing geometric distortion correction and

rigid body head motion correction using MCFLIRT. 3 subjects were dropped from

the analysis due to excessive head motion. The remaining sample consisted of 23

adolescents (13 female, 10 male) and 51 adults (31 female, 20 male).

Following this, the time series for each subject was extracted for 294 regions.

These regions consist of the 264 regions in the Power atlas (2011) and 30 additional

nodes added for limbic and paralimbic regions based on potential theoretical in-

terest.

2.5.2 Graph Theory Processing

Each subject’s resting state time series and confound matrix was processed in

MATLAB. (MathWorks, 2012) This removes points in the time series where exces-

sive head motion is present. Following this the covariance for each subject was

calculated. Shrinkage was used due to the fact that the number of nodes out-

weighs the number of subjects. Maximum likelihood estimation is known to be

inefficient in these situations, so a shrinkage estimator based on the Ledoit-Wolf

lemma was used. Partial correlations were then obtained for each subject’s par-

tial covariance matrix. The Brain Connectivity Toolbox (BCT) was then used to

calculate strength and Eigenvector centrality for each node.

2.6 A Crash Course in Bayesian Methods

The majority of model fitting in this paper will utilize Bayesian methods. Bayesian

methods have traditionally been utilized far less than classical frequentist meth-
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ods. For the reader unfamiliar with the contrast between frequentist and Bayesian

methods, a relatively brief account is given here. Central to all statistical inference

is the concept of likelihood. The likelihood describes a value proportional to the

probability of the data given certain parameter values. The likelihood can be

thought of as equal to the probability of the data given the model multiplied by

an imaginary arbitrary constant K , as shown in Equation 3 (Etz, 2017).

L(θ|D) = P(D|θ) ∗ K (3)

Consider that the conditional probability of the data given the model has mul-

tiple mathematically equivalent statements, given in Equation 4. The P(D|θ) ends

up being equivalent to the conditional probability of the model itself multiplied

by the proportion
P(D)
P(θ)

. The imaginary constant K removes this multiplier leaving

the conditional probability of the model, although it is no longer normalized to

be a probability and is now a likelihood.

P(D|θ) =
P(D ∩ θ)

P(θ)
=

P(θ|D)P(D)

P(θ)
(4)

Conceptually, the likelihood of a model or parameter given the data means little

without comparison. This comparison is called a likelihood ratio. This results

in very different uses for likelihoods and probabilities; likelihoods do not inform

about absolute chance because the scale is arbitrary. By contrast, a probability

statement stands on its own. In frequentist inference probability is used to de-

scribe the behavior of systems which generate random frequencies. For example,

die roll, coin flips, or a test statistic under the null hypothesis are random types of

data and can be described with probability.

Bayesians treat probability with a different perspective. Bayesians believe
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probability describes the uncertainty one has in a model over the range of pos-

sible values. The data are treated as fixed values, while the possible parameter

values are treated as random. This perspective was founded when Thomas Bayes

and Pierre-Simon Laplace realized the probability of the model given the data can

be obtained by solving the furthermost right form of Equation 4 for P(θ|D) (Bayes

& Price, 1763; Laplace, 1774, 1810, 1814). This results in Bayes’ Theorem, given in

Equation 5. To do this, assumptions must be made by defining a range of possible

which cover what is presumed to be the entire parameter space (so that mathe-

matically it integrates to 1). This is called the prior and is represented in Equation

5 by P(θ). The conditional probability of the model given the data is called the

posterior probability P(θ|D). The posterior is the product of the prior and the

conditional probability of the data given the model, normalized by P(D) which

defines the probability of the data at random. In essence, Bayesian methods begin

with initial assumptions and learn from the data.

P(θ|D) =
P(D|θ)P(θ)

P(D)
(5)

An Applied Example

The best way to understand Bayesian inference is by example. This example will

use the data provided by The data for this analysis are provided from the machine

learning repository (Dheeru & Karra Taniskidou, 2017). For now, consider the

case where one wishes to estimate the average alcohol content of wine with red

and white wines pooled together. The model will assume the data are normally

distributed and utilize a wide prior to describe the range of possible parameter

values for the mean. A half Student-t(df=3, location=0, scale=10) distribution will

be used to describe the range of possible standard deviations in the data, and a
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normal(0,100) distribution used for the intercept and coefficient intercept.

After setting up the model and updating it on the data, you find the following

results:

95 % Credible Interval
Estimate Estimate Error Lower Upper

µ̂ 10.49 0.01 10.46 10.52
σ̂ 1.19 0.01 1.17 1.21

The column labeled Estimate gives the mean of the posterior distribution,

which is the most probable parameter value. The standard deviation of the poste-

rior distribution gives the Estimate Error, which describes the uncertainty in the

estimate. This is analogous to the standard error of classical statistics, and is often

just called standard error. However, the posterior estimate error reflects not only

sampling error but also uncertainty in the prior.

The 95% credible interval defines the region centered around the estimate and

contains values which collectively make up 95% of the posterior distribution’s

mass. (see Figure 2) For any credible region you can state that the true parameter

lies within the interval with 1-α · 100% probability. This is in contrast to the fre-

quentist confidence interval’s interpretation under the repeated sampling princi-

ple, which does not permit a probability statement about the numbers within the

interval, only the interval itself. A confidence interval is like a flip of a coin, either

succeeding or failing to cover the true value with some probability.
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Figure 2: Posterior Distribution with shaded 95% credible region. The Bayesian
counterpart to the confidence interval is an area of the posterior probability dis-
tribution. Intuitively, there is a 95% probability that the true parameter value lies
in this region.

Linear Regression

A model estimating the mean is easily expanded to the case of linear regression.

The R package brms (Bayesian Regression Models using Stan) provides a stan-

dard linear model syntax interface to the Stan program, which uses a type of

monte carlo method called No U-Turn Sampling (NUTS) to fit Bayesian models

(Bürkner, 2017; Stan Development Team, 2018). In the syntax of linear models in

R, estimating the mean of a dependent variable is accomplished using the syntax

DV ∼ 1. This defines a linear model with only an intercept, which is the mean of
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the dependent variable when all predictors are zero. Since there are no predictors,

the intercept is just the mean. To create a linear regression model an independent

variable is added. Suppose we hypothesize that the amount of residual sugar has

a negative relationship with the amount of alcohol due to the fact that ethanol is

created from microorganisms fermenting sugar. The variable is log-normally dis-

tributed, so the natural log of the predictor is entered into the linear model. The

results are given below.

95 % Credible Interval
Estimate Estimate Error Lower Upper

Intercept 11.06 0.03 11.01 11.11
log(sugar) -0.43 0.02 -0.46 -0.39

Hypothesis Testing

If one wishes to test the hypothesis that the relationship of the logarithm of resid-

ual sugar is zero the simplest way is to check the interval for zero. This procedure

is the same as the Neyman-Pearson hypothesis testing procedure with confidence

intervals. When the interval excludes the null value, we reject the null hypothesis

at confidence level 1-α. This is equivalent to having a p-value smaller than α.

Another way to test hypotheses is with the Bayes Factor. The Bayes Factor is

a likelihood ratio that quantifies the level of evidence for or against a hypothesis.

They can be calculated in a couple ways depending on the context. In model

comparison the Bayes Factor compares the likelihood functions for two different

models. One would fit each model separately and compare them to find out under

which model the data are more probable. The mathematical statement is given

below in Equation 6.
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BFH1
=

P(D|θ, H1)

P(D|θ, H2)
(6)

Another way to calculate a Bayes Factor is to treat the prior distribution as one

model and the posterior distribution as the second model. For a given parameter

value the degree of change in probability between the prior and posterior defines

the Bayes Factor. This is called the Savage-Dickey Bayes Factor.

BFH1
=

P(θ|D)

P(θ)
(7)

A one sided Bayes Factor is also attainable. The method used by brms to calcu-

lated one sided Bayes Factor is given in Equation 8. It is equivalent to the ratio of

the posterior density above (below) the hypothesized value to the density below

(above) the hypothesized value.

∫ ∞

0
p(D|θ)p(θ)

∫ ∞

−∞
p(D|θ)p(θ)

∫ 0
−∞

p(D|θ)p(θ)
∫ ∞

−∞
p(D|θ)p(θ)

=

∫ ∞

0 p(D|θ)p(θ)
∫ 0
−∞

p(D|θ)p(θ)
= BFθ>0 vs. θ<0 (8)

Bayes Factors are interpreted along a continuum, and are not described by a

significance level such as α for p-values and confidence intervals. Nevertheless,

interpretative guidelines are given in Table 3 based on the ones provided by Jef-

freys (1939).

In the regression example, the (Savage-Dickey) Bayes Factor for the null hy-

pothesis that the relationship between log(sugar) and alcohol is zero is BFnull =

1.3754−16. This indicates decisive evidence against the null hypothesis. The Bayes

Factor for the existence of an effect is simply 1/BFnull. Hence, BFe f f ect = 7.27061215.

The one sided Bayes Factor corresponding to the hypothesis that the effect is less

than zero is returned as infinity because the entire posterior distribution lies be-
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BFH Strength of Evidence

BF <.01 Conclusive Against
.03 - .01 Very Strong Against
.10 - .03 Strong Against
.33 - .10 Notable Against
1 - .33 Anecdotal Against
1 Inconclusive
1 - 3 Anecdotal
3-10 Notable
10-30 Strong Evidence
30-100 Very Strong
100 <BF Conclusive

Table 3: Bayes Factor Interpretive Guidelines

low zero.

The ‘Problem’ of Multiple Comparisons

When considering type I error rates, the probability of making at least one type

I error increases dramatically with each additional statistical test. Assuming the

independence of each test, if 20 tests are conducted at α = .05 the probability of

making at least one type I error is 1 − (1 − α = .05)m=20 ≈ 64% This is known as

the family wise error rate (FWER). The prototypical methods of FWER correction

include the Bonferroni and Sidák procedures (Equations 9). These formulas ad-

just α such that the overall type I error rate is controlled. Confidence/Credibility

levels are represented as “1− α" and the number of hypotheses being tested as m.

Bonferroni’s Correction:1 − αadjusted = 1 −
α

m

Sidák’s Correction:1 − αadjusted = (1 − α)
1
m

(9)
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These adjustments are but two of the many approaches to multiple comparisons

corrections, but are the most straightforward to apply to confidence intervals.

When correcting intervals for multiplicity these adjustments widen the intervals

such that the false coverage rate (Type I error) is the nominal α. This occurs be-

cause the interval is more likely to include the null value when it is widened.

Considered from a Bayesian perspective there are downsides to this approach.

Since a credibility interval is a density, increasing the width of a credibility inter-

val from 1 − α% to 1 − αadjusted% means asymptotically describing the minimum

and maximum values in posterior distribution (a 100% Confidence Level). To this

end there is little point in constructing a credible interval. There are also com-

putational reasons why such adjusted intervals are ill-advised in the Bayesian

approach. Virtually all model fitting is done using Markov-Chain Monte Carlo

or other methods that result in samples from the posterior distribution. If con-

structing a 95% Credible Interval, there are .025n samples outside the center 95%

density from which to estimate the credible limits. However, if using an adjusted

confidence level of 99.75%, .00125n samples are available for estimating the cred-

ible limits. If the Markov chain has even a generous 20,000 samples only 25 are

available to estimate the lower and upper credible limits for the adjusted interval.

20,000 samples for many models would require a large amount of time and pro-

cessing power and the sparseness of the posterior tails would result in unreliable

credible intervals.

Another issue with multiple comparisons corrections from a Bayesian perspec-

tive the number of intervals constructed in a family of analyses doesn’t change

what the probability of each of the estimates in the interval are. The only sensible

adjustment to make to a credible interval is to switch from an equal tailed interval
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to a highest density interval in the case of a skewed posterior distribution to en-

sure the most probable parameter values are summarized. This is an issue quite

separate from multiplicity.

Another issue to consider is the motivation behind the concept multiple com-

parisons correction. The philosophy of multiple comparisons corrections aims to

solve the problem of making at least one type I error increasing with each test.

The majority of approaches consider the "family wise error rate", but the concept

of a family of tests is vaguely defined. If the probability of a type 1 error increases

with each hypothesis test, should the same correction be applied to every test in

a paper (Perneger, 1998)? Should it be done by the number of tests conducted in

each published journal issue? One can make this argumentum 8ad absurdum, but

a more important issue is that errors are made because the data have mislead, and

there are two ways the data can mislead you. These are exaggerated effect sizes,

which are errors of magnitude, and effect size estimates with the wrong sign.

These are called type M and type S errors respectively (Gelman & Tuerlinckx,

2000; Gelman, Hill, & Yajima, 2012; Gelman & Carlin, 2014). Inflated intervals do

not change the fact that if it fails to cover the true θ it has done so because the esti-

mate is of the wrong magnitude or wrong sign. Furthermore, the multiplicity ad-

justed confidence intervals depend on the intentions of the researcher or analyst.

Entirely different decisions can be made for the same estimate after an analysis

depending on how many tests are run. Simulation studies have also found that

given a statistically significant result, the Bayesian credible intervals on average

produce fewer type M and type S errors compared to the standard counterpart

frequentist estimator (Gelman & Tuerlinckx, 2000; Gelman et al., 2012; Gelman

& Carlin, 2014). By necessity, this means the type I error is also controlled to a

greater extent.
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In a frequentist framework, the false discovery rate methods of correction offer

conceptual benefits over family-wise error rate control by controlling for the es-

timated number of false discoveries rather than controlling for the overall proba-

bility of making at least one type I error (Benjamini & Hochberg, 1995; Benjamini,

2010). False discovery rate control also has connections to certain Bayesian ap-

proaches such as the empirical Bayes approach. The empirical Bayes approach

is related to penalized maximum likelihood approaches and works by estimat-

ing the optimal prior distribution from the data (Efron & Tibshirani, 2002; Storey,

2003). However, Bayesian methods provide incredible flexibility in estimator con-

struction beyond empirical Bayes. By constructing estimators that address the

possibility of aberrant estimates caused by outliers the likelihood of making a

false claim is reduced without the need for post-hoc comparisons that fail to ad-

dress the underlying cause of error. Addressing such concerns in the prior dis-

tribution itself is a sensible way to address the possibility of inflated type I errors

from a Bayesian perspective (Westfall & Utts, 1997; Berry & Hochberg, 1999).

2.6.1 Regression Models

Values for Strength* and Eigencentrality were both converted to z-scores in order

to be on the same scale as the factor scores. This makes formulating prior dis-

tributions simpler and interpretation also easier. This is important because the

untransformed values for graph theory metrics could be different depending on

the particular methods used.

Each model is coded such that the young adults are used as the reference level

("dummy coding"). Interaction terms contain the difference in the effect of an in-

dependent variable from the reference level. The actual effect in of the strength of

a particular node in adolescents is For ease of interpretation the main regression
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tables report the total effect of a given node βroi|Teen = βroi + βTeen·roi. The inter-

actions, which represent the difference from the young adult reference group, are

reported in the hypothesis testing tables. Models are fit using the R package brms

package, an interface to rstan (Bürkner, 2017; Stan Development Team, 2018).

Highest density intervals (HDIs) are also reported. Since brms only reports

equal tailed intervals (ETIs), the broom package is used to obtain the HDIs. HDIs

in the case of a normally distributed posterior distribution are equivalent to ETIs.

In the case of a skewed or otherwise non-gaussian posterior the HDI better repre-

sents the values which are most probable. In text, one sided hypothesis tests are

presented as 90% HDIs. The reason for this is that for a one sided hypothesis test

the lower (upper) bound of the 90% credible interval defines the limit of the one

sided credible limit. For example, the lower bound of the 90% credible interval

defines the 95% credible limit for H : β > 0. Bayes Factors for the hypothesis tests

are obtained with brms.

3 Results

3.1 Factor Analysis Results

25 adolescents (14 female, 11 male) and 52 adults (32 female, 20 male) completed

a battery of personality tests. Of these factor scores were obtained for 23 adoles-

cents (13 female, 10 male) and 51 adults (31 female, 20 male) due to three subjects

being excluded from analysis due to excessive head motion. Missing values for

any traits entered into the factor analysis were imputed using the means of the

remaining scores.

The number of factors that could be extracted was determined with parallel

35



analysis. Parallel analysis compares the eigenvalues of extracted factors against

the eigenvalues of re-sampled data (Bandalos & Boehm-Kaufman, 2009). Factors

with eigenvalues that lie outside the error bars of the re-sampled data are used

to determine the cutoff. The scree plot indicates that four factors can be extracted

from the current data (see Figure 3). Parallel analysis and alpha factor analysis

were conducted in R using the psych package (Revelle, 2017).

Figure 3: Parallel analysis scree plot showing the number of factors which can be
extracted. The decision method compares the eigenvalues < 1 against eigenval-
ues from re-sampled data and counts those which lie outside of the bootstrapped
error bars. This ensures greater reliability than a standard scree plot.

Results of the factor analysis are summarized in Table 4. Factor scores were

extracted with the Ten Berge method. Names were given on the basis of the

strongest factor loadings to relate them to RST systems believed to underly in-

dividual differences in personality. Threat aversion is the name given to the trait

corresponding to the BIS and FFFS. Impulsivity is the name given to the trait
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corresponding to the ECS. Two BAS traits emerged which are given the names

Novelty Seeking and Reward Dependence. Conceptually, these correspond to the

seeking out of novel stimuli and tendency to work towards known rewards, cor-

responding to the two reward traits in Cloninger’s personality model (Cloninger,

1986).

Descriptive statistics in Table 5. Accompanying boxplots give a graphical sum-

mary in Figure 4. Because the data came from a previous study where subjects

were recruited based on being higher or low sensation seekers there was a possi-

bility that the BAS trait factor scores had a bimodal distribution. The mean and

standard deviations of the novelty seeking scores for the high sensation seeking

condition are M = 0.53 and SD = 0.72; the mean and standard deviation for the

low sensation seeking condition M = -0.53 and SD = 0.97. The mean and standard

deviations of the reward dependence scores for the high sensation seeking con-

dition are M = 0.41 and SD = 0.95; the mean and standard deviation for the low

sensation seeking condition M = -0.41 and SD = 0.88.
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Factor a Factor b Factor c Factor d

1. BIS -0.035 -0.164 0.613 0.104
2. REWARD (BAS) 0.134 -0.360 0.175 0.494
3. DRIVE (BAS) 0.240 -0.116 0.092 0.505
4. FUN (BAS) 0.641 -0.135 -0.106 0.169
5. EXTRAVERSION (EPI) 0.295 0.384 -0.076 0.587
6. NEUROTICISM (EPI) 0.133 0.111 0.768 -0.049
7. DISINHIBTION (SSSV) 0.815 0.032 0.095 -0.186
8. BOREDOM SUSCEPTIBILITY (SSSV) 0.463 0.182 -0.102 -0.014
9. THRILL SEEKING (SSSV) 0.698 0.041 -0.119 0.071
10. EXPERIENCE SEEKING (SSSV) 0.729 -0.069 0.014 -0.216
11. OPEN-MINDEDNESS (BIG5) 0.455 -0.540 0.024 -0.167
13. CONSCIENTIOUS (BIG5) -0.026 -0.709 -0.106 0.279
14. EXTRAVERSION (BIG5) -0.207 -0.050 -0.215 0.729
15. AGREEABLENESS (BIG5) 0.018 -0.431 -0.190 -0.046
16. NEUROTICISM (BIG5) -0.211 0.134 0.764 -0.028
17. URGENCY (UPPS) 0.089 0.595 0.397 0.249
18. LACK OF PREMEDITATION (UPPS) 0.149 0.592 -0.297 0.181
19. LACK OF PERSEVERANCE (UPPS) 0.023 0.595 0.015 -0.199
20. SENSATION SEEKING (UPPS) 0.794 -0.080 -0.084 0.109
21. SENSATION SEEKING (ZKPQ) 0.902 0.030 -0.016 0.020
22. PUNISHMENT SENSITIVITY (SPSRQ) -0.049 0.113 0.660 -0.288
23. REWARD SENSITIVITY (SPSRQ) 0.498 0.207 0.240 0.252
SS loadings 4.63 2.551 2.53 2.042

Factor Correlations
a Novelty Seeking (BAS) 1.000 0.026 0.033 0.487
b Impulsivity (ECS) 0.026 1.000 0.121 -0.003
c Threat Aversion (BIS + FFFS) 0.033 0.121 1.000 -0.062
d Reward Dependence (BAS) 0.487 -0.003 -0.062 1.000

Tucker Lewis Index of factoring reliability = 0.742 ; BIC = -382.5

Table 4: Factor loadings for alpha factor analysis with accompanying factor cor-
relations. In bold are the largest factor loadings for a given variable.
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Adults Adolescents
Mean SD Median MAD Mean SD Median MAD

Novelty Seeking 0.019 1.012 0.175 1.133 -0.043 0.992 0.152 0.763
Impulsivity -0.181 0.921 -0.351 0.970 0.403 1.069 0.507 1.273
Aversion -0.059 1.059 -0.316 1.112 0.130 0.860 -0.095 0.952
Reward Dependence -0.077 1.027 0.021 1.174 0.171 0.934 0.178 0.823

Table 5: Descriptive statistics by age group for the personality scores of each ex-
tracted factor.

Figure 4: Boxplots of factor scores by age group. The boxplots suggest that ado-
lescents are more impulsive than young adults.

3.2 Regression Results

3.2.1 Impulsivity

Given that the distribution of the Impulsivity factor scores appears normal the

scores from individual subjects are assumed to come from a normal distribution.

The mean of this distribution is defined by the regression formula. The inter-
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cept β0 and each coefficient βn are assumed to come from a t-distribution with 3

degrees of freedom, a mean of zero, and standard deviation of .5. This prior is

chosen to regularize estimates without apply excess shrinkage. The effect sizes

are expected to be fairly small, so excessive shrinkage would result in a loss of

power, but some regularization is desired to avoid type M errors. The distribu-

tion for the effect of age is a t-distribution with 3 degrees of freedom, a mean of 1,

and standard deviation of .25. This is to reflect that adolescents are expected to be

more impulsive than young adults. Finally, the standard deviation of Impulsivity

is assumed to come from a gamma distribution with shape and rate parameters

equal to 2. This results in a prior distribution that places the bulk of probabil-

ity over values between about .5 and 2 with larger values being increasingly less

probable. This is well justified because it is known that the standard deviation of

the sample is 1.

yi ∼ normal(µ, σ)

µ = β0 + Age0 + ∑
n

βnxn + ∑
n·Age

βnxn · Age

β0 ∼ t distribution(ν = 3, µ = 0, σ = .5)

Age0 ∼ t distribution(ν = 3, µ = 0, σ = .25)

βn ∼ t distribution(ν = 3, µ = 0, σ = .5)

βn · Age ∼ t distribution(ν = 3, µ = 1, σ = .25)

σ ∼ gamma(s = 2, r = 2)

Impulsivity - Strength* Results

Multiple regression analysis was used to test if the Impulsivity trait was predicted

by the strength of the functional connectivity of brain regions outlined in Table
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1. The results of the regression indicated the predictors explained 32.9% of the

variance (R2 =.329, LOO-IC=202.22). In young adults a node in the left dorsal

frontal cortex predicted lower impulsivity (β̂ = -0.362, 90% HDI= [-0.576, -0.152],

BFβ<0 = 387.35). There was also a significant age group by node interaction

in the right medial frontal cortex indicating the node predicted significantly less

impulsivity compared to adults (β̂ = -0.629, 90% HDI= [-1.026, -0.629], BFβ<0 =

257.065). The effect estimate of the effect in teenagers is significant, indicating

that this region is not related in adults but is related in adolescents (β̂teen = -0.583,

90% HDI= [-.916, -0.233]). This is an important point because it is feasible for the

estimate of the interaction (which is the difference in effect compared to adults)

to yield an effect estimate that is not significant. Results are summarized in Table

6 and Table 7.

β̂ Est.Error 90 % HDI

Young Adults

Intercept -0.223 0.117 -0.416 -0.033
R Dorsal Frontal Cortex 0.063 0.130 -0.151 0.278
L Dorsal Frontal Cortex -0.362 0.129 -0.576 -0.152 *
R Medial Frontal Cortex 0.046 0.124 -0.159 0.246
L Medial Frontal Cortex 0.139 0.116 -0.053 0.330
Adolescents

TEEN 0.841 0.183 0.549 1.149
R Dorsal Frontal Cortex -0.046 0.185 -0.347 0.259
L Dorsal Frontal Cortex -0.128 0.173 -0.414 0.153
R Medial Frontal Cortex -0.583 0.207 -0.916 -0.233 *
L Medial Frontal Cortex 0.073 0.216 -0.283 0.426
Family Parameters

σ̂ 0.887 0.079 0.758 1.014

LOO-IC = 202.22; WAIC=201.365; R2=0.329

’*’: Estimate is credibly non-zero with 90% probability

Table 6: Parameter estimates for the relationship of each node’s Strength* to the
Impulsivity trait in each age group. Note that the adolescents shows the overall
parameter estimate, rather than the deflection from the young adults.
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β̂ Est.Error BF

R Dorsal Frontal Cortex <0 0.063 0.130 0.451
L Dorsal Frontal Cortex <0 -0.362 0.129 387.35 ⋆

R Medial Frontal Cortex <0 0.046 0.124 0.551
L Medial Frontal Cortex <0 0.139 0.116 0.130
TEEN:R Dorsal Frontal Cortex <0 -0.110 0.213 2.327
TEEN:L Dorsal Frontal Cortex <0 0.234 0.206 0.146
TEEN:R Medial Frontal Cortex <0 -0.629 0.238 257.07 ⋆

TEEN:L Medial Frontal Cortex <0 -0.067 0.234 1.587

⋆: The evidence is in favor of the hypothesis by a factor of at least 10
†: The evidence is against of the hypothesis by a factor of at least 10

Table 7: Bayes Factor tests for the relationship of each node’s Strength* to Impul-
sivity. Note that the tests shown here are for the interactions, which represent the
deflection from the young adult group.

Impulsivity - Eigenvector Centrality

Multiple regression analysis was used to test if the Impulsivity trait was predicted

by the eigenvector centrality of brain regions outlined in Table 1. However, none

of the eigenvector centrality of the nodes significantly predicted Impulsivity. Re-

sults are summarized in Table 8 and Table 9.
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β̂ Est.Error 90 % HDI

Young Adults

Intercept -0.239 0.128 -0.450 -0.029 *
R Dorsal Frontal Cortex -0.071 0.131 -0.288 0.145
L Dorsal Frontal Cortex 0.146 0.123 -0.055 0.350
R Medial Frontal Cortex -0.112 0.135 -0.329 0.113
L Medial Frontal Cortex 0.014 0.130 -0.203 0.222
Adolescents

TEEN 0.804 0.202 0.479 1.136 *
R Dorsal Frontal Cortex -0.179 0.225 -0.551 0.191
L Dorsal Frontal Cortex 0.014 0.250 -0.401 0.421
R Medial Frontal Cortex 0.158 0.195 -0.162 0.482
L Medial Frontal Cortex 0.300 0.261 -0.125 0.734
Family Parameters

σ̂ 0.989 0.087 0.859 1.143

LOO-IC = 218.343; WAIC=217.655; R2=0.212

’*’: Estimate is credibly non-zero with 90% probability

Table 8: Parameter estimates for the relationship of each node’s eigenvector cen-
trality to the Impulsivity trait in each age group. Note that the adolescents shows
the overall parameter estimate, rather than the deflection from the young adults.

β̂ Est.Error BF

R Dorsal Frontal Cortex <0 -0.071 0.131 2.413
L Dorsal Frontal Cortex <0 0.146 0.123 0.131
R Medial Frontal Cortex <0 -0.112 0.135 3.986
L Medial Frontal Cortex <0 0.014 0.130 0.837
TEEN:R Dorsal Frontal Cortex <0 -0.108 0.246 2.023
TEEN:L Dorsal Frontal Cortex <0 -0.132 0.264 2.259
TEEN:R Medial Frontal Cortex <0 0.270 0.227 0.128
TEEN:L Dorsal Frontal Cortex <0 0.286 0.280 0.177

⋆: The evidence is in favor of the hypothesis by a factor of at least 10
†: The evidence is against of the hypothesis by a factor of at least 10

Table 9: Bayes Factor tests for the relationship of each node’s eigenvector central-
ity to Impulsivity. Note that the tests shown here are for the interactions, which
represent the deflection from the young adult group.
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3.2.2 Threat Aversion

Given that the distribution of the Threat Aversion factor scores appear skewed the

scores from individual subjects are modeled here to come from a skewed normal

distribution. The mean of this distribution is defined by the regression formula.

The intercept β0 and each coefficient βn are assumed to come from a t-distribution

with 3 degrees of freedom, a mean of zero, and standard deviation of .5. This prior

is chosen to regularize estimates without apply excess shrinkage. The distribution

for the effect of age is a t-distribution with 3 degrees of freedom, a mean of .25,

and standard deviation of .25. This is to reflect that adolescents are expected to be

weakly more threat averse than adults. This is supported by a large scale study of

personality over the lifespan (Donnellan & Lucas, 2008). The standard deviation

of Threat Aversion is assumed to come from a gamma distribution with shape and

rate parameters equal to 2. Finally, the distribution of the skewness parameter

α is set at the brms default of a normal distribution with mean 0 and standard

deviation of 4.

yi ∼ skewed normal(µ, σ, α)

µ = β0 + Age0 + ∑
n

βnxn + ∑
n·Age

βnxn · Age

β0 ∼ t distribution(ν = 3, µ = 0, σ = .5)

Age0 ∼ t distribution(ν = 3, µ = 0, σ = .25)

βn ∼ t distribution(ν = 3, µ = 0, σ = .5)

βn · Age ∼ t distribution(ν = 3, µ = .25, σ = .25)

σ ∼ gamma(s = 2, r = 2)

α ∼ normal(µ = 2, σ = 4)
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Threat Aversion - Strength*

Multiple regression analysis was used to test if the Threat Aversion trait was pre-

dicted by the strength of the functional connectivity of brain regions outlined in

Table 1. The results of the regression indicated the predictors explained 25.9% of

the variance (R2 =.259, LOO-IC=210.455). In young adults a node in the left dorsal

amygdala significantly predicted lower threat aversion. The direction of predic-

tion was opposite of the hypothesis that the strength of the node would predict

higher threat aversion (β̂ = -0.221, 90% HDI= [-0.418, -0.019], BFβ>0vsβ<0 = 0.034).

A node in the right dorsal amygdala significantly predicted higher threat aver-

sion (β̂ = 0.256, 90% HDI= [0.045, 0.457], BFβ>0vsβ<0 = 40.609). The right poste-

rior hippocampus predicted higher threat aversion in young adult (β̂ = 0.252, 90%

HDI= [0.081, 0.414], BFβ>0 = 155.250). There was also a significant age group by

node interaction in the right dorsal amygdala indicating the right dorsal amyg-

dala predicts significantly less threat aversion in adolescents compared to adults.

The direction of prediction was opposite of the hypothesis that the strength of the

node would predict higher threat aversion in adolescents compared to adults (β̂ =

-0.442, 90% HDI= [-0.881, 0.003], BFβ>0vsβ<0 = 0.050). This results in the estimate

of the overall effect in adolescents being not significant (β̂teen = -0.186, 90% HDI=

[-0.586, 0.209]). Results are summarized in Table 10 and Table 11.
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β̂ Est.Error 90 % HDI

Young Adults

Intercept -0.071 0.119 -0.270 0.122
L Ant. Dorsal Cingulate -0.057 0.115 -0.250 0.126
R Ant. Dorsal Cingulate 0.128 0.106 -0.047 0.301
L Dorsal Amygdala -0.221 0.121 -0.418 -0.019 *
R Dorsal Amygdala 0.256 0.125 0.045 0.457 *
L Anterior Hippocampus 0.160 0.122 -0.040 0.359
L Posterior Hippocampus 0.028 0.118 -0.165 0.220
R Anterior Hippocampus 0.025 0.095 -0.125 0.183
R Posterior Hippocampus 0.252 0.102 0.081 0.414 *
Adolescents

TEEN 0.266 0.201 -0.059 0.595
L Ant. Dorsal Cingulate -0.249 0.243 -0.637 0.159
R Ant. Dorsal Cingulate 0.060 0.231 -0.313 0.442
L Dorsal Amygdala -0.058 0.176 -0.344 0.231
R Dorsal Amygdala -0.186 0.243 -0.586 0.209
L Anterior Hippocampus 0.118 0.241 -0.285 0.502
L Posterior Hippocampus -0.215 0.258 -0.637 0.205
R Anterior Hippocampus 0.072 0.269 -0.364 0.515
R Posterior Hippocampus 0.170 0.253 -0.251 0.577
Family Parameters

σ̂ 0.928 0.085 0.767 1.063
α̂ (Skewness) 4.815 2.539 0.886 9.187

LOO-IC = 210.455; WAIC=206.725; R2= 0.259
’*’: Estimate is credibly non-zero with 90% probability

Table 10: Parameter estimates for the relationship of each node’s Strength* to the
Threat Aversion trait in each age group. Note that the adolescents shows the
overall parameter estimate, rather than the deflection from the young adults.
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β̂ Est.Error BF

L Ant. Dorsal Cingulate >0 -0.057 0.115 0.406
R Ant. Dorsal Cingulate >0 0.128 0.106 8.217
L Dorsal Amygdala >0 -0.221 0.121 0.034 †
R Dorsal Amygdala >0 0.256 0.125 40.609 ⋆

L Anterior Hippocampus = 0 0.160 0.122 1.964
L Posterior Hippocampus >0 0.028 0.118 1.462
R Anterior Hippocampus = 0 0.025 0.095 5.658
R Posterior Hippocampus >0 0.252 0.102 155.250 ⋆

TEEN: L Ant. Dorsal Cingulate >0 -0.193 0.260 0.313
TEEN: R Ant. Dorsal Cingulate >0 -0.068 0.243 0.634
TEEN: L Dorsal Amygdala >0 0.163 0.207 3.706
TEEN: R Dorsal Amygdala >0 -0.442 0.270 0.050 †
TEEN: L Anterior Hippocampus >0 -0.042 0.253 0.749
TEEN: L Anterior Hippocampus <0 -0.243 0.272 4.474
TEEN: R Anterior Hippocampus >0 0.048 0.269 1.414
TEEN: R Posterior Hippocampus <0 -0.082 0.264 1.601

⋆: The evidence is in favor of the hypothesis by a factor of at least 10
†: The evidence is against of the hypothesis by a factor of at least 10

Table 11: Bayes Factor tests for the relationship of each node’s Strength* to Threat
Aversion. Note that the tests shown here are for the interactions, which represent
the deflection from the young adult group.

Threat Aversion - Eigenvector Centrality

Multiple regression analysis was used to test if the threat aversion trait was pre-

dicted by the eigenvector centrality of brain regions outlined in Table 1. A node

in the right dorsal amygdala significantly predicted higher threat aversion (β̂ =

0.248, 90% HDI= [0.040, 0.454], BFβ>0vsβ<0 = 35.541). The left posterior hip-

pocampus predicted higher threat aversion in young adults (β̂ = 0.252, 90% HDI=

[0.001, 0.383], BFβ>0vsβ<0 = 18.724). Results are summarized in Table 12 and Table

13.
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β̂ Est.Error 90 % HDI

Young Adults

Intercept -0.044 0.125 -0.248 0.160
L Ant. Dorsal Cingulate 0.164 0.141 -0.065 0.396
R Ant. Dorsal Cingulate 0.106 0.132 -0.109 0.324
L Dorsal Amygdala -0.052 0.125 -0.025 0.155
R Dorsal Amygdala 0.248 0.127 0.040 0.454 *
L Anterior Hippocampus 0.209 0.134 -0.008 0.429
L Posterior Hippocampus 0.189 0.116 0.001 0.383 *
R Anterior Hippocampus -0.132 0.119 -0.333 0.060
R Posterior Hippocampus 0.150 0.132 -0.067 0.369
Adolescents

TEEN 0.279 0.186 -0.023 0.591
L Ant. Dorsal Cingulate -0.005 0.168 -0.277 0.275
R Ant. Dorsal Cingulate -0.147 0.166 -0.416 0.130
L Dorsal Amygdala -0.153 0.216 -0.506 0.200
R Dorsal Amygdala 0.205 0.186 -0.105 0.503
L Anterior Hippocampus -0.068 0.191 -0.375 0.257
L Posterior Hippocampus 0.176 0.278 -0.289 0.620
R Anterior Hippocampus -0.105 0.265 -0.536 0.337
R Posterior Hippocampus -0.113 0.165 -0.382 0.162
Family Parameters

σ̂ 0.932 0.087 0.788 1.068
α̂ (Skewness) 2.168 1.795 -0.989 4.787

LOO-IC = 218.500; WAIC=215.208; R2= 0.272
’*’: Estimate is credibly non-zero with 90% probability

Table 12: Parameter estimates for the relationship of each node’s eigenvector cen-
trality to the Threat Aversion trait in each age group. Note that the adolescents
shows the overall parameter estimate, rather than the deflection from the young
adults.
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β̂ Est.Error BF

L Ant. Dorsal Cingulate >0 0.164 0.141 7.850
R Ant. Dorsal Cingulate >0 0.106 0.132 3.861
L Dorsal Amygdala >0 -0.052 0.125 0.507
R Dorsal Amygdala >0 0.248 0.127 35.541 ⋆

L Anterior Hippocampus = 0 0.209 0.134 1.183
L Posterior Hippocampus >0 0.189 0.116 18.724 ⋆

R Anterior Hippocampus = 0 -0.132 0.119 2.541
R Posterior Hippocampus >0 0.150 0.132 6.786
TEEN:L Ant. Dorsal Cingulate >0 -0.170 0.216 0.278
TEEN:R Ant. Dorsal Cingulate >0 -0.253 0.205 0.119
TEEN:L Dorsal Amygdala >0 -0.101 0.238 0.502
TEEN:R Dorsal Amygdala >0 -0.043 0.213 0.728
TEEN:L Anterior Hippocampus >0 -0.278 0.224 0.118
TEEN:L Posterior Hippocampus <0 -0.013 0.287 1.066
TEEN:R Anterior Hippocampus >0 0.027 0.277 1.154
TEEN:R Posterior Hippocampus <0 -0.263 0.203 9.431

⋆: The evidence is in favor of the hypothesis by a factor of at least 10
†: The evidence is against of the hypothesis by a factor of at least 10

Table 13: Bayes Factor tests for the relationship of each node’s eigenvector cen-
trality to Threat Aversion. Note that the tests shown here are for the interactions,
which represent the deflection from the young adult group.

3.2.3 Novelty Seeking and Reward Dependence

Novelty Seeking and reward dependence emerged from the factor analysis as two

correlated, but ostensibly distinct, factors. To test the hypothesis that these fac-

tors are determined by distinct neural circuits a multivariate model was fit. The

model utilizes a skew normal distribution to account for skew in the factor scores.

Because the correlation between response variables is not estimated the model

essentially consists of two generalized linear models run side by side (Bürkner,

2017).

Each model was set up similarly to what came before, with the addition of

parameter estimates for the means of the two sensation seeking conditions the
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original data collection utilized are also given. Parameter estimates were derived

from the estimated variance component for between-condition variability using

brms (Bürkner, 2017). Model formulas are given below:

yi ∼ skewed normal(µ, σ, α)

µ = β0 + Age0 + ∑
n

βnxn + ∑
n·Age

βnxn · Age + ugroup

β0 ∼ t distribution(ν = 3, µ = 0, σ = .5)

Age0 ∼ t distribution(ν = 3, µ = 0, σ = .25)

βn ∼ t distribution(ν = 3, µ = 0, σ = .5)

βn · Age ∼ t distribution(ν = 3, µ = .25, σ = .25)

σ ∼ gamma(s = 2, r = 2)

α ∼ normal(µ = 2, σ = 4)

BAS Traits - Strength*

The model of strength* showed that the left and right medial amygdala predict

reward dependence in young adults, but in opposite directions. The left medial

amygdala predicts higher reward dependence (β̂=.250, 90% HDI=[0.053,0.459]).

The right medial amygdala predicts lower reward dependence (β̂=-0.364, 90%

HDI=[-0.561,-0.171]). While falling just short of significance, the estimate for the

effect of the left amygdala on reward dependence in adolescents is consistent in

both magnitude and direction with the estimate in young adults (β̂=0.318, 90%

HDI=[-0.017,0.684]).

The left putamen and right nucleus accumbens emerged as significant predic-

tors for novelty seeking in young adults. The left putamen predicts higher novelty

seeking (β̂=0.324, 90% HDI=[0.132,0.525]). The right nucleus accumbens predicts
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lower novelty seeking (β̂=-0.180, 90% HDI=[-0.357,-0.001]).

While falling just short of significance, the estimate for the effect of the left

putamen on novelty in adolescents is consistent in both magnitude and direc-

tion with the estimate in young adults (β̂=0.208, 90% HDI=[-0.093,0.528]). The

estimate for the effect of the right nucleus accumbens on novelty seeking in ado-

lescents is consistent in both magnitude and direction with the estimate for young

adults, but the credible interval is substantially wide and extends well past zero

(β̂=-0.104, 90% HDI=[-0.505,0.307]).

BAS Traits - Eigenvector Centrality

The model of eigenvector centrality revealed two significant predictors in young

adults for reward dependence. The eigenvector centrality of the left putamen pre-

dicts higher reward dependence (β̂=0.217, 90% HDI=[0.007, 0.459]). The eigenvec-

tor centrality of the right medial amygdala predicted lower reward dependence

(β̂=-0.217, 90% HDI=[-0.430,-0.010]). Only one significant predictor emerged for

novelty seeking. The left nucleus accumbens predicted higher novelty seeking

(β̂=0.212, 90% HDI=[0.002,0.417]). Results are summarized in Table 14 and Table

15.
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3.3 Network Visualization

Important nodes in the network identified by strength* and eigenvector centrality

indicate which nodes are highly connected and influential on the whole-brain net-

work. Identifying the brain areas to which these nodes are connected can identify

through which circuits they exert their influence. To investigate this approach the

top 5 positive and top 5 negative connections the significant nodes were identified

through inspection of the partial correlation matrix. All listed connections are in

order from strongest to weakest. Figures visualizing these connections were cre-

ated in BrainNet viewer (Xia, Wang, & He, 2013). Connections were set as 1 for a

positive correlation and as -1 for a negative correlation for ease of visualization.

ECS Network

Impulsivity was found to be predicted best by the left dorsal lateral frontal cor-

tex in young adults and right medial frontal cortex in adolescents. This network

was the only one that showed a major difference between adolescents and young

adults, consistent with the idea that the executive networks are still developing

in adolescents. A visualization of the connectivity of this network can be seen in

Figure 5 and Figure 6.

The left dorsal lateral frontal cortex is positively connected to a location in the

left frontal pole, two locations in the left superior frontal gyrus, and two locations

in the right frontal pole. It is negatively connected to the a different location in the

right frontal pole, right thalamus, right supramarginal gyrus, right angular gyrus,

and right cerebellar crus I.

The right medial frontal cortex is positively connected to the right frontal pole,

another location in the right medial frontal cortex,two locations in the left anterior
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cingulate gyrus, and a location in the left supramarginal gyrus. It is negatively

connected to two locations in the left supramarginal gyrus, left lateral occipital

cortex, right supramarginal gyrus, and right superior lateral occipital cortex.

The overall pattern is for frontal regions to be connected to one another. This is

evident in the intrahemispheric and interhemispheric positive connections of the

frontal lobe in adults. Negative connections are dispersed without a clear pattern.

The same is true for the connectivity of the medial frontal cortex in adolescents.

It appears to be heavily connected with both the frontal lobe and cingulate gyrus,

with dispersed negative connections.

The shift in relationship between impulse control and the medial frontal cor-

tex in adolescence to the dorsal lateral cortex in young adulthood likely reflects

maturational effects.The brain is known to develop from a posterior to anterior

direction (Gogtay et al., 2004). Frontal lobe maturation happens from the medial

to lateral direction (Fuster, 2002). Furthermore, limbic regions are known to de-

velop prior to cortical regions, although the uncinate fasciculus, which connects

the ventral medial frontal lobe to the limbic regions, is still maturing through the

second decade of life (Rothmond, Weickert, & Webster, 2012; Lebel, Walker, Lee-

mans, Phillips, & Beaulieu, 2008). Hence, the inverse relationship of Impulsivity

in adolescents likely relies on inhibitory circuits that are still developing. As expe-

rience and time shape development of the frontal lobe, more abstract social rules

to guide culturally acceptable behavior are learned.
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Figure 5: Strongest positive and negative connections of the left dorsal lateral
frontal cortex, which predicted lower Impulsivity in adults. The connections are
partial correlations scaled to -1 to 1 range.
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Figure 6: Strongest positive and negative connections of the right medial frontal
cortex, which predicted lower Impulsivity in adolescents. The connections are
partial correlations scaled to -1 to 1 range.

BIS and FFFS Network

Threat Aversion was found to be predicted by the bilateral dorsal amygdala and

bilateral posterior hippocampus. The bilateral amygdala is presumed to represent

the FFFS, and the bilateral posterior hippocampus to the BIS. A visualization of

the connectivity of this network can be seen in Figure 7.

The left dorsal amygdala was found to be positively connected to the right

dorsal amygdala, left putamen, left ventral-medial amygdala, left medial amyg-

dala, and a second location in the left putamen. It is negatively connected to the
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left precuneus, left occipital pole, right superior occipital cortex, left frontal pole,

and right inferior temporal gyrus.

The right dorsal amygdala was found to be positively connected to the left dor-

sal amygdala, left putamen, right medial amygdala, right ventral-lateral amyg-

dala, and right putamen. It is negatively connected to the right medial frontal

cortex, right inferior temporal gyrus, right orbital frontal cortex, right cingulate

gyrus, and left hypothalamus.

The left posterior hippocampus was found to be positively connected to the

left anterior hippocampus, two locations in the left parahippocampal gyrus, and

two locations in the right posterior hippocampus. It is negatively connected to the

right posterior hippocampus, right anterior inferior temporal gyrus, right orbital

frontal cortex, and two locations in the right frontal pole.

The right posterior hippocampus was found to be positively connected to the

another location in the right posterior hippocampus, two locations in the right

parahippocampal gyrus, the right subiculum, and the left posterior hippocampus.

It is negatively connected to the left anterior inferior temporal gyrus, the right

putamen, the left occipital pole, the right posterior inferior temporal gyrus,and

right cerebellar crus II.

The overall pattern of connectivity is the bilateral amygdala is heavily inter-

connected and with strong connections to the putamen. There is also a trend for

it to be negatively connected with both frontal and occipital regions. The bilateral

posterior hippocampus shows a pattern of positive connectivity with other parts

of the hippocampus and parahippocampal gyrus. There is also a trend trend to-

wards negative connectivity with the inferior temporal gyrus and both occipital

and frontal regions. This may be interpreted as an oppositional relationship to the

BAS on the part of the hippocampus, and a positive one on the part of the FFFS. It
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is sensible for the amygdala to be positively connected to the BAS due to the fact

that the FFFS must quickly initialize defensive movements without conscious in-

put. Amygdalostriatal structural connections are also established in the primate

brain (Cho, Ernst, & Fudge, 2013).

Figure 7: The bilateral posterior hippocampus (BIS) is represented in Green and
bilateral dorsal amygdala (FFFS) in purple. Each contributed to predicting the
Threat Aversion trait in adults. The connections are partial correlations scaled to
-1 to 1 range.

BAS Network - Reward Dependence and Novelty Seeking

Reward Dependence was found to be predicted by the left putamen, as well as

the left and right medial amygdala. A visualization of the connectivity of this

network can be seen in Figure 8.
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The left putamen is positively connected to two regions in the right putamen,

a region lying between the caudate and putamen, the right nucleus accumbens,

and the left dorsal amygdala. The left putamen is negatively connected to the

left parahippocampal gyrus (entorhinal cortex), the left paracingulate gyrus, left

posterior cingulate gyrus, right inferior frontal gyrus, and right insular cortex.

The left medial amygdala is positively connected to the right medial amyg-

dala, left hippocampus-amygdala transition, right and left hypothalamus, and

left dorsal amygdala. It is negatively connected to the right cerebellar crus V,

left superior frontal gyrus, a region lying between the caudate and putamen, left

cerebellar crus VI, and a region in the right frontal pole.

The right medial amygdala is positively connected to the right hypothala-

mus, left medial amygdala, right hippocampus-amygdala transition, right dorsal

amygdala, and left hippocampus-amygdala transition. It is negatively connected

to the left superior frontal gyrus, right insular cortex, right cerebellar crus V, right

anterior cingulate gyrus, and left superior frontal gyrus.

Novelty Seeking was found to be predicted by the left putamen, as well as

the left and right nucleus accumbens. A visualization of the connectivity of this

network can be seen in Figure 9. The left putamen is a shared feature predicting

both Novelty Seeking and Reward Dependence, so its connectivity profile will

not be reiterated here.

The left nucleus accumbens is positively connected to the left caudate, a region

lying between the caudate and putamen, the left and right thalamus, and the right

caudate. It is negatively connected to the left lingual gyrus, left inferior lateral

occipital cortex, right putamen, right insular cortex, and left cingulate gyrus.

The right nucleus accumbens is positively connected to the left putamen, right

hypothalamus, right orbital frontal cortex, right insular cortex, and right puta-
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men. It is negatively connected to the left central opercular cortex, left lateral

occipital cortex, right inferior frontal gyrus, left superior lateral occipital cortex,

and left subiculum.

A pattern emerged here that the nodes predicting the Reward Dependence

trait are well connected with other regions known to relate to reward learning

and motivational processes. Of note are positive connections with the nucleus ac-

cumbens and hypothalamus. The nucleus accumbens and hypothalamus are both

well known to have roles in reward learning (Day & Carelli, 2007; R. A. Wise,

2005). The hypothalamus controls a wide host of biological processes, among

them sexual behavior, feeding, and the activation of the sympathetic nervous sys-

tem (Olds & Milner, 1954; Stuber & Wise, 2016; Tyree & de Lecea, 2017). All

three hubs were also connected to the dorsal amygdala. This suggests that more

than just the medial amygdala is involved in Reward Dependence. Connections

of reward learning and motivation circuits to a part of the amygdala associated

with learning or reacting to aversive stimuli may also support the notion that

the phenomenon of frustrative non-reward is correctly attributed to both the BAS

and FFFS (Corr, 2002; Carver, 2004, 2006; Chesworth & Corbit, 2017). Other con-

nections, unsurprisingly, were to other areas within the caudate and putamen.

The negative connections of the bilateral medial amygdala and left putamen were

largely to regions in the frontal lobe, cingulate and paracingulate gyrus, and tem-

poral lobe regions near the hippocampus. These regions are among those as-

sociated with the BIS and with the ECS. This suggests the negative connections

contribute behaviorally to behavioral inhibition (Gray & MacNaughton, 2000).

Similar patterns of connectivity were observed for the bilateral nucleus ac-

cumbens. Unique to the nucleus accumbens however are positive connections

to the thalamus, right orbital frontal cortex, and right insula. This may play a
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role in the orienting of attention to novel responses. The right insula has been

associated with increases in autonomic arousal and peripheral adrenaline levels

as well as with both voluntary and involuntary orienting of attention towards

salient stimuli (Critchley, Melmed, Featherstone, Mathias, & Dolan, 2002; Meyer,

Strittmatter, Fischer, Georg, & Schmitz, 2004; Eckert et al., 2009). The nucleus

accumbens also appears to have specialized processing for novel stimuli (Murty,

Stanek, & Heusser, 2013; Zaehle et al., 2013). By contrast, the amygdala may have

a stronger role in Reward Dependence by activating motor functions when a dis-

criminative stimulus has been learned to predict the availability of reward given

some operant motor program (Murray, Izquierdo, & Malkova, 2009; Wassum &

Izquierdo, 2015; Volkow & Morales, 2015; Chesworth & Corbit, 2017). It is also

possible that the aversive effects of frustrative non-reward driven by BAS-FFFS

interactions mediated by the amygdala may be a motivating factor in Reward De-

pendence, maintaining behavior though negative reinforcement. That is, when

the reward is obtained, not only do the rewarding effects reinforce the behavior

chain, but the elimination of frustration also reinforces the fixation on a known

reward. This is known to play a role in the maintenance of drug seeking behav-

ior, which is arguably the most extreme example of Reward Dependence (Koob,

2013).

4 Discussion

The first aim of this study was to explore a broad array of existing personality

assessments through factor analysis to test the hypothesis that there are personal-

ity traits corresponding to the systems of Reinforcement Sensitivity Theory. The

second aim of this study was to use the graph theory metrics strength* and eigen-
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Figure 8: Strongest positive and negative connections of the left putamen and
bilateral medial amygdala nodes, which predict the Reward Dependence trait in
adults. The connections are partial correlations scaled to -1 to 1 range.
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Figure 9: Strongest positive and negative connections of the left putamen and
bilateral nucleus accumbens nodes, which predict the Novelty Seeking trait in
adults. The connections are partial correlations scaled to -1 to 1 range.
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vector centrality to characterize the resting state functional networks of the brain.

It was hypothesized that brain regions corresponding to ones established as part

of RST systems predicted the personality traits. The third aim of this study was

to explore whether or not the neural correlates of personality were different in

adolescents compared to adults. Reinforcement sensitivity theory has yet to ex-

tend to developmental questions. Network analysis utilizing graph theory allows

for understanding the precise way certain circuits have been disrupted, and how

that might influence the brain as it develops. This is an important frontier for the

the field of neuroscience because if personality traits which place an adolescent

at risk for mental health issues can be linked to developing brain circuits, there is

potential for early intervention and therapies adapted to the developing brain.

The factor analysis revealed four factors underlying the battery of personal-

ity traits given to participants. One corresponded to the Behavioral Inhibition

System (BIS) and Fight Flight Freeze System (FFFS), one to the Executive Control

System (ECS), and two to different aspects of the Behavioral Approach System

(BAS). The two BAS traits thematically seemed to correspond to Cloninger’s Re-

ward Dependence and Novelty Seeking (Cloninger, 1986). A factor analysis of

a variety of personality assessments specifically designed to measure RST con-

structs also found that up to four factors are required to adequately account for

the complexity of the BAS (Krupić, Corr, Ručević, Križanić, & Gračanin, 2016).

Though not anticipated prior to the current study it is more likely than not that

different capacities of the BAS would have different effects on behavior.
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4.1 Behavioral Approach System (BAS)

The major distinction concerning the functions of reward learning circuitry is be-

tween wanting and liking. The first refers to a craving for some stimulus or out-

come, and the later to the hedonic response to a stimulus or outcome. The func-

tion of wanting is to initiate movements organized into plans to obtain the de-

sired outcome and is thought to depend on dopaminergic activity. Liking serves

as a signal to terminate an ongoing response and is thought to depend on opi-

oidergic and GABAergic function (Berridge, Robinson, & Aldridge, 2009; Peciña,

2008). On the other hand, the dopaminergic system also registers novelty and is

released with diminishing magnitude as the familiarity of a stimulus increases

(Schultz, Dayan, & Montague, 1997). Beyond this behavioral patterns can be de-

tected in certain reward learning paradigms reflecting a preference for encounter-

ing novel stimuli or for certain novel stimuli that depend on different processes

within the same circuitry (Krebs, Schott, & Düzel, 2009; Krebs, Heipertz, Schuetze,

& Duzel, 2011; Houillon et al., 2013). It has also been suggested that behavior con-

sists of both valuation and motivation stages. This means that an appraisal about

the value of a stimulus or outcome is undertaken before a goal is formed (the

’wanting’) to animate behavior, and both can be manipulated independently un-

der certain experimental conditions (McNaughton & Corr, 2004; McNaughton et

al., 2016). In summary, a variety of processes are attributed to the BAS as a whole

including (in the order which they must occur in a behavior chain) valuation (de-

termining whether a goal should be set), wanting (goal setting), motivation (vigor

to animate behavior), and liking (the hedonic response indicating a goal has been

achieved). In this view, the BAS may be better viewed as a collection of systems

embedded within overlapping neural architecture or a ’supersystem’. BAS re-
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lated personality traits then reflect stable patterns of function in different parts of

the BAS supersystem. A future expansion of RST may need to add different con-

ceptual systems to reflect this just as the original concept of the BIS was split into

the FFFS and BIS when it became clear that fear and anxiety were overlapping but

distinctive processes (Gray, 1982; Gray & MacNaughton, 2000) .

The regression results indicate that Reward Dependence is most distinctly re-

lated to the functional connectivity of the medial amygdala, while Novelty Seek-

ing is most distinctly related to the functional connectivity of the nucleus accum-

bens. The putamen appears to be involved in both traits, although each trait was

predicted by the left putamen node by different graph theory metrics. As men-

tioned previously, the amygdala’s role in reward learning is the recognition of mo-

tivationally salient stimuli, including those learned through association (Murray

et al., 2009; Wassum & Izquierdo, 2015; Volkow & Morales, 2015; Chesworth &

Corbit, 2017). Reward Dependence as a trait is indicated by the current study to

be largely tied to the amygdala. In particular the left amygdala may have greater

brain-wide connectivity while the right amygdala may have a smaller degree of

influence on the brain. This is consistent with results indicating the left amygdala

has greater resting state functional connectivity with a greater level of BAS-related

traits such as Extraversion (Pang et al., 2016). Extraversion has also been linked

with greater gray matter volume in the left amygdala (Omura, Todd Constable, &

Canli, 2005).

Novelty Seeking was more closely related to the nucleus accumbens. In par-

ticular, the less strongly connected the accumbens is to the rest of the brain, the

greater score an individual has on Novelty Seeking. This may reflect low cate-

cholamine levels, such that low noradrenergic or dopaminergic activity results

in poor connectivity. Novelty Seeking behavior may then reflect a compensatory
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mechanism to raise catecholamine through the seeking out of novel stimuli. On

the other hand greater influence from the left accumbens on the brain results in

a higher Novelty Seeking score. This positive relationship may be related to the

strong functional connections the right accumbens has to the hypothalamus and

insula found in the qualitative network analysis. Stimulation of the hypotha-

lamus is known to induce exploratory behavior characteristic of Novelty Seek-

ing, and the insula is known to play a role in autonomic arousal (Olds & Mil-

ner, 1954; Critchley et al., 2002). This could possibly reflect a greater degree of

catecholamine input or greater sensitivity to such input, which is an apparent

contradiction to the traditional explanation of novelty seeking. Such paradoxes

have been observed in other domains, such as electro-dermal response (Stelmack,

Plouffe, & Falkenberg, 1983). Novelty Seeking traits may also be moderated by

sex, which was not accounted for in the present study (Cross, Cyrenne, & Brown,

2013). The particular valence and arousal level may also play a role, but it is not

clear what would account for paradoxical observations in a resting state (Joseph,

Liu, Jiang, Lynam, & Kelly, 2009). This apparent paradox may reflect the need for

a greater number of factors related to the BAS to properly delineate the influences

of different brain regions on different aspects of BAS-behaviors.

4.2 Executive Control System (ECS)

The Executive Control system is a complex system involving both approach and

avoid tendencies. It is dependent on a variety of neurotransmitter systems, namely

dopamine, serotonin, acetylcholine, and the ubiquitous GABA and glutamate.

The ECS is responsible for the organization of behaviors into logical patterns in

service of a goal, and hence is vital to the proper execution of wanting and moti-
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vation stages of goal-directed behavior. Breakdown of the ECS results in the al-

ternation between labile attention (mind wandering, environment scanning) and

inflexible attention (hyperfocus or perseveration) characteristic of developmen-

tal disorders such as attention deficit hyperactivity disorder and autism spectrum

disorders, respectively. At its most extreme, breakdown of the ECS results in com-

pletely disorganized patterns of behavior such as that seen from frontal lobe brain

injury. Equally extreme are cases of ECS breakdown due to psychosis causing con-

ditions such as schizophrenia, resulting in disorganized patterns of thinking, lack

of spontaneous or voluntary behavior, and lack of insight concerning the veridi-

cality of delusions and hallucinations.

If the BAS controls the sequence of valuation, wanting, motivation, and lik-

ing, the ECS is vital for the termination of this behavior chain. Deficits in this

inhibitory process result in behavioral patterns such as addiction, where infor-

mation concerning the risk or utility (specifically whether or not a behavior will

result in the desired outcome) are not utilized in the ongoing valuation of an out-

come. In addiction it is widely recognized that risk of death, injury, or illness

are discounted despite something such as a drug no longer holding any intrin-

sic value (ie, loss of hedonic response due to tolerance to a substance). The ECS

also plays an inhibitory role in the voluntary withholding of a response due to

social expectation or needing to formulate a fully developed motor plan. Fail-

ure to appropriately inhibit a response either prior to its execution or after it has

begun and failure to integrate goal-relevant information in decision making are

fundamental features of impulsivity reflected in the Impulsivity trait recovered

in the factor analysis. Addiction, antisocial personality disorder, ADHD, autism,

and schizophrenia are notable clinical conditions that affect executive functions in

different domains and severity (Hill, 2004; Egeland, 2007; Eisenbarth et al., 2008;
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Crews & Boettiger, 2009).

The regression results for Impulsivity revealed a developmental difference in

a major locus for the Executive Control Network. Maturation of impulse control

appears to be mediated by a shift from the medial frontal lobe to the dorsal lateral

frontal lobe. Furthermore, the influence of a node on the overall brain network,

as measured by strength* and eigenvector centrality, predicts how impulsive an

individual is likely to be. The greater the influence of the node for the ECS, the

less impulsive someone will be. The medial frontal cortex playing the role of the

’executive’ in adolescents is consistent with current knowledge about the devel-

opmental morphology of the frontal lobe. Gray matter maturation proceeds from

the posterior to anterior direction. The dorsolateral frontal cortex is among the last

to develop (Gogtay et al., 2004; Anderson, Jacobs, & Anderson, 2008). Evidence

suggests that the medial part of the frontal lobe develops first as well, expanding

from the medial to lateral parts. Medial frontal structures are involved in the initi-

ation of movement in response to signals of reinforcement, as well as several other

affective and motivation related processes (Fuster, 2002; O’Reilly, 2010). The par-

ticular medial area identified as an important node in the ECS for adolescents is

a midline area overlapping with the paracingulate gyrus. This is consistent with

the fact that the most anterior parts of the frontal lobe (the prefrontal cortex) have

yet to fully develop, as well as the fact that the dorsal lateral part has yet to fully

develop. The qualitative analysis of the connections suggest it shares many of

the same functional connections as the dorsal lateral frontal cortex does in adults,

although the connections tend to be within the same hemisphere. It is likely that

the nature of white and gray matter development accounts for this hemispheric

switch. Evidence suggests that the right-side white matter tracts and gray matter

in the frontal lobes develops with greater speed than the left initially, then slowing
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down while the development of the left side slowly catches up (Tanaka, Matsui,

Uematsu, Noguchi, & Miyawaki, 2012).

4.3 Defensive Systems - BIS & FFFS

The Behavioral Inhibition System is another major system involved in behavioral

monitoring and decision making. From an evolutionary perspective, all organ-

isms require a system to guide behavior. Although other organisms have ho-

mologous brain regions to the ones in the human frontal-parietal (or Executive

Control) system, the functional capacities yielding the abilities of human reason

are simply not as complex and capable (Preuss, 1995; S. P. Wise, 2008). In other

mammals in particular the BIS plays a large role in these processes. Lesions in the

septal-hippocampal system in small mammals tend to produce deficits in respon-

dent and operant learning tasks similar to those resulting from frontal lobe lesions

in primates (Altman et al., 1973). The major task of the BIS is to monitor behav-

ior for goal conflicts between the BAS and Fight-Flight-Freeze System (FFFS). The

other major function is to monitor the proximity of threats (defensive distance)

or other aversive situations. Anxiety about public speaking for instance may be

present days prior to having to speak in front of a crowd, but grow stronger as

the event draws closer. The BIS inhibits the FFFS, but as the perceived threat is

more proximal it releases the FFFS from inhibition. Dysfunction of the BIS results

in generalized anxiety disorder, allowing the FFFS to have undue influence on

behavior and mood (Gray & MacNaughton, 2000). The FFFS by contrast is sim-

ply the defensive system in place to detect threats and react to them through the

defensive behaviors of Fight, Flight, or Freeze. Panic disorder, PTSD, and specific

phobias are examples of FFFS dysfunction, causing defensive reactions that can
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be sudden, intrusive, and sometimes extreme (Gray & MacNaughton, 2000). The

amygdala is most commonly associated with the FFFS, but projections to the dif-

ferent regions within the periaqueductal gray (PAG) trigger different defensive

behaviors in a strategy selection process called the defense cascade (Kozlowska,

Walker, McLean, & Carrive, 2015). The PAG in turn mediates many of its effects

through connections the nucleus ambiguus (NA) and dorsal motor nucleus of the

vagus nerve (DMNX) (Farkas, Jansen, & Loewy, 1997). The NA controls the phy-

logeneticallymore recent myelinated vagus nerve, present only in mammals, and

releases the cardiovascular system from tonic regulation when the HPA axis re-

leases a surge of corticosteroids in response to a stressor. The DMNX controls the

phylogenetically older unmyelinated vagus nerve, which is normally only trig-

gered in reaction to extreme danger or situations where fight or flight strategies

are untenable. DMNX activation causes a sudden drop in blood pressure, sup-

presses breathing and bladder/bowel control, often causing a fainting response

that has origins in the playing-dead and freeze responses (Porges, 2007, 2009).

Pathological activation of the FFFS is bound to produce approach-avoidance

conflicts and shape avoidance behaviors. Higher order traits such as Neuroticism

are designed to measure these longer term patterns of avoidance behaviors and

frequency of experiencing negative affect. As a result, it was expected that only

one trait would emerge related to the FFFS and BIS. This trait was named Threat

Aversion. It was expected then that brain regions corresponding to both the FFFS

and BIS would relate to this trait. As expected the amygdala and hippocampus

were both related to Threat Aversion. The left dorsal amygdala predicted lower

Threat Aversion and the right dorsal amygdala predicted higher Threat Aversion

in adults. In adults it was found that the left and right hippocampus predicted

greater Threat Aversion. Posterior regions of the hippocampus, rather than ante-
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rior, were found to predict Threat Aversion. This implies the sensitivity to detect-

ing goal-conflict or judging threats to be proximal relates to the posterior portion

of the hippocampus, but the anterior portion is responsible for addressing a de-

tected goal-conflict (Satpute et al., 2012).

The posterior hippocampus has also been more closely related to memory pro-

cesses than the anterior hippocampus (Fanselow & Dong, 2010; Blum, Habeck,

Steffener, Razlighi, & Stern, 2014). This is not surprising. If the posterior hip-

pocampus is heavily involved with memory processes, then it has easy access to

memories of threatening stimuli or circumstances. This would allow it to monitor

the environment and compare stimuli against those in memory. Positive detection

of a threat would result in an assessment of possible goal-conflict, signaling the

anterior hippocampus to bias decision making in favor of the FFFS. This is evo-

lutionarily sensible; a grazing zebra would be remiss to not assess the possibility

of being eaten upon seeing a lion and decide in favor of fleeing. The qualita-

tive network analysis of the posterior hippocampus showed connections largely

to cortical areas in the temporal lobe, consistent with it being involved in access-

ing memories. These results support the idea that goal conflict does not need to

be present to detect hippocampal involvement in trait-anxiety, allowing reinforce-

ment sensitivity theory to be studied through resting state functional connectivity

analyses.

4.4 Limitations and Future Directions

Although results are consistent with the predictions of reinforcement sensitivity

theory, some caution is warranted in interpreting results. The sample size of the

study is one major limitation warranting such caution. It has been suggested
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to reliably detect personality related effects in the brain one needs a very large

sample size on the order of around 200 participants (McNaughton et al., 2016).

Also, fewer adolescents were enrolled in the study than adults. Due to this, the

regression model lacked power to get sufficiently precise estimates in order to

confidently state the direction of an effect for most estimates. This resulted in the

selection of a small handful of brain regions to enter into the regression model.

Ideally, every region of interest would be entered into every model to gain an

understanding of how uniquely each brain region relates to a personality trait.

Another limitation is that only 2 to 4 nodes were used as representatives of larger

brain areas thought to be involved. This was done because it was probable that

nodes within the same brain region would share similar properties and cause an

undesirable amount of collinearity between predictors.

Future studies might also use personality assessments developed specifically

with RST in mind. While the Carver and White BIS/BAS assessment is based on

RST constructs, it is based on an early iteration of the theory which only posited

a behavioral activation and behavioral inhibition system (Gray, 1970; Carver &

White, 1994; Jackson, 2009; Reuter, Cooper, Smillie, Markett, & Montag, 2015).

For the purposes of a study like this one, utilizing a battery of assessments specif-

ically designed to measure the constructs of interest would necessitate the use of

principal components analysis. The present study used exploratory factor anal-

ysis because it is most appropriate when looking for latent variables to explain a

set of measured variables. However, a disadvantage of using factor scores from

exploratory factor analysis is the issue of factor score indeterminacy. Due to the

lack of perfectly unique factor solutions, determinate factor scores cannot be de-

fined (J. S. Williams, 1978). Because of this, the method of computing factor scores

could in theory affect the results. Principal components analysis (PCA) lacks this
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problem (Grice, 2001). In a situation where all trait measures are directly concep-

tually related to RST systems PCA would be more appropriate to simply reduce

the number of variables in any case.

A future study might also look at the effects of sex on personality and brain

networks. Sex differences in personality have been found in many personality

theories, including the Eysenck Personality Inventory, Cloninger’s Temperament

and Character Inventory, and Big Five (Miettunen, Veijola, Lauronen, Kantojärvi,

& Joukamaa, 2007; Escorial & Navas, 2007; Weisberg, DeYoung, & Hirsh, 2011;

Cross et al., 2013).

Nevertheless, results were consistent with predictions. The use of Bayesian

methods allowed the use of a prior distribution that applies a small amount of

shrinkage towards zero. This regularization helps avoid errors of magnitude.

However, this does sacrifice a small amount of power in a small sample size study

as smaller amounts of data grant a prior distribution more influence on the poste-

rior, making it more difficult for an effect to be detected as significantly non-zero.

This sacrifice is worth making in order to give positive findings greater credibility.

Although the current study was not able to adequately address developmental

questions, it shows a future study with the improvements outlined here is feasi-

ble and could provide valuable information concerning the development of per-

sonality and its relationship to neurobiological and behavioral pathologies. The

current study also supports the notion that reinforcement sensitivity theory is a

useful ’unified theory’ of personality for understanding the relationship of resting

state functional brain networks to personality.
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