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Abstract
Background: Expression microarrays are increasingly used to characterize environmental responses and host-
parasite interactions for many different organisms. Probe selection for cDNA microarrays using expressed
sequence tags (ESTs) is challenging due to high sequence redundancy and potential cross-hybridization between
paralogous genes. In organisms with limited genomic information, like marine organisms, this challenge is even
greater due to annotation uncertainty. No general tool is available for cDNA microarray probe selection for these
organisms. Therefore, the goal of the design procedure described here is to select a subset of ESTs that will
minimize sequence redundancy and characterize potential cross-hybridization while providing functionally
representative probes.

Results: Sequence similarity between ESTs, quantified by the E-value of pair-wise alignment, was used as a
surrogate for expected hybridization between corresponding sequences. Using this value as a measure of
dissimilarity, sequence redundancy reduction was performed by hierarchical cluster analyses. The choice of how
many microarray probes to retain was made based on an index developed for this research: a sequence diversity
index (SDI) within a sequence diversity plot (SDP). This index tracked the decreasing within-cluster sequence
diversity as the number of clusters increased. For a given stage in the agglomeration procedure, the EST having
the highest similarity to all the other sequences within each cluster, the centroid EST, was selected as a microarray
probe. A small dataset of ESTs from Atlantic white shrimp (Litopenaeus setiferus) was used to test this algorithm
so that the detailed results could be examined. The functional representative level of the selected probes was
quantified using Gene Ontology (GO) annotations.

Conclusions: For organisms with limited genomic information, combining hierarchical clustering methods to
analyze ESTs can yield an optimal cDNA microarray design. If biomarker discovery is the goal of the microarray
experiments, the average linkage method is more effective, while single linkage is more suitable if identification of
physiological mechanisms is more of interest. This general design procedure is not limited to designing single-
species cDNA microarrays for marine organisms, and it can equally be applied to multiple-species microarrays of
any organisms with limited genomic information.
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Background
Expression microarrays are powerful tools for human dis-
ease diagnosis, prognosis and treatment [1] offering
unparalleled insight into the function of the entire
genome and the dynamic interactions among genes. The
ability of microarrays to identify gene expression signa-
tures, specific subsets of genes that respond to particular
stimuli, make them valuable tools for characterizing
organisms' response to environmental conditions and
host-parasite interactions. This method relies on organ-
isms as sentinel markers of environmental changes. Since
aquaculture marine species are easy to keep in a captive
environment, they can be used as convenient sentinels by
profiling their physiological responses. An efficient and
economic method to quantify their physiological
responses is to collect the expressed sequence tags (ESTs)
with the purpose of constructing cDNA microarrays,
which can be used to screen their transcriptomes. There-
fore, several pilot studies have been initiated in economi-
cally important marine species to generate genomically
enabled tools for the purpose of elucidating the role of
biological and environmental factors in ultimately deter-
mining the difference between survival, morbidity and
mortality [2-4]. The growing need for a marine functional
genomics approach using microarrays bespeaks a general-
purpose cDNA microarray probe selection tool to identify
which ESTs to spot on the microarray from large collec-
tions of ESTs with unknown functions and variable
redundancies.

The two most widely used expression microarray systems
are oligonucleotide and cDNA microarrays. Oligonucle-
otide microarrays are generated by chemically synthesiz-
ing short oligo probes (20–70 bp) onto the slides [5]. In
contrast, cDNA microarrays are created by spotting long
strands of amplified cDNA sequences (e.g., the expressed
sequence tags) [6]. In this paper, the sequences spotted on
the arrays are referred to as "probes." Although many
algorithms have been developed for selection of oligonu-
cleotide [7-11] or gene-specific probes [12,13], only one
application was found by the authors for cDNA microar-
ray probe selection [14]. However, this algorithm was
designed specifically for organisms with extensive
genomic data, not for the organisms with limited genomic
information.

In the absence of cDNA microarray probe selection algo-
rithms, EST selection for spotting on microarrays has been
approached using various informal methods. These meth-
ods included spotting ESTs without sequencing informa-
tion, spotting only sequenced ESTs with annotations, or
forcing the selection on gene-oriented clusters [15]. The
choice of method typically reflects cost/benefit ratios and
the stage of development of the EST collection. A compre-
hensive review of microarray probe selection can be found

in Tomiuk and Hofmann [16]. Gene or transcript oriented
clusters are generally formed by gene indexing projects,
such as TIGR [17,18], Stack [19], or Unigene [20]. Gene
indexing projects involve three general steps. First, the
quality control step filters out contaminating sequences
such as vector or bacterial sequences. Second, ESTs are
partitioned into smaller clusters, often using the hierarchi-
cal single-linkage method with an arbitrarily chosen cut-
off threshold [21,22]. Finally, although not all projects
include a assemblage step, sequences are often assembled
into contigs using existing software, such as CAP3 [23] or
PHRAP [24].

In this study, we propose a probe selection procedure for
cDNA microarray that tracks both sequence redundancies
and functional representativeness of the selected probes
in an integrated sequence diversity plot (SDP). SDP
includes a sequence diversity index (SDI) to measure the
sequence similarities within EST clusters quantitatively.
The issue of how many probes are sufficiently representa-
tive for all collected ESTs is approached in a manner sim-
ilar to the choice of dimensions to retain in principle
component analysis (PCA). This approach reflects the fact
that there is no definitive right answer to the question
[25]; the number of "clusters" of ESTs may vary as the
stringency of microarray hybridization condition changes.
All collected ESTs are automatically annotated using Gene
Ontology [26] terms, and then a unique probe GO index
(UPGI), a functional index, was devised to access func-
tionally how representative the selected probes are. This
integrated and flexible method using SDP allows users to
decide which clustering method and stringency to use
when designing a cDNA microarray for organisms with
limited genomic information based on their logistical
constraint and experimental purposes. A small data set of
ESTs was used to test this algorithm so that the detailed
results of this algorithm could be examined.

Results
A small data set of 1047 ESTs from Atlantic white shrimp
(Litopenaeus setiferus) from the Marine Genomics website
[27] was analyzed. After pre-processing, 971 sequences
longer than 100 bp were further used in the analysis
(details see methods; Figure 1). The ESTs were progres-
sively grouped using different hierarchical linkage meth-
ods from 1 to n (n = 971) clusters (details see methods).
The sequence diversity plot (SDP) summarizes sequence
properties within clusters and the functional representa-
tiveness of the selected probes using three indexes: the
sequence diversity index [SDI; Eq. (1)], the contiguity
index [CI; Eq. (2)], and the unique probe GO index
[UPGI; Eq. (3)] (Figure 2).
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Schematic diagram of the optimal cDNA microarray probe selection from expressed sequence tags (ESTs) for marine organismsFigure 1
Schematic diagram of the optimal cDNA microarray probe selection from expressed sequence tags (ESTs) for 
marine organisms. The methods of this study were mainly implemented using Matlab™ and other languages or software 
(labelled in blue).
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Sequence diversity index (SDI) measures within-cluster 
sequence dissimilarity
This index is the ratio of within-cluster sequence dissimi-
larities to the total sequence dissimilarity when m clusters
are formed (m = 1,2,...n):

where dmi is the distance (dissimilarity), the E-value from
blast result (details see methods), between the ith pair of
sequences for a total km pairs of within-cluster compari-
sons when m clusters are formed. D is defined as

, the average distance of the total N pair-wise

Sequence Diversity Plot (SDP) includes both sequence diversity and probe functional representativenessFigure 2
Sequence Diversity Plot (SDP) includes both sequence diversity and probe functional representativeness SDP 
summarized three indexes [the sequence dissimilarities index (SDI; Eq. (1)), the sequence contiguity index (CI; Eq. (2)), and the 
unique probe GO index (UPGI; Eq. (3)) in molecular function domain] among three clustering linkage methods (single, average 
and complete linkage methods). All indexes range between zero and one in a linear scale in this figure. Sequence diversity 
decreases as the number of clusters (number of selected probes) increases; functional representativeness increases as the 
number of probes selected increase.
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distances among all n sequences (where

 in this data set).

Contiguity index (CI) measures the sequence contiguity 
within clusters
The within-cluster sequence contiguity is evaluated using
CAP3 [23], commonly used sequence assembly software
(see methods). The number of putative unique genes,
denoted as PGm, is the sum of the number of assembled
contigs and singlets (single sequences, which cannot be
assembled with any other sequences) when m clusters (m
= 1,2...n) are formed. The contiguity index (CI) at a given
number of clusters (m) is defined as the inverse of the
average number of putative genes per cluster, which
equals the number of clusters per gene:

This index reflects how contiguous the sequence members
are within a cluster. Maximum value of CI is 1 when all
the members are contiguous (one cluster per gene).

Unique probe Gene Ontology (GO) index (UPGI) 
measures functionally how representative the selected 
probes are
The unique probe GO index (UPGI) when m clusters of
ESTs are formed is defined as the number of unique GO
terms associated with all m probes (m = 1, 2...n) divided
by the number of the GO terms associated with all n
sequences (n = 971).

where ProbeGOmj is the number of unique GO terms asso-
ciated with the probe representing the jth cluster when m
clusters are formed and sequenceGOi is the number of GO
terms of the ith sequence. This index measures functionally
how representative the selected probes are among all
functionally unique sequences in the entire EST collec-
tion. Three UPGIs are calculated for three GO domains,
respectively: molecular function (UPGI-MF), biological
process (UPGI-BP), and cellular components (UPGI-CC)
(Figure 3; see more about Gene Ontology in methods).

Sequence diversity plot (SDP) used as an aid to decide how 
many probes to spot on microarray
The dissimilarities among sequences within a cluster,
measured by SDI, decrease as total number of the clusters

increases; sequences within a cluster share higher similar-
ity as the number of clusters formed increases (Figure 2).

From the collection of 971 Litopenaeus setiferus ESTs, the
first break point of SDI using single linkage method was
442 clusters (Figure 2). An elbow (bend) in SDI, analo-
gous to an elbow of scree plot of the principle component
analysis (PCA), indicates that the remaining within-clus-
ter diversity is very low after this number of clusters
formed [25]. The selected probes presented 93% unique
molecular functions, 94% unique biological processes,
and 96% unique cellular components when 442 clusters
were formed using single linkage method (Figure 3).

Other amalgamation algorithms produced clusterings
with different properties. The average and complete link-
age methods reduced the sequence dimensionality more
efficiently than that by using the single linkage method
(Figure 2). For the complete linkage method, the break
point was observed at 289 clusters, at which, the selected
probes represented only 50% of unique molecular func-
tions while the selected probes represented 71% of
unique molecular functions using single linkage, and 56%
using average linkage (Figure 2). The probes selected
using single linkage were functionally more unique in all
three domains (molecular functions, biological processes,
and cellular components) than the ones selected using
average or complete linkage methods (Figure 3). Excep-
tions to this rule were found when very small (<60 clus-
ters) or large (>442 clusters) numbers of probes were
selected. The functional representativeness of the probes
at very high or low ends (<60 or >442 clusters) was com-
parable using any of the three linkage methods. When 442
probes were selected, 93 – 95% unique biological process,
~92% within-cluster biological process, and ~96% unique
cellular component was represented by the selected
probes (Figure 3). Although fewer annotated EST clusters
(number of clusters containing at least one annotated
sequences) were formed using single linkage method
compared to those selected using the other two linkage
methods given a fixed number of cluster within the mid-
dle range (~60–442 clusters), more functionally unique
probes were selected among the formed clusters by single
linkage method (Figure 4).

Contig assemblage using CAP3 yields a similar result as
that of cluster analysis using the single linkage method
(Figure 2). A total of 461 putative genes was generated
using sequence assembly software CAP3 without parti-
tioning the sequences into subgroups (by cluster analy-
sis). These putative unique genes included 356 singlets
(single ESTs) and 110 assembled contigs. This result fol-
lowed closely the result of cluster analysis with single link-
age method, which indicated 442 clusters. The EST
members in each putative gene were in general agreement
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with the result of single-linkage cluster analysis with some
exceptions. For example, sequence 59 (Penaeidin 2),
sequence 10 (Penaeidin 3a), and sequences 177 (Penaei-
din 3c) were not assembled into any contigs using CAP3,
but they were clustered together when 422 clusters were
formed using single linkage method. These sequences
share high similarities and high percent identities (E-val-
ues < 10-37; Table 1), and they are likely to hybridize with
each other. Probes selected using clustering methods
reflect the hybridization potential compared to the assem-
bly approach. Some sequences, on the other hand, were

not clustered into a group although they could be assem-
bled into one putative contig. For instance, sequences 79
and 158 were not clustered in a group because the over-
lapping segment is marginally short (61 bp/64 bp identi-
cal) and this segment is composed of low-complexity
sequences (31 pairs of GA repeats, which were masked
when using BLAST). The different characteristics of three
linkage methods could be further illustrated by local
sequence percent identity and the lengths of high scoring
pair segments (HSP) (Figure 5). Sequences within a clus-
ter formed using single linkage method do not always

unique probe Gene Ontology (GO) index (UPGI) in three GO domains: molecular function, biological process and cellular componentFigure 3
unique probe Gene Ontology (GO) index (UPGI) in three GO domains: molecular function, biological process 
and cellular component. Comparison of the unique probe GO index (UPGI) in three GO domains: molecular function, bio-
logical process, and cellular components among three linkage methods (single, average linkage, and complete linkage methods). 
The probes selected using single linkage were functionally more unique in all three domains than the ones selected using aver-
age or complete linkage methods when selecting middle range of number of probes (60 – 442 probes).



BMC Bioinformatics 2004, 5:191 http://www.biomedcentral.com/1471-2105/5/191

Page 7 of 13
(page number not for citation purposes)

have to overlap with each other as long as the distances
between some of the "linking sequences" are short (the
similarities are high). That is, the fragmented ESTs could
be "linked" by fragmented (or incomplete sequenced)
ESTs and the average within-cluster percent identity is not
necessary high when using the single linkage method (Fig-
ure 5). The sequences within same clusters using the aver-

age linkage methods, as expected, have the highest
average percent identity (before all three methods con-
verge around 545 clusters).

Sequence contiguity assessed by CAP3 (Eq. (2)) has
shown similar results observed using the probe functional
index, UPGI (Eq. (3); Figure 2). Clusters formed using the

Summary of annotated EST clusters and unique representativeness of the selected probes in three GO domains: molecular function, biological process and cellular componentFigure 4
Summary of annotated EST clusters and unique representativeness of the selected probes in three GO 
domains: molecular function, biological process and cellular component. EST clusters contain at least one annotated 
sequences (noted as "cluster annotated*" in the legend) and unique annotations of selected microarray probes in each of the 
three Gene Ontology (GO) domains. (A) Molecular Function (MF) (B) Biological Process (BP) and (C) Cellular component 
(CC). Although fewer annotated EST clusters (number of clusters containing at least one annotated sequences) were formed 
using single linkage method compared to those selected using the other two linkage methods given a fixed number of cluster 
within the middle range (~60–442 clusters), more functionally unique probes were selected among the formed clusters by sin-
gle linkage method
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Table 1: Sequence similarities between three penaeidin sequences in a group formed by cluster analyses using the single linkage 
method. Percent identity (%) and sequence length (bp) of the high scoring pair from the pair wise blast results (in parentheses).

Lset10 Lset59 Lset177

Lset10 100 (635) 88 (140) 90 (140)
Lset59 88 (140) 100 (586) 95 (141)
Lset177 90 (140) 95 (141) 100 (456)

Average within cluster percent identity and the lengths of high scoring pair (HSP) segments throughout clustering processFigure 5
Average within cluster percent identity and the lengths of high scoring pair (HSP) segments throughout clus-
tering process. The percentage identity and lengths of HSP further confirmed the observations in Figure 2 that sequences 
within a cluster formed using single linkage could potentially be fragments of same gene/transcript, but fragments of sequences 
might not overlap that average within-cluster percent identity is lower when using single linkage method. The average percent 
identity is the highest when using average linkage method as expected.
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single linkage method contained slightly more contigu-
ous EST members while the other two linkage methods
generated fewer contiguous sequences in the mid range
(Figure 2). Similarly, when the number of clusters was
either very low or high, the results were comparable.

ESTs were annotated based on Gene Ontology (GO)
terms (details see methods). Three types of functionally
unassigned sequences were generated through the GO
annotation process: the first type was the sequences hav-
ing no similar sequences found in the GO database. The
majority of ESTs (63%) belonged to this category (607 out
of 971 ESTs; Figure 6). The second type was similar
sequences found in the GO database with the function of
those sequences annotated as "unknown." The last type of
"unknown" was similar sequences found in the GO data-
base, but only certain domains of GO annotation were
complete. For example, it could only have molecular func-
tional annotation associated with the sequence but bio-
logical process and cellular components are unknown.
The last two types of sequences were combined into one
"unknown category" in that particular functional domain
(Figure 6). Twenty five percent of sequences was anno-
tated in molecular function while 12% was unknown;
27% was annotated in biological process while 10% was
unknown; and 27% was annotated in cellular compo-
nents with 11% unknown. Among the annotated
sequences, 36%, 49%, and 22% of annotated sequences
were associated with unique GO terms in each of the three
domains (molecular function, biological process and cel-
lular component), respectively (Figure 6).

Both functional and sequence indexes for the three clus-
tering methods converge around the threshold of 442
clusters. When the user-defined number of probes is fewer
than this threshold value (442 clusters), the functional
uniqueness of the selected probes using single linkage
method is superior than that of the other two methods
while average linkage is the most effective method for
dimension reduction (Figure 2).

Discussion
cDNA microarray is one of the most common microarray
platforms, but it is also known to have cross-hybridiza-
tion potentials. The hybridization potentials between
sequences may also vary as the experimental condition
changes. This changing nature and the potential of cross-
hybridization could be depicted by the index developed
in this study, the sequence diversity index (SDI). The mag-
nitude of SDI decreases as the number of clusters
increases; sequences are more similar within clusters as
the number of clusters increases. SDI is analogous to the
F-statistics. That is, SDI is the "within" variation divided
by the "total" variation while the F-statistics is "within"
variation divided by "between" variation. Two ancillary

indexes (a functional index (UPGI) and a sequence conti-
guity index (CI)) were designed to evaluate the functional
representativeness of the selected probes and identify the
numbers of putative genes each probe potentially would
cross-hybridize. These indexes aid the probe selection
processes by bringing in the functional annotations of
ESTs as the main goal of the microarray experiments is
generally to interpret the biological significances and
interactions of genes of interest. A common goal of
microarray experiments is to identify co-regulated genes.
This is based on the assumption that if two genes are co-
expressed, they are likely to be co-regulated through the
same mechanism [28]. It has been shown experimentally,
at least in yeast, that combining expression data and
sequence functional annotation information results in a
better predictive model than using microarray expression
data alone [29]. The integrated procedure in our study
including both probe sequence and functional annota-
tion allows a user-defined flexibility based on the purpose
of experiments and the limitation or experimental
conditions, such as different hybridization stringencies,
budget limitations for numbers of probes to spot on the
array, or physical size constraint of the array.

Different clustering processes mimic different scenarios of
cross hybridization between sequences. Sequences from
the same transcript will hybridize with each other, and
this is reflected in the clusters formed using the single
linkage method. In contrast, some of the sequences in the
clusters formed by the complete or average linkage meth-
ods could be paralogs or alternative splicing variants of
the same gene. It might be argued that if a sequence, for
example Penaeidin 2, was chosen as a probe from the
cluster of sequences containing different subtypes to spot
on the microarray, this sequence will likely hybridize to
the sequences in the same cluster, for example, Penaeidin
3a and Penaeidin 3c. The contiguity index and probe
functional index developed in our study will identify the
cross hybridization potential for the users. Potential cross-
hybridization has become a more apparent problem for
the transcriptomics community. A tool was developed to
identify potential cross-hybridized probes lately [30],
however, this tool is designed for species with rich
genomic information. Our method provides an integrated
approach for cDNA microarray design for any organisms,
especially for projects with very limited genomic
information.

Cross-hybridization potential between long cDNA
seqeuences is harder to model than that between short
(oligonucleotide) sequences. Although several studies
have shown that local sequence percent identity seem to
be a reasonable predictor for cross hybridization for
cDNA microarray experiments [31-33], the cross-reactiv-
ity varies in a wide range (0.6 – 57% signal) even when
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Summary of uniquely annotated and unannotated sequences in three Gene Ontology (GO) domainsFigure 6
Summary of uniquely annotated and unannotated sequences in three Gene Ontology (GO) domains. The per-
centage of unique annotated sequences, "redundant" annotated sequences, and sequences have annotations in some of the 
three GO domains, but not in the particular domain of interest, and sequences have no similar gene products found in the 
Gene Ontology (GO) database (BlastX E-value was set at 10-6) among 971 L. setiferus ESTs. Three GO domains are (A) molec-
ular function, (B) biological process and (C) cellular component.
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percent identity is high and within a similar range (80–
85% identity) for sequences in different gene families
[33]. Currently, there is (are) no good predictor(s) to
model the cross-hybridization on cDNA microarray. The
similarity measurement between sequences in our study
(dmi) could be easily replaced in the future by any good
cross-hybridization predicting parameter(s) developed
for long cDNA sequence hybridization. The design proce-
dure we described here will work in the exact same fash-
ion. In a similar manner, although the traditional
hierarchical clustering algorithm with three linkage meth-
ods was used in our study, any bottom-up clustering algo-
rithm (e.g., K-nearest means clustering) or top-down
approach (e.g., principle component analysis, single value
decomposition) could be easily performed, and the corre-
sponding SDIs, UPGIs and CIs will be generated in the
same way and summarized in the SDP. The performances
of these different bottom-up or top-down algorithms (to
group or partition the sequences) could be compared
using the SDP. In brief, other distance matrix and cluster-
ing algorithms other than what we used in this study
could be easily applied using our algorithm, and their per-
formances could be evaluated quantitatively using the
suite of indexes in SDP.

Annotation of functionally unknown sequences is not a
trivial task itself. Gene Ontology has become a standard
ontology to annotate unknown sequences. Sequence sim-
ilarity search against the GO database using BLAST was
used in this study. The completeness of the GO database
and sensitivity/selectivity of the BLAST procedure would
dictate the annotation capability. Several different
approaches could potentially improve the annotation in
the future. One example found in this study was Penaei-
din family, a unique family of antimicrobial peptides with
both proline and cysteine-rich domains that were first
identified and characterized as peptides in the hemol-
ymph of the Pacific white shrimp, Litopenaeus vannamei
[34]. No homologous proteins are found in GO database.
Future research could emphasize how to integrate other
sources of knowledge (database) to enrich the functional
annotation process, especially as very limited knowledge
is available for marine organisms in the public domain.
Different approaches to annotate the EST sequences could
also be adapted. For instance, position-dependent
method (such as using HMMER [35] to search against
Pfam database [36,37]) could be used to search the exist-
ing database. This may increase the chance to annotate
sequences with lower sequence homologies with the
sequences stored in the database. The current functional
representativeness of the selected probes was quantified
using the unique GO terms associated with the probes
among all sequences. The quantification of how repre-
sentative the probes are could be modified in the future to
include the hierarchical nature of the GO terms.

The integration of this cDNA probe selection procedure
with the database through Marine Genomics web-based
interface [27] is currently in progress, and the marine
genomics community will be directly benefited, and it
will be equally applicable to any organisms with limited
genomic information.

Conclusions
The sequence diversity index (SDI) was developed in this
study to select probes using ESTs for designing cDNA
microarrays. Two ancillary mathematic indexes (sequence
contiguity index [CI] and unique probe GO index [UPGI])
were used to identify potential cross-hybridization
between different transcripts (or paralogs) and to quantify
biologically how representative the probes were. These
three indexes were summarized in a sequence diversity
plot (SDP) and were used to assist cDNA microarray
probe selections for organisms without any genomic
information. This method allows the user-defined
number of probes to be selected for the cDNA microarray
experiments. Different clustering methods balance the
representativeness of the probe functional annotations
and minimization of the sequence redundancies. Accord-
ingly, different linkage methods can be used to decide
between microarray designs for biomarker discovery or
for functional genomics.

It is clear that sequence assembly into contigs is not nec-
essary for microarray probe selection although it is
informative to identify the relationship among sequence
members within clusters based on the CI. The microarray
design procedure described here could also be used for
multi-species or cross-species microarray design in a sce-
nario where the sequences with high similarity from dif-
ferent species cross hybridize to each other [32], but not
necessary be assembled into contigs.

This method is not limited to the ESTs collected from sin-
gle or multiple marine organisms. Furthermore, this
method can be applied to any organisms without the
complete sequenced genomes.

Methods
Sequence availability and pre-processing
Twenty six thousand and six hundred fifty-six (26,656)
Expressed Sequence Tags (ESTs) from 14 marine species
were generated and stored in a postgresSQL database
through a user-friendly interface at the Marine Genomics
website [27]. All the sequences are freely available to the
public. One thousand and forty seven ESTs from Atlantic
white shrimp (L. setiferus) were used in this study. Pre-
processing included customized low quality filtering,
poly-A tail, vector, adaptor screening, trimming, and low-
complexity masking by DUST [38]. After pre-processing,
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971 sequences longer than 100 bp were further analyzed
(Figure 1).

Sequence similarity comparison
All against all pair-wise BLASTN [39] was performed
between these 971 ESTs. In the BLASTN result, with suffi-
ciently large sequence lengths q and n, the statistics of HSP
(high-scoring segment pairs) scores are characterized by
two parameters, K and lambda. The E-value, the expected
number of HSPs with score of at least S, given by the for-
mula E = Kqne-λS, was used as the distance measurement
(dmi in Eq (1) in results) between ESTs for cluster analysis
to determine sequence redundancies. dmi is the distance
between the ith pair of sequences for a total km pairs of
within-cluster comparisons when m clusters are formed.

Sequence redundancy reduction by cluster analyses
Hierarchical cluster analyses with three common linkage
methods (single linkage, average linkage, complete link-
age) were performed to reduce the redundancies among
sequences.

Two sequence indexes were used to quantify sequence 
diversity and contiguity within clusters
Two sequence indexes, the sequence diversity index [SDI;
Eq. (1) in results] and the contiguity index [CI; Eq. (2) in
results], were used throughout the sequence redundancy
reduction. SDI was used to aid the number of probes to
select. The within-cluster sequence contiguity (CI) is eval-
uated using CAP3 assembly software with default param-
eters [23]. Unweighted average within-cluster percent
identity of the HSP segments and HSP length from BLAST
results were quantified throughout the process of
clusterings.

Probe selection
To maximize the hybridization probability between the
selected probe and the sequences within the cluster, the
sequence has the highest similarity to all the other
sequences within the cluster is selected. That is, the
centroid EST, the sequence has the minimum average dis-
tance to all the other sequences within each cluster was
spotted on the array.

Sequence functional annotation using Gene Ontology 
(GO) terms
Functions of all 971 sequences were annotated using the
functional categorizations of similar sequences stored in
Gene Ontology (GO) database [40]. GO terms are com-
monly used for functional categorization in three
domains (biological process, molecular function, and cel-
lular component) for gene products (proteins) or nucle-
otide sequences. The GO terms and associated protein
sequences were downloaded from the GO website [41] in
the format of mySQL database [42]. The ESTs were anno-

tated by the top BLASTX hit after blasting them against the
proteins with GO terms associated in the database. The
sequences with the E-value threshold set at 10-6 for GO
annotation are considered as similar, and they potentially
share the same molecular functions, cellular components,
or biological processes. The GO terms found associated
with the EST sequences, if any, were recorded separately
for each of the three domains. If there were multiple GO
terms in any single domain (e.g., molecular function), the
inverse of the number of GO terms in that domain is used
for functional quantification (i.e., the traditional pie-chart
summary of the functional categories of ESTs). For exam-
ple, there are three molecular functional annotations
(GO:0005515, GO:0004866, GO:0004867) associated
with the sequence 1046, then each of them is considered
1/3 in the GO quantification for this particular sequence.
Therefore, the quantification for each GO domain will
sum up to the original analyzed sequence numbers at the
end when we quantify the percentage of each category (n
= 971).

A functional index to quantify how representative the 
selected probes are
The unique probe GO index [UPGI; Eq. (3) in results] was
used to quantify functionally how representative the
selected probes were within EST clusters.

Number of probes to retain using the sequence diversity 
plot (SDP)
Two sequence indexes (CI and SDI) and one functional
index (UPGI) mentioned above were included in the
sequence diversity plot (SDP) (Figure 1). Sequence simi-
larity was measured by SDI (Eq. (1) in results), and
within-cluster sequence contiguity was measured by CI
(Eq. (2) in results). The unique probe GO index (Eq. (3)
in results) was used to quantify functional annotation lev-
els represented by the selected probes. This integrated
information will allow user-defined flexibility of probe
selection involving both sequence similarity and func-
tional annotation.

List of abbreviations
SDP: sequence diversity plot, SDI: sequence diversity
index, CI: sequence contiguity index, and UPGI: unique
probe GO index
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