

Measuring Otologic Surgical Performance With Computer Vision (OTOVision)

M. Andrew Rowley BS, Royal M. Pipaliya BS, Mallory J. Raymond MD, Mitchell J. Isaac, MD, Ted A. Meyer MD, PhD

Research Category

PROBLEM / OPPORTUNITY

- Evaluation of surgical performance currently relies on direct observation and feedback, activities that are time-consuming and subject to bias.¹
- Manual analysis of surgical videos can provide objective measures of performance, but even this is prone to subjectivity and error.²
- Valid, reliable and efficient methods of assessing surgical skill are still needed.
- Machine learning technology could provide surgical performance analysis that is both objective and efficient.^{3,4}

IDEA SUMMARY

We will use an artificial intelligence framework to: 1) objectively measure surgical performance in a database of otologic surgical video clips and 2) provide trainees with quick, objective analytics of videos in near real-time to drive improvement.

VALUE PROPOSITION / BENEFITS

Surgical residency programs:

 Provide efficient, high-quality feedback to trainees and senior surgeons and accurately track progress over time.

Receive direct, timely and personalized

assessments of skill and performance.

<u>Hospital systems:</u>

Surgical trainees:

• Drive quality improvement using attending and trainee surgical performance metrics.

IMPLEMENTATION PLAN

- Define key attributes and steps of a mastoidectomy, a key indicator otologic procedure.
- Develop a computer vision model capable of surgical tool tracking.
- Test and validate the model to ensure accuracy.
- Iteratively teach the model to reliably recognize additional features, such as events and steps.
- Correlate surgical skill level with objective performance measures and define objective benchmarks.
- Apply the model to newly generated trainee surgical videos and provide rapid, objective feedback that can be tracked over time.

RESULTS

Examples of Measures Enabled by Smart Video Review:

- (1) Surgical instrument movement patterns (Figure 1)
- (2) Key surgical steps
- (3) Events and complications

Figure 1. Identification and tracking of instruments during a mastoidectomy using computer vision.

BUDGET / FINANCIALS

- Consultation with machine learning experts for development of the model
- Computer vision and machine learning development education courses
- NVIDIA Jetson platform
- Amazon Web Services Training Environment

LESSONS LEARNED

- Otologic videos are challenging to label because of microscope lens clouding, off-centered recording and frequent instrument and surgeon changes. Accurate machine learning models require high-quality videos.
- Complications of otologic surgery can be devastating and therefore occur very rarely, even for trainees. Objective analysis is not expected to improve rates of complications significantly.
- Instrument tracking alone cannot be used to determine a surgeon's skill level.

REFERENCES

 Moorthy K, Munz Y, Sarker SK, Darzi A. Objective assessment of technical skills in surgery. *BMJ*. 2003;327(7422):1032-1037.
Lee JA, Close MF, Liu YF, et al. Using Intraoperative Recordings to Evaluate Surgical Technique and Performance in Mastoidectomy. *JAMA Otolaryngol Head Neck Surg*. 2020;146(10):893. doi:10.1001/jamaoto.2020.2063

3. Jin A, Yeung S, Jopling J, et al. Tool Detection and Operative Skill Assessment in Surgical Videos Using Region-Based Convolutional Neural Networks. *arXiv:180208774 [cs]*. Published online July 21, 2018.

4. Khalid S, Goldenberg M, Grantcharov T, Taati B, Rudzicz F. Evaluation of Deep Learning Models for Identifying Surgical Actions and Measuring Performance. *JAMA Netw Open*. 2020;3(3):e201664. doi:<u>10.1001/jamanetworkopen.2020.1664</u>